

Understanding the Mapping Sequence of Online Volunteers in Disaster Response

Yingjie Hu

Department of Geography University of Tennessee, Knoxville Apr. 26, 2017

Introduction

• The role of online volunteers in disaster response

"When a major disaster strikes anywhere in the world, HOT rallies a huge network of online volunteers to create the maps that enable responders to reach those in need."

Coordination by grid-based tessellation

Understanding the mapping sequence of online volunteers

- Online volunteers can help generate up-to-date geographic information
- The time that a grid cell was mapped can be as different as 3 to 4 days from another
- Emergency responders who need information within one cell may have to wait for a long time

Dataset

• Online mapping projects in three different cities

Information about the three studied projects.							
	Kathmandu, Nepal	Pedernales, Ecuador	Kumamoto, Japan				
Number of Cells	208	186	340				
Varied Cell Sizes	Yes	Yes	No				
Number of Volunteers	321	85	52				
Earliest Finish Time	2015-04-27 15:20:43	2016-04-23 13:40:13	2016-04-16 21:41:46				
Latest Finish Time	2015-04-30 10:57:21	2016-04-25 21:29:25	2016-04-20 01:54:14				

Introduction	Method	Result	Possible	Solution	Conclusions
Result	F	First First Second Third First	ourth Fifth		
(a) Ranking based of	n mapping time	(b) Ranking based on pop		(c) Ranking based on h	roads

(c) Ranking based on roads

(a) Ranking based on mapping time

(b) Ranking based on population

Result of the correlation analysis.

	Kathmandu, Nepal	Pedernales, Ecuador	Kumamoto, Japan
Correlation with Population	$0.45 \ (p < 0.001)$	-0.05 (p = 0.521)	$0.48 \ (p < 0.001)$
Correlation with roads	0.46 (p <0.001)	0.07 (p = 0.369)	0.26 (p <0.001)

Discussion

- It's possible that the mapping sequence of volunteers may correlate well with other datasets
- 3 mapping projects are examined, and more projects can also be studied
- It's also likely that online volunteers have been mapping cells in a more or less random order

- Maybe we can guide the online volunteers by highlighting the priorities of these grid cells
- Prioritizing the grid cells by population, by road network, by ...
- Prioritizing the grid cells by the value of information within each grid

• Prioritizing by the value of information within each grid

• Identifying the possible routes to disaster-affected areas

• Integrating population and disaster severity

- $d = \{t_1, t_2, \dots, t_{|V_a|}\}$
- $U(d) = \sum U(t_h)$
- $U(t_h) = Pop_h \cdot s_k$
- $EU(t_h) = p_h \cdot U(t_h)$
- $p_h = \prod p_{hk}$
- $EU(d) = \sum EU(t_h)$

Application to a mapping case in 2015 Nepal earthquake

(b) Reproduced grid tessellation

Application to a mapping case in 2015 Nepal earthquake

(a) Road network and the earthquake intensities

(b) Voronoi polygons and LandScan data

Conclusions

- Examined the mapping sequence performed by online volunteers
- 3 mapping projects, 3 different cities and countries, 458 online volunteers, 734 mapping cells
- Guiding online volunteers on the priorities of the grid cells can be beneficial
- One possible approach on measuring the value of information within each grid cell

Questions and comments?

Yingjie Hu yhu21@utk.edu

