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Abstract. Place name disambiguation is the task of correctly identify-
ing a place from a set of places sharing a common name. It contributes to
tasks such as knowledge extraction, query answering, geographic infor-
mation retrieval, and automatic tagging. Disambiguation quality relies
on the ability to correctly identify and interpret contextual clues, com-
plicating the task for short texts. Here we propose a novel approach to
the disambiguation of place names from short texts that integrates two
models: entity co-occurrence and topic modeling. The first model uses
Linked Data to identify related entities to improve disambiguation qual-
ity. The second model uses topic modeling to differentiate places based
on the terms used to describe them. We evaluate our approach using
a corpus of short texts, determine the suitable weight between models,
and demonstrate that a combined model outperforms benchmark sys-
tems such as DBpedia Spotlight and Open Calais in terms of F1l-score
and Mean Reciprocal Rank.
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1 Introduction

Geographic knowledge extraction and management, geographic information re-
trieval, question answering, and exploratory search hold great promise for var-
ious application areas [19,12,2]. From intelligence and media analysis to socio-
environmental studies and disaster response, there is demonstrated need to be
able to build computational systems that can synthesize and understand human
expressions of information about places and events occurring around the world
[8]. Being able to correctly identify geographic references in the abundance of
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unstructured textual information now available on the Web, in social media, and
in other communication media is the first step to building tools for geographic
analysis and discovery on these data. Place name, i.e., toponym, disambiguation
is key to the comprehension of many texts as place names provide an important
context required for the successful interpretation of text [13].

Similar to other named entities, including persons, organizations, and events,
place names can be ambiguous. A single place name can be shared among multi-
ple places. To give a concrete example, Washington is a place name for more than
43 populated places in the United States alone.® Although most of these Wash-
ingtons can be accurately located by adding the proper state name or county
name, they are all simply referred to as Washington in daily conversations, (so-
cial) media, photo annotations, and so forth. Figure 1 depicts the distribution
of the most common place names for U.S. cities, towns, villages, boroughs, and
census-designated places. As shown on the map, these places are distributed
across the U.S., indicating that the ambiguity of place names is a widespread
phenomenon. It is worth noting that places which share a common name can
be of the same or a different type, e.g., the state of Washington and the city
of Washington, Pennsylvania. The situation is even more difficult on a global
scale where place names may appear more than 100 times. For example, it takes
merely a 45min car ride to get from Berlin to East London, both located in
South Africa. Thus, it is important to devise effective computational approaches
to address the disambiguation problem.
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Fig. 1: Distribution of common place names in the US according to Wikipedia.

® https://en.wikipedia.org/wiki/Washington
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Given the wide availability of digital gazetteers, i.e., place name dictionaries,
such as GeoNames, the Getty Thesaurus of Geographic Names, the Alexandria
Digital Library Gazetteer, and Google Places, we assume that the places to be
disambiguated are known, i.e. that there is a candidate list of places for any given
place name list. After all, unknown places cannot be disambiguated. Thus, we
define the task of place name disambiguation as follows: given a short text which
contains a place name and given a list of candidate places that share this name,
determine to which specific place the text refers.

Humans are very good at detecting and interpreting contextual clues in texts
to disambiguate place names. Thus, as extension of named entity recognition,
place name disambiguation has been tackled using computational approaches
that aim at utilizing these contextual clues as well [5,7]. This context typically
stems from the terms surrounding the place name under consideration. Typically,
short texts from social media, news headlines (and abstracts), captions, and
so forth, offer less contextual clues and thus negatively impact disambiguation
quality. Consequently, new approaches have to be develop that can extract and
interpret other contextual clues.

One such approach is to focus on the detection of surrounding entities and use
these as contextual clues. Besides the place itself, these entities may include other
places, actors, objects, organizations, and events. Examples of such associated
entities are landmarks, sports teams, well known figures such as politicians or
celebrities, and nearby places that share a common administrative unit [22].
Intuitively, when a text mentions Washington along with Redskins, an American
football team based in Washington, D.C., it is very likely that the Washington
in the text refers to Washington, D.C., rather than another places called with
the same toponym. It has been shown that such a co-occurrence model increases
disambiguation quality [11, 18].

