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Abstract

As molecular profiling data continue to accumulate, the design of integrative computational analyses that can
provide insights into the dynamic aspects of cancer progression becomes feasible. Here, we present a novel
computational method for the construction of cancer progression models based on the analysis of static tumor
samples. We demonstrate the reliability of the method with simulated data, and describe the application to breast
cancer data. Our findings support a linear, branching model for breast cancer progression. An interactive model
facilitates the identification of key molecular events in the advance of disease to malignancy.

Background
Human cancer is a dynamic disease that develops over
an extended time period through the accumulation of a
series of genetic alterations. Once initiated, the advance
to malignancy can to some extent be considered a
Darwinian process (a multistep evolutionary process) that
responds to selective pressure [1-5]. While the major-
ity of genetic alterations confer no growth advantage,
tumor cells that acquire mutations in genes that con-
trol key cellular processes can overwhelm less vigorous
cell populations within the tumor mass, and this pro-
cess continues through a series of clonal expansions that
result in tumor persistence and growth, and ultimately
the ability to invade surrounding tissues and metastasize
to distant organs. The delineation of this dynamic pro-
cess and the identification of pivotal molecular events
that drive stepwise progression to malignancy would
provide a critical foundation and guide for the devel-
opment of cancer diagnostics, prognostics and targeted
therapeutics.

The assembly of time-series data collected through
repeated sampling across an entire disease process would
provide essential information for the elucidation of system
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dynamics and disease-associated genetic regulation [6],
and recent advances in genomic technologies has made
it possible to study cancer genomes at a scale and cost
that allow the design of such studies [7,8]. However, due
to the need for immediate treatment upon diagnosis, it is
ethically infeasible to collect time-series data to study dis-
ease progression. An alternative is animal studies where
time-series data could be obtained, but the extrapolation
of animal data to human disease is not always appropriate.
Moreover, the development of spontaneous human can-
cer is a process that takes several years, and to overcome
the heterogeneous nature of the disease and to mini-
mize random effects, a very large number of samples is
required, so animal studies are not economically or logis-
tically viable in this context. Conversely, due to the high
incident rate of cancer, and the clinical care protocols in
place in developed countries, a huge number of archived
tumor specimens is available. For example, it is estimated
that about 250,000 new cases of breast cancer will be diag-
nosed in 2014 in the US [9]. Assuming that cancer cells
are derived from normal cells, and that a static sample can
be regarded as a snapshot of the dynamic cancer process,
then we can pose the following question: Is it possible to
construct a cancer progression model using data acquired
from static samples?

In this paper, we present a proof-of-principle popula-
tion study to address the above question. Figure 1 depicts
a flowchart of the presented stepwise study. It involves
extensive work on algorithm development, computational
simulation, disease model construction and validation.
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Figure 1 Workflow of the stepwise study. The tasks listed in the dashed-line rectangles are possible extensions and applications of the study and
are discussed in the text. CNA, copy number alteration; EM, expectation-maximization; miRNA, microRNA; RNA_seq, RNA sequencing; TCGA, The
Cancer Genome Atlas.

By analysis of publicly available data, we demonstrated
that through the application of advanced computational
techniques it is indeed possible to construct a can-
cer progression path using massive data obtained from
static sampling. Analysis of molecular data from 2,133
breast samples [7] enabled the visualization of high-
dimensional data structures that provided a framework
for the extrapolation of progressive disease associations
and trends across tumor samples. A very similar data
structure was revealed through the analysis of an inde-
pendent dataset of 524 samples [8], and mapping of copy
number alteration (CNA) frequencies, somatic muta-
tion rates, tumor grade information, and the expression
levels of specific key genes supported the validity of
the model. Our analysis, for the first time, showed that
while breast cancer is a genetically and clinically het-
erogeneous disease, tumor samples are distributed on
a low-dimensional data structure manifold, suggesting
that genotypes are not hard-wired and can shift over
time.

The study provides a framework for the construction of
high-resolution cancer progression models that can com-
bine all currently available genetic information. Through
the visualization of key events in tumor progression, such
models can facilitate the identification of pivotal driver
genes, improved prognostic stratification systems and
potential points of susceptibility for therapeutic interven-
tion. Although in this paper we focus on breast cancer,
the developed data analysis strategy is equally applicable
to model other cancers and other human diseases where
the lack of time-series data to study system dynamics is a
ubiquitous problem.

Results and discussion
Bioinformatics pipeline for cancer progression modeling
A cancer progression path can be mathematically viewed
as a complex manifold with multiple branches embed-
ded in a high-dimensional genomic space. Our work-
ing hypothesis is as follows: as tumors progress toward
advanced stages driven by genetic mutations, each static
sample leaves a genetic footprint on the path. If the
number of samples is sufficiently large, the footprint infor-
mation collectively would enable us to recover the pro-
gression path and thereby to reveal key genetic events
that drive the dynamic evolution of cancer to malignancy.
To verify the hypothesis, we developed a novel data anal-
ysis strategy to analyze and integrate molecular profile
data into a model of cancer progression, which is detailed
below.

Supervised learning approach to identifying cancer
progression related genes
Since it is likely that only a small fraction of genes are
involved in the malignant process, the first step towards
constructing a model is to identify genes associated with
cancer progression. This problem has been extensively
studied in the community in different contexts [10-12].
One of the most commonly used approaches is correlation
analysis [13,14]. A gene with its expression levels highly
correlated with survival time is likely to play a role in can-
cer development. However, correlation analysis can only
find genes with a linear dependency with survival time.
Moreover, by analyzing one gene at a time, it ignores pos-
sible interactions among genes. In molecular classifica-
tion, a commonly used strategy is first to partition patients
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into a bad or good prognostic group at a predefined end
point (usually 5-year survival or time to metastasis) and
then perform feature selection for classification analy-
sis [10-12,15,16]. A major drawback to that approach is
that patients with survival times slightly longer or shorter
than the end point are put into two different groups. To
explore the magnitude information of response variables,
we proposed to select relevant genes within a regression
framework. The idea has been widely used in the statistics
and oncology communities. There are a number of excel-
lent algorithms exemplified by Lasso [17] and its variants,
which operate under a linear-model assumption; however,
the dependency between gene expression changes and
disease progression is complex and is unlikely to be lin-
ear [18]. It is thus more appropriate to formulate it as a
feature-selection problem for nonlinear regression. How-
ever, due to the difficulties of mathematically describing
complex data structures, feature selection for nonlinear
regression remains a challenging problem.

