
Feature Selection for Nonlinear Regression and its Application to

Cancer Research

Yijun Sun∗ Jin Yao† Steve Goodison‡

Abstract

Feature selection is a fundamental problem in machine
learning. With the advent of high-throughput technolo-
gies, it becomes increasingly important in a wide range
of scientific disciplines. In this paper, we consider the
problem of feature selection for high-dimensional non-
linear regression. This problem has not yet been well ad-
dressed in the community, and existing methods suffer
from issues such as local minima, simplified model as-
sumptions, high computational complexity and selected
features not directly related to learning accuracy. We
propose a new wrapper method that addresses some of
these issues. We start by developing a new approach
to estimating sample responses and prediction errors,
and then deploy a feature weighting strategy to find a
feature subspace where a prediction error function is
minimized. We formulate it as an optimization prob-
lem within the SVM framework and solve it using an
iterative approach. In each iteration, a gradient descent
based approach is derived to efficiently find a solution.
A large-scale simulation study is performed on four syn-
thetic and nine cancer microarray datasets that demon-
strates the effectiveness of the proposed method.
Keywords: nonlinear regression, feature selection,
bioinformatics

1 Introduction

High-throughput technologies now routinely produce
large datasets characterized by unprecedented numbers
of features. The performance of most learning algo-
rithms suffers as the number of features becomes exces-
sively large. This is typically due to the requirement
that a training dataset used to estimate algorithm pa-
rameters needs to increase in size exponentially with the
growing number of features - a phenomenon called the
curse of dimensionality. One possible way to address

∗Bioinformatics Laboratory, State University of New York at

Buffalo, Buffalo, NY 14201, USA
†Department of Electrical and Computer Engineering, Univer-

sity of Florida, Gainesville, FL 32610, USA
‡Department of Health Sciences Research, Mayo Clinic, Jack-

sonville, FL 32224, USA

the issue is to perform feature selection to extract the
most relevant information about each observed datum
from a potentially overwhelming quantity of its features
[7]. An example where feature selection plays a critical
role is the use of oligonucleotide microarray for the iden-
tification of cancer-associated gene expression profiles of
prognostic value. Typically, the number of samples is
around one hundred, while the number of genes associ-
ated with raw data is on the order of thousands or even
tens of thousands. The identification of a small frac-
tion of genes that drive cancerous tumor growth and/or
spread can significantly improve the accuracy of cancer
prognosis. In addition to defying the curse of dimen-
sionality, eliminating irrelevant features can also reduce
processing time of data analysis and the cost of collect-
ing irrelevant features. In many cases, feature selection
can also provide significant insights into the nature of
the problem under investigation.

The problem of feature selection has been ex-
tensively studied in the machine learning community
[11, 7, 23, 24, 25]. However, the majority of the work
is for classification and linear regression exemplified by
Lasso [25] and its variants [26], and only a limited
work has been done for nonlinear regression. Recent
years have witnessed significant progress on the devel-
opment of feature selection algorithms for nonlinear re-
gression. Representative methods include mRMR [19],
FVM [13], HSIC Lasso [27], QPFS [21], sparse additive
model (SpAM) [20], hierarchical multiple kernel learn-
ing (HMKL) [1] and RGS [16]. These algorithms can be
categorized as wrapper or filter methods. Filter meth-
ods are independent of any learning algorithm and select
informative features based on some statistical proper-
ties of data (e.g., correlation). Therefore, filter meth-
ods can be easily implemented and are computationally
very efficient. A major drawback of filter methods is
that the criteria used in selecting relevant features are
not directly related to learning accuracy. It is generally
believed that a wrapper method that selects features
by wrapping a selection process around a learning algo-
rithm usually outperforms filter methods [7]. However,
due to the difficulty of modeling complex data struc-
tures (e.g., nonlinear manifolds with multiple branches

such as the one shown in Fig. 1), there are only a few
wrapper based algorithms reported in the literature, in-
cluding SpAM [20], HMKL [1] and RGS [16]. RGS is
probably one of the first feature selection algorithms for
nonlinear regression. The basic idea is to use kernel re-
gression to predict responses and find a feature subset
to minimize prediction errors. However, RGS suffers
from a local minimum problem. Moreover, it does not
offer a principled way to achieve a sparse solution that
is usually required for high-dimensional data analysis.
One method that worth mentioning is the well-known
SpAM algorithm. SpAM assumes that data is gener-
ated by an additive model, and performs extremely well
if the model assumption is valid. However, it may not be
able to identify correct features if there are interactions
among features as noted by [27]. This is undesirable for
biological applications since genes and gene products do
interact with each other.

This paper presents a new wrapper method that ad-
dresses some limitations of existing methods. We first
develop a new approach to estimating sample responses
and prediction errors. We then use a feature weighting
strategy to find a feature subspace where an error func-
tion is minimized. We formulate it as an optimization
problem with a well-defined objective function within
the SVM framework, and solve it by using an iterative
approach. In each iteration, a gradient descent based
approach is derived to efficiently find a solution. The
algorithm can be easily implemented and is computa-
tionally very efficient. Moreover, our method does not
explicitly impose any model assumption on data distri-
bution, and works for both linear and nonlinear prob-
lems. We demonstrate the effectiveness of the algorithm
by applying it to four synthetic and nine cancer gene ex-
pression datasets.