In addition to entities, implicit thematic information buried in the text can
also provide contextual evidence to disambiguate place names. Similar to entities,
some particular thematic topics are more likely to be mentioned along with a
place, which is characterized by those topics. Topic modeling makes it possible
to discover topics from the text and match texts with similar topics. Thus, given
topics learned from a corpus of texts about candidate places and the topics
discovered from the short text under consideration, computing a similarity score
between topics representative for the text and for each of the candidate places
can provide additional contextual clues [1]. For example, when people are talking
about Washington, DC, political topics featuring terms such as conservative,
policy, and liberal are more likely to be mentioned than when talking about the
(small) city of Washington, Pennsylvania.

The core distinction between these perspectives is that mentioned entities are
explicit information, while thematic information is usually implicit. Both types
of information are used as clues by humans to disambiguate a place name. In
this paper, we propose a novel approach which integrates things and strings, i.e.,
entity co-occurrence and topic modeling, thereby combining explicit and implicit
contextual clues. The contributions of this work are as follows:
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— We apply topic modeling to place name disambiguation, an approach that
has not been taken before.

— We integrate this topic-based model with a reworked version of our previous
entity-based co-occurrence model [11] and learn the appropriate weights for
this integrated model.

— We compare the integrated model to three well known systems (TextRazor,
DBpedia Spotlight, and Open Calais) as baselines and demonstrate that our
model outperforms all of them.

2 Related Work

As an extension of named entity disambiguation, place name disambiguation can
be conducted using the general approaches from named entity disambiguation.
Wikipedia, as a valuable source for ground truth descriptions of named entities,
has been used in a number of studies. For example, Bunescu and Pasca [5] trained
a vector space model to host the contextual and categorical terms derived from
Wikipedia, and employed TF-IDF to determine the importance of these terms.
Milne and Witten [17] describes a method for augmenting unstructured text with
links to Wikipedia articles. For ambiguous links, the authors proposed a machine
learning approach and trained several models based on Wikipedia data. Two
named entity disambiguation modules were introduced by Mihalcea and Csomai
[16]. One measured the overlaps between context and candidate descriptions,
and the other trained a supervised learning model based on manually assigned
links in the Wikipedia articles.

For studies specifically focusing on place name disambiguation, Jones and
Purves [13] discussed using related places to resolve place ambiguity. Machado
et al. [14] proposed an ontological gazetteer which records the semantic relations
between places to help disambiguate place names based on related places and
alternative place names. In a similar approach, Spitz et al. [22] constructed a
network of place relatedness based on English Wikipedia articles. Zhang and Gel-
ernter [24] proposed a supervised machine learning approach to rank candidate
places for ambiguous toponyms in Twitter messages that relies on the metadata
of tweets and context to a limited extent. In previous work, we leveraged the
structured Linked Data in DBpedia for place name disambiguation and demon-
strated that a combination of Wikipedia and DBpedia data leads to generally
better performance [11].

3 Methodology

The work at hand differs from these previous studies. We apply topic model-
ing for place name disambiguation and integrate the trained topic model with
an entity-based model which captures the co-occurrence relations. Thereby we
combine a things-based perspective with a strings-based perspective.
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In the following, we assume that the surface forms of place names have been
extracted prior to disambiguation, so the primary task of place name disam-
biguation is to identify the place to which a surface form refers. To accomplish
this a list of candidate entities, i.e., places, is selected. In prior work, knowledge
bases, such as Wikipedia, DBpedia, and WordNet have been used to obtain can-
didate entities [6, 15, 10], and here we employ DBpedia as the source of candidate
entities. Once a set of candidate places has been identified, the likelihood that
the surface form refers to each entity is measured and the disambiguation result
is returned if the computed score exceeds a given threshold.

