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Abstract: Geographical random forest (GRF) is a recently developed and spatially explicit
machine learning model. With the ability to provide more accurate predictions and local
interpretations, GRF has already been used in many studies. The current GRF model, however,
has limitations in its determination of the local model weight and bandwidth hyperparameters,
potentially insufficient numbers of local training samples, and sometimes high local prediction
errors. Also, implemented as an R package, GRF currently does not have a Python version which
limits its adoption among machine learning practitioners who prefer Python. This work addresses
these limitations by introducing theory-informed hyperparameter determination, local training
sample expansion, and spatially-weighted local prediction. We also develop a Python-based GRF
model and package, PyGRF, to facilitate the use of the model. We evaluate the performance of
PyGRF on an example dataset and further demonstrate its use in two case studies in public health
and natural disasters.
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1 Introduction

Geographical random forest (GRF) is a spatially explicit machine learning model that has been
developed recently (Georganos et al., 2021; Georganos & Kalogirou, 2022). As a spatial extension
of the general Random Forest (RF) model, GRF borrows the idea of geographically weighted
regression (GWR) (Brunsdon et al., 1998; Fotheringham et al., 2003) by fitting a local RF model
at the location of each data instance using the nearby data within a specified bandwidth. In addition
to the local RF models, GRF also fits a global RF model using the entire dataset during the training
phase. To make a prediction, GRF combines the prediction from the local RF model that is closest
to the test data and the prediction from the global RF model using a weighted approach.

GRF has two main advantages compared with the typical and non-spatial RF model. First, it
can improve the prediction accuracy of the non-spatial RF model. GRF fuses the prediction of the
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global RF model which has learned the general data pattern from the entire dataset and the
prediction from the local RF model which has learned the local specific pattern. As a result, GRF
can often make more accurate predictions compared with the non-spatial RF model, although the
improvement can be small (Georganos et al., 2021). Second, GRF enables the exploration of local
feature importances and their variations across geographic space. Unlike the non-spatial RF model
that derives only a single set of global feature importance from the data, GRF fits many local RF
models across the study area which reveal local feature importance at different locations and how
they vary spatially. Given these two advantages, GRF has already been used in a wide range of
studies, such as predicting population density (Georganos et al., 2021), identifying factors related
to COVID-19 death (Grekousis et al., 2022), examining leaf functional traits (Aguirre-Gutiérrez
et al., 2021), and assessing landslide susceptibility (Quevedo et al., 2022).

While GRF is useful, our previous research has identified three limitations of the current model
(Zhou et al., 2022). First, the optimal values of two important hyperparameters of GRF, i.e., the
bandwidth and local model weight, are determined in a trial-and-error fashion which is
computationally-intensive and time-consuming. Second, given the reduced number of local
training data instances at each location, a local RF model may not be sufficiently trained and may
output inaccurate local predictions. Third, the current GRF model uses only the one single closest
local RF model to provide the local prediction, and such a local prediction could have low accuracy
depending on the quality of that one particular local RF model. In addition, implemented as an R
package, GRF currently does not have a Python version which limits its adoption among many
machine learning practitioners who prefer to use Python. A recent work by Wiedemann et al. (2023)
provided a preliminary Python implementation of GRF as a byproduct of their research. While
providing a nice first-step implementation, Wiedemann et al. (2023) did not implement some
important features of the model, such as spatial weighting of the training data, and did not conduct
evaluations to ensure that the Python implementation produces results consistent with the results
of the original R-based GRF model.

Building on the existing GRF research (Georganos et al., 2021; Georganos & Kalogirou, 2022;
Wiedemann et al., 2023) and our previous work (Zhou et al., 2022), we develop PyGRF as a
Python-based GRF model. We implement this Python model based on a careful study of the source
code of the original model in R, and further conduct experiments to ensure consistency between
the outputs of our Python implementation and the R model. More importantly, we address the
limitations of the current GRF model by introducing three model improvements. First, we propose
a theory-informed hyperparameter determination approach to help determine the bandwidth and
local weight hyperparameter values by assessing the spatial autocorrelation of the data, which can
substantially reduce the time needed for hyperparameter tuning. Second, we provide a local
training sample expansion strategy based on bootstrapping to increase the size of local training
data and better fit local models. Third, we develop a spatially-weighted local prediction approach
to reduce prediction errors due to one single local RF model by combining the predictions from
multiple local RF models using spatial weights. The contributions of this paper are as follows:



e \We propose three model improvements to address the limitations of GRF and evaluate their
effectiveness based on an example dataset. These improvements are incorporated in our
newly developed Python version of the GRF model, PyGRF.

e \We conduct two case studies in public health and natural disasters using the PyGRF model
and package. The case studies demonstrate the use of PyGRF in real-world domain
problems and provide further evaluations on the proposed model improvements.

e We publish our implemented PyGRF via the Python package system pip at:
https://pypi.org/project/PyGRF. We also share the source code of PyGRF and the two case
studies on GitHub at: https://github.com/geoai-lab/PyGRF.

