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Abstract

Motivation: Sequence analysis is arguably a foundation of modern biology. Classic approaches to
sequence analysis are based on sequence alignment, which is limited when dealing with large-scale
sequence data. A dozen of alignment-free approaches have been developed to provide computationally
efficient alternatives to alignment-based approaches. However, existing methods define sequence
similarity based on various heuristics and can only provide rough approximations to alignment distances.
Results: In this paper, we developed a new approach, referred to as SENSE (SiamEse Neural network for
Sequence Embedding), for efficient and accurate alignment-free sequence comparison. The basic idea is
to use a deep neural network to learn an explicit embedding function based on a small training dataset to
project sequences into an embedding space so that the mean square error between alignment distances
and pairwise distances defined in the embedding space is minimized. To the best of our knowledge, this is
the first attempt to use deep learning for alignment-free sequence analysis. A large-scale experiment was
performed that demonstrated that our method significantly outperformed the state-of-the-art alignment-
free methods in terms of both efficiency and accuracy.
Availability and implementation: Open-source software for the proposed method is developed and freely
available at https://www.acsu.buffalo.edu/~yijunsun/lab/SENSE.html.
Contact: yijunsun@buffalo.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Sequence analysis is a major research area in bioinformatics and has
a wide range of applications in database search, sequence annotation,
metagenomics, comparative genomics, and gene prediction. Classic
approaches to sequence analysis are based on sequence alignment, either
global or local, pairwise or multiple sequence alignment. In this paper, we
focus on global pairwise sequence alignment, for which the Needleman-
Wunsch (NW) algorithm is the optimal method (Needleman and Wunsch,
1970). A major limitation of the NW algorithm is its high computational
complexity and thus is very limited when dealing with large-scale sequence
data. With the advent of next-generation sequencing technologies, the

data generation capacity has increased dramatically at a speed exceeding
Moore’s law and with sharply reduced cost. The rapid accumulation of
sequence data poses a serious challenge for data analysis, demanding new
computational algorithms for efficient data processing.

Over the past two decades, a dozen of alignment-free approaches
have been developed to provide computationally efficient alternatives
to alignment-based approaches, and found a wide range of applications
in database search, sequence annotation, metagenomics, comparative
genomics, and gene prediction (see Zielezinski et al. (2017); Bonham-
Carter et al. (2013); Song et al. (2013) for in-depth reviews). Commonly
used methods can be broadly classified into two categories: 1) methods
based on word frequency (e.g., k-mer (Karlin and Burge, 1995), FFP (Sims
et al., 2009), CV (Gao and Qi, 2007)), and 2) methods based on sub-
strings (e.g., ACS (Ulitsky et al., 2006), Kr (Haubold et al., 2009), kmacs
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(Leimeister and Morgenstern, 2014)). There also exist some methods based
on information theory (e.g., IC-PIC (Gao and Luo, 2012)), but they are less
commonly used. The methods in the first category are based on the statistics
of fixed-length word frequency or on the information content of word
frequency distributions, while the methods in the second category employ
the similarities or differences of sub-strings in a pair of sequences. For
sub-string methods, it is not necessary to specify a word length, and thus
in general they can achieve better performance than those relying on a fixed
word length. However, sub-string methods introduce new parameters (e.g.,
the number of mismatches in kmacs (Leimeister and Morgenstern, 2014))
that cannot be easily estimated. Moreover, computing features of variable
word lengths usually requires more complex data structures and thus
is computationally much more expensive (Leimeister and Morgenstern,
2014). In addition to the aforementioned issues, another major limitation
of existing methods is that they are all data-independent approaches, where
distance measures are defined based on various heuristics and thus can only
provide rough approximations to alignment distances.

In this paper, we propose a new method, referred to as SENSE
(SiamEse Neural network for Sequence Embedding), for efficient and
accurate alignment-free sequence comparison. The basic idea is to use
a deep neural network to learn an explicit embedding function and map
sequences onto an embedding space so that the mean square error between
alignment distances and pairwise distances defined in the embedding
space is minimized. We developed methods that allow researchers to
select a small fraction of sequence data to train the constructed model
and to estimate the dimension of an embedding space. To the best of our
knowledge, this is the first attempt to use deep learning for alignment-free
sequence comparison. Compared to the existing alignment-free methods,
our method offers a number of advantages: (i) SENSE is a supervised
learning method where the embedding function is learned automatically
through training, while in the existing methods sequence similarities
are defined based on heuristics. Consequently, our method is much
more accurate than the existing methods. A large-scale experiment was
performed on real-world datasets that demonstrated that the mean square
errors of our method are one to two orders of magnitude smaller than other
methods. (ii) Our method is computationally very efficient, and runs even
faster than the vanilla k-mer method. (iii) Our method is largely insensitive
to the specific choice of the parameters, making parameter tuning and
hence the implementation of our method easy for users. Considering
the wide applications of alignment-free methods, particularly k-mer, in
sequence analysis, we believe that this work opens the door to develop a
range of methods that do not rely on sequence alignment for large-scale
sequence data analysis.

2 Methods
In this section, we present the proposed method for sequence embedding.
For ease of implementation, we focus on the analysis of amplicon sequence
data, which has roughly equal sequence lengths. We start by proving that
the k-mer method can be viewed as a simple, untrainable neural network,
which motivated the development of the proposed method.