3.1 Entity-based Co-Occurrence Model

In this section we describe the entity-based co-occurrence method. Wikipedia
and DBpedia are used as the sources to train our model. We define the entities
from Wikipedia as those words or phrases on a Wikipedia page of the candidate
places which have links to another page about these entities. The entities from
DBpedia are either subjects or objects of those RDF triples which contain the
candidate place entities. Not all RDF triples are selected, but those that fall un-
der the DBpedia namespace, i.e., with prefix dbp® and dbo.” While dbo provides
a cleaner and better structured mapping-based dataset, it does not provide a
complete coverage of the original properties and types from the Wikipedia in-
foboxes. In order to avoid data bias we use both dbo and dbp. Literals were
excluded as well. We treat the subject or object of a triple as a whole, i.e., as
an individual entity, instead of further tokenizing it into terms. The harvested
entities differ greatly. They include related places (of different types), time zone
information, known figures that were born or died at the given place, events that
took place there, companies, organizations,® sports teams, as well as represen-
tative landmarks such as buildings or other physical objects.

Table 1 shows some sample entities for Washington, Louisiana, derived from
Wikipedia and DBpedia. It should be noted that there is considerable overlap
between place data extracted from Wikipedia and DBpedia. Moreover, some
properties such as population density in Wikipedia can occur for most or even all
candidate places. Such entities which appear frequently but help less to uniquely
identify a place will not play a crucial rule in disambiguating the place names.

The entities are assigned weights according to their relative connectivity to
the places by means of term frequency-inverse document frequency (TF-IDF).
The term frequency of the entity is the number of times the entity appears in
Wikipedia and DBpedia, so in this case, it could be 0, 1, and 2. We only count
each entity’s appearance in a document once, so the term frequency will not be
inflated by those entities which are related to many candidate place entities while
contribute less to uniquely identify the place. The formula of applying TF-IDF
to assign weights to entities is defined in Eq. 1, 2, and 3.

5 http://dbpedia.org/resource/
" http://dbpedia.org/ontology/
8 For example via dbr:FreedomWorks dbp:headquarters dbr:Washington, D.C. .
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Washington, Louisiana
Wikipedia — St.Landry Parish; Opelousas; Eunice; population density;
medianhousehold income; American Civil War; Connecticut; cattle;
COW; COrlL...
DBpedia — United States; Central Time Zone; St. Landry Parish,
Louisiana; John M. Parker; KNEX-FM; Louisiana Highway 10...

Table 1: Sample entities for Washington, LA, from Wikipedia and DBpedia

0 e is not in Wikipedia and DBpedia
tf(e) =191 eis either in Wikipedia or DBpedia (1)
2 e is in both Wikipedia and DBpedia

idf(e) = 1 +log( L) )
Weight(e) = ID-ITF(e) = tf(e) x idf (e) (3)

Here tf(e) defines the term frequency of an entity e, and idf(e) defines the
inverse document frequency of e. |E| is the number of all potential candidate
places for a surface form, and n, represents the number of candidate places which
contain the entity e. Using TF-IDF entities appearing in multiple candidate
places are given lower weights, while entities which are able to uniquely identify
a place have more weights. For example, the fact that a place is within the United
States becomes irrelevant as it holds for all of them.

We then measure the likelihood that a surface form in a test sentence refers
to a candidate place through an entity matching score. To calculate the entity
matching score, we first find those entities of the candidate place which also
appear in the short text. The weights of matching entities are summed to produce
an entity matching score of the candidate place to the surface form in the test
sentence. The score is calculated as given in Eq. 4.

m
Spc(s = ¢) = Z(Weight(ej) x I;) (4)

j=1
Here m corresponds to the number of entities e for the candidate ¢;. I; is
either 1 or 0, referring to whether a matching entity is found in the test for the
entity e;. The candidate place with higher entity matching score is regarded to
more likely be the actual place to which the surface form refers. The matching

score is the final output of the entity co-occurrence model.