The remainder of this paper is organized as follows. Section 2 provides a review of the
background and research related to spatially explicit models and GRF. Section 3 presents the
methodological details of our proposed three model improvements. In Section 4, we evaluate the
consistency between our PyGRF and the original R-based GRF model, and we also evaluate the
effectiveness of the model improvements. In Section 5, we conduct two case studies by using the
developed PyGRF model to estimate neighborhood-level obesity prevalence and to predict help
requests to prepare for future winter storms. Section 6 discusses the effectiveness of the proposed
model improvements, and finally, Section 7 concludes this work.

2 Related work

Spatially explicit models have received much attention from the GIScience community. Goodchild
(2001) proposed four tests to examine whether a model can be considered as spatially explicit,
which are: (i) whether the model result varies across different locations (variance test); (ii) whether
the model contains spatial representations (representation test); (iii) whether the model uses spatial
concepts in its formulation (formulation test); and (iv) whether the model output has a different
spatial structure compared with the input (outcome test). A model that passes one or multiple of
the tests can be considered as a spatially explicit model. By capturing the underlying spatial process
and local patterns in geographic data, spatially explicit models have been developed and used in
many applications from public health to ecology (DeAngelis & Yurek, 2017; L. Li, 2019;
O’Sullivan et al., 2020).

A number of spatially explicit statistical models have been developed in the literature.
Examples include the spatial lag and spatial error regression models (Anselin, 2009), eigenvector
spatial filtering (Griffith, 2003), GWR (Brunsdon et al., 1998; Fotheringham et al., 2003), and the
more recent multi-scale GWR (Fotheringham et al., 2017). These statistical models have played
highly important roles in geographical analysis research by accommodating spatial autocorrelation
and spatial heterogeneity commonly existing in geographic data, and can provide more robust
analysis results than traditional non-spatial ordinary least squares (OLS) regression. Spatial
regression models, however, cannot effectively model non-linear relationships between
independent and dependent variables (Wiedemann et al., 2023). Nevertheless, spatial regression



models are still widely used in many studies, thanks to their transparent model architecture and
high model explainability.

With the fast advancement of geospatial artificial intelligence (GeoAl), researchers have also
developed spatially explicit machine learning models (Janowicz et al., 2020; Mai et al., 2022; Hu
et al., 2024). Examples include place2vec (Yan et al., 2017), geographically weighted artificial
neural network (Hagenauer & Helbich, 2022), geographically and temporally weighted neural
network (Feng et al., 2021), GRF (Georganos et al., 2021), and many others (Gupta et al., 2021,
Islam et al., 2021; Masrur et al., 2022). One advantage of machine learning models over typical
linear regression models is their ability to handle non-linear relationships, which often result in
higher prediction accuracy. A main disadvantage is their limited model explainability, although
explainable Al frameworks, such as Shapley Additive Explanations (SHAP), have been
increasingly used to improve model explainability (Z. Li, 2022).

Random forest is a nonparametric ensemble machine learning model (Ho, 1995). It trains a
group of decision trees with randomness and makes final predictions by combining the predictions
from individual decision trees. Random forest adds randomness into the construction of individual
trees by training each tree with a random sample of the training data and using only a random
subset of features at each node of a tree. As a result, RF is less likely to overfit compared with a
single decision tree model, due to the introduced randomness and the combination of predictions
from multiple trees (Breiman, 2001). While deep learning models have received much attention in
recent years, existing research has shown that RF models often provide more accurate predictions
on structured tabular data (i.e., data formatted as rows and columns in a comma-separated values
file) than deep learning models (Gao et al., 2019; Hu et al., 2021; Chang et al., 2022), although
deep learning models usually perform better on imagery and textual data. In addition to its high
prediction accuracy on structured tabular data, RF also outputs feature importance for explaining
the usefulness of input features for making predictions. Accordingly, RF offers higher model
explainability than a typical deep neural network model.

Geographical random forest extends the RF model by training a local RF model at the location
of each data instance using nearby data within a distance. The distance value is defined via a
bandwidth hyperparameter A. In addition to the local models, GRF also trains a global RF model
using the entire dataset, and the prediction of GRF is based on a weighted combination of the
predictions from both the global model and the closest local model using Equation (1):
yi=axy;+(1—a)*yg (1)
where y; is the final prediction of the GRF model for the ith data instance in the test data, y;; is
the prediction of the closest local RF model, and y,; is the prediction of the global RF model. a is
the local weight hyperparameter whose value range is in [0, 1]. A higher a value puts more weight
on the local model, while a lower a value puts more weight on the global model. The GRF model
becomes a completely local model when a=1, and it can also become a completely global model
(i.e., aregular RF) when a=0.



As a spatial extension of the RF model, GRF inherits the merit of RF in good prediction
accuracy and model explainability, while extending the global feature importance of RF to local
importance across different locations. GRF passes all four tests for spatially explicit models: (i) its
predictions vary across different locations, (ii) it represents distance decay in the training data via
spatial weighting, (iii) it uses the concept of neighborhood to train local models, and (iv) its output
often has a different spatial structure compared with that of the input data. While useful, the current
GRF model has limitations in determining hyperparameters, training local models, and making
accurate local predictions. This work, therefore, addresses these limitations by proposing three
model improvements. We also develop a Python version of the GRF model, called PyGRF, to
incorporate these model improvements.