2 Algorithm

Suppose that we have a training dataset D =
{(xn, yn)}Nn=1, where xn ∈ RJ is the n-th sample,
yn ∈ R is its corresponding response and J � N . We
seek to find a feature subset so that the responses of un-
seen test samples can be optimally predicted based on
some criteria. Therefore, the essence is to design a crite-
rion to quantify prediction accuracy that can be conve-
niently optimized by some optimization techniques. To
this end, we digress slightly and consider the nonlinear
regression problem for the moment. Given a sample x,
a straightforward approach is to find a sample x∗ in D
that is closest to x and assign the response of x∗ to x:

(2.1) x∗ = arg min
xn∈D

d(x,xn), and ŷ(x) = y(x∗) ,

where d(x,xn) is a distance function measuring the
similarity between two samples. A general version is

the Nadaraya-Watson method [9] that estimates the
response of x as:

(2.2) ŷ(x) =

N∑
n=1

K(x,xn)yn/

N∑
n=1

K(x,xn),

where K(·) is a kernel function. A natural idea then
is to find a weighted subspace parameterized by a non-
negative weight vector w so that the objective function∑N
n=1 f(yn, ŷ(xn|w)) is minimized, where f(yn, ŷ) is a

cost function, which can be |yn − ŷ| or (yn − ŷ)2, and

(2.3) ŷ(xn|w) =

∑N
i=1,i6=nK(xn,xi|w)yi∑N
i=1,i6=nK(xn,xi|w)

.

This is the basic idea of the RGS algorithm proposed
in [16] and the objective function is optimized using
a gradient descent method. A major issue with the
above formulation is that there is no guarantee that an
optimal solution can be found due to the presence of
local minima.

We develop a new algorithm motivated by the RGS
algorithm. The basic idea is to decompose a nonlin-
ear regression problem into a set of classification prob-
lems and learn feature relevance within a classification
framework. We start by developing a new approach
to estimating sample responses and prediction errors.
Without loss of generality, we assume that yi ≥ yj
if i > j. For every yn, 2 ≤ n ≤ N , we compute
sn = (yn−1 + yn)/2 and divide the dataset D into
two subsets D1 = {xi|yi < sn, 1 ≤ i ≤ N} and
D2 = {xi|yi > sn, 1 ≤ i ≤ N}. Given a sample x,
we compute two distances:
(2.4)

d1(yn) = min
z∈D1

d(x, z), and d2(yn) = min
z∈D2

d(x, z) .

We determine that the response of x is larger than or
equal to yn if d1 > d2, and smaller than yn otherwise.
The above described test is repeated starting from y2

until we find a yn so that d1 ≤ d2. Then, the response
of x is estimated to be yn−1. Let 4d(yn) = d1(yn) −
d2(yn). It can be proved that4d(yn) is a monotonically
decreasing function of yn. This means that once we find
yn there is no need to perform additional tests. Also, it
is easy to prove that the response yn−1 estimated in the
above test is equal to ŷ estimated in (2.1). However, we
will shortly see that the approach we use to estimate
sample responses enables us to circumvent the local
minimum problem.

Let y be the true response of x, and define ρ(x|yn) =
4d(yn)sign(y − yn). We define the prediction error as:

(2.5) ε(x) =

N∑
n=2

I(ρ(x|yn) < 0) ,

1 2 3
6

7
8

6
4

8

5

X1 X2 X3 X4

X8 X9

X10

X5
X

X7

Figure 1: Toy example illustrating the basic idea. The
number in a circle is the response of the corresponding
sample. In this case, ŷ(x) is estimated to be y(x5) and

ε(x) =
∑N
n=2 I(ρ(x|yn) < 0) = 2.

where I(x < 0) is an indicator function that takes
the value of 1 if x < 0 and 0 otherwise. The above
definition can be interpreted within the classification
framework: if we successively divide a dataset into two
subsets and use the one-nearest-neighbor classifier to
classify x into one of the two groups, ε(x) equals to the
number of times when x is misclassified, and ρ(x|yn)
can be regarded as a margin of x. This presents a
close connection between regression and classification
problems. Indeed, a classification problem can be
viewed as a degenerate regression problem. Fig. 1
presents a toy example illustrating the basic idea.

Once we define a prediction error function, we
proceed to find a weighted feature subspace where the
overall prediction error is minimized:

(2.6) min
w≥0

N∑
n=1

∑
i∈Cn

I(ρ(xn|yi,w) < 0) ,

where Cn = {i|3 ≤ i ≤ N} if n = 1 and Cn = {i|2 ≤ i ≤
N, i 6= n} if n ≥ 2. Since in the inner summation xn is
held out as a test sample, the above objective function
can be interpreted as a leave-one-out cross-validation
(LOOCV) error. For numerical convenience, we use
the block distance to measure the similarity between
two samples, which is also used in the RELIEF [11]
and LOGO algorithms [24]. However, other distance
functions (e.g., squared Euclidean distance) can also be
used. Let NN(D1) and NN(D2) be the nearest neighbors
of xn in D1 and D2, respectively. Then, ρ(xn|yi,w) can
be computed as a linear function of w:
(2.7)

ρ(xn|yi,w)

= wT
(
|xn −NN(D1)| − |xn −NN(D2)|

)
sign(yn − yi)

, wT zn(i) ,

where | · | is an element-wise absolute operator. The

problem (2.6) can now be simplified as:

(2.8) min
w≥0

N∑
n=1

∑
i∈Cn

I(wT zn(i) < 0) .