3.2 Topic-based Model

In this section we introduce the topic-based model. It makes use of the fact that
text is geo-indicative [1] even without having any direct geographic references.
Hence, even everyday language should be able to provide additional evidence
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for place name disambiguation. For example, terms such as humid, hot, festi-
val, poverty, and even American Civil War are more likely to be uttered when
referring to Washington, Louisiana than Washington, Maine. The latter rarely
experiences hot and humid weather, does not host a popular festival, has sub-
stantially less poverty problems compared to its namesake, and did not play a
notable role in the civil war. Here we use Latent Dirichlet allocation (LDA) for
topic modeling. LDA is a popular unsupervised machine learning algorithm used
to discover topics in a large document collection [4]. Each document is modeled
as a probability vector over a set of topics, providing a dimensionally-reduced
representation of the documents in the corpus.

We use the geo-referenced text from the English Wikipedia as the source ma-
terial for discovering these thematic patterns. We start with the idea that a col-
lection of texts that describe various features in a local region—such as museums,
parks, mountains, architectural landmarks, etc.—give us a foundation for differ-
entiating places referenced in other texts based on thematic, non-geographically
specific, terms. For this we need a systematic way to associate the training doc-
uments in Wikipedia with well-defined regions. Because administrative regions
vary widely in area, they do not provide a good mechanism for aggregation. In-
stead, our solution is to aggregate the geo-referenced texts in Wikipedia based
on an equal area grid over the Earth. This solution means that articles with
point-based geo-references are binned together if they spatially intersect with
a grid cell, while text related to areal features (such as national parks) can be
associated with multiple grid cells.

There are several options for creating a discrete global grid based on an
polyhedral simplification of the Earth [21]. In this work we utilize the Fuller
icosahedral Dymaxion projection to create a hierarchical triangular mesh [9].
The triangular mesh can be made successively more fine-grained by dividing
each triangle into four internal triangles. For place name disambiguation we
need grid cells that are fine-grained enough so that two possible places with the
same name do not fall within one grid cell. The Fuller projection at hierarchical
level 7 (shown in Figure 2) provides a mesh over the Earth with 327,680 cells
with inter-cell distance of 31.81 km and cell area of 1,556.6 km?2, sufficient to
handle most place name disambiguation tasks for meso-scale features like cities.

Once we identified all articles that have geo-references that spatially intersect
with a grid cell we can combine all the text to create a grid document. For the
English Wikipedia the geo-referenced articles intersect with 63,473 grid cells at
Fuller level 7. The resulting 63,473 grid documents serve as the training data
input for LDA topic modeling. We utilized the MALLET implementation of LDA
with hyperparameter optimization, which allows for topics to vary in importance
in the generated corpus, and we trained the LDA topic model with 512 topics.

The MALLET toolkit generates an inferencer file for testing new documents
against a trained LDA model. For a new document or snippet of text, we use
the trained topic model to infer the most likely candidate location based on the
inferred mixture of topics. Given a set of candidate locations (i.e., point coordi-
nates) we find the topic mixtures for the grid cells that spatially intersect the
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Fig. 2: Level 7 triangular mesh discrete global grid built using Fuller icosahedral
Dymaxion projection, shown in U.S. Contiguous Albers projection.

locations and calculate the Jensen-Shannon divergence (Eq.6) between probabil-
ity vector representations of the topic mixtures for each candidate and the topic
mixture for the new document. The JS divergence is a symmetric measure cal-
culated from the average of the relative entropies (Kullback Leibler divergence,
shown in Eq. 5) between two probability vectors (P and Q) and their average,
M = (P + Q). The JS divergence is a standard measure of similarity between
two probability vectors, and is commonly used for calculating similarity based on
topic model results [23]. A lower JS divergence result indicates greater thematic
similarity between the new text and the candidate location.

KL(P | @)= X Pi)lon, o) 9

K3

JS(P1|Q) = SKL(P || M) + 5 KL(@Q || M) (6)

3.3 Integrated Model (ETM)

The first model makes use of the co-occurrence of entities as contextual clue to
disambiguate place names, while the second model puts emphasis on linguistic
aspects, namely co-occurring topics. As argued in the introduction, applying a
single model, which extracts partial contextual clues, is often not sufficient to
differentiate place names from short texts. Thus, we combine the entity-based
model and string-based topic model to an integrated approach called ETM (En-
tity & Topic Model).