We developed a new method to address the aforemen-
tioned challenge. It is a natural extension of our previous
work on feature selection for high-dimensional classifi-
cation problems [19,20]. The basic idea is to decompose
a nonlinear regression problem into a set of linear clas-
sification problems and learn feature relevance within a
large-margin framework. The development of the algo-
rithm is based on a key observation that a classification
problem can be viewed as a degenerated regression prob-
lem. To see this, let D = {(xn, yn)}N

n=1 ∈ RJ × R be a
set of training data, where xn is the n-th sample, yn is the
corresponding survival time, and J � N . Without loss of
generality, we assume that yn ≥ ym if n > m. If we divide
the dataset into two subsets at a predefined end point
(e.g., 5 years), we end up with a molecular classification
problem. As noted above, a major issue with molecular
classification is that it ignores the magnitude information
of survival times. Then, a natural idea is to partition the
data into two parts at multiple end points S = {sk}K

k=1. A
possible choice is sn = (yn−1 + yn)/2 for 2 ≤ n ≤ N .
We seek to select a feature subset so that the overall clas-
sification error of unseen test data computed at all end
points is minimized. We give below a detailed mathemat-
ical description of the proposed method. For the ease of
presentation, at the moment, we only consider sample xn
and divide the data into two parts D1 = {xj|yj < sk , 1 ≤
j ≤ N} and D2 = {xj|yj > sk , 1 ≤ j ≤ N} at end point
sk . We further assume that yn > sk . We start by defin-
ing a margin for xn. Given a distance function, we find
two nearest neighbors for xn from D1 and D2, denoted as
NN(D1) and NN(D2), respectively. The margin of xn is
then defined as ρn(sk) = d(xn, NN(D1))− d(xn, NN(D2)),
where d(·) is a distance function. In this study, we used
the block distance to measure the similarity between two
samples, which was also used in [19,21]. The above margin

is called the hypothesis margin, and can be interpreted
as a measure of how much xn can be corrupted by noise
before being misclassified by a one-nearest-neighbor clas-
sifier [22]. By the large margin theory [23,24], a learning
algorithm that minimizes a margin-based error function
usually generalizes well on unseen test data. Then, a natu-
ral idea is to scale each feature, and thus obtain a weighted
feature space, parameterized by a nonnegative vector w,
so that a margin-based error function in the induced fea-
ture space is minimized. The magnitude of each element
of w reflects the importance of the corresponding feature.
The margin of xn, computed with respect to w, is given
by ρn(sk|w) = wT (|xn − NN(D1)| − |xn − NN(D2)|) �
wT zn(s), where | · | is an element-wise absolute opera-
tor. Note that ρn(sk|w) is a linear function of w, and the
margin thus defined requires only information about the
neighborhood of xn, while no assumption is made on
the underlying data distribution. The above analysis can
be repeated for each sample at each end point, leading to
the following optimization problem:

min
w≥0

N∑
n=1

K∑
k=1

I(ρn(sk|w) < 0) , (1)

where I(·) is the indicator function. Since in the inner
summation xn is held out as a test sample, the above for-
mulation can be interpreted as finding a feature subspace
where the overall leave-one-out cross-validation error is
minimized.

The main problem with the above margin definition is
that the nearest neighbors of a given sample are unknown
before learning. With tens of thousands of irrelevant fea-
tures, which is the case in this study, the nearest neighbors
defined in the original space can be completely differ-
ent from those in the induced space. A possible way to
address this issue, proposed by [19], is to use a probabilis-
tic model where the nearest neighbor of a given sample
is treated as hidden variables. Following the principles
of the expectation-maximization (EM) algorithm [25], we
estimated the margin by computing the expectation of
ρn(sk|w) via averaging out the hidden variables:

ρ̄n(sk |w) = E[ρn(sk |w)]

= wT

⎛
⎝ ∑

j∈M1

Q(j|n, w)|xn − xj|

−
∑

j∈M2

P(j|n, w)|xn − xj|
⎞
⎠ � wT zn(k) ,

(2)

whereE[·] is the expectation operator,M1 = {j : xj ∈ D1},
M2 = {j : xj ∈ D2}, and Q(j|n, w) and P(j|n, w) are
the probabilities of xj being the nearest neighbors of xn
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in D1 and D2 with respect to w, respectively. The proba-
bilities Q(j|n, w) and P(j|n, w) can be estimated using the
standard kernel method.

After the margins are defined, the problem of learn-
ing feature weights can be solved within the large margin
framework [23,24]. Note that the indicator function is
non-differentiable and non-convex. A commonly used
practice to address this issue is to minimize the upper
bound of the cost function. We used the hinge loss, which
leads to a support vector machine formulation of feature
selection for nonlinear regression:

min
w

N∑
n=1

K∑
k=1

max
(
0, 1 − wT zn(k)

)
, subject to ‖w‖1 ≤ λ, w ≥ 0 ,

(3)

where we imposed an �1 penalty on w to obtain a sparse
solution, and λ is a regularization parameter control-
ling the sparseness of a solution, which can be estimated
through cross-validation.

Note that zn implicitly depends on w through Q(j|n, w)

and P(j|n, w). We used a fixed-point recursion method to
solve w. First, we made a guess for w, which was used
to calculate pairwise distances d(xi, xj) and probabilities
Q(j|n, w) and P(j|n, w). Then, the feature weight vector w
was updated by solving the �1 regularized optimization
problem. The two steps were iterated until convergence.
We used our recently developed gradient-descent-based
algorithm to solve the above optimization problem effi-
ciently [26]. By using the fixed-point theory [27], it can be
proved that the algorithm converges to a unique solution
regardless of the initial weights if the kernel width is prop-
erly selected. The detailed mathematical derivations are
given in the supplementary data, where we also present
a simulation study that demonstrates the effectiveness of
the new approach.

Two-pronged approach to cancer progression modeling
After cancer progression related genes are selected, the
next step is to build a progression model. Both cancer evo-
lution theory and our data visualization analyses (shown
below) suggest that a progression path and clonal struc-
tures are two sides of the same coin (see Figure two in [1],
Figure 2 and Additional file 1: Figure S13). This motivated
us to develop a novel two-pronged method for model-
ing the cancer progression process. The basic idea is to
perform a clustering analysis to detect genetically homo-
geneous tumor groups, construct a principal curve to
summarize the general trend of data, and finally combine
the two results using the principal curve as a backbone
to build a model of cancer progression. A toy exam-
ple is given in Figure 3, which illustrates the proposed
method.