Note that the indicator function is non-differentiable
and non-convex. A commonly used practice to address
the issue is to minimize the upper bound of a cost
function [28]. We use the hinge loss, leading to a SVM
formulation of feature selection for nonlinear regression:
(2.9)

min
w

N∑
n=1

∑
i∈Cn

max
(
0, 1−wT zn(i)

)
, s.t. ‖w‖1 ≤ λ,w ≥ 0,

where we impose an `1 penalty on w in order to obtain
a sparse solution, and λ is a regularization parameter
controlling the sparseness of a solution. Hence, the
algorithm has two levels of regularization, i.e., the
implicit LOOCV and explicit `1 regularization. We will
shortly see that the performance of our algorithm is
largely insensitive to a specific choice of λ due to the
LOOCV regularization (Fig. 5(b)).

There are a number of algorithms that can be
used to solve the `1-SVM problem (e.g., [15]). We
demonstrate here that `1-SVM can be readily solved in
its primal domain by using gradient descent techniques.
Since the hinge loss is a non-differentiable function, we
thus replace it by the Huber loss defined as

(2.10) H(ρ) =

0 ρ > 1 + h ,
(1 + h− ρ)2

4h
1− h ≤ ρ ≤ 1 + h ,

1− ρ ρ < 1− h ,

where h is a tunable parameter. If h is sufficiently small,
SVM using the Huber loss yields the same solution as
that obtained with the hinge loss [3].

The problem (2.9) is a constrained convex optimiza-
tion problem. In order to use gradient descent tech-
niques, traditional methods apply projection or barrier
functions to prevent solutions from falling outside fea-
sible regions. In this paper, we use a different approach
where we convert the constrained problem into an un-
constrained one by setting wj = v2

j for 1 ≤ j ≤ J . Then,
the problem (2.9) with the hinge loss being replaced by
the Huber loss can be re-written as
(2.11)

min
v
L(v) =

N∑
n=1

∑
i∈Cn

H

 J∑
j=1

v2
j z
j
n(i)

+ α

J∑
j=1

v2
j ,

where α is a Lagrange multiplier. Taking the derivatives

of L with respect to v yields

(2.12) dL/dv = 2

(
N∑
n=1

∑
i∈Cn

dH

dρ
zn(i) + α1

)
� v,

where 1 is an all-one vector and � is the Hadamard
operator. Thus, the problem (2.9) can be solved by
using gradient descent with the following updating rule:

(2.13) v(k) = v(k−1) − η dL
dv
|v=v(k−1)

=

(
(1− 2ηα) 1− 2η

N∑
n=1

∑
i∈Cn

dH

dρ
zn(i)

)
� v(k−1),

where v(k) is the solution obtained at the k-th iteration,
and η is a learning rate that can be determined through
a line search. Note that the objective function of (2.11)
is no longer convex, and a gradient descent method
may find a local minimizer or a saddle point. However,
(2.11) is quasi-convex for v ≥ 0, and it can be proved

that if the initial point v
(0)
j 6= 0 for 1 ≤ j ≤ J , the

solution obtained when the gradient vanishes is a global
minimizer [2].

There are two issues associated with the above for-
mulation. The first issue is that although local learning
allows us to model complex local data structures, the
nearest neighbor of a given sample is unknown before
learning. In the presence of many thousands of irrele-
vant features, which is the case for many biological ap-
plications, the nearest neighbors defined in the original
space can be completely different from those defined in a
weighted space. In order to account for the uncertainty
in defining local information, we develop a probabilis-
tic model where the nearest neighbors of a given sample
are treated as hidden variables. Following the principles
of the expectation-maximization algorithm [5], we esti-
mate ρ(xn|yi,w) by taking expectation via averaging
out hidden variables:

(2.14) ρ̄(xn|yi,w) = E[ρ(xn|yi,w)]

= wT
(
Ej∼M1

[|xn−xj |]−Ej∼M2
[|xn − xj |]

)
sign(yn−yi)

= wT

(∑
j∈M1

Q(j|n,w)|xn − xj |

−
∑
j∈M2

P (j|n,w)|xn−xj |

)
sign(yn−yi) , wT z̄n(i) ,

where M1 = {j : xj ∈ D1}, M2 = {j : xj ∈ D2},
Ej∼M1

is expectation taken with respect to M1, and
Q(j|n,w) and P (j|n,w) are the probabilities of xj
being the nearest neighbors of xn in D1 and D2 with

respect to w, respectively. The probability Q(j|n,w)
can be estimated through a kernel method

Q(j|n,w) =
K(xj ,xn|w)∑

m∈M1
K(xm,xn|w)

,

where K(d) is a kernel function. P (j|n,w) can be com-
puted similarly. In this paper, we use the exponential
kernel given by K(d) = exp(−d/σ), where kernel width
σ determines the resolution at which data is analyzed.

The second issue is that z̄n implicitly depends on
w through P (j|n,w) and Q(j|n,w) (see Eq. 2.14). We
use a fixed-point recursive method to solve for w. First,
we make a guess on a weight vector w and compute
the pairwise distances to estimate P (j|n,w), Q(j|n,w)
and z̄, and then update the feature weight vector w by
solving the problem (2.11). The iterations are carried
out until convergence.