Both the entity co-occurrence model and the topic-based model return a
score when comparing each candidate place with each ambiguous place name in
a sample text. The scores from these two models are not directly comparable
as they involve relative probabilistic measures. To combine the models, we must
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first standardize the scores of the candidate places for each short text. This
results in setting the standardized mean to zero. Scores originally higher than
the mean will be positive, and scores originally lower than the mean will be
negative. For each candidate place name, the standardized scores from the entity
co-occurrence model are then combined with the standardized scores from the
topic-based model along with a weighting parameter A as shown in Eq. 7.

SETM(S—>CZ') :)\SECM(S%Ci)+(1—)\)STM(S—>CZ‘) (7)

Here A € [0, 1], and determines how much each model is weighted in the
combined approach. Sy is the standardized score computed from the entity
co-occurrence model for the candidate place name ¢; with respect to the surface
form s, while S,/ is the standardized score from the topic model, namely the
JS divergence. Sgras is the score of the combined model, which is the sum of
the weighted standardized scores of the two models. Provided that Sgrys is the
probability of a candidate place which a surface form refers to, the percentile
is used as the threshold over which candidate places are returned as the disam-
biguation result.

4 Evaluation

In this section we evaluate the performance of our proposed ETM and describe
the methods through which we gathered the testing corpus and the metrics
employed for the evaluation.

4.1 Preparing the Test Corpus

We constructed a text corpus specifically for the evaluation of our place name
disambiguation models. The corpus is used to evaluate the performance of the
combined ETM and to compare it to existing systems acting as baselines.

Oxford, Wisconsin — Located in Marquette County in south-central
Wiseensin, just minutes west of Interstate 39, Oxford invites you to
experience our small town charm along with the area’s many year-
round outdoor attractions.
Jackson, Montana — The tiny town of Jackson, Mentana has made
a name for itself as a winter sports destination for the adventurous.
Dayton, Nevada — Since the Native-American tribes in the area were
nomadic, this made Dayton the first and oldest permanent non-native
settlement in Nevada.

Table 2: Three example records of the test corpus extracted from websites.

To construct the corpus, we first derive ambiguous place names from a list
of the most common U.S. place names on Wikipedia.® As the list also presents

9 https://en.wikipedia.org/wiki/List_of_the_most_common_ U.S._place_names
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the full place names which could be used to identify the place of interest, we
feed the full place names into the Bing Search API'° which returns a list of
websites related to the place along with URLs. URLs containing “Wikipedia”
are filtered out. We then visit the selected websites and extract sentences which
contain the full place name. The auxiliary part of the full place name (state or
county name) is removed, so the remaining place name is ambiguous. The result
of this approach is a set of real-world, i.e., not synthetic, sentences containing
ambiguous place names. These sentences comprise our ground truth data.
Sample ground truth sentences are shown in Table 2. The full place name and
test sentence are separated by an em-dash, and the auxiliary part of the full place
name is removed (shown as striken for example purposes). This resulting data
contains noise. Some sentences, for instance, contain no meaningful entities or
terms that can be categorized into topics, while others seem to be automatically
generated from templates. This noise, however, can help evaluate the robustness
of our models. In total, the testing corpus consists of 5,500 sentences. The average
length of a test sentence is 22.54 words with a median of 19. Note that stop words
count towards these statistics, while auxiliary parts of the place name do not.

4.2 Metrics

F-score and Mean Reciprocal Rank (MRR) are used as metrics for the perfor-
mance evaluation of the place name disambiguation models. The F-score (see
Eq. 8) is defined as the harmonic mean of precision and recall [3]. MRR, by
comparison, considers the order of the results; see Eq. 9. The reciprocal rank of
a test sentence is the inverse of the rank of the correctly identified place name
in the list of the candidate places for the surface form.