2.1 k-mer Method

The k-mer method (Karlin and Burge, 1995) is probably the most
commonly used alignment-free method for sequence comparison, and
serves as the basis for a wide range of bioinformatics methods (e.g.,
ESPRIT (Sun et al., 2009) and SLAD (Zheng et al., 2018) for sequence
binning, RDP classifier (Wang et al., 2007) and Kraken (Wood and
Salzberg, 2014) for sequence annotation, to name a few) and other
alignment-free methods (e.g., FFP (Sims et al., 2009), CV (Gao and Qi,
2007)). Given an alphabet Ω = {A, T, C, G} and a pre-defined number k,

it proceeds by first constructing a dictionary consisting of all possible sub-
sequences of length k, then sliding each sub-sequence (also called k-mer)
against a sequence, and constructing a counting vector where each entry
records the number of the corresponding k-mer detected in the sequence.

We show that the k-mer method can be implemented as an one-layer
convolutional neural network (Supplementary Fig. 1). To see this, we first
transform an input sequence of length L into an L × 4 matrix by using
the one-hot encoding, where each row represents a nucleotide A, T, C or
G. Similarly, each k-mer can be encoded as a k × 4 filter matrix. Then,
we convolve each filter through the input sequence matrix starting from
position 1 to position L − k + 1, and feed the output of a filter at each
position into an activation function defined as f(x) = max(0, x−k+1),
which yields a value of 1 or 0 indicating whether ak-mer pattern is detected.
Since there are a total of 4k filters, the convolution process generates 4k

binary vectors of lengthL−k+1. Finally, a flatten layer is generated that
concatenates all the binary vectors into one vector, and then fully connected
to an output layer consisting of 4k nodes. However, the weights between
the two layers are fixed, taking a value of 1 between the binary vector
generated by the i-th filter and the i-th node and 0 otherwise. The network
is not trainable, since the input and output are not directly comparable.

2.2 Siamese Neural Network for Sequence Embedding

Given an alphabet Ω and a set of sequences of length L defined over Ω,
we aim to find an embedding function ψ : ΩL → Rd that maps the
sequences into a d-dimensional space so that the difference between the
alignment distances and the pairwise distances defined in the embedding
space are minimized. We propose to use neural network to learn the explicit
embedding function, by leveraging the expressive power of neural network
to approximate complex functions (Csáji, 2001). The k-mer method
provides one way for sequence embedding. However, as shown above, it is
actually a shallow, untrainable neural network with only one convolution
layer. Recent developments in deep learning have demonstrated that
models with multiple layers can significantly improve learning accuracy
compared to shallow models (LeCun et al., 2015). Training a deep neural
network usually requires a large number of labeled samples. As we will
see shortly, with the advent of next-generation sequencing technology and
the design of our method, we have more than enough data for training a
deep learning model. The above observations motivated us to develop the
SENSE method presented below.

2.2.1 Siamese Neural Network
Fig. 1(a) presents an overview of the proposed method and its training
process. Embedding data into a lower dimensional space or dimensionality
reduction more generally has been intensively studied in machine learning.
However, most work was performed on numerical data, where autoencoder
is the most commonly used neural network (LeCun et al., 2015). In
our application, inputs and outputs are from the sequence and numerical
domains, respectively, and thus are not directly comparable. To address
this issue, we propose to use the Siamese neural network (Bromley et al.,
1994) to learn an explicit embedding function.

Siamese neural network is a class of network architectures that consist
of two identical networks, taking a sequence pair as one training sample.
Given a pair of sequences (si, sj), each network takes one sequence as
input and outputs ψ(si|W) and ψ(sj |W) as the embedding vectors of
the two sequences, respectively. Here,W is the parameters of the network
to be optimized. Then, we compute the alignment distance da(si, sj) by
using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970),
and the embedding distance de(ψ(si), ψ(sj)). For the reasons that will
be clear shortly, the embedding distance is calculated as the generalized
Jaccard distance (Levandowsky and Winter, 1971). Ideally, the difference
between da(si, sj) and de(ψ(si), ψ(sj)) should be as small as possible.
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Fig. 1. Overview of the proposed SENSE method for sequence embedding and its training process. (a) Siamese neural network consists of two identical networks that take
two sequences as input and output two embedding vectors. The network parameters are shared by the two networks and learned by minimizing the mean square error
measuring the difference between alignment distances and embedding distances. (b) Detailed structure of a three-layer convolutional neural network (CNN) that converts
a biological sequence into a numeric vector. (c) Toy example illustrating how a convolution operation and max pooling are performed on a sequence.

Hence, we train Siamese neural network using back-propagation (LeCun
et al., 1989) to minimize the mean square error given by

L(W) =
∑
i,j

(da(si, sj)− de (ψ(si|W), ψ(sj |W)))2 . (1)

In the training process, the twin networks are forced to share the same
parameters, including both initialization and gradient descent updates.
Once the Siamese neural network is optimized, one of the networks can
be used for sequence comparison.

2.2.2 Convolutional Neural Network
This section discusses the design of the neural network used in the
twin networks. Currently, convolutional neural network (CNN) and
recurrent neural network (RNN) are two most commonly used network
architectures for deep learning (LeCun et al., 2015). CNN is a feed-
forward neural network and has achieved exceptional results in many
applications, particularly in image recognition and text mining (LeCun
et al., 2015; Dos Santos and Gatti, 2014; Krizhevsky et al., 2012). For our
applications, it is required that input sequences have the same length. In
contrast, by connecting nodes to form a directed cycle, RNN is able to
detect dynamic spatial patterns and process sequences of various lengths
(Hochreiter and Schmidhuber, 1997). However, training RNN is generally
much more difficult than CNN. In this study, we focus mainly on amplicon
sequence analysis, where sequences usually have fairly stable lengths and

the problem of limited variations in read lengths can be readily solved by
using zero-padding and trimming tricks. Moreover, considering that k-mer
is a simple CNN network, we used CNN to form the twin networks, leaving
it to future studies to use RNN to develop a model to process sequences
of various lengths.