2.1 Convergence Analysis It can be proved that
if the kernel width is properly selected, the algorithm
converges to a unique solution for any nonnegative
initial feature weights, which is stated formally in the
following theorem.

Theorem 2.1. For the proposed algorithm, there exists
σ∗ such that limt→+∞ ‖w(t) − w(t−1)‖ = 0 whenever
σ > σ∗, where w(t) is the feature weight vector learned
in the t-th iteration. Moreover, for a fixed kernel width
σ > σ∗, the algorithm converges to a unique solution for
any nonnegative initial feature weights w(0).

Proof. We use the fixed point theorem to prove that our
algorithm converges to a unique fixed point. The gist
is to identify a contraction operator for the algorithm,
and make sure that the conditions of the fixed point
theorem are satisfied. To this end, we define P =
{p : p = [P (j|n,w), Q(j|n,w)]} and W = {w :
w ∈ RJ , ‖w‖1 ≤ λ,w ≥ 0}, and specify the first
step of the algorithm in a functional form as T1 :
W → P, where T1(w) = p, and the second step
as T2 : P → W, where T2(p) = w. Then, the
algorithm can be written as w(t) = (T2◦T1)(w(t−1)) ,
T (w(t−1)), where ◦ denotes functional composition and
T : W → W. Since W is a closed subset of finite-
dimensional normed space RJ (or a Banach space) and
thus complete [12], T is an operator mapping complete
subset W into itself. Next, note that for σ → +∞,
Q(j|n,w) = 1/|M1| and P (j|n,w) = 1/|M2|, where
|M1| and |M2| are the cardinalities of sets M1 and
M2, respectively. Therefore, z̄n is a constant vector
independent of w, and the algorithm converges with one
iteration. We have lim

σ→+∞
‖T (w1, σ) − T (w2, σ)‖ = 0,

for any w1,w2 ∈ W. Therefore, in the limit, T is a

contraction operator with contraction constant q = 0,
that is, lim

σ→+∞
q(σ) = 0. Therefore, for every ε > 0,

there exists σ∗ such that q(σ) ≤ ε whenever σ > σ∗. By
setting ε < 1, the resulting operator T is a contraction
operator. By the Banach fixed point theorem [12], the
algorithm converges to a unique fixed point provided the
kernel width is properly selected. The above arguments
establish the convergence theorem of the algorithm.

The theorem ensures the convergence of the algo-
rithm if the kernel width is properly selected. This is a
very loose condition, as our empirical results show that
the algorithm always converges for a sufficiently large
kernel width (see Fig. 4(b)). An important implication
is that even if the initial feature weights are randomly
selected and the algorithm starts computing erroneous
nearest neighbors for each sample, the algorithm will
eventually converge to the same solution obtained as if
one had perfect prior knowledge on which features are
useful since it is a fixed-point method.

2.2 Computational Complexity The computa-
tional complexity of the algorithm is O(N2J), where
N is the number of samples and J is the data dimen-
sionality. When N is sufficiently large, most CPU time
is spent on computing pairwise distances. It is possible
to use some recently developed nearest-neighbor-search
algorithms to achieve linear or super-linear computa-
tional complexity with respect to N . A close look at
the updating equation (2.13) allows us to further re-
duce complexity. If some elements of v are close to
zero (say < 10−5), the corresponding features can be
eliminated from further consideration with a negligible
impact on final solutions, thereby providing a built-in
mechanism for automatically removing irrelevant fea-
tures during the learning process.

3 Previous Work

We present a brief review of four state-of-the-art algo-
rithms, namely HSIC Lasso, SpAM, RGS and HMKL,
that we compare with in a numerical study.

The recently developed HSIC Lasso algorithm [27] is
a filter method that solves a feature-wise Lasso problem
and selects features based on the empirical Hilbert-
Schmidt independence criterion (HSIC) by using the
following formulation:
(3.15)

min
w
‖Ȳ −

J∑
j=1

wjK̄j‖2F + λ‖w‖1, subject to w ≥ 0,

where ‖ · ‖F is the Frobenius norm, K̄j = LKjL and
Ȳ = LYL are centered Gram matrices, Kj(n,m) =
K(xn(j), xm(j)) and Y(n,m) = K(yn, ym) are Gram

matrices, K(x, x′) is a kernel function, xn(j) is the
j-th element of xn, and L = IN − 1

N 1N1TN is a
centering matrix. It is reported that HSIC Lasso
compares favorably with existing methods including
mRMR [19], FVM [13] and QPFS [21]. As showed in
(3.15), a naive implementation of the algorithm requires
extremely large memory usage since it needs to generate
J matrices of size N × N before learning. To address
this issue, the authors propose a lookup table-based
method to deal with the scenario with a large sample
size. However, since HSICLasso is a filter method, the
selected features may not directly relate to learning
accuracy.

The second algorithm we compare with is SpAM
[20], which performs non-parametric regression and
feature selection simultaneously by solving the following
optimization problem:
(3.16)

min
{βj}
‖y −

J∑
j=1

Ψjβj‖22 + λ

J∑
j=1

√
1

N
βjΨTΨβj ,

where y(n) = yn, Ψj(n, l) = Ψl(xn(j)), and Ψl is the
l-th basis function. One major drawback of SpAM is
its additive model assumption. It may perform poorly
when there exist interactions among features [27].