Precision - Recall
Fi=2. 8
! Precision + Recall (8)

1 Q| 1

MRR = — —
|Q| £ rank;

9)

4.3 Results

In this section, we present the results of our evaluation and compare them to
other well recognized named entity disambiguation systems as baselines.
DBpedia Spotlight!!, TextRazor'?, and Open Calais'3 were selected as base-
line systems to be compared to ETM. DBpedia Spotlight is based on DBpedia’s
rich knowledge base of structured data [15], which is also employed by our pro-
posed model. Two endpoints of DBpedia Spotlight Web Service (V. 0.7) were

10 https://datamarket.azure.com/dataset /bing/search

1 https://github.com/dbpedia-spotlight /dbpedia-spotlight
12 https://www.textrazor.com/

13 http://www.opencalais.com/
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used for testing, namely Annotate and Candidates. The Candidates endpoint
returns a ranked list of candidates for each recognized entity and concept, while
Annotate simply returns the best candidate according to the context. TextRazor
and Open Calais are two commercial Web services for named entity recognition
and named entity disambiguation. Both services offer application programming
interfaces (APIs). The TextRazor API returns only one candidate for each entity
recognized from the test sentence. Experiments were conducted [20] to compare
several named entity disambiguation systems which included DBpedia Spotlight
(V. 0.6, confidence=0, support=0) and TextRazor. In the experiments, TextRa-
zor demonstrates the best performance in terms of F-score. Open Calais APIT also
returns only one candidate for each recognized entity, while it provides additional
social tags for each test text instance.

Given that TextRazor and Open Calais do not provide controls on how many
candidate places are returned and DBpedia Spotlight relies on Confidence and
Support which are not comparable to percentiles, we choose the highest scores
each baseline systems can reach to compare it to our models. For instance,
for DBpedia Spotlight, we picked Con fidence = 0.2 and Support = 0, given
that this combination of parameter leads to the best overall performance for
our setting. From Figure 3 we can see that Open Calais can obtain relatively
higher F-scores and MRR than TextRazor and DBpedia Spotlight on the test
corpus. The F-score and MRR of those baseline systems on the testing dataset
are shown in Table 3. Compared to these systems, the individual performance
of the entity-based co-occurrence model and topic-based model do not show a
significant improvement, except for the entity co-occurrence model on MRR.

— Entity Co-Occurrence
f LDA Topic Modeling /
i DBpedia Spotlight /
TextRazor S
Py Open Calais 7

0.1 _

F1 Score
Mean Reciprocal Rank
2
n

Entity Co-Occurrence

LDA Topic Modeling

DBpedia Spotlight

TextRazor

Open Calais

0 o 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentile Percentile

Fig.3: (left) F-score and (right) Mean Reciprocal Rank for the entity co-
occurrence model and the topic model along percentile, and comparison with
DBpedia Spotlight, TextRazor, and Open Calais.

Figure 3 also shows how F-score and MRR change along percentiles. Note
that the 0.9 at the x-axis refers to the 90th percentile, which means that the
candidate places with top 10 percentage of scores are selected as the disam-
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biguation result. As shown in the plots, when percentile increases, the F-scores
of both individual models increase very slightly until the 60th percentile when
the scores start increasing dramatically. The MRR for the entity co-occurrence
model along percentiles has a similar trend as the F-score, while the MRR for
the topic model drops when less candidate places are selected.

ETM, which combines the entity-based co-occurrence model with the topic-
based model, demonstrates a significant improvement in terms of F-score and
MRR, as shown in Figure 4. We tested A values from 0 to 1 with an interval of 0.01
and found that A = 0.48 yields the best results on the test dataset. This indicates
that both the entity co-occurrence model and the topic model play roughly even
roles in ETM for disambiguating place names. At the 94th percentile, the F-
score is 0.239, while MRR is 0.239. Note that F-score and MRR are different
values though they happen to be rounded to the same value. Out of 5,500 test
sentences, 1,315 are correctly disambiguated, given the disambiguation result of
5,509 places. The figures show that both F-score and MRR increase along with
percentiles and reach peaks when very low percentage of records are returned as
disambiguation results.

Entity & Topic Model

Entity & Topic Model
DBpedia Spotlight I DBpedia Spotlight Py
TextRazor / TextRazor —

Open Calais Open Calais P,
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Fig. 4: (left) F-score and (right) Mean Reciprocal Rank for ETM (A = 0.48),
DBpedia Spotlight, TextRazor, and Open Calais.