Fig. 1(b) depicts the detailed structure of our designed convolutional
neural network. It consists of three convolution modules followed by a
flatten layer and a fully connected layer. Each convolution module contains
a convolution layer, a ReLU layer, and a max-pooling layer. Given an input
sequence, we first transform it into a L × 4 matrix by using the one-hot
coding and then feed the matrix into a convolution layers (Fig. 1(c)). The
convolution layer consists of a set of learnable filters, which have a small
receptive field and are convolved through the full depth of each feature
channel. For image data, 2-dimensional convolution and max-pooling are
performed through both width and length directions, while for sequence
data, the two operations scan through only the length direction. The output
of a convolution layer is called a feature map. Usually, one convolution
layer has multiple filters, each generating one channel of a feature map.
Each entry of the feature map is then fed to the ReLU function, which
is the most commonly used activation function (Nair and Hinton, 2010).
The output of a ReLU layer is then passed to a max-pooling layer, which
partitions each channel of a feature map into a set of non-overlapping
rectangles and, for each such sub-region, outputs the maximum. It provides
a form of non-linear downsampling to reduce the number of parameters
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Algorithm 1: Active-Landmark-Selection (S, r, m)

Input: data S = {s1, · · · , sN}, the number of landmarks r, the
number of candidates m

Output: training data T

randomly select sl0 from S;
K = {sl0};
T = {};
Dmin = {u1 = 1, · · · , um = 1};
for i = 0 to r − 1 do

randomly select C = {sc1 , · · · , scm} from S;
for j = 1 to m do
uj = min(da(scj , sli ), uj);
Dsort = sort(Dmin);
randomly sample uk from Dsort[bm2 c, · · · ,m];
/* b·c is the floor function */

li+1 = k;
K = K ∪ {sli+1

};
T = T ∪ {(scj , sli ), da(scj , sli )};

end
end

and amount of computation in the network, and hence to also control
overfitting. After a sequence is processed by three convolution modules, it
is forwarded to the flatten layer, where the feature map from the previous
layer is concatenated into one vector. Finally, the flatten layer is fully
connected to the output layer that generates an embedding vector.

It is now clear that our method can be viewed as a sophisticated
extension of the traditional k-mer method. By using a multi-layer
architecture, SENSE has the potential to build high-level features of input
sequences that may not be attainable by a shallow model (Lee et al.,
2009). More importantly, unlike the k-mer method where the filters are
handcrafted and the weights are fixed, the filters and weights in our method
are all learned automatically through training. Thus, it is expected that
SENSE performs much better than k-mer, which is demonstrated in our
experiment.

2.2.3 Network Implementation
In our implementation, we set the number of nodes in the input layer as the
maximum length of input sequences, the filter length to 5, and the numbers
of filters in the three convolution layers to 16, 32 and 48, respectively.
Consequently, the sizes of filters in the three convolution layers are 5× 4,
5×16, and 5×32, respectively. For all convolution layers, we set padding
= 2 and stride = 1 so that the output feature map has the same length as its
input. For the max-pooling layers, we set window size = 2 and stride = 2.
The number of nodes in the output layer (i.e., the dimension of embedding
vectors) is set be equal to the length of input sequences. In the Experiments
section, we provided a way to estimate the dimension of an embedding
space. We implemented our method in Pytorch, which is a deep-learning
framework that provides tensors and dynamic neural networks in Python.

2.2.4 Calculating Embedding Distances
Theoretically, any distance function can be used to measure the similarity
between two embedding vectors. In our method, the loss is computed
as the difference between alignment distances and embedding distances.
The alignment distance is defined as the number of mismatches divided
by the total alignment length, which is a number between 0 and 1. In
order to make embedding distances comparable to alignment distances,
the generalized Jaccard distance was used to measure the dissimilarity
between two embedding vectors. Specifically, given vectors x ≥ 0 and

y ≥ 0, the generalized Jaccard distance is defined as:

de(x,y) = 1−
∑
i

min (x(i), y(i)) /
∑
i

max(x(i), y(i)) , (2)

where x(i) is the i-th element of x. Note that the k-mer distance is
essentially the generalized Jaccard distance between two k-mer counting
vectors. The max and min operations can be easily implemented by using
the Maxout network (Goodfellow et al., 2013).