3 Methods

In this section, we discuss the limitations identified from the current GRF model, and present
corresponding model improvements to address these limitations.

3.1 Theory-informed hyperparameter determination

The performance of GRF is sensitive to the values of two hyperparameters, bandwidth A and local
weight a. Bandwidth A affects the data instances used to train local models (i.e., only those data
instances within the bandwidth distance are used to train the local models), and local weight a
affects the relative weights put on the local model and the global model when they are combined
to make predictions. The original research of GRF has shown that improper values of these two
hyperparameters can lead to inferior performance of the model (Georganos et al., 2021). To
determine suitable values for the two hyperparameters, the authors of GRF proposed a trial-and-
error hyperparameter tuning approach that iteratively tries different bandwidth values from the
0.05 quantile of the total number of data instances to the 0.95 quantile and also iteratively tries
three discrete values of 0.25, 0.5, and 0.75 for the local weight a (Georganos et al., 2021;
Georganos & Kalogirou, 2022). While such an approach can identify good values for the two
hyperparameters, it is computationally intensive and time consuming based on our experience of
using the model. The GRF model itself already has a high computational cost since it fits many
local RF models across different locations, and this trial-and-error hyperparameter tuning process
further increases the computational cost of using the model.

To address this limitation, we propose a theory-informed approach based on spatial
autocorrelation to determine bandwidth A and local weight . Instead of directly training and
testing many GRF models based on different hyperparameter values, we propose to first
understand the spatial autocorrelation in the data and the spatial scale at which spatial
autocorrelation is most significant. The rationale is that the spatial scale with the most significant
spatial autocorrelation can suggest a suitable bandwidth distance A within which local data
instances are most similar and can be used for training effective local models; meanwhile, the
extent of spatial autocorrelation can suggest a suitable local weight a, since a stronger spatial
autocorrelation indicates a higher similarity among local data instances which will likely



contribute to more effective local models. We utilize the technique of incremental spatial
autocorrelation which measures the global Moran’s I index and the associated z-score based on a
sequence of incrementally increasing distances. The global Moran’s I index provides an overall
score in the value range of [-1, 1] to quantify the spatial autocorrelation of the data at a given
distance, while the z-score indicates the significance of such autocorrelation. The distance at which
the z-score is the highest is used as the value for bandwidth 4, and the global Moran’s I index at

that distance is used as the value of local weight a, based on Equation (2):
_ (Moran's I, if Moran'sl > 0andp < 0.05
@= { 0, otherwise (2)

As shown in the equation, the local weight « is set to the value of global Moran’s I when it is
statistically significant and larger than 0. In these situations, nearby data points in a local area share
similar values, and the local RF models are more likely to capture local patterns and output more
accurate local predictions. Further, a higher Moran’s I index will give a higher weight to the local
RF models to better utilize the captured local patterns. Note that a positive and significant global
Moran’s | index is in the value range of (0,1], which matches the value range of local weight «
needed for the GRF model. In situations when the global Moran’s I is not statistically significant
or is negative, nearby data points in a local area do not share similar values or are more or less
randomly distributed. Consequently, the local RF models are unlikely to be effective since there
do not exist clear local patterns. In those situations, our approach will set the local weight « to 0,
which turns the GRF model into a regular RF model that utilizes all information of the entire
dataset to make predictions. This theory-informed approach has a considerably lower
computational cost than the current trial-and-error hyperparameter tuning approach. This is
because our approach only assesses the spatial autocorrelation of the data, and does not train a
large number of GRF models for different possible hyperparameter settings as done in the trial-
and-error hyperparameter tuning approach.

3.2 Local training sample expansion

While the local RF models of GRF are designed to capture local patterns of the data, they can run
into the difficulty of insufficient local training samples. Since only the data instances within the
bandwidth are used to train a local model, the size of the local training data can be very small, e.g.,
10 data instances, depending on the bandwidth hyperparameter set by the model user. This small
size of local training data can be insufficient for training a local RF model, especially when the
model is fairly complex. For example, 10 data instances at a local location are unlikely to be
sufficient for training an RF model that has 100 decision trees. These insufficiently trained local
RF models can lead to inaccurate local predictions which further decrease the performance of the
whole GRF model.