The third algorithm we compare with is HMKL [1],
which embeds kernels in a direct acyclic graph (DAG)
and selects kernels based on some heuristics by solving
the following optimization problem:

(3.17) min
β∈Πv∈VFv

1

N

N∑
n=1

f

(
yn,
∑
v∈V
〈βv,Φv(xn)〉

)

+
λ

2

(∑
v∈V

dv‖βD(v)‖

)2

where V is an index set of basis kernels kv, v ∈ V,
and for each v ∈ V, Fv and Φv are the feature space
and feature map of kv, respectively. D(v) represents
the descendent set of a given node v in the DAG
and (dv)v∈V are positive weights.

∑
v∈V dv‖βD(v)‖ =∑

v∈V dv
√∑

w∈D(v) ‖βw‖2 is a structured block `1-

norm to set some elements of vector βv exactly zero
in the solution. The main drawback of HMKL is its
high computational complexity, which is also noted by
the authors of the algorithm [1]. The time complexity
of the algorithm is O(N3R+N2RJ2 +N2R2J), where
N , J and R are the number of samples, features and
selected kernels, respectively. The fourth algorithm we
consider is RGS, which is discussed in Section 2.

4 Experimental Results

4.1 Synthetic Data Before applying the new algo-
rithm to real data, we first perform a simulation study
on four synthetic datasets. The first dataset is gener-
ated from an additive model given by
(4.18)
Y = −2 sin(2X1) +X2

2 +X3 + exp(−X4) +N (0, 1),

where {Xj}4j=1 ∼ N (0, 1) are independently drawn
from a Gaussian distribution with zero mean and unit
variance. The second dataset is generated from a non-
additive model:

(4.19) Y = X1 exp(2X2) +X2
3 +N (0, 1),

where {Xj}3j=1 ∼ N (0, 1). The two datasets are also
used in [27]. The third dataset is generated from a
sine model representing the case where data has a weak
linear dependency with responses:

(4.20) Y = sin(2πX) +N (0, 0.1),

where X ∼ U(0, 4) is independently drawn from a uni-
form distribution [0, 4]. The forth dataset is generated
from a two-dimensional spiral model:
(4.21)
X1 = Y sin(Y) +N (0, 1), X2 = Y cos(Y) +N (0, 1),

where Y ∼ U(0, 20). For each dataset, the set of orig-
inal features is augmented by 1000 irrelevant features
independently sampled from N (0, 1). Our goal is to de-
tect relevant features to recover true signals that are
completely buried in random noise.

The codes of RGS, SpAM, HSIC Lasso, HMKL are
downloaded from the authors’ websites, and the default
parameters are used. For HSIC Lasso and HMKL,
one needs to specify a regularization parameter. We
run the two algorithms multiple times for each dataset
using different parameters ([1, 10, 20, · · · , 100] for HSIC
Lasso and [10, 100, · · · , 10−7] for HMKL), and report
the best result. The regularization parameter of SpAM
is estimated by using the Cp statistics given in [20]. For
our method, we simply set the kernel width σ = 1 and
the regularization parameter λ = 1. Before learning, we
scale the values of each feature into [0, 1] so that they are
comparable, and no other preprocessing is performed.
We apply the five methods to each dataset, rank the
resulting feature weights in a descending order. If there
are d useful features, the probability of correct recovery
is defined as the fraction of the useful features detected
in the top d features. This criterion is also used in
[27, 20]. The experiment is repeated 50 times. HMKL is
computationally very expensive so we run the algorithm
only 10 times on a computer cluster.

100 150 200 250 300
0.5

0.6

0.7

0.8

0.9

1

Number of samples

P
ro

b
a
b

il
it

ie
s
 o

f
c
o

rr
e
c
t

re
c
o

v
e
ry

Additive

Our

HSIC Lasso

SpAM

RGS

HMKL

100 150 200 250 300
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of samples

P
ro

b
a
b

il
it

ie
s
 o

f
c
o

rr
e
c
t

re
c
o

v
e
ry

Non−Additive

100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of samples

P
ro

b
a
b

il
it

ie
s
 o

f
c
o

rr
e
c
t

re
c
o

v
e
ry

Sine

100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of samples

P
ro

b
a
b

il
it

ie
s
 o

f
c
o

rr
e
c
t

re
c
o

v
e
ry

Spiral

Figure 2: Probabilities of correct recovery of five al-
gorithms applied to four datasets with 1000 irrelevant
features. The probabilities of correct recovery of RGS
are close to zero for the additive data and thus omitted.

Fig. 2 reports the probabilities of correct recovery
of the five algorithms as a function of the number of
samples ranging from 100 to 300, averaged over 50 runs
(10 runs for HMKL). RGS performs poorly on all four
datasets. One possible reason is that with the increase
of data dimensionality, the chance of RGS being trapped
by local minima is increased exponentially. To confirm
this, we repeat the experiment by applying RGS to
data with only 100 irrelevant features. RGS performs
much better though still much worse than others, which
suggests that RGS is not suitable for high-dimensional
data analysis. The performance of HSIC Lasso on
the additive and non-additive data is similar to that
reported in [27]. HSIC Lasso yields a perfect result
on the complex spiral data, but fails on the sine data.
SpAM performs extremely well on the additive dataset.
This is not surprising since it is designed specifically
for handling data generated by an additive model.
However, SpAM performs poorly on both non-additive
and sine data. In contrast, our method does not make
any model assumption. It performs perfectly on the
spiral data and comparably with SpAM on the additive
data, and outperforms the four competing methods by a
large margin in the other two datasets. Fig. 3 plots the
feature weights generated by our algorithm for the four
datasets with 200 samples. It detects all useful features
and removes nearly all irrelevant ones. Fig. 4(a) reports
the CPU times of the five algorithms applied to the
additive dataset with 100 samples contaminated by a
varying number of irrelevant features ranging from 200