2.2.5 Active Landmark Selection
This section addresses the issue of how to select training samples for a large
sequence dataset. While having an access to sufficient data for training
is a motivation for us to using deep learning for sequence embedding,
the number of available training samples can become excessively large.
Given a sequence dataset with N sequences, the number of possible
sequence pairs (i.e., training samples) is N(N − 1)/2. If N is on the
order of 106 ∼ 109, it is computationally unfeasible to train a model
on such a large amount of data. One possible way to address the issue is
to use a subset of sequences selected through random sampling, which
however could bias the selection process toward dense regions. In order
to select sequences that cover the entire data space, we propose to use
an active landmark selection based method to select training samples.
Similar techniques have been successfully used for large-scale clustering
analysis (Voevodski et al., 2012; Cai and Sun, 2011; Mao et al., 2015).
Algorithm 1 presents the pseudo-code of the sample selection method.
Specifically, given a sequence dataset S = {s1, · · · , sN}, we start by
randomly selecting a sequence sl0 from the dataset to form a landmark
set K. Then, we randomly sample m candidate sequences and compute
the distance between each sampled sequence and the landmark set K.
Here, the distance between a sequence and a landmark set is defined as the
minimum distance between the sequence and a landmark sequence. We
maintain a listDmin of lengthm to keep track of the minimum distances.
Afterward, we randomly select a new landmark from the m/2 sequences
that are the farthest from the landmark set and put it into landmark set
K. The selection procedure is repeated until r landmark sequences are
selected. During the landmark selection process, all compared sequence
pairs are collected as training data for the SENSE method. As we will
see shortly in our experiment, given a dataset with 106 sequences, only a
small fraction of sequences (∼0.1%) are needed to train a model. In our
software package, we implemented the training data selection algorithm
with C++.

2.2.6 Sample Weighting
In the above derivations, we assume that all sequence pairs are equally
important, which may not be the case in real applications. For example,
for database search, researchers are interested only in the best matched
reference sequences in a database for a query sequence. For microbiome
research, most data analyses are performed at the species and genus levels
(Sun et al., 2009, 2010; Cai et al., 2017), where sequences with 3% and
5% dissimilarities are assumed to be from the same species and genus,
respectively. Unlike existing alignment-free methods, our method is a
supervised learning based method. It provides researchers with a flexible
way to force the method to learn a model that predicts more accurately
on similar sequence pairs by assigning higher weights on those pairs.
Specifically, given embedding distance de and alignment distance da,
we can define a loss function as

L(da, de) = w(da)(da − de)2 , (3)

in favor of distance estimation for similar sequence pairs, where w can be
either a pre-defined constant or even a function of alignment distances.
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(a) SENSE (b) ACS (c) Kr

(d) k-mer (k = 3) (e) kmacs (k = 2) (f) FFP (l = 9)

Fig. 2. Visualization of alignment distances versus estimated distances computed by six alignment-free methods performed on the Qiita dataset. The hexagon-bin plots
were generated by using python code matplotlib.pyplot.hexbin and the number of bins in the x-direction was set to 200. The color of a bin represents the number of sequence
pairs in the bin.

2.3 Related Work

We compared our method with k-mer and four state-of-the-art alignment-
free methods, namely ACS (Ulitsky et al., 2006), Kr (Haubold et al., 2009),
FFP (Sims et al., 2009) and kmacs (Leimeister and Morgenstern, 2014).
Below, we give a brief review of each method.

FFP is closely related to k-mer. It works by first calculating the count
of each possible k-mer in a sequence and then dividing the k-mer counting
vector by the total k-mer counts to convert a sequence into a feature
frequency profile (FFP). The pairwise distance between two sequences is
then defined as the Jensen–Shannon divergence of their respective FFPs.
In ACS, given a pair of sequences sa and sb, the longest substring in
sa starting at positions i that exactly matches some substrings in sb is
identified and the length of the detected substring is recorded in la(i).
Then, a similarity measure between two sequences is computed as

L(sa, sb) = 1/|sa|
|sa|∑
i=1

la(i), (4)

where |sa| is the length of sa. Intuitively, the larger L(sa, sb) is, the
more similar the two sequences are. To account for the differences in
sequence lengths, L(sa, sb) is normalized as L(sa, sb)/ log |sa|. To
derive a distance measure, the inverse of similarity measure is taken and a
correction term is subtracted to ensure that d(sa, sa) = 0, which yield

d(sa, sb) =
log |sb|
L(sa, sb)

−
log |sa|
L(sa, sa)

. (5)

Since d(sa, sb) is not symmetric, ACS computes dACS(sa, sb) =

(d(sa, sb) + d(sa, sb))/2 and uses it as the final distance measure
between two sequences. The kmacs method is a generalization of ACS.
Briefly, to define the distance between two sequences sa and sb, kmacs
searches for each position i in sa the longest substring starting at i

and matching some substring in sb with up to k mismatches. It uses
the average length of the longest substrings as a measure of similarity
between two sequences and turns it into a symmetric distance measure in
the same way as ACS. However, since searching for the longest substring
with exact k mismatches is computationally very expensive, kmacs uses
approximations instead of computing exact k-mismatch substrings. Kr is
also closely related to ACS, which calculates the number of substitutions
per site between two sequences using the shortest absent substring.

In a broad sense, our work is related to metric learning (Bellet et al.,
2013). Given a set of feature vectors, metric learning aims to learn a
metric function by optimizing a certain cost function. For sequence and
image analysis, feature vectors are usually handcrafted through so-called
feature engineering, which is sometimes difficult and requires expert
knowledge, and the metric function to be learned is commonly set to be
Mahalanobis distance (Xing et al., 2003). A major advantage of our method
is that it can learn both features and an arbitrary embedding function
(not necessarily a metric function) represented by a deep neural network
from data simultaneously. Since metric learning-based methods are not as
widely used as the above discussed alignment-free methods for sequence
data analysis, we do not compare them with our method in the experiment.

3 Experiments
We performed a large-scale experiment that demonstrated that
the proposed method significantly outperformed the state-of-the-art
alignment-free methods in terms of both accuracy and efficiency.