To mitigate this issue, we propose a local training sample expansion strategy to increase the
size of local training data. Since we aim to create a larger local training dataset, we use
bootstrapping which is a commonly used resampling method that repeatedly samples data from
the original dataset with replacement. This method allows us to create a larger simulated training



dataset while ensuring that each added data instance is real. To reduce the risk of overfitting, we
limit the size of the expanded dataset to be either two times the size of the original local data or
two times the number of trees in the local RF model, depending on which number is smaller.
Limiting the size of the expanded dataset also reduces the extra computational cost related to data
resampling and model training on larger local datasets. Further, there also exist situations when a
large bandwidth is specified and the size of local training data is likely to be sufficient for training
the local RF model. In such situations, we directly use the original local data for model training
without performing further data expansion. We formalize this local training sample expansion

strategy as Equation (3):
Bootstrap(D, size = min(2 = ntree,2 = |D|)), |D| < 2 * ntree (3)
D, otherwise

where D represents the original local dataset (which contains the data instances within the
specified bandwidth distance). If the size of D is smaller than two times the number of trees, the
local dataset will be expanded by bootstrapping it to the size of the smaller number of 2*ntree (two
times the number of trees of the RF model) or 2*|D|; otherwise, the original local dataset will be
directly used to train the local RF model. We note that the proposed local training sample
expansion strategy does not completely eliminate the issue of insufficient training data when the
bandwidth is small, since the resampled data do not introduce new information to the model.
However, this strategy can help mitigate this issue.

Expanded D = {

3.3 Spatially-weighted local prediction

The current GRF model uses only one single closest local model to make the local prediction. This
local prediction is then combined with the global prediction to become the final prediction of the
GRF model. Depending on the specific local data instances used to train this one local RF model,
its prediction could have large errors. For example, if a data outlier exists in the local region, the
trained local RF model can be largely affected by this one data outlier. Meanwhile, other local RF
models that are fairly close to the target location (e.g., the local RF models that are the 2nd and
3rd closest to the target location) are likely to provide useful information for prediction as well,
but they are not utilized in the current GRF model.

Based on these considerations, we propose spatially-weighted local prediction that uses an
ensemble approach to compute the local prediction. Instead of using only the one closest local RF
model, we use all local RF models within the bandwidth and combine their predictions in a
spatially weighted manner. The rationale of using spatial weights to combine local model
predictions is that nearby local models are more likely to provide useful predictions than distant
models, following the First Law of Geography (Tobler, 1970). We formalize this approach using
Equation (4):

_ Zﬁ/} Wij*Yij

Yi = i< (4)
l Zﬂ-:i Wij

where y,; is the local prediction for the ith data instance in the test dataset, y;; is the prediction
from the jth nearby local RF model for the ith data, and w;; is the spatial weight determined by



the distance between locations i and j. We use the same kernel as used in the original GRF model
for model training (i.e., the bisquare kernel) to compute w;;, and the predictions from closer local
RF models are assigned higher weights than those from farther away local RF models. Since this
spatially-weighted local prediction combines the predictions from all local RF models within the
bandwidth, it is less susceptible to data outliers affecting one particular local RF model. We note
that a similar idea of spatially-weighted prediction was also proposed in Wiedemann et al. (2023).
Their approach uses local decision tree models whose locations are determined based on a K-
means clustering process, while our approach uses local RF models fitted at each data instance
within the bandwidth.

4 Implementation and evaluation experiments

4.1 Implementation

We implement the PyGRF model and package based on a careful study of the source code of the
original R-based model implemented by the GRF authors (Georganos & Kalogirou, 2022). The
main Python libraries used in our implementation include scikit-learn (for implementing the RF
model) and pysal (for implementing spatial operations such as computing spatial autocorrelation).
We implement all features of the GRF model, including spatial weighting and the more advanced
parallel computing feature. We also provide flexibility in our implementation by allowing the user
to turn on and off any of the three proposed model improvements. Thus, a user can choose to
simply use the original GRF model in Python that is consistent with the R-based GRF model, or
the user can choose to turn on any or all of the three proposed model improvements. We further
conduct unit tests on our code to ensure its stability and robustness. All functions and modules
have passed the tests. The test results are provided in Supplementary Figure S1. We publish
PyGRF via the Python package management system pip at: https://pypi.org/project/PyGRF, and
an interested reader can quickly install this package via “pip install PyGRF”. We also share the
source code of PyGRF and a detailed description of its functions and parameters on GitHub at:
https://github.com/geoai-lab/PyGRF. Two Jupyter Notebooks for the two case studies in Section
5 are also shared in this GitHub repository, which serve as tutorials for using the package.

4.2 Evaluation of consistency between PyGRF and the R-based GRF

While we have implemented PyGRF by following the source code of the original R package, our
implementation is nevertheless based on a different programming language and uses a set of
different Python-based libraries (e.g., scikit-learn and pysal). To ensure that PyGRF can perform
in a consistent manner as the original R-based package, we conduct experiments to compare the
outputs of the two implementations using the example dataset provided in the R package of GRF.
This example dataset contains mean household income at the municipal level in Greece in 2011,
and three independent variables are included to predict the mean household income, which are:
unemployment rate, primary sector employment proportion, and non-Greek citizens proportion.
This dataset has 325 records in total.



To compare the two implementations, we train PyGRF and the R-based GRF using the exact
same hyperparameter setting: we set the local weight a as 0.5 to combine the local and global
predictions in a balanced manner; we set the bandwidth A as 60 which is tuned using the original
R-based GRF with 70% of the data. To add some variations in our experiments, we compare the
two implementations using three different numbers of trees for the RF models, which are 50, 75,
and 100 trees respectively. Due to the randomness in RF, a random seed is needed for constructing
the model. However, since Python and R use different randomness generation mechanisms, the
same random seed can still generate different results in the two implementations. To increase the
robustness of our experiments, we generate 100 random seeds based on a uniform distribution, and
run our experiments 100 times using different random seeds. The final prediction for each test data
instance is obtained by averaging the predictions from the 100 experiments. We then compare the
final predictions from PyGRF and the R-based GRF model to assess their consistency.