Clustering analysis
Clustering analysis has been intensively studied in the
machine learning community. For the purpose of this
study, we used spectral clustering. Compared to model-
based methods (e.g., K-means), spectral clustering does
not explicitly impose a model assumption on data dis-
tribution, and thus is able to detect clusters of unknown
shapes [28]. Moreover, by making use of the spectrum of
the similarity matrix of the data, spectral clustering pro-
vides an embedded mechanism of dimensionality reduc-
tion, making it particularly suitable for this study to cluster
high-dimensional data.

Spectral clustering starts with the generation of a sim-
ilarity matrix measuring the relative similarity of each
pair of samples in the dataset. To this end, we first con-
structed a mutual K-nearest-neighbor (KNN) graph based
on the profiles of selected genes and copy numbers [28].
On the resulting graph, each vertex represents a sam-
ple, and two vertices are connected if the corresponding
samples are among the KNNs of each other. Throughout
the paper, K was set to 30. We tried different values of
K , and they yielded similar results as determined by the
normalized mutual information scores [29]. Based on the
constructed KNN graph, a similarity matrix S was gener-
ated, where the ij-th element Sij = exp(−‖xi−xj‖2/(σiσj))
if xi and xj were connected and 0 otherwise. Here, σi =
‖xi − x(K)

i ‖ and x(K)
i is the K-th nearest neighbor of xi

[30]. Then, a normalized Laplacian matrix was computed
as L = D−1/2SD−1/2, where D is a diagonal matrix with
Dii = ∑n

j=1 Sij, and the eigenvectors of the matrix L were
computed. The number of clusters was determined using
the method proposed in [30]. Briefly, for each possible
number of clusters C, a rotation matrix that best aligns
the columns of the top C eigenvectors with the canonical
coordinate system was calculated, and the optimal num-
ber of clusters was determined as the one that resulted in
the highest alignment quality score. Let U ∈ RN×C be a
matrix containing the top C eigenvectors as columns. We
formed a new matrix Y ∈ RN×C from U by normalizing
the rows to norm one [31]. Finally, the K-means analysis
was performed to group the samples now represented as
the rows of the matrix Y into C clusters.

To identify robust and stable clusters, the technique
of resampling-based consensus clustering [32] was used,
where K-means clustering was repeated 1,000 times and
each time 80% of the samples were drawn randomly with-
out replacement from the entire dataset. The results of the
1,000 runs were then aggregated into a consensus matrix,
which gives a visual representation of the frequency of two
samples being grouped into the same cluster. To assess
the clustering robustness further, the silhouette width of
each sample was calculated, which is defined as the dif-
ference between its average similarity with samples in the
same cluster and highest average similarity with samples
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Figure 2 Visualization analysis of the METABRIC dataset using principal component analysis that gives a general view of sample distribution
supported by the selected genes and copy numbers. The samples were projected onto a principal curve (the red line) constructed using the first
three principal components. Each sample was annotated based on its corresponding PAM50 label. Green, normal; blue, normal-like; cyan, luminal A;
magenta, luminal B; yellow, HER2+; black, basal. The 144 normal breast tissue samples were used as the baseline. They are first connected with
normal-like and luminal A samples, gradually transit to luminal B and form a bifurcation structure leading to basal and HER2+. The 3D plot can be
viewed interactively in Adobe Acrobat by setting Adobe Acrobat -> Preference -> 3D & Multimedia.
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clusters principal curve model 

Figure 3 A toy example illustrating the proposed two-pronged approach.

in different clusters. A cluster with an average silhouette
width >0 is considered stable.

Principal curve
We used a principal curve to describe the general trend
of the data. Mathematically, a principal curve is a smooth
curve going through the center of a data cloud [33,34]. A
toy example is presented in Figure 3. This concept was
first proposed by [33] as a generalization of the first prin-
cipal component line and required a curve not to intersect
itself, which is too restrictive for our application. Pre-
sumably, a cancer progression path is a high-dimensional
manifold with multiple branches. Although a dozen algo-
rithms have been developed in the past two decades,
there is currently no method that can be used effectively
to extract a self-intersected curve embedded in a high-
dimensional space (see [35] for an excellent review). For
the purpose of this study, we developed a new method that
addressed some limitations of existing approaches.

We start by describing a probabilistic model respon-
sible for generating a set of random observations D =
{xn}N

n=1 ∈ RM. We assume that each sample is gener-
ated from an unknown curve in a two-step process. First,
a point μs is randomly selected from the curve according
to a probability density function p(s), and then a sam-
ple x is generated from μs corrupted by Gaussian noise
N (x|μs, �s), where �s is a covariance matrix and s takes a
value from a set �. We herein do not specify any form for
� to reflect the fact that the curve may contain branching
structures. Due to the extremely high data dimensional-
ity (M = 1, 140), it is numerically unstable to estimate
full covariance matrices. We thus used a simple heuris-
tic by assuming �s = σ 2I, where I is an identity matrix.
Although we may lose some resolution, the simplification
can lead to a numerically stable estimation and worked
well for our study. Note that the data generalization mech-
anism is similar to that assumed in Gaussian mixture
modeling [36], with the latter using a set of discrete data
points placed at the centers of clusters, instead of a curve,
to represent the data. Therefore, principal curve fitting

can be viewed as a natural extension of Gaussian mixture
modeling.

Let θ be the parameters {μs, p(s)}s∈� and σ that we
aim to estimate. The log-likelihood function of the data is
given by

L(D|θ) =
N∑

n=1
log

∫
s∈�

N (xn|μs, σ 2I)p(s)ds . (4)

The parameters can be estimated by maximizing the
log-likelihood function using the EM algorithm [25]. A
major issue with the maximum likelihood (ML) estima-
tion is that it is an ill-posed problem and can lead to
severe over-fitting [34,36]. Specifically, when σ goes to
zero, the log-likelihood achieves the maximum value of
infinity, resulting in a trivial solution where the obtained
curve goes through every data point. One possible remedy
for the problem is to add a regularization term to the log-
likelihood function to encourage curve smoothness [34].
This strategy, however, works only for simple cases where
a curve is not self-intersected. Moreover, it is difficult to
determine the regularization parameter used to control
the trade-off between data fitting and curve smoothness.
It has been shown that cross-validation is not a viable
method for controlling the complexity of principal curve
estimates [37].