3.1 Datasets

Two real-world sequence datasets were used in the experiment. The first
dataset, referred to as Qiita, was downloaded from Qiita (study # 10052)
(Clemente et al., 2015). It contains 66 skin, saliva and feces samples
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Table 1. CPU time (in second) and MSE results averaged over ten runs for six methods performed on the Qiita and RT988 datasets. The numbers in
parentheses are standard deviations. When different parameters were used for a method, the best result is boldfaced. A p-value was computed by
using Student’s t-test to compare the MSE result of SENSE with the best result of a method. As a reference, the CPU time of the Needleman-Wunsch
(NW) algorithm is also reported.

Qiita RT988
Method Parameter CPU time MSE p-value CPU time MSE p-value
SENSE default 5.2 (0.1) 3.4e-04 (1.1e-05) – 13.6 (0.2) 2.1e-05 (1.3e-06) –

ACS default 62.4 (1.2) 2.2e-02 (1.3e-04) 8.7e-39 182.3 (6.4) 1.2e-02 (1.6e-04) 3.3e-32
Kr default 425.8 (7.6) 1.1e00 (6.0e-02) 9.1e-22 758.3 (14.6) 2.8e-03 (4.7e-05) 1.1e-30

k-mer

k = 3 8.2 (0.2) 4.5e-03 (1.7e-04) 1.2e-23 10.6 (0.9) 4.9e-03 (1.4e-04)
k = 4 13.7 (0.3) 3.2e-02 (3.0e-04) 23.7 (1.1) 3.3e-03 (4.8e-05) 8.2e-32
k = 5 16.5 (0.3) 1.4e-01 (5.2e-04) 40.2 (2.3) 3.8e-02 (4.5e-04)
k = 6 17.0 (0.3) 2.3e-01 (5.1e-04) 49.0 (2.5) 9.9e-02 (1.2e-03)
k = 7 17.1 (0.3) 3.0e-01 (6.4e-04) 51.7 (2.8) 1.5e-01 (1.7e-03)
k = 8 16.9 (0.4) 3.4e-01 (7.7e-04) 52.5 (3.1) 1.9e-01 (2.0e-03)
k = 9 16.7 (0.3) 3.4e-01 (7.7e-04) 52.7 (3.5) 1.9e-01 (2.0e-03)
k = 10 16.7 (0.3) 3.4e-01 (7.6e-04) 52.9 (3.8) 1.9e-01 (2.0e-03)
k = 11 16.6 (0.4) 3.4e-01 (7.6e-04) 53.3 (5.1) 1.9e-01 (2.0e-03)
k = 12 16.7 (0.4) 3.4e-01 (7.6e-04) 52.7 (3.5) 1.9e-01 (2.0e-03)

kmacs

k = 1 93.9 (6.3) 4.5e-03 (3.6e-05) 279.9 (18.3) 1.9e-03 (3.9e-05)
k = 2 102.4(6.2) 1.7e-03 (2.8e-05) 9.0e-29 315.9 (17.8) 4.8e-04 (1.2e-05) 1.4e-27
k = 3 110.1 (3.8) 3.8e-03 (6.0e-05) 344.7 (18.7) 1.3e-03 (1.5e-05)
k = 4 118.1 (4.4) 7.6e-03 (8.4e-05) 371.8 (21.9) 2.9e-03 (2.5e-05)
k = 5 127.2 (7.1) 1.2e-02 (1.0e-04) 394.1 (17.9) 4.6e-03 (3.1e-05)
k = 6 133.2 (4.7) 1.6e-02 (1.2e-04) 415.6 (12.3) 6.1e-03 (4.2e-05)
k = 7 138.6 (4.7) 1.9e-02 (1.3e-04) 432.2 (9.2) 7.7e-03 (6.5e-05)
k = 8 144.4 (4.9) 2.3e-02 (1.4e-04) 450.1 (14.4) 9.1e-03 (8.7e-05)
k = 9 152.9 (8.1) 2.6e-02 (1.5e-04) 465.1 (13.6) 1.0e-02 (1.1e-04)
k = 10 158.2 (9.5) 2.9e-02 (1.7e-04) 480.9 (16.5) 1.1e-02 (1.2e-04)

FFP

l = 6 16.6 (0.4) 8.0e-02 (7.3e-04) 17.2 (1.3) 3.2e-02 (5.3e-04)
l = 7 28.5 (0.8) 8.2e-02 (8.4e-04) 28.7 (1.4) 2.7-02 (4.7e-04)
l = 8 58.0 (5.4) 1.9e-02 (5.3e-04) 58.9 (1.9) 2.7e-02 (4.3e-04)
l = 9 100.9 (3.1) 1.7e-02 (3.5e-04) 8.9e-29 107.5 (2.9) 2.2e-02 (5.6e-04)
l = 10 196.5 (6.7) 8.9e-02 (8.3e-04) 213.9 (7.3) 8.8e-04 (3.3e-05) 2.7e-24
l = 11 364.1 (8.1) 1.7e-01 (9.6e-04) 391.2 (12.3) 2.1e-02 (3.3e-04)
l = 12 1724.8 (20.9) 2.8e-01 (9.2e-04) 737.1 (21.1) 6.9e-02 (8.1e-04)
l = 13 1375.9 (36.0) 2.8e-01 (8.6e-04) 1282.2 (35.9) 1.2e-01 (1.2e-03)
l = 14 2480.1 (94.7) 3.2e-01 (8.6e-04) 2039.5 (94.3) 1.5e-01 (1.6e-03)
l = 15 3801.9 (94.6) 3.4e-01 (8.4e-04) 2790.6 (145.2) 1.8e-01 (1.9e-03)