Figure 1 shows the predictions and prediction errors from the two implementations with the
three different numbers of trees. As can be seen in subfigures (a), (b), and (c), the predictions of
the two implementations are highly consistent and the points in the scatter plots are all located
close to the reference line in the diagonal. Similar results are observed in the prediction errors of
the two model implementations in subfigures (d), (e), and (f). We further quantify this consistency
using Pearson’s correlation. The correlation coefficients (p) of the predictions and prediction
errors across the three settings are all close to 1. These results indicate a strong consistency
between the outputs of the two implementations. Note that there exist tiny differences in Pearson’s
correlation coefficients in the three settings, but the differences are beyond the third digit and thus
the same p values are shown on the scatter plots.
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Figure 1. Consistency evaluation between PyGRF and the R-based GRF: (a), (b) and (c) are
predictions of the two model implementations with 50 trees, 75 trees, and 100 trees respectively;
(d), (e), and (f) are prediction errors of the two model implementations with 50 trees, 75 trees, and

100 trees.

4.3 Evaluation of the model improvements

We continue to evaluate the effectiveness of the proposed model improvements. Since our
previous experiments have shown that the outputs of PyGRF are consistent with those of the R-
based GRF model, the following experiments use PyGRF directly. We still use the example
income dataset in these experiments, and three sets of experiments are conducted:
e Comparison with the RF model: in this set of experiments, we compare the PyGRF model

with the RF model to demonstrate the performance improvement brought by PyGRF without

adding any model improvement.

e [Effectiveness of each improvement: in this set of experiments, we evaluate the effectiveness
of each proposed model improvement individually by assessing the performance of PyGRF

with and without a model improvement.
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e Performance with each improvement added step-by-step: in this set of experiments, we
evaluate the effectiveness of the proposed model improvements incrementally by adding each
improvement step-by-step and examining model performance changes.

Two metrics are used for assessing model performance: R-squared (R?) and root mean square error
(RMSE). The two metrics are defined in the Equations (5) and (6), where y; is the true value of the
ith data instance, y; is the prediction of the model, and ¥ is the mean of true values.

L —9)*
iy = ¥)?

RMSE=\/ ?:1(yi_yi)2 (6)

R*=1 (5)

n

Four hyperparameters need to be set in order to run the models, which are: ntree (the number
of trees for the RF model), mtry (the number of maximum features to be tried at each split of a
decision tree), A (bandwidth), and a (local model weight). The former two hyperparameters are
from the RF model, while the latter two hyperparameters are introduced by the GRF model. For
the default PyGRF model, we use the current trial-and-error hyperparameter tuning approach via
grid search to identify suitable values for the four hyperparameters. The search spaces are defined
as follows: ntree: (0, N/2] with an interval of 20, where N is the number of samples in the training
data; mtry: {1, 2, 3}, considering that there are only three independent variables in this example
data; A: [0.05 quantile, 0.95 quantile] of samples with an interval of 5; a: {0.25, 0.5, 0.75}. These
search spaces are defined following the original paper of GRF and its source code (Georganos et
al., 2021; Georganos & Kalogirou, 2022).

While the default PyGRF model needs to tune all four hyperparameters (consistent with the
original R-based model), our proposed theory-informed hyperparameter determination can help
choose values for the bandwidth and local weight parameters via incremental spatial
autocorrelation. Figure 2 shows the incremental spatial autocorrelation result based on the example
income dataset. As can be seen, the z-score of spatial autocorrelation achieves the highest value
when the bandwidth equals 39. Accordingly, we set the bandwidth A to 39 and use the global
Moran’s I index at this bandwidth for local model weight a, which is 0.46.
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Figure 2. Incremental spatial autocorrelation plot for the example income dataset.

Table 1 summarizes the results of the three sets of experiments and the hyperparameters of the
tested models. All performance scores are obtained via the same ten-fold cross-validation process.
For the first set of experiments that compare PyGRF with RF, the PyGRF model achieves a higher
R?than RF by 0.026 and a lower RMSE by 70.21. This result suggests that PyGRF improves over
the RF model in terms of prediction accuracy, although the improvement is small. For the second
set of experiments that evaluate the effectiveness of each improvement, we can see that the theory-
informed hyperparameter determination (11) slightly decreases the performance of PyGRF, while
the local training sample expansion (12) and spatially-weighted local prediction (13) increase the
model performance. If we compare the improvements of 12 and I3 with the improvement of PyGRF
over RF, we can see that 12 and I3 bring in about 23.4% and 53.2% additional performance
improvements respectively in terms of RMSE. While 11 slightly decreases the performance of the
model compared with PyGRF, it substantially reduces the time needed for hyperparameter tuning
(which will be discussed in the following paragraph). For the third set of experiments that examine
the effectiveness of the proposed model improvements incrementally, we can see that the
performance of the model increases gradually with the improvements added step-by-step. Adding
all three model improvements (i.e., PYyGRF + I1, 12, I3) achieves a higher performance than the
default PyGRF model.

