

Task-Oriented Information Value Measurement based on Space-Time Prisms

Yingjie Hu¹, Krzysztof Janowicz¹, Yuqi Chen²

 ¹ Department of Geography
 ² Department of Statistics and Applied Probability University of California Santa Barbara

April 1st, 2016

Information plays an important role in our everyday tasks

Traffic

Weather

Meetings

Restaurants

The role of information from a cognitive perspective

Mobile devices: major tools for retrieving and displaying information

When small screens encounter big data

Can we prioritize information?

A framework that integrates information value theory with space-time prisms

Problem

- An individual has *m* tasks to complete
 - Each task has its spatiotemporal properties:
 Locations, preferred arrival time, duration, waiting
- The mobile device has access to *n* information items
 - Each information item indicates certain spatiotemporal change of the current status
- Goal: measure the values of the *n* information items with regard to the *m* tasks

Information Value Theory (IVT)

- Originally proposed in economics and artificial intelligence
- Measures the value of information with regard to decisions

V(I) = U(d') - U(d)

- Applied to investment analysis and clinical assessment
 - Focusing on monetary value
 - Ignoring spatiotemporal properties

V(I) = U(d') - U(d)

- Decision maker: the individual
- Decision d: to make a plan to complete the m tasks

IntroductionProblemFrameworkExample & ExperimentFuture WorkIntegrating IVT with time geography

V(I) = U(d') - U(d)

- Space-time prisms for representing the spatiotemporal properties of tasks
- U: extending the utility function from space-time accessibility studies
 - Burns (1979), Miller (1999)
 - Ettema and Timmermans (2007)

V(I) = U(d') - U(d)

• Utility function in accessibility study (*Burns, 1979, Miller 1999*):

$$U = a^{\alpha} D^{\beta} \exp(-\lambda T)$$

• An extension to include early and late arrivals (*Ettema and Timmermans, 2007*)

 $U = a^{\alpha} D^{\beta} \exp(-\lambda T) \exp(-\gamma_1 SDE) \exp(-\gamma_2 SDL)$

V(I) = U(d') - U(d)

• A *plan* as completing a sequence of tasks:

$$plan = \{\boldsymbol{S}_1, \boldsymbol{S}_2, \boldsymbol{S}_3, \dots \boldsymbol{S}_m\}$$

• The utility of a *plan*:

$$U(plan) = \sum_{j=1}^{m} U(\mathbf{S}_j) * exp(-\lambda \sum_{j=1}^{m} T_{(j-1),j})$$

V(I) = U(d') - U(d)

• For each task, one location is selected from the candidate locations:

 $S_{jk} = \langle l_{jk}, a_{jk}, PAT_{jk}, AAT_{jk}, D_{jk}, D'_{jk} \rangle$

• The utility of completing one task:

 $U(\mathbf{S}_{jk}) = a_{jk}^{\alpha} f(D_{jk}, D'_{jk}) h(PAT_{jk}, AAT_{jk})$

• Measuring the value of information:

V(I) = U(plan') - U(plan)

• A workflow for ranking the priorities of multiple information items

A simplified example

A simplified example

• Traffic congestion information *I*traffic

A simulation based on a road network

- Tasks: 1) breakfast; 2) workshop
- Information: *I_{traffic}, I_{loc}, I_{temp}, I_{wait}*

A simulation based on a road network

 $I_{loc} > I_{traffic} > I_{wait} > I_{temp}$

Conclusions and future work

- A theoretical framework for measuring the value of information
- An integration between space-time prisms and information value theory
- Prioritized information display on small-screen mobile devices
- Further evaluations based on human participant experiments are necessary

Questions and suggestions?

Yingjie Hu

PhD Candidate Email: yingjiehu@umail.ucsb.edu Web: http://geog.ucsb.edu/~hu

$$U(\boldsymbol{S}_{jk}) = a_{jk}^{\alpha} f(D_{jk}, D'_{jk}) h(PAT_{jk}, AAT_{jk})$$

$$f(D_{jk}, D'_{jk}) = \left[\min\left\{\frac{D'_{jk}}{D_{jk}}, 1\right\}\right]^{\beta}$$

 $h(PAT_{jk}, AAT_{jk}) = \exp(-\gamma_1(PAT_{jk} - AAT_{jk})^+) \exp(-\gamma_2(AAT_{jk} - PAT_{jk})^+)$