We addressed the issue by exploiting the analogy
between principal curve fitting and Gaussian mixture
modeling discussed previously. Since the estimation of σ

causes the overfitting problem, we treated σ as a user-
defined parameter and only performed the ML estimation
on μs and p(s) for a given parameter. Now the prob-
lem becomes how to determine the value of σ . It can be
shown experimentally that with a decrease of σ , the curve
complexity, which is measured as the total curve length,
increases and the data fitting error decreases monoton-
ically (Additional file 2: Figure S9). In our implementa-
tion, a continuous curve was discretized into multiple
equally spaced segments, and thus the curve length can
be directly translated into the number of segments. The
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problem now becomes how to estimate the optimal num-
ber of segments, which is similar to that of estimating
the number of clusters in Gaussian mixture modeling.
There is a large body of work on this topic in the clus-
tering literature [36,38,39]. In this study, we used the
elbow method [39] for parameter estimation. Additional
file 2: Figure S9 shows the curve fitting error measured
as the sum of squared distances between data points
and their corresponding closest points on a curve versus
the curve length. The fitting error decreases monotoni-
cally as the curve length increases, but at a certain point
the decrease flattens markedly. To perform the estima-
tion automatically, we fitted a regression model consisting
of two lines to the two arms of the elbow curve and
estimated the data variance as the one that generated a
curve with a length equal to that at the intersection of
the two lines (Additional file 2: Figures S9, S10 and S11).
A detailed mathematical derivation is given in the sup-
plementary data, where we also present a discussion of
some implementation issues and a simulation study that
demonstrated the effectiveness of the proposed method.

The developed bioinformatics pipeline also contains
some standard statistical techniques, including principal
component analysis (PCA), survival data analysis, poly-
nomial curving fitting and hypothesis testing. We refer
the reader to [40,41] for detailed descriptions. The core
algorithms of the proposed bioinformatics pipeline are
available upon request.

Breast cancer progression modeling
Identification of breast cancer related genes and data
visualization
We demonstrated the utility of the developed bioinfor-
matics pipeline by applying it to a large-scale breast cancer
dataset generated by the METABRIC project [7]. The
dataset contains the expression levels of 25,160 genes
and copy number data of 30,566 genes from 1,989 tumor
samples, and has clinical follow-up data ranging from
0 to 25 yearsa. Molecular profiles were obtained from
surgically excised primary breast tumors. The major-
ity of estrogen receptor (ER)-positive/lymph node (LN)-
negative patients did not receive chemotherapy, whereas
ER−/LN+ patients did. Additionally, none of the HER2+
patients received trastuzumab. As such, the treatments
were homogeneous with respect to clinically relevant
groups. The dataset also contains the gene expression
data of 144 normal breast tissue samples. To minimize
the confounding factor of censoring in selecting rele-
vant features, we removed 845 samples from the tumor-
bearing cohort that had clinical follow-up data of less than
10 years in the feature-selection analysis. Gene expres-
sion and copy number data of each sample were then
stacked together to form a high-dimensional vector, and
robust linear scaling [42] was performed on each feature

so that the 2% and 98% quantiles were set to 0 and 1,
respectively. As such, all features were comparable and
outlier data were removed. We then applied our new
feature-selection method (described above) to identify
genes associated with cancer progression. Due to the use
of an �1 regulation on feature weights (see Equation 3),
the method offers an embedded mechanism to remove
irrelevant and redundant features by assigning them
zero weights. In this study, features with weights larger
than 10−3 were selected for the downstream analysis.
Using the regularization parameter estimated through
tenfold cross-validation, the analysis identified a total of
1,140 features including 989 genes selected from differ-
ential mRNA expression data and 151 genes from copy
number data.

To obtain a general picture of data distribution sup-
ported by the selected features, we first performed a data
visualization analysis of the entire 2,133 samples in the
METABRIC dataset using PCA and KNN graphic analy-
sis (Figure 2 and Additional file 1: Figure S13, Additional
file 3: Movie S1). PCA is a commonly used data dimen-
sionality reduction technique, which projects high-
dimensional data onto a three-dimensional space where
the data geometric structure is least distorted in a least-
square sense [36,40]. For ease of presentation and discus-
sion, we annotated each sample with its corresponding
PAM50 label. PAM50 is a 50-gene predictor developed
from microarray data that classifies breast cancer samples
into intrinsic subtypes including normal-like, luminal A,
luminal B, HER2+ and basal [43]. We used the 144 nor-
mal breast tissue samples as the baseline. From Figure 2
and Additional file 3: Movie S1, we can see that although
the normal samples were not used in feature selection,
they are first connected with normal-like and luminal A
samples, gradually transit to luminal B samples and form
a bifurcation structure leading to either basal or HER2+
samples. Basal and HER2+ tumors are known to be the
most aggressive breast cancer phenotypes [44,45]. Note
that the three leading principal components account only
for 28% of the total information as shown in Movie S1, and
consequently some detailed structure is bound to be lost.
Therefore, we generated a mutual KNN graph to visualize
the data (Additional file 1: Figure S13). On the generated
graph, each node represents one sample and two nodes
are connected if they are among the KNNs of each other.
Although a KNN graph is more sensitive to noise than
PCA, one advantage of a KNN graph is that the node con-
nectivity can help to reveal data clustering structures and
thus it is commonly used as a preprocess step in spec-
tral analysis [28]. The data visualization result appears to
align well with the cancer evolution theory that posits
that tumor progression is an evolutionary process akin to
Darwinian evolution at the organism level, with clones as
the equivalent of genetically distinct quasi-species [1-3]. If
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the theory is valid, a cancer progression tree would consist
of a series of connected, bifurcating clusters, and this is
what the PCA and KNN graphs illustrate.

Construction of a breast cancer progression model
The data visualization analysis provided an overview of
data distribution, and informed the design of the novel
two-pronged method used to model the cancer progres-
sion process formally. Application of the spectral clus-
tering method [28] to the METABRIC data revealed 13
distinct clusters (Figure 4A). To promote a robust cluster-
ing assignment, a resampling-based consensus clustering
analysis [32] was performed. From the generated consen-
sus matrix shown in Figure 4B, we can clearly identify 13
diagonal blocks, which suggests that the clustering assign-
ment is very stable. This result was further confirmed
by silhouette width analysis. The clustering analysis clas-
sified 1,900 out of 1,989 (96%) samples with a positive
silhouette width and yielded an average silhouette width
of 0.47 (Figure 4C). Cluster 11 contains only three samples
and thus was omitted in downstream analyses. The second
step was to extract a principal curve to define mathe-
matically the general trend of the data. To overcome the
difficulty of extracting a self-intersected curve embedded
in a high-dimensional space, we applied our new princi-
pal curve method (described above). The parameter was
estimated using the elbow method [39] (Additional file 2:
Figure S11). Finally, we combined the clustering and prin-
cipal curve results using the principal curve as a backbone

to build a breast cancer progression trajectory (Figure 5).
Each node on the figure represents an identified cluster
and the node size is proportional to the number of sam-
ples in the corresponding cluster. Two connected nodes
indicate a possible inter-relationship, and the length of
an edge connecting two nodes is proportional to the dis-
tance between the centers of the two nodes. We note
that the overall structure of the model is consistent with
the results of our data visualization analysis, suggesting
that the constructed model faithfully reflects the data
distribution.