Table 1. A summary of results from the three sets of experiments on the example income dataset.
11, 12, and I3 represent the three model improvements respectively, which are: theory-informed
hyperparameter determination (11), local training sample expansion (12), and spatially-weighted
local prediction (I3).
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Models ntree |mtry | 4 a |R? RMSE

PyGRF 60 1 20 0.5 0.7212 | 1551.5797

Comparison with the RF model

RF 60 1 / / 0.6954 |1621.7899

Effectiveness of each improvement

PyGRF + 11 60 1 39 1046 |[0.7191 [1557.4078
PyGRF + 12 60 1 20 | 0.5 0.7271 | 1535.1649
PyGRF + I3 60 1 20 | 0.5 0.7345 | 1514.2185

Performance with each improvement added step-by-step

PyGRF + 11 60 1 39 |10.46 [0.7191 |1557.4078
PyGRF + 11, 12 60 1 39 |10.46 [0.7210 | 1552.3255
PyGRF + 11, 12, 13 60 1 39 |10.46 [0.7231 | 1546.5187

Figure 3 shows the hyperparameter tuning times of the default PyGRF model and the models
with the three improvements added step-by-step. All hyperparameter tuning is done using the same
70% data randomly selected from the original dataset. As can be seen, our proposed theory-
informed hyperparameter determination (11) substantially reduces the hyperparameter tuning time
from over 28 minutes used by the PyGRF model to only about 1 minute, demonstrating an over
96% time saving. While our proposed local training sample expansion (12) and spatially-weighted
local prediction (I13) slightly increase model complexity, their increased hyperparameter tuning
time is negligible. Note that all test models shown in Figure 3 are implemented in Python, and this
experiment design ensures that the reduced hyperparameter tuning time indeed comes from the
proposed model improvement rather than the use of a different programming language. In addition,
the hyperparameter tuning time of the improved models includes the additional time of performing
incremental spatial autocorrelation to ensure a fair comparison with the default trial-and-error
approach.
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Figure 3. Hyperparameter tuning time of PyGRF and the three model improvements added step-
by-step based on the example income dataset.

Overall, the experiment results suggest that the theory-informed hyperparameter determination
(11) can substantially reduce the time needed for finding suitable hyperparameters, and that local
training sample expansion (12) and spatially-weighted local prediction (I3) can increase model
performance to some extent. The increases provided by 12 and 13 are fairly large compared with
the increase of PyGRF over RF, but are small in terms of the absolute numbers in R? and RMSE.
The limited performance increase of I3 is surprising given that it has the ability to reduce the
influence of data outliers by leveraging multiple local RF models. We think that this is probably
due to the lack of outliers in the experiment data. With curiosity, we simulate data outliers in the
example income dataset by randomly replacing 1% of the data with large outlier values, and we
then run the PyGRF model with and without I13. The result is shown in Figure 4. As can be seen,
the simulated data outliers largely affect the default PyGRF model and result in largely-off local
predictions and even a negative R? value. While the PyGRF with 13 is also affected by the outliers,
it demonstrates a more robust performance with fewer large errors, more accurate local predictions,
and a much higher R? value. This result suggests that 13 can increase the robustness of the PyGRF
model by allowing the model to make fairly accurate predictions in the presence of data outliers.
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Figure 4. Experiment results based on the example income data with 1% simulated data outliers:
(a) PyGRF model without I3; (b) PyGRF model with 13. (Note that the local weight is set to 1 to
focus on local models, since 13 does not affect the global model. Other hyperparameters are: ntree:
60, mtry: 1, and bandwidth: 20).

5 Case studies in public health and natural disasters

In this section, we present two case studies in which we apply the developed PyGRF model and
three improvements to real-world problems in the domains of public health and natural disasters.
These two case studies serve the purposes of demonstrating the use of the model beyond the
example dataset and further evaluating the performance of the proposed model improvements.

5.1 Obesity prevalence estimation in New York City

In the first case study, we use PyGRF to estimate neighborhood-level obesity prevalence in New
York City (NYC). While obesity prevalence data can be obtained through surveys, model estimates
are often necessary to fill in spatial and temporal data gaps (e.g., for obtaining data in geographic
areas not covered by the survey or data in more recent years that are not available yet). Here, we
assess the ability of PyGRF to estimate neighborhood-level obesity prevalence using
socioeconomic and demographic variables. The dependent variable is obesity prevalence in NYC
in 2018 obtained from the PLACES project of the Centers for Disease Control and Prevention
(CDC). The geographic unit of analysis is census tracts. The independent variables include 21
socioeconomic and demographic factors organized in six categories: (1) race and ethnicity, (2)
gender, marital status, and age, (3) education, (4) economic status, (5) housing conditions, and (6)
urbanicity. The entire dataset was also used in our previous work (Zhou et al., 2022), and more
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details about the dependent and independent variables can be found in that article. We plot the

neighborhood-level obesity prevalence in Figure 5(a).
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Figure 5. Neighborhood-level obesity prevalence in NYC and incremental spatial autocorrelation
of the data: (a) a map visualization of obesity prevalence; (b) incremental spatial autocorrelation
test result.