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Feature Index

F
e

a
tu

re
 W

e
ig

h
t

Additive

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Feature Index

F
e

a
tu

re
 W

e
ig

h
t

Non−additive

10
0

10
2

0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a

tu
re

 W
e

ig
h

t

Sine

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 W

e
ig

h
t

Spiral

Figure 3: Feature weights generated by our algorithm
applied to the four datasets with 200 samples each
containing 1000 irrelevant features. Our algorithm
removes nearly all irrelevant features.

to 1000. Our method is computationally slightly more
expensive than HSIC Lasso and SpAM, but is much
more efficient than HMKL.

We perform some additional simulation studies to
demonstrate various properties of the algorithm. Fig.
4(b) reports the results of a convergence analysis of our
algorithm applied to the non-additive data with 1000
irrelevant features, using λ = 1 and different kernel
widths ranging from 0.1 to 5. The algorithm converges
for a wide range of kernel width values, suggesting that
our algorithm generally has no divergence issue. This
result empirically verifies Theorem 2.1.

The kernel width and regularization parameter are
two input parameters of the algorithm. In Fig. 5, we
plot the feature weights learned on the non-additive
data with 1000 irrelevant features by using different
kernel widths and regularization parameters. The algo-
rithm performs well over a wide range of parameter val-
ues, suggesting that the performance of our algorithm
is largely insensitive to the choice of the parameters.

4.2 Cancer Gene Expression Data We next ap-
ply our method to nine cancer microarray gene expres-
sion datasets. The datasets are downloaded from Euro-
pean Genome-Phenome Archive (EGA) and Gene Ex-
pression Omnibus (GEO), including four breast cancer
datasets (BRCA1-4), one lung cancer dataset (LUAD),
one glioblastoma (GBM) dataset, one stomach cancer
dataset (STAD), and two diffuse large B-cell lymphoma

200 400 600 800 1000
10

−1

10
0

10
1

10
2

10
3

10
4

Number of Features

C
P

U
 T

im
e
 (

s
)

Additive

Our

HSIC Lasso

SpAM

RGS

HMKL

(a)

5 10 15 20

10
−2

10
−1

10
0

10
1

Number of iterations

θ

σ = 0.1

0.5

1

1.5

2

3

5

(b)

Figure 4: (a) CPU times of five algorithms applied to
the additive dataset with a varying number of irrelevant
features. (b) Convergence analysis of our algorithm per-
formed on the non-additive dataset with 1000 irrelevant
features, using λ = 1 and different kernel widths ranging
from 0.1 to 5, where θ = ‖w(t) −w(t−1)‖2.

10
0

10
1

10
2

10
3

1

2

3

4

5

6

7

8

Feature Index

F
e
a
tu

re
 W

e
ig

h
t

σ = 0.5

1

1.5

2

3

5

(a)

10
0

10
1

10
2

10
3

1

2

3

4

5

6

7

8

Feature Index

F
e
a
tu

re
 W

e
ig

h
t

λ = 0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b)

Figure 5: Feature weights learned on the non-additive
data with 1000 irrelevant features. Only the first three
features are relevant. (a) Using a fixed regularization
parameter λ = 1 and different kernel widths. (b) Using
a fixed kernel width σ = 1 and different regularization
parameters. The performance of our algorithm is largely
insensitive to the choice of the parameters.

(DLBCL1-2) datasets (Table 1).
We do not use RGS in the experiment as we

have shown that RGS does not perform well for high-
dimensional data. HMKL is also not suitable for this
experiment due to its high computational complexity
(see Fig. 4(a)). In order to justify the use of a
nonlinear model, we also compare our method with
Lasso [25]. Since the original implementation of HSIC
Lasso requires a memory size that grows quadratically
with the number of samples, we use the lookup table-
based implementation downloaded from the authors’
website. The kernel width of our method is set to
2 for all datasets, and the regularization parameters
of all methods are estimated through ten-fold cross
validation. In order to make all features comparable and
remove outlier data, we apply robust linear scaling to
each gene so that the expression quantiles 2% and 98%

Table 1: Microarray data used in the experiment.
Dataset # of Samples # of Features Response† Accession #

BRCA1 1147 41344 DFS EGAS00000000083
BRCA2 171 22283 DMFS GSE2034/5327
BRCA3 185 44928 RFS GSE3494
BRCA4 185 54675 DMFS GSE12276
LUAD 218 54675 OS GSE30219
GBM 176 22283 OS GSE13041
STAD 207 17418 RFS GSE26253
DLBCL1 137 24526 DFS GSE32918
DLBCL2 183 54675 OS GSE10846

†Used response data: disease-free survival (DFS), distant-metastasis-free
survival (DMFS), relapse-free survival (RFS) and overall survival (OS)

are set to 0 and 1, respectively. No other preprocessing
is performed.