Our analytical approach revealed a linear, bifurcating
structure within the METABRIC dataset. There appear
to be two major paths from tumor initiation to malig-
nancy. Intuitively, both paths transition through normal
and normal-like tumor phenotypes towards the luminal
subtypes. The linear path continues through luminal A
and luminal B phenotypes but then bifurcating paths lead
from luminal B to either the basal or HER2+ pheno-
types (Figure 5A). No evidence for a significant inter-
relationship between basal and HER2+ phenotypes was
revealed. Beyond the links denoting the major two path-
ways, we also observe a number of minor side branches.
In one case, cluster 9 (normal-like enriched) has a path
going directly to cluster 10 (basal enriched) (Figure 5A).
Although a small cluster, this suggests that short-cuts to
the most malignant phenotypes are possible. Other minor
branches emanate from the luminal A node. These rep-
resent subdivisions of the major cluster 6 and are in line
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Figure 4 Spectral clustering analysis performed on the METABRIC data to detect genetically homogeneous tumor groups. (A) The optimal
number of clusters was estimated to be 13. (B) Resampling-based consensus clustering analysis identified robust and stable clusters. (C) Silhouette
width analysis was performed to assess the robustness of clustering assignment. The average silhouette width was 0.47.
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Figure 5 Model constructed using the METABRIC dataset and its association with clinical and genetic variables. (A) Breast cancer
progression tree. Each node represents a cluster and the node size is proportional to the number of samples in the corresponding cluster. Nodes are
color-coded based on the PAM50 labels of the majority of the samples in the node. (B,C) Molecular grade and CNA frequency were highly
correlated with the N-B (first column) and N-H (second column) progression branches. (D) Spearman’s rank correlation analysis of histological grade,
molecular grade, mutation rate and patient age with the two main progression paths. The numbers in parenthesis are P values. CNA, copy number
alteration; N-B, normal through luminal to basal phenotype; N-H, normal through luminal to HER2+ phenotype; TCGA, The Cancer Genome Atlas.

with the finding that the luminal subtypes are genetically
heterogeneous and may have multiple subtypes within
them [46,47]. It is tempting to speculate what these minor
clusters represent biologically given that the paths appear
to be dead ends in an evolutionary context. Perhaps, they
represent tumor subtypes that remain dormant or are
very slow growing, but this requires further investigation
experimentally.

Survival data analysis
To examine the relationship between clinical outcome and
the groups on the two major paths to malignancy, we
used the Kaplan–Meier method [48] to plot overall sur-
vival (OS). Figure 6 illustrates a clear trend of worsening
survival function associated with progression along the
major trajectory through luminal types to basal or HER2+
tumors (cluster 8 through cluster 6, and cluster 1 to either
cluster 3 or 5). As would be expected, each cluster, or
node, on this linear path generally had a worse OS index

than the preceding cluster. Interestingly, cluster 9, located
at the start of the linear path between normal samples
(no OS data) and the first luminal-type cluster (cluster 8),
has a worse OS function than downstream cluster 8. Sim-
ilar associations with outcome have been reported for this
group in other studies [49]. Cluster 9 was classified as
normal-like by PAM50 labeling, and there has been con-
jecture about whether this is an artifact of contamination
by high levels of normal tissue in this early stage tumor
[50]. The position of the cluster on the progression model
may support that notion. A thorough histological investi-
gation of this class of tumors would be needed to resolve
this issue. A more plausible explanation is that cluster 9
is connected with cluster 10, which was classed as basal
and had a poor OS as shown in Figure 6. This means a
subset of tumors in cluster 9 can bypass luminal inter-
mediates and progress to either cluster 10 or 8 directly.
Another pattern to note from the Kaplan–Meier plot is
the OS data for cluster 4 (Figure 6). This cluster is located
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Figure 6 Overall survival of 12 breast cancer subgroups
detected in the METABRIC data. Cluster 11 contained only three
samples and so was omitted.

at the bifurcation point on the linear model. The OS func-
tion for cluster 4 is similar to that for the basal and HER2+
tumors early on, and continues to mimic HER2+ through-
out the survival analysis. This implies that pivotal gene
activities associated with outcome are acquired at this
stage prior to final commitment to a basal or a HER2+
phenotype.

It is worth remembering here that the PAM50 labels
were only added to the model after construction to aid
in visualization and to help to put the model into context
by referral to previous breast cancer classification systems
[43]. The analytical approach used in this study identi-
fied 13 clusters and revealed associations between them
based on statistical significance without any pre-labeling
process. Thus, the labels are somewhat misleading and, as
shown by the continued subdivision of PAM50 subtypes
[46,47,51], do not represent the full complexity of the data
structures within tumor tissue molecular profiles. PAM50
labeling works well for the HER2+ and the basal types
(clusters 3 and 5 respectively) where the majority of sam-
ples in the cluster fit that classification system, but even
in these clusters there are admixtures of what would be
labeled as basal or HER2+ samples. For the side-branch
clusters, the PAM50 admixtures are more pronounced
(Additional file 1: Figure S14), nonetheless, the color-
coding to some extent aids the visualization of the two
major pathways to malignancy in the progression model.
If confirmed in independent cohorts, identification of
the genetic changes associated with the interconnected
clusters revealed in this study may facilitate the refine-
ment of disease classification systems.

As there is currently no established breast cancer pro-
gression model for direct comparison, it is important to
consider ways to demonstrate the validity of the con-
structed model. The following sections describe a series
of interrogations that provide support for the proposed
model and show the utility of such a model for testing and
generating hypotheses and providing novel insights. The
model revealed two major progression paths; these will
be referred to as N-B (normal through luminal to basal
phenotype), and N-H (normal through luminal to HER2+
phenotype) in downstream analyses.