We conduct the same three sets of experiments, as done on the example income dataset
previously, to compare PyGRF with RF, evaluate the effectiveness of each model improvement
individually, and assess model performance change with each improvement added step-by-step.
The search spaces of the four hyperparameters are set in a similar manner as done in the example
income dataset: ntree: (0, N/2] with an interval of 100, where N is the total number of samples in

the training data (there are 1995 census tracts in total); mtry: {S, S/3, v/S}, where S is the number
of independent variables; 1: [0.05 quantile, 0.95 quantile] of total samples with an interval of 100;
a: {0.25, 0.5, 0.75}. Again, PyGRF needs to tune all four hyperparameters, while the improved
models will determine A and a based on the incremental spatial autocorrelation test. As shown in
the test result in Figure 5(b), the obesity prevalence data of NYC has a different spatial
autocorrelation pattern compared with the previous example income dataset. Based on the test
result, we set the bandwidth A to 152 and local weight « to 0.4488 (given that the global Moran’s
| index at the bandwidth of 152 is 0.4488). All hyperparameter tuning is based on the same 70%
data randomly selected from the entire dataset, and the performance of the models is measured via
ten-fold cross-validation.

Table 2 shows the results from the three sets of experiments, and Figure 6 shows the time cost
of hyperparameter tuning of the default PyGRF model and the models with improvements added
step-by-step. For the first set of experiments, PyGRF achieves an increase of 0.037 in R? and a
decrease of 0.368 in RMSE, compared with the RF model. For the second set of experiments,
adding the theory-informed hyperparameter determination (I11) slightly decreases the performance
of the model but substantially reduces the hyperparameter tuning time. As shown in Figure 6, the
default PyGRF model uses more than 24 hours to find suitable values for the hyperparameters,
while the theory-informed hyperparameter determination reduces the time to only about 3 hours
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while achieving a similar performance. Also shown in the result of the second set of experiments,
the local training sample expansion (12) and spatially-weighted local prediction (I13) both improve
the performance of the PyGRF model with about 1.2% and 2.7% further improvement compared
with the performance improvement of PyGRF over RF. For the third set of experiments, adding 11
and 12 achieves the best performance, while adding all three improvements leads to a slight
decrease of model performance (a decrease of 0.0017 in R?). Since the improvements brought by
12 and I3 are overall small (as shown in the second set of experiments), the slight performance
decrease when all three improvements are added could be due to potential noise introduced when
more local models are used for making predictions.

Table 2. A summary of results from the three sets of experiments on the obesity prevalence data
of NYC. I1, 12, and I3 represent the three model improvements respectively, which are: theory-
informed hyperparameter determination (I11), local training sample expansion (12) , and spatially-
weighted local prediction (13).

Models ntree [ mtry | A a R? RMSE

PyGRF 300 |S/3 |149]0.75 0.9305 | 1.5517

Comparison with the RF model

RF 300 |S/I3 |/ / 0.8937 | 1.9192

Effectiveness of each improvement

PyGRF + 11 400 [S/3 1521 0.4488 | 0.9241 |1.6219
PyGRF + 12 300 [S/3 149 [ 0.75 0.9309 | 1.5472
PyGRF + I3 300 [S/3 149 [ 0.75 0.9314 | 1.5419

Performance with each improvement added step-by-step

PyGRF + 11 400 |[S/3 152 [ 0.4488 | 0.9241 |1.6219

PyGRF + 11, 12 400 |[S/3 152 [ 0.4488 | 0.9246 |1.6162

PyGRF + 11, 12, 13 400 |S/3 152 [ 0.4488 [ 0.9229 |[1.6341
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Figure 6. Hyperparameter tuning time of PyGRF and the three model improvements added step-
by-step based on the obesity prevalence data of NYC.

One advantage of PyGRF is that it enables the exploration of both the global and local feature
importance output by the global and local RF models contained in PyGRF. Here, we use the model,
PyGRF + I1, 12, i.e., PyGRF with theory-informed hyperparameter determination and local
training sample expansion, to explore feature importance. While the performance of PyGRF + 11,
12 is slightly lower than the default PyGRF (as shown in Table 2), it requires substantially less
hyperparameter tuning time (only 13% of the time cost of PyGRF) and thus presents a more
practical approach for model users. Figure 7 shows the global feature importance from the global
RF models. Note that since ten-fold cross-validation is used, there are ten importance values for
each feature in the box plot. As shown in the figure, two variables related to race and ethnicity
show high importance for estimating neighborhood-level obesity prevalence in this case study,
with % Black? ranked first and % Asian® in 2nd place. Three variables associated with housing
condition, socioeconomic status, and poverty level are also ranked very high, with median value
units built*, median household income®, and % food stamp/SNAP® ranked in the 3rd, 4th, and 5th
places, respectively.