Two different criteria are used to evaluate the
performance of the four methods. First, we compare
the prediction accuracy of regression analysis performed
on the features selected by the four methods. The
goal is to identify a cancer-associated gene profile to
build a computational model to predict patient clinical
outcomes for disease prognosis. To this end, we first
randomly partition a dataset into two sub-datasets,
one with 80% samples for training and one with the
remaining 20% samples for testing. We then apply
each method to the training dataset to identify a
list of relevant features and construct a prediction
model which is then tested blindly on the test dataset.
Both SpAM and Lasso can perform feature selection
and prediction simultaneously. In order to use the
features selected by our method and HSIC Lasso to
predict clinical outcomes, the Nadaraya-Watson method
is used. The experiment is repeated ten times for each
dataset. Table 2 presents the averaged prediction errors
of the four methods. The best result and the results
that are not significantly worse than the best one are
highlighted in bold (p-value<0.05, Wilcoxon rank-sum
test). From the table, we can see that our method yields
the smallest prediction errors and performs significantly
better than all the other methods for most of the
datasets. Lasso performs the worst among the four
methods. This may be due to its linear assumption that
fails to capture the nonlinear dependence of the survival
time on patients’ gene expression profiles. SpAM
performs slightly better than Lasso. One possible reason
is that SpAM assumes an additive model and thus
ignores the possible interactions among genes. HSIC
Lasso performs much better than Lasso and SpAM and
exhibits no significant difference from our method in
three datasets (BRAC4, GBM, and STAD). However,
possibly due to the fact that HSIC Lasso does not take
prediction errors into account in feature selection, it
does not perform as well as our method in the other
six datasets.

In addition to using gene expression profiles to pre-
dict patient clinical outcomes, molecular subtyping is

Table 2: Prediction performance of four methods mea-
sured in absolute errors (years). The best result and the
results that are not significantly worse than the best one
are highlighted in bold (p-value<0.05, Wilcoxon rank-
sum test). Standard errors are listed in parentheses.

Dataset Lasso SpAM HSIC Lasso Ours

BRCA1 3.93 (0.29) 3.93 (0.25) 3.82 (0.22) 3.28 (0.21)
BRCA2 4.03 (0.41) 4.12 (0.39) 3.74 (0.34) 2.81 (0.58)
BRCA3 2.27 (0.31) 2.15 (0.20) 1.76 (0.48) 0.97 (0.32)
BRCA4 1.01 (0.13) 1.00 (0.17) 0.88 (0.15) 0.80 (0.12)
LUAD 3.07 (0.47) 3.48 (0.33) 2.84 (0.27) 2.41 (0.32)
GBM 0.62 (0.11) 0.65 (0.14) 0.61 (0.08) 0.59 (0.06)
STAD 2.03 (0.23) 1.90 (0.35) 1.52 (0.16) 1.36 (0.20)
DLBCL1 0.96 (0.23) 0.96 (0.14) 0.60 (0.11) 0.31 (0.16)
DLBCL2 2.00 (0.19) 1.88 (0.29) 1.72 (0.33) 0.96 (0.14)

another major line of cancer research [4, 22, 14]. The
majority of the work is performed on breast cancer, and
the pioneering studies by [22] have showed that breast
cancer is not a single disease but consists of at least five
genetically heterogenous diseases. Thus, we next exam-
ine whether the features selected by the four methods
enable us to identify cluster structures consistent with
those reported in the literature. Specifically, we per-
form spectral clustering to detect genetically homoge-
nous groups based on the profiles of the selected genes,
and then compare the clustering results with breast
cancer molecular subtypes. The standard normalized
spectral clustering method [17] is used and the number
of clusters is estimated by using the method proposed
by [30]. We consider only the BRCA1 dataset as it
contains a much larger number of samples than other
three breast cancer datasets. Note that there are cur-
rently no widely accepted molecular subtyping methods
[14]. We thus compare with seven major molecular sub-
typing methods developed in the last decade, includ-
ing SSP2003 [22], SSP2006 [10], PAM50 [18], SCMOD1
[6], SCMOD2 [29], SCMGENE [8] and IntClust [4]. We
use normalized mutual information (NMI) and adjusted
rand index (ARI), the two most commonly used eval-
uation metrics in the machine learning community, to
measure the concordance of the clustering results gen-
erated by two different algorithms. Fig. 6 reports the
NMI and ARI scores of the four methods. We can see
that our algorithm performs significantly better than
all the other three algorithms (p-value<0.0, one-sided
Wilcoxon signed rank test). This result suggests that
the genes selected by our method more accurately re-
flect the underlying biological processes of cancer devel-
opment than the other methods.

5 Conclusion

In this paper, we developed a new feature-selection
method for nonlinear regression. The proposed method
does not explicitly impose any model assumption on

PAM50 IntClust SSP2003 SSP2006 SCMOD1 SCMOD2 SCMGENE
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

N
o

rm
a

li
z
e

d
 M

u
tu

a
l

In
fo

rm
a

ti
o

n

Our

SpAM

Lasso

HSICLasso

NMI

PAM50 IntClust SSP2003 SSP2006 SCMOD1 SCMOD2 SCMGENE
0

0.05

0.1

0.15

0.2

0.25

A
d

ju
s
te

d
 R

a
n

d
 I
n

d
e
x

ARI

Figure 6: NMI and ARI scores of four methods obtained
by comparing with seven existing breast cancer molec-
ular subtyping methods.

data distribution, and is able to select relevant features
supporting complex data structure hidden in a high-
dimensional space. We demonstrated the effectiveness
and utilities of the new method by applying it to a set
of simulation and cancer transcriptomic datasets. As
currently there are no reliable methods for cancer prog-
nosis and molecular subtyping, the developed methods
could be used to identify cancer-associated gene expres-
sion profiles to build improved prediction models.

