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1. Introduction: what is urban areas of interest (AOI)?

Fairview ! | Fairview

North 5 North
Bergen . by r Bergen

Secaucus Secaucus

Union Gty

71 5 Astoria

Sunnysicle 7 Il Sunnysicle

Hoboken N Hobolken

Jersey

City

& Erooklyn




1. Introduction: what is urban areas of interest (AOI)?

- Urban AOI are defined by people’s perception

North
Bergen

- Different people may have different opinions
- The list of AOI
- The boundaries of AOI

Can we identify urban AOI agreed
by many people? How?




2. Potential data sources to extract AOI

- Remote sensing images:
- Commonly used in urban studies (e.g., detecting land cover types)
- Unfortunately, remote sensing data don’t record the perception of people
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2. Potential data sources to extract AOI

- Human participant survey
- Example: Dan Montello (2003): Where is Downtown Santa Barbara?
- Requires a lot of time and human efforts
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2. Potential data sources to extract AOI

- Social media data
- Provide records for people’s interactions with the urban environment

- Many social media data contain location information
- Geotagged Tweets

- Geotagged Flickr photos
- Foursquare checkins

- Can be retrieved from public APIs
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3. A framework for extracting and understanding AOI
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3.1 Layer 1: Data preprocessing

- Why Flickr data?
- Reflect locations people consider interesting
- Cover atimespan of the past 10 years
- Publicly available through APIs
- Large number of users (around 100 million users)




3.1 Layer 1: Data preprocessing

- Cities: New York, London, Paris, Shanghai, Mumbai, Dubai

- Timespan: 2004 - 2014

- Method: Flickr public API

7CHy
New York City
London
Paris
Shanghai
Mumbai

Dubal

# User

7#photo

2,761,542
2,876,013
1,456,298
254,123
55,532
89,457




3.1 Layer 1: Data preprocessing

- Constructing temporal snapshots
- One-year time window (10 snapshots in total)
- Each snapshot contains Flickr data in one year (e.g., 2008 — 2009)

- Removing dominance effect from active users
- A small number of active users contribute a huge number of data
- Most users contribute a few data records

- Keep only one record for each user within a neighborhood radius




3.2 Layer 2: clustering and area construction

- To identify the areas which are interesting to many people
- We abstract it into a clustering problem
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3.2 Layer 2: clustering and area construction

- Clustering method: DBSCAN (Density Based Spatial Clustering Oprp“CtiOS
with Noise)

- Advantages of in extracting AOI

- K-means

- DBSCAN




3.2 Layer 2: clustering and area construction

- DBSCAN requires two parameters: search radius (Eps) and minimum nube
of points (MinPts)

- Example: Eps is the circle radius, and MinPts is the minimum number of points
in this radius (in this case: 8)
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3.2 Layer 2: clustering and area construction

- Eps and MinPts together define the minimum density threshold, and clusters
are formed at locations where the density is larger than this threshold

- Larger Eps will produce clusters in large geographic scale, and small Eps will
produce clusters in small scale

- E.g., 200 meters could detect neighborhood-level clusters
- E.g., 5 kilometers could detect city-level clusters

- MinPts determines the significance of the derived clusters
- High MinPts requires more people to agree Boundary point
- Low MinPts generate more but less significant clusters A C
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3.2 Layer 2: clustering and area construction

- Selecting Eps and MinPts by iterative experiments
- Two cities: NYC and Shanghai
- Iterate Eps from 100 to 500 meters
- Iterate MinPts from 1% to 5%
- 7 human participants to evaluate the result
- Select 200 meters for Eps and 2% for MinPts

- Two parameters together determine the meaning of AOI

- In this study, AOI are city regions which have been visited by at least 2% of different
people given a radius of 200 meters.

- In other studies, AOI can be defined differently using a
different set of parameters
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3.2 Layer 2: clustering and area construction

- Constructing polygons from point clusters
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3.2 Layer 2: clustering and area construction

- Constructing polygons from point clusters
- . provides the smallest convex polygon, but often contains empty regions

- (concave hull): more accurate delineation of the shape; the generated polygon
IS not convex

Convex hull Concave hull




3.2 Layer 2: clustering and area construction

- Chi-shape algorithm requires a parameter of lambda in [1, 100]
- Using fitness function to determine lambda

®(P,D) = Emptiness(P,D) + C * Complexity(P)
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3.2 Layer 2: clustering and area construction

- Polygons generated using different lambdas
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3.3 Layer 3: understanding AOI

- What are the major topics that help form the AOI
- Data: textual tags attached to photos

- Challenge: some tags are common to many AOIs
- E.g., “Paris” and “France” are very common to AQOIs in the city of Paris
- Method:
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3.3 Layer 3: understanding AOI

- What are people looking at in these AOIs?
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3.3 Layer 3: understanding AOI

- An automatic workflow combining multiple methods:
- Human face detection using OpenCV library
- Image similarity comparison
- Image clustering
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3.3 Layer 3: understanding AOI

- Method:
- An automatic workflow combining multiple methods:
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Patch-based comparison: adaptive to slightly distorted images

Image comparison




4. Knowledge and insights derived from AOI
4.1 Spatial distribution of the AOI
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4. Knowledge and insights derived from AOI
4.1 Spatial distribution of the AOI

- Eiffel Tower AOI
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- Eiffel Tower from Google Map
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4. Knowledge and insights derived from AOI

4.2 Spatiotemporal dynamics of AOI (an example of Dubai)




4. Knowledge and insights derived from AOI

4.3 Historical slideshow

- Reveal the changes of landmarks through the lens of general people
- Valuable documentary for museums




4. Knowledge and insights derived from AOI
4.4 Untypical AOI

- AOI are not necessarily the regions which provide aesthetical views
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An online prototype for the extracted AOI

5 the extracted
s AQls from 2004

- http://stko-exp.geog.ucsb.edu/urbanAOQIls




5. Conclusions and future work

- Urban AOI are areas within an urban environment that attract people’s attention

- We develop a framework for extracting and understanding urban AOI from
geotagged photo data

- We derive spatiotemporal knowledge and other insights from the extracted AOI

- We develop an interactive online demo to visualize the extracted AQOI

- Seasonal variability of AOI could be an interesting future direction




Thank you!

Yingjie Hu
yingjiehu@umail.ucsb.edu
http://geog.ucsb.edu/~hu

Urban AOI: http://stko-exp.geog.ucsb.edu/urbanAQls