NW default 6039.6 (140.7) - - 61161.8 (885.0) - -

collected from Yanomani, the uncontacted Amerindians, consisting of
6,734,572 sequences of 151 bp that cover the V4 hyper-variable region of
the 16S rRNA gene. The second dataset (RT988, unpublished data), which
covers the V3-V4 regions, was generated from 90 oral plaque samples and
contains 4,119,942 sequences of 464-465 bp. Both datasets were generated
by Illumina MiSeq. Before the analysis, pre-processing was performed
including pair-end joining, quality filtering and length filtering. It is worth
noting that since amplicon sequences produced by Illumina MiSeq have
fairly stable read lengths, length filtering retained the vast majority of
sequences and we did not perform any trimming on the sequences.

3.2 Benchmark Study on Accuracy and Efficiency

When evaluating an alignment-free method, distance estimation accuracy
and computational efficiency are two major considerations. Thus, we
calculated the mean squared error (MSE) between alignment distances
and embedding distances estimated by an alignment-free method, and
recorded its computational time. Since it is computationally unfeasible
to align all sequence pairs for a dataset, we randomly sampled 2,000
sequences without replacement, and calculated the alignment distances of
all 1,999,000 possible sequence pairs. The NW algorithm with the default
settings was used for sequence alignment (match score = 5, miss score
= -4, gap opening score = -10, gap extending score = -1). To minimize

statistical variations, the above sampling process was repeated 10 times.
Therefore, we generated a total of 10 testing datasets for each sequence
dataset to evaluate the six competing methods.

For kmacs, FFP (V3.19) and Kr (V2.0.2), we used the source code
downloaded from their websites. Since kmacs is a extension of ACS, we
used the kmacs binary with parameter k = 0 as the implementation of the
ACS method. For k-mer, we used our own C++ implementation optimized
for amplicon sequence data by using sparse k-mer count representation.
For k-mer, kmacs and FFP, different parameters can be applied. Since
there is no principal way to estimate the optimal parameter, we tested 10
parameters for each method. For the proposed method, we need to train the
model for a specific dataset, which can be done offline. With the help of the
proposed landmark-based training sample selection algorithm, the number
of selected training pairs is trivial compared to the number of all sequence
pairs. For both datasets, the number of landmarks was set to 100 and the
number of candidates was set to 5,000, resulting in 500,000 sequence pairs
for training. The 5,100 sequences used for training account only for∼0.1%
of total sequences for both datasets. To prevent information leakage, we
also verified that none of the sequences used for training were in testing
data. To train the Siamese neural network, we used the Adam optimizer
(Kingma and Ba, 2014) and set the learning rate to 1e-4, the number of
training epochs to 100, and the embedding dimension to be same as the
input sequence length (i.e., 151 for Qiita and 465 for RT988).
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(a) SENSE (b) ACS (c) Kr

(d) k-mer (k = 3) (e) kmacs (k = 2) (f) FFP (l = 10)

Fig. 3. Visualization of alignment distances versus estimated distances computed by six alignment-free methods performed on the RT988 dataset.

Table 1 reports the CPU time and MSE results averaged over ten runs
for the six methods performed on the Qiita and RT988 datasets. Figs. 2 and
3 plot the estimated distances against the alignment distances for the two
datasets, respectively. Due to space limitations, only the best result for each
method is reported, and other results are reported in Supplementary Figs. 2
and 3. From the table and figures, we can see that our method achieved the
best performance in terms of both accuracy and efficiency. Remarkably, the
MSEs of our method are one to two orders of magnitude smaller than other
methods. The kmacs method performed a distant second among the six
methods in terms of accuracy. However, kmacs runs about 20 times slower
and its MSEs are one order of magnitude larger than our method on both
datasets. In fact, as we will see shortly, the computational efficiency of our
method can be further improved by reducing the embedding dimension
while maintaining the same level of accuracy. As a reference, the CPU
time of the NW algorithm is also reported in Table 1. The application of
our method led to 1,161 fold and 4,497 fold increase in speed for Qiita and
RT988, respectively.

We also performed a parameter sensitivity analysis to investigate how
the proposed method performs with respect to different filter lengths. We
applied our method to the Qiita dataset and reported in Fig. 4 the mean
square errors obtained by using various filter lengths ranging from 3 to
8. While the existing methods are quite sensitive to the specific choice of
the parameter as shown in Table 1 and the optimal parameter can only
be estimated through try-and-error, our method is very robust against
different filter lengths. This could be explained by the fact that SENSE
is a supervised learning based method that can adjust the weights of the
filters automatically.