Comparison with conceptual cancer progression models
There have been two major conceptual models proposed
regarding the origins of breast cancer subtypes and asso-
ciated biological mechanisms (see Figure 6 in [47]). One
model proposes a distinct-path scenario where each sub-
type follows a path of initiation and progression indepen-
dently of the others. The alternative is a linear evolution
model, which proposes that tumors gradually evolve from
normal cells to malignant states through the accumula-
tion of genetic alterations. While both models embrace
the notion of cancer evolution, an important implication
from the first model is that the subtypes are considered
as different diseases, and the alternative theory proposes
that subtypes are different stages of the same disease.
Clarifying this issue could have a profound impact as
research strategies used in the two scenarios could be
very different. The bifurcation structure revealed in our
model supports the linear evolution model as a repre-
sentation of the breast cancer progression process. We
should emphasize that our method is a generic approach
without making any model assumption on data. If the
four major subtypes evolve directly from normal cells, as
proposed by the discrete evolution model, in a popula-
tion study with a large number of samples, we should
be able to detect four independent paths connecting nor-
mal samples with the four subtypes, but this was not
the case (Figures 2, 5 and 7). Our result suggests that
basal subtypes are derived from the luminal subtypes,
an idea that has been recently suggested through exper-
imentation [52]. The idea that HER2+ phenotypes are
derived from luminal B tumors also makes biological
sense. Through association of CNA data and putative
driver gene expression (data not shown), we found that
the copy numbers of the genes involved in the HER2
signaling pathway are significantly amplified in HER2+
samples relative to luminal B samples, suggesting that
the HER2+ phenotype develops from luminal B through
gene copy number variation, and that this event is distinct
from progression to basal phenotypes. This result echoes
recent studies that demonstrated that cancer subtypes are
not hard-wired, and genotypes and phenotypes can shift
over time [1].
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Figure 7 Model constructed using the TCGA dataset and its association with clinical and genetic variables. (A) Breast cancer progression
tree. There were only eight normal-like samples and no distinct cluster was identified. The bifurcation structure and the order of the molecular
subtypes are almost identical to those observed in the METABRIC model. (B-D) The molecular grade, overall mutation rate and CNA frequency were
highly correlated with the N-B (first column) and N-H (second column) progression branches. CNA, copy number alteration; N-B, normal through
luminal to basal phenotype; N-H, normal through luminal to HER2+ phenotype; TCGA, The Cancer Genome Atlas.

Mapping of tumor grades onto the progression model
We next investigated how grades would be mapped to
the two major branches of the constructed progression
model. Histological tumor grade is a measure of the
extent of abnormal tumor cell morphology relative to
normal cells [53]. Since the determination of histolog-
ical intermediate-grade tumors is somewhat subjective,
a method to derive a molecular grade index has been
developed [54], and the information required to derive
this index was available in the METABRIC dataset. We
found that both the molecular and histological grades
were highly correlated with both of the major progression
paths. Figure 5B plots molecular grade against the sam-
ples on the model’s N-B progression path and reveals that
there is a clear increase in grade along the path to the most
malignant basal phenotype samples. Likewise, for the N-H

path (Figure 5B) a clear trend in molecular grade towards
the malignant HER2+ samples was observed. Statistical
significance was determined by Spearman’s test. Briefly,
each sample was projected onto the specific progression
path (the projection of a sample is defined as a point on
the path that is the closest to the sample; see Additional
file 2: Figures S8 and S10), and then a Spearman cor-
relation analysis of histologic/molecular grade was per-
formed against the N-B/N-H paths. Strong correlation
was observed for both molecular grade (N-B: r = 0.89,
P = 0; N-H: r = 0.84, P = 0) and histological grade (N-B:
r = 0.61, P = 0; N-H: r = 0.53, P = 0; see Figure 5D).

The data support the validity of the progression
model in that statistically significant correlations were
identified, but also because it aligns with established
grade associations. Nearly all basal and HER2+ tumor
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phenotypes are aggressive grade-3 cancers and the major-
ity of luminal A tumors are low grade-1 cancers [55].
In itself, this is difficult to explain within a discrete dis-
ease evolution model as it implies that basal and HER2+
tumors are high-grade cancers from the outset. The cor-
relation aligns well with a linear evolution model. Inter-
estingly, the mapping of the grades onto the model also
supports a malignancy-associated transition from luminal
A to luminal B phenotypes. Luminal B tumors are rou-
tinely graded higher histologically than luminal A tumors,
and grade-3 rates (and outcomes) approach those seen in
the more aggressive HER2+ and basal phenotypes [47,55].
It has been proposed that this phenomenon reflects a
yet more complex inventory of subtypes within the lumi-
nal B phenotype [47], but it could also be explained by
a progressive transition from luminal A to luminal B
and then on to the aggressive HER2+ or basal tumor
phenotypes.

Model validation using an independent breast cancer
dataset
To investigate whether a similar model would be derived
from an independent dataset, we performed a computa-
tional analysis on data obtained from The Cancer Genome
Atlas (TCGA) breast cancer project [8]. As such, we have
used data from the two most comprehensive breast can-
cer projects conducted to date. In the TCGA project, a
total of 507 tumor tissues and 17 normal tissues were sub-
jected to gene expression and copy number profiling. It
is often difficult to perform direct comparisons between
large projects because the data sources are not entirely
compatible. In this case, the TCGA study employed dif-
ferent microarray platforms, and the clinical follow-up
was markedly shorter (median overall follow-up was
17 months vs 98 months for the METABRIC data, and
there were only 90 overall survival events), so feature
selection on this dataset would be underpowered. Instead,
we mapped the genes selected from the METABRIC data
analysis back to the TCGA data to perform the clus-
tering and principal curve analyses and model construc-
tion. A total of 775 of the 989 genes selected from the
METABRIC dataset were also found in the TCGA data.
On application of the same two-pronged analytical proto-
col, nine stable clusters were identified (Additional file 1:
Figures S15 and S16). The difference in the numbers
of clusters found in the two studies can be attributed
to various factors including the different sample sizes,
the different microarray platforms used, and the partially
overlapped gene sets. Despite those differences, the major
structures of the progression model constructed using the
TCGA data (i.e., the bifurcation structure and the order
that the clusters are connected) were almost identical to
those constructed using the METABRIC data (Figure 7).
As with the METABRIC data model, luminal A clusters

represented the largest group in the cohort, there were
four luminal A type and two luminal B type clusters
in series, and there were some dead-end side branches
emanating from the luminal phenotypes. Because only 8
out of 507 tumor samples were classified as normal-like,
no distinct cluster was identified on the TCGA progres-
sion tree. Survival curves for the clusters in the TCGA
model could not be constructed due to the lack of follow-
up data. Consistent with the results obtained from the
METABRIC progression model, the progression model
constructed using the TCGA data was also significantly
correlated with the molecular grade index (Spearman’s
test, N-B: r = 0.85, P = 0; N-H: r = 0.81, P = 0). Of
note, the magnitudes of the correlation obtained for both
METABRIC and TCGA models were comparable (see
Figure 5D). No histological grade data was available for the
TCGA data.