In some cases, only one candidate (if available) is taken as the disambiguation
results. As stated in the previous paragraph, TextRazor only outputs at most
one result, so does DBpedia Spotlight Web Service in the Annotation mode. For
Open Calais, the disambiguation result is ranked, so the first returned result is
taken for this evaluation. When only the candidate places with highest scores
are taken, the F-score for ETM reaches 0.238 when A is set to 0.48. Since always
one candidate is picked for each testing sentence, predicted condition positives
are the same as condition positives. Thus, the mean reciprocal rank, precision
and recall are identical, and they top at 0.238 with A being 0.48. The change
of F-score and Mean Reciprocal Rank for our proposed ETM along A and its
comparison to DBpedia Spotlight, TextRazor, and Open Calais are shown in
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Figure 5. As shown in the figure, with the increase of A, after the peak when A is
around 0.48, F-score and MRR drop mildly until A approaching 1 when F-score
and MRR drop significantly. This implies the entity co-occurrence model plays
a more important role for this task, while the topic model still helps to improve
the performance. Out of 5500 testing sentences, EMT is able to correctly identify
1311 ambiguous places.

Entity & Topic Model
DBpedia Spotlight
TextRazor

Open Calais

0.3

Entity & Topic Model
DBpedia Spotlight
TextRazor

Open Calais

0.25

0.2

F1 Score
N\

015k

Mean Reciprocal Rank
\

0 01 02 03 04 05 0.8 1 0 01 02 0.3 06 0.7 08 09 1

A

0.6 0.7 0.8 0.4 0.5
A

Fig. 5: (left) F-score and (right) Mean Reciprocal Rank for ETM, DBpedia Spot-
light, TextRazor, and Open Calais, when only the best candidate entity is taken.

The evaluation of ETM and its comparison to baseline systems are sum-
marized in Table 3. Overall, based on the evaluation, the proposed ETM sub-
stantially outperforms existing named entity disambiguation systems in terms
of F-score and Mean Reciprocal Rank. The fact that all F-scores are low, is
an important reminder for the fact that place name disambiguation from short
texts is a difficult task (and that some test sentences did not contain any or only
minimal contextual clues).

Model Parameters Precision|Recall|F1-Score MRR
DBpedia Spotlight|Con fidence = 0.2; Support = 0]0.057 0.053 |0.055 0.048
TextRazor n/a 0.070 0.063 |0.067 0.058
Open Calais n/a 0.148 0.125 |0.135  |0.108
ETM A = 0.48; 94th percentile 0.239 0.239 [0.239 0.239

Table 3: Comparison of systems at best performance in terms of Precision, Recall,
F1-Score and Mean Reciprocal Rank (MRR)

5 Conclusions and Further Work

In this paper we proposed a novel approach to tackle the challenging task of
disambiguating place names from short texts. Place name disambiguation is an
important part of knowledge extraction and a core component of geographic in-
formation retrieval systems. We have presented two models that are driven by
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different perspectives, namely an entity-based co-occurrence model and a topic-
based model. The first model focuses on the semantic connections between enti-
ties and thereby on things, while the second model works on the linguistic level
by investigating topics associated with places and thereby takes a string-based
perspective. The integration of both models (called ETM) shows a substantially
better performance than the used baseline systems with respect to F-score and
MRR.

Nonetheless, there is space for future improvements. For the entity-based
model, properties other than those with namespaces of dbo and dbp have been
filtered out. The same is true for literals. Both of these could be added to a future
version of ETM, although they would require more work on the used similarity
functions in case of the literals and a better alignment to ensure that properties
from different namespaces are not mere duplicates. In our work, the ETM is
realized as a convex combination of the entity-based co-occurrence model and
the topic-based model. Other approaches could be investigated as well. We have
used LDA for topic modeling but this is not the only choice that can be used
and other approaches will be tested in the future.

As for the experiment, although place entities in our testing corpus have
highly ambiguous place names, those places are all some kind of administrative
divisions (i.e., cities, towns, villages, etc.) and located within the United States.
A potential improvement could be seeking more ambiguous place names from
other types of places which are outside of the United States.
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