3.3 Estimating Dimension of Output Embedding Vectors

In the above experiment, we simply set the length of input sequences as
the default parameter for the number of nodes in the output layer (i.e.,
the dimension of output vectors). This parameter is directly related to
the model complexity of a constructed neural network, both training and

test time, and the size of space required to store embedding vectors if
further analysis is needed. In this section, we provide a general guideline
for estimating an appropriate number of nodes in the output layer. Our
approach is in spirit similar to the elbow method widely used in clustering
analysis to estimate the number of clusters (Sugar, 1998; Sun et al., 2017).
It was observed that as the number of clusters increases, the data fitting
error drops quickly and after some point becomes flattened, suggesting
that the model starts to fit random noise (Sugar, 1998). A similar technique
is also widely used in principal component analysis to estimate intrinsic
data dimension (Tenenbaum et al., 2000). Our constructed neural network
model can be considered an encoder of biological sequences. Thus, we
posit that we could observe an elbow phenomenon. To demonstrate this, we
performed an experiment on the two datasets. Fig. 5 shows the MSE results
as a function of various embedding dimensions. Indeed, we observed such
a phenomenon. When the embedding dimension equals to 80 for Qiita
or 130 for RT988, the obtained MSEs are already at the same level as
those obtained by using the default parameters. Since the calculation of
embedding distances is linear with respect to the embedding dimension
and, by reducing the number of nodes in the output layer, the network
structure can be much simpler, the CPU times reported in Table 1 were
further reduced 2 fold for Qiita and 4 fold for RT988.

3.4 Sample Weighting

In real applications, researchers may be more interested in sequences
that are similar. Unlike other alignment-free methods, a unique feature
of our method is that it provides a way that allows researchers to associate
different costs to different training sequence pairs (see Eq. (3)). To
demonstrate this, we performed an experiment on the Qiita dataset and
applied the following weight function to the loss function:

w(da) =

{
100 if da ≤ 0.2 ,

1 otherwise .
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Fig. 4. Results of parameter sensitivity analysis performed on the Qiita dataset.
The performance of the proposed method is largely insensitive to a specific choice
of filter size.

Fig. 6 shows the estimated distances calculated by SENSE with and without
a weight function. We can see that with the weight function the sequence
pairs with da ≤ 0.2 are grouped more tightly around the diagonal line.
The MSE for those pairs obtained by using the weight function is much
smaller than that obtained without the weight function (p-value≤ 2.1e-19,
t-test).

4 Discussion
In this paper, we developed a novel method for alignment-free sequence
comparison using deep convolutional neural networks. We demonstrated
that the new method could achieve much more accurate estimation of
pairwise distances than other methods. This is expected since SENSE is
a supervised learning-based method that learns an embedding function
automatically through training while all other methods define sequence
similarities based on heuristics. Currently, we used only∼0.1% sequences
to train the model. It is possible that the performance of our method can
be further improved by using a larger training dataset. Moreover, our
method is computationally very efficient, and runs even faster than the k-
mer method. Unlike other alignment-free methods, our method is largely
insensitive to the specific choice of the parameters, which makes parameter
tuning and implementation of our method easy for users.

We should emphasize that our method is different from other machine-
learning algorithms used in traditional applications (e.g., face recognition).
It is designed mainly for the fast estimation of pairwise distances for large
sequence datasets. In our experimental procedure, we trained a model
on a small fraction of sequences and then applied the trained model
to all the pairs of sequences (though the test data was not used in the
training process). However, one would be curious to know whether it
generalizes well on independent datasets. To this end, we tested our model
on independent datasets and reported the results in Supplementary Table
1. The obtained MSEs are higher than the results reported in Table 1.
This is expected because the training data may have a different sample
distribution from the test data. Nevertheless, our method still significantly
outperformed the best results of all other methods with a large margin.
The initial success of our method applied to independent dataset suggests
a potential research direction, that is, to develop and publish a trained
model (e.g., for 16S V3-V4 sequences) that other researchers can use to
process their own datasets. However, we do not think that we are there
yet. Currently, our method can only be applied to sequences of roughly
equal length. In the future, we plan to use RNN to build a model that can
process sequences of various lengths for general applications. Moreover, a
large-scale experiment is needed to train a model by using sequences from
different datasets.
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(b) RT988

Fig. 5. Estimate embedding dimensions by using the elbow method for (a) Qiita
and (b) RT988 datasets.

(a) w/ weight (b) w/o weight

Fig. 6. Visualization of alignment distances versus estimated distances calculated
by SENSE with and without using a weight function.

Alignment-free methods, particularly k-mer, have found numerous
applications in sequence analysis. We believe that this work would open
a door to develop a range of new methods that do not rely on sequence
alignment for large-scale sequence data analysis. By mapping nucleotide
sequences to numeric vectors, we also demonstrated that it is possible
to mathematically model nucleotide sequences, which may provide a new
way to study biological sequences. We plan to perform in-depth analyses to
study what type of information in nucleotide sequences has been encoded
by a deep learning model.
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(a) SENSE (b) ACS (c) Kr

(d) k-mer (k = 3) (e) k-mer (k = 4) (f) k-mer (k = 5)

(g) kmacs (k = 1) (h) kmacs (k = 2) (i) kmacs (k = 3)

(j) FFP (l = 7) (k) FFP (l = 8) (l) FFP (l = 9)

Figure S2: Visualization of alignment distances versus estimated distances computed by six alignment-free
methods performed on the Qiita dataset. For a method where different parameters can be applied, the top
three best results are reported.
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(a) SENSE (b) ACS (c) Kr

(d) k-mer (k = 3) (e) k-mer (k = 4) (f) k-mer (k = 5)

(g) kmacs (k = 1) (h) kmacs (k = 2) (i) kmacs (k = 3)

(j) FFP (l = 9) (k) FFP (l = 10) (l) FFP (l = 11)

Figure S3: Visualization of alignment distances versus estimated distances computed by six alignment-free
methods performed on the RT988 dataset. For a method where different parameters can be applied, the top
three best results are reported.
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Table S1: CPU time (in second) and MSE results averaged over ten runs for six methods performed on the
Qiita1001 and RT1194 datasets. The SENSE model was trained on the Qiita 10052 and RT988 datasets,
respectively. The numbers in parentheses are standard deviations. When different parameters were used for a
method, the best result is boldfaced. A p-value was computed by comparing the MSE result of SENSE with
the best result of a method.