Mapping genetic alterations onto the progression models
A bonus of the TCGA project was the availability of the
overall and non-silent mutation rates for each sample.
This information, together with the frequency of CNAs,
was used to test model validity. Here, the CNA frequency
of a sample is defined as the sum of the magnitude of
CNAs including amplification and deletion of all genes
in the sample. It is widely accepted that cancer develop-
ment is due to the accumulation of genetic alterations in
somatic cells [1-4]. Among them, somatic point mutations
and CNAs play a central role in tumorigenesis [56,57].
If our constructed breast cancer progression models are
valid, we would expect somatic mutation rates and CNA
frequencies to be positively correlated with the modeled
progression trajectory. To investigate this, we mapped the
overall mutation rate and CNA frequency of each sam-
ple back to the two major progression branches revealed
by the TCGA model and found that this is indeed the
case for both somatic mutation rate (N-B: r = 0.46,
P = 1.1 × 10−12; N-H: r = 0.50, P = 1.2 × 10−13; see
Figure 7C) and CNA frequency (N-B: r = 0.54, P = 0;
N-H: r = 0.56, P = 0; see Figure 7D). A similar result
was observed for non-silent mutation rates (Figure 5D).
We also found that patient age had no significant corre-
lation with the progression model (Spearman’s test, N-B:
r = −0.07, P = 0.32; N-H: r = 0.06, P = 0.31; see
Figure 5D)b. This finding means that the significant cor-
relation between genetic alteration rates and the two
major progression branches are statistically independent
of patient ages. This is in line with recent findings that
showed that although tumors originating from many self-
renewing tissues have increasing mutation rates with age,
no such correlation has been found in breast or ovarian
cancer [58]. Consistent with the results obtained from the
TCGA model, the progression model constructed using
the METABRIC data was also significantly correlated with
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the CNA frequency (Spearman’s test, N-B: r = 0.53,
P = 0; N-H: r = 0.50, P = 0; see Figure 5C,D). No somatic
mutation data were available for the METABRIC data.

Genome instability is generally referred to as an
enabling characteristic of cancer progression [5]. The sig-
nificant correlation of both somatic mutation rate and
CNA frequency in the progression models built from two
independent datasets provides strong evidence support-
ing the validity of the proposed model.

Mapping of key genes onto breast cancer progression
paths
Next, we investigated the change in gene expression of
some key genes during breast cancer progression by
mapping them onto the model derived from the more
comprehensive METABRIC dataset. Our initial interroga-
tion mapped the expression of seven key genes (AURKA,
PLAU, STAT1, VEGF, CASP3, ESR1 and ERBB2), which
represent described hallmarks of cancer, namely prolifer-
ation, tumor invasion and metastasis, immune response,
angiogenesis, apoptosis, and estrogen (ER) and HER2
signaling, respectively [59]. The resulting plots revealed
the change of expression of these genes along both lin-
ear paths, normal to HER2+ (N-H, Additional file 1:
Figure S17) and normal to basal (N-B, Additional file 1:
Figure S18). By normalizing the expression levels, we were
able to visualize the changes on a single overlay plot
(Figure 8). The curves were generated using the poly-
nomial curve fitting method and the degree parameter
was estimated through tenfold cross-validation [40]. Once
again, we label the axis with PAM50 subtype labels to
indicate an approximation of tumor subtypes for ease of
discussion.

As would be expected, the ERBB2 gene is only highly
expressed in the HER2+ cluster on the N-H path (Figure 8,
left), suggesting ERBB2 amplification is a late onset event
in tumor progression. As also expected, the estrogen
receptor ESR1 is low in normal phenotypes, increased
in luminal phenotypes that are primarily classified as
ER+, and lost in the most malignant basal and HER2+
phenotypes. On the N-B path plot (Figure 8, right), we
see that basal phenotypes are ER−/HER2−. Most triple-
negative tumors (ER−/HER2−/PR−), which carry a par-
ticularly poor prognosis, have a basal phenotype [60].
VEGF expression increases from the normal to luminal
phenotypes, but then plateaus across luminal phenotypes
until the transition to malignant HER2+ or basal phases.
This may suggest that angiogenesis is a limiting factor for
progression from luminal phenotypes, perhaps indicating
a potential point of efficacy for anti-angiogenic therapy.
As an indicator of tumor invasion, higher PLAU expres-
sion is expected at the malignant disease stages, and this
is observed for both progression paths, but the correlation
is less pronounced than for other indicators. The plots
reveal that increasing AURKA expression is very strongly
correlated with progression to malignancy. Intuitively, we
might expect that proliferation will increase in an over-
all sense as cancer develops, but even malignant tumors
are relatively slow-growing from a cellular mass point of
view, and so tumors have to overcome opposing events
to achieve a net growth. This is supported by the fact
that the expression of CASP3, an indicator of apoptosis
[61], also increases in parallel with AURKA as tumors
progress. AURKA has been reported to be associated
with outcome as the key gene in a proliferation mod-
ule [59] and as part of a three-gene molecular signature

Figure 8 Seven key genes (AURKA, PLAU, STAT1, VEGF, CASP3, ESR1, and ERBB2) representing proliferation, tumor invasion/metastasis,
immune response, angiogenesis, apoptosis phenotypes, and ER and HER2 signaling, respectively, were mapped onto the two major
progression branches of the METABRIC model. For ease of presentation in one plot, the expression level of each gene was normalized into the
interval of [0,1]. The small interval between normal and luminal A represents normal-like.
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for subtype classification of tumors [62]. Those studies
provided support for AURKA gene expression as a classi-
fier or a biomarker for prognosis using associations with
particular subtypes, but the positive correlation across
N-H and N-B paths revealed by plotting the progression
model provides further support for AURKA monitoring
as a powerful biomarker of tumor status and prognosis.
Likewise, the strong correlation of expression of STAT1
suggests that this factor could also act as a marker of
progression status and outcome. The transcription factor
STAT1 has been thought of as an onco-suppressive factor,
acting through the stimulation of anti-proliferative and
pro-apoptotic genes in tumor cells, but recent evidence
supports a multivalent role for this factor in advancing
cancer. STAT1 expression is up-regulated in a number
of late-stage cancers, including breast cancer [63-65],
and high STAT1 levels have been correlated with poor
survival, presence of metastases and with chemo- and
radiotherapy resistance in breast cancer patients [66,67].
Potential functions of STAT1 in aggressive cancers include
the maintenance of pro-survival genes [68] and the regula-
tion of the local immune response [65]. There are conflict-
ing reports of STAT1 expression levels in breast cancer
subtypes [59], but in the large METABRIC dataset, STAT1
expression was significantly increased in the malignant
phenotypes.