Acknowledgements

This work was supported in part by the National Science
Foundation under grant number 1322212 and the SUNY
Research Foundation.

References

[1] F. Bach. Exploring large feature spaces with hierarchi-
cal multiple kernel learning. In NIPS, 2008.

[2] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, Cambridge, 2004.

[3] O. Chapelle. Training a support vector machine in the
primal. Neural Comput, 19(5):1155–1178, 2007.

[4] C. Curtis, S. P. Shah, S.-F. Chin, et al. The genomic
and transcriptomic architecture of 2,000 breast tu-
mours reveals novel subgroups. Nature, 486(7403):346–
352, 2012.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. J R Stat Soc Series B, 39(1):1–38, 1977.

[6] C. Desmedt, B. Haibe-Kains, P. Wirapati, et al. Bio-
logical processes associated with breast cancer clinical
outcome depend on the molecular subtypes. Clin Can-
cer Res, 14(16):5158–5165, 2008.

[7] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. J Mach Learn, 3:1157–82, 2003.

[8] B. Haibe-Kains, C. Desmedt, S. Loi, et al. A three-
gene model to robustly identify breast cancer molecular
subtypes. J Natl Cancer Inst, 104(4):311–325, 2012.

[9] T. Hastie, R. Tibshirani, J. Friedman. The Elements
of Statistical Learning. Springer, New York, 2009.

[10] Z. Hu, C. Fan, D. Oh, et al. The molecular portraits
of breast tumors are conserved across microarray plat-
forms. BMC Genomics, 7(1):96, 2006.

[11] K. Kira and L. Rendell. A practical approach to feature
selection. In ICML, 1992.

[12] R. Kress. Numerical Analysis. Springer, New York,
1998.

[13] F. Li, Y. Yang, and E. P. Xing. From lasso regression
to feature vector machine. In NIPS, 2005.

[14] A. Mackay, B. Weigelt, A. Grigoriadis, et al.
Microarray-based class discovery for molecular classifi-
cation of breast cancer: Analysis of interobserver agree-
ment. J Natl Cancer Inst, 103(8):662–673, 2011.

[15] O. Mangasarian. Exact 1-norm support vector ma-
chines via unconstrained convex differentiable mini-
mization. J Mach Learn, 7(2):1517–1530, 2006.

[16] A. Navot, L. Shpigelman, N. Tishby, and E. Vaadia.
Nearest neighbor based feature selection for regression
and its application to neural activity. In NIPS, 2005.

[17] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral
clustering: analysis and an algorithm. In NIPS, 2001.

[18] J. S. Parker, M. Mullins, M. C. Cheang, et al. Super-
vised risk predictor of breast cancer based on intrinsic
subtypes. J Clin Oncol, 27(8):1160–1167, 2009.

[19] H. Peng, F. Long, and C. Ding. Feature selection based
on mutual information criteria of max-dependency,
max-relevance, and min-redundancy. IEEE Trans
Pattern Anal Mach Intell, 27(8):1226–1238, 2005.

[20] P. Ravikumar, H. Liu, J. Lafferty, and L. Wasserman.
SpAM: Sparse additive models. In NIPS, 2007.

[21] I. Rodriguez-Lujan, R. Huerta, C. Elkan, and C. S.
Cruz. Quadratic programming feature selection. J
Mach Learn, 11:1491–1516, 2010.

[22] T. Sørlie, R. Tibshirani, J. Parker, et al. Repeated
observation of breast tumor subtypes in indepen-
dent gene expression data sets. Proc Natl Acad Sci,
100(14):8418–8423, 2003.

[23] Y. Sun. Iterative RELIEF for feature weighting:
algorithms, theories, and applications. IEEE Trans
Pattern Anal Mach Intell, 29(6):1035–1051, 2007.

[24] Y. Sun, S. Todorovic, and S. Goodison. Local-
learning-based feature selection for high-dimensional
data analysis. IEEE Trans Pattern Anal Mach Intell,
32(9):1610–1626, 2010.

[25] R. Tibshirani. Regression shrinkage and selection via
the lasso. J R Stat Soc Series B, 58(1):267–288, 1996.

[26] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and
K. Knight. Sparsity and smoothness via the fused
lasso. J R Stat Soc Series B, 67(1):91–108, 2005.

[27] M. Yamada, W. Jitkrittum, L. Sigal, et al. High-
dimensional feature selection by feature-wise kernelized
lasso. Neural Comput, 26(1):185–207, 2014.

[28] V. Vapnik. The Nature of Statistical Learning Theory.
Springer, New York, 2000.

[29] P. Wirapati, C. Sotiriou, S. Kunkel, et al. Meta-
analysis of gene expression profiles in breast cancer:
toward a unified understanding of breast cancer sub-
typing and prognosis signatures. Breast Cancer Res,
10(4):R65, 2008.

[30] L. Zelnik-Manor and P. Perona. Self-tuning spectral
clustering. In NIPS, 2004.

	Introduction
	Algorithm
	Convergence Analysis
	Computational Complexity

	Previous Work
	Experimental Results
	Synthetic Data
	Cancer Gene Expression Data

	Conclusion
	Acknowledgements