Qiita1001 RT1194
Method Parameter CPU time MSE p-value CPU time MSE p-value
SENSE default 4.6 (0.1) 5.8e-04 (1.2e-05) – 11.2 (0.2) 4.4e-05 (7.7e-06) –
ACS default 56.1 (0.4) 2.4e-02 (2.3e-04) 7.6e-35 161.3 (0.8) 1.1e-02 (1.8e-04) 2.0e-29
Kr default 365.8 (5.2) 5.6e-01 (5.0e-02) 1.1e-17 652.8 (2.0) 2.8e-03 (4.2e-05) 2.1e-28

k-mer

k = 3 9.4 (0.4) 2.6e-03 (7.5e-05) 2.0e-24 9.0 (0.1) 4.9e-03 (1.7e-04)
k = 4 14.5 (0.4) 3.8e-02 (2.5e-04) 20.0 (0.2) 3.1e-03 (4.4e-05) 2.0e-30
k = 5 17.4 (0.3) 1.4e-01 (5.3e-04) 33.1 (0.6) 3.6e-02 (4.9e-04)
k = 6 18.2 (0.5) 2.4e-01 (8.2e-04) 40.3 (0.3) 9.3e-02 (1.3e-03)
k = 7 18.2 (0.5) 3.1e-01 (9.6e-04) 42.7 (0.3) 1.4e-01 (1.8e-03)
k = 8 18.3 (0.5) 3.5e-01 (1.1e-03) 43.3 (0.4) 1.8e-01 (2.1e-03)
k = 9 18.1 (0.4) 3.5e-01 (1.1e-03) 43.0 (0.2) 1.8e-01 (2.1e-03)
k = 10 18.0 (0.4) 3.5e-01 (1.1e-03) 42.9 (0.2) 1.8e-01 (2.1e-03)
k = 11 17.9 (0.3) 3.5e-01 (1.1e-03) 43.0 (0.6) 1.8e-01 (2.1e-03)
k = 12 17.7 (0.4) 3.5e-01 (1.1e-03) 42.7 (0.2) 1.8e-01 (2.1e-03)

kmacs

k = 1 84.2 (0.5) 4.5e-03 (6.4e-05) 244.6 (1.35) 1.6e-03 (4.6e-05)
k = 2 93.1(0.3) 1.3e-03 (3.4e-05) 1.1e-22 278.2 (0.7) 4.2e-04 (2.5e-05) 9.2e-19
k = 3 101.3 (0.3) 3.2e-03 (6.7e-05) 303.8 (0.8) 1.3e-03 (3.3e-05)
k = 4 108.5 (0.2) 6.5e-03 (1.0e-04) 327.0 (1.0) 3.0e-03 (3.3e-05)
k = 5 115.7 (0.3) 1.0e-02 (1.3e-04) 349.6 (0.9) 4.7e-03 (3.6e-05)
k = 6 122.9 (0.4) 1.4e-02 (1.6e-04) 370.9 (0.9) 6.2e-03 (4.8e-05)
k = 7 128.4 (0.2) 1.7e-02 (1.8e-04) 387.2 (1.0) 7.8e-03 (7.8e-05)
k = 8 133.9 (0.6) 2.0e-02 (2.1e-04) 402.2 (1.2) 9.0e-03 (1.0e-04)
k = 9 139.2 (0.5) 2.3e-02 (2.3e-04) 416.2 (1.3) 1.0e-02 (1.3e-04)
k = 10 144.0 (0.3) 2.6e-02 (2.4e-04) 428.4 (1.11) 1.1e-02 (1.5e-04)

FFP

l = 6 16.0 (0.4) 5.9e-02 (8.9e-04) 15.9 (0.3) 3.1e-02 (6.4e-04)
l = 7 27.1 (0.2) 6.6e-02 (8.2e-04) 27.2 (0.5) 2.7-02 (5.6e-04)
l = 8 53.7 (0.2) 1.4e-02 (2.6e-04) 2.0e-29 56.2 (1.0) 2.6e-02 (5.1e-04)
l = 9 95.7 (0.65) 1.7e-02 (2.8e-04) 102.6 (0.9) 2.2e-02 (5.7e-04)
l = 10 185.3 (0.5) 8.2e-02 (6.5e-04) 203.0 (1.7) 9.2e-04 (3.4e-05) 2.7e-24
l = 11 346.6 (1.4) 1.6e-01 (1.1e-03) 373.2 (2.1) 1.9e-02 (2.2e-04)
l = 12 682.2 (3.1) 2.2e-01 (1.3e-03) 715.6 (3.6) 6.5e-02 (6.5e-04)
l = 13 1269.3 (9.0) 2.6e-01 (1.6e-03) 1275.7 (15.0) 1.1e-01 (1.0e-03)
l = 14 2175.4 (32.1) 2.9e-01 (1.7e-03) 2040.1 (31.9) 1.4e-01 (1.3e-03)
l = 15 3301.6 (49.3) 3.2e-01 (1.8e-03) 2841.1 (58.2) 1.6e-01 (1.6e-03)

4


	Sense
	Sense_Supplement