We also explored the potential association of reported
cancer driver genes with breast cancer progression using
the same model interrogation approach. The 125 driver
genes selected have been defined through large-scale
mutational analyses [69], but changes in their expression
level may also enhance or inhibit some aspect of tumor
progression. A total of 31 genes were found to have sig-
nificant changes in expression across either path of the
progression model (Additional file 1: Figures S19 and
S20 and Additional file 4: Table S1). From the individual
plots, we see that a few genes have a distinctive associ-
ation with progression. Of note are the opposing curves
of EGFR and NOTCH1 versus GATA3 and RET. The for-
mer pair have U-shaped curves depicting higher expres-
sion in normal and malignant phenotypes, whereas the
latter pair have pronounced bell-shaped curves that mir-
ror the EGFR/NOTCH1 expression profile. These genes
may have a co-ordinate expression relationship, being
regulated by each other, or perhaps through the estro-
gen receptor, which has a similar profile to GATA3/RET
across the progression model, and such networks are
beginning to be elucidated [70]. Other notable plots
include EZH2, which is expressed at progressively higher
levels on both paths to malignancy, and SMAD4 and
KIT, which similarly decrease during transition from nor-
mal to malignant states. The only driver gene to have
a distinct spike in expression in the malignant pheno-
types was CDKN2A. This gene encodes the p16INK4a

tumor suppressor protein, which regulates the cell cycle,
and so the marked increase in expression in both basal
and HER2+ phenotypes is intriguing. Interestingly, recent
studies have shown that in breast cancer, high expression
is indicative of a more undifferentiated phenotype [71],
and elevated CDKN2A has been proposed as a marker
of poor prognosis [72]. Our progression model supports
these recent reports. While the driver gene analyses do
not address the mutational status of the specific genes, the
level of their expression is of interest because it will impact
the potential effect that the driver mutations may have on
tumor phenotype.

Discussion
Overall, our findings support the idea that cancers acquire
the properties required for progression towards malig-
nancy from an accumulation of genetic aberrations, a
phenomenon that is consistent with clonal evolution the-
ory. This process occurs over extended time periods,
measured in years, and so accurate mapping is logisti-
cally very challenging. From cancer patients, we typically
only have data from a single time point through sampling
at the time of surgery, and this restriction is unlikely to
be overcome for the majority of solid tumors. While it
may subsequently be possible to reconstruct the develop-
ment of malignancy through a longitudinal study of a few
select patients, to overcome issues of heterogeneity, a large
number of tissue samples is possibly needed first to con-
struct a theoretical model of progression. This can only
be achieved through the analysis of available static sam-
ples. A computational approach that can overcome the
sampling limitation and thereby enable the leveraging of
accumulating data and the vast tissue archive represents
a major advance with respect to the application of bioin-
formatics methodology to the study of progressive human
diseases.

There are many potential applications for the pro-
posed approach. One of them is to identify genetic alter-
ations that drive tumor progression, which is one of the
central goals of some recent large-scale cancer studies
[7,8,73-76]. The primary analytical strategy used today
is prevalence-based approaches that search through a
large number of tumor samples for genetic changes that
occur with a higher frequency than would be expected
by chance alone [73,74]. While the associations between
genetic events and disease can be revealed by existing
methods in an overall sense and can even be associated
with a putative tumor subtype, the placement of molec-
ular events onto a cancer progression map through a
progression-model-based approach provides a way to put
these molecular events into the context of a dynamic
disease process and actually enables us to determine
what changes are pivotal to transition from one phe-
notype to another. If confirmed, such a model could
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provide a foundation for the visualization of key pro-
gressive molecular events and facilitate the identification
of pivotal driver genes and pathways, the most relevant
and robust biomarker signatures, and potential points
of susceptibility for therapeutic intervention. Moreover,
interrogation of the model will allow researchers to test
novel hypotheses in silico and thus help to prioritize
resources for more focused and detailed investigations
experimentally.

The presented study has demonstrated the possibility of
using static sample data to study disease dynamics, which
lays a foundation for future studies to incorporate all cur-
rently available molecular data (e.g., mRNA, microRNA,
copy number, methylation and protein expression data) to
construct high-resolution cancer progression trees. Our
ongoing work will thus focus on addressing the challenges
associated with processing massive, high-dimensional
data of different types to build models of increasing reso-
lution. This in turn will further facilitate the elucidation of
clinically and biologically pertinent issues. The described
computational methods can also be further improved
accordingly. For example, in the proposed EM-based prin-
cipal curve-fitting algorithm, we assumed that the data
was corrupted by noise with an equal variance through-
out the genomic space. This heuristic approach worked
well, but to build higher resolution models, we are work-
ing to develop an algorithm using data-driven variance
estimation. In this study, we used a two-pronged approach
consisting of spectral clustering and principal curve to
model a cancer progression path. Incorporation of other
data dimensionality techniques (e.g., self-organizing map
[77] and Isomap [78]) may also aid the production of a
low-dimensional representation of the input space of can-
cer samples. We expect that the results would be similar,
but an intensive computation study is needed to assess
the utility of other techniques for cancer progression
modeling.

Conclusions
We describe the derivation of a novel computational
approach for mapping the development of cancer towards
malignancy. Through application to two independent,
large-scale breast cancer datasets, we have shown that
the proposed method can reconstruct tumor progres-
sion through the analysis of static samples and thereby
identify genetic events associated with pivotal shifts in
phenotype. This new set of tools will enable the con-
struction of high-resolution progression trees for cancers
and other diseases for which longitudinal data sampling
is ethically or logistically not possible. Refinement of pro-
gression trees will facilitate the identification of molec-
ular drivers of disease progression and the derivation of
robust biomarker signatures for patient evaluation and
management.

Endnotes
aThe data is available in the European

Genome-Phenome Archive with the accession number
[EGAS00000000083].

bBased on a rule of thumb used in the statistical
community, two variables with a correlation larger
than −0.2 and smaller than 0.2 are considered as having
no or negligible relationship.
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