2 Percentage of population in Black or African American
3 Percentage of population in Asian

4 Median value of the house units built (in dollars)

® Median household income

6 Percentage of households received food stamp/supplemental nutrition assistance program (SNAP) in the past 12
months
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Figure 7. Box plot of the global feature importance for the case study of obesity prevalence
estimation in NYC obtained from the PyGRF + 11, 12 model.

Next, we examine local feature importance and their spatial variation in the study area. In
particular, we focus on two variables, namely % Black and median household income, shown to
have high importance for obesity estimation based on the global model. Figure 8 shows the local
feature importance of the two variables across NYC. Note that the value of feature importance is
between 0 and 1. As can be seen, the feature importance of % Black varies largely across the city,
from lower importance in most census tracts in middle Manhattan (with importance value in [0,
0.05)) to much higher importance in some peripheral areas of the city, e.g., the eastern side of
Queens and the northern part of the Bronx (with importance value in [0.28, 0.45]). The local feature
importance of median household income shows a largely different and almost reversed pattern: it
seems to be more important for the local models to estimate neighborhood-level obesity prevalence
in areas such as Brooklyn and the southern part of the Bronx, and seems to be less important in the
eastern side of Queens. These spatial patterns can help researchers further develop hypotheses and
examine the underlying reasons.
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Figure 8. Map visualizations for the local feature importance of two variables: (a) % Black; (b)
median household income.

5.2 Predicting help requests for winter storm preparation in Buffalo

In the second case study, we use PyGRF to predict potential help requests related to winter storms
and blizzards in the city of Buffalo, USA. Buffalo experienced a severe blizzard in December 2022,
during which many residents used the city’s 311 call service to request help (Kaufman et al., 2023).
The ability to predict potential help requests across different neighborhoods of the city can help
emergency managers better prepare for future winter storms and blizzards. In this case study, the
dependent variable is the number of 311-based help requests during the blizzard period obtained
from the Open Data Portal of the City of Buffalo. The geographic unit for analysis is census block
group (CBG), and the number of help requests is normalized by CBG population to obtain request
count per person. Buffalo has a total of 290 CBGs, and the normalized 311 calls of the CBGs are
shown in Figure 9(a). The independent variables include 18 factors that cover three aspects of each
CBG: social vulnerability (Flanagan et al., 2011), physical vulnerability, and previous human
behavior. These 18 independent variables are organized in six categories: (1) socioeconomic status,
(2) household composition and disability, (3) minority status and language, (4) housing and
transportation, (5) snow condition, and (6) historical 311 requests before the blizzard. The first
four categories focus on social vulnerability, category (5) focuses on physical vulnerability, and
category (6) focuses on previous human behavior. Details of these independent variables are
provided in Supplementary Table S1.
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Figure 9. Help requests during 2022 Buffalo blizzard and incremental spatial autocorrelation of
the data: (a) CBG-level normalized help requests from 12/19/2022 to 1/1/2023; (b) incremental
spatial autocorrelation test result.

We conduct the same three sets of experiments in this case study to compare PyGRF with RF,
evaluate the effectiveness of each model improvement individually, and assess performance
change with each improvement added step-by-step. The hyperparameters are tuned in a similar
way as in the first case study. We tune four hyperparameters for the default PyGRF model, and
determine the bandwidth A and local model weight a based on the incremental spatial
autocorrelation test shown in Figure 9(b). The bandwidth A is set to 131 and local weight « is set
to 0.0444 (a weak but significant spatial autocorrelation is observed). Table 3 shows the results
from the three sets of experiments, and Figure 10 shows the time of hyperparameter tuning of four
models. For the first set of experiments, PyGRF improves over the RF model, with an increase of
0.0298 in R? and a decrease of 0.384 in RMSE. For the second set of experiments, the theory-
informed hyperparameter determination (I11) achieves not only a substantial decrease of
hyperparameter tuning time (shown in Figure 10) but also an increase of model performance. The
local training sample expansion (12) is not activated since there already exist sufficient local
samples for training the RF model (the number of local training samples is larger than two times
of the tree number). The spatially-weighted local prediction (13) also improves the performance of
the model, demonstrating a further 94.2% improvement compared with the improvement of
PyGRF over RF. For the third set of experiments, adding all three model improvements achieves
better performance than the default PyGRF model while using only a small fraction of the time for
hyperparameter tuning (about 2 minutes compared with the 32 minutes used by the default PyGRF
model).

Table 3. A summary of results from the three sets of experiments on the 311 help request data of
Buffalo. 11, 12, and 13 represent the three model improvements respectively, which are: theory-
informed hyperparameter determination (I11), local training sample expansion (12), and spatially-
weighted local prediction (I3).
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Models ntree |mtry| 2 a R? RMSE

PyGRF 20 VS | 125 |0.75 0.3898 | 15.8898

Comparison with the RF model

RF 20 Vs |/ / 0.3600 |16.2740

Effectiveness of each improvement

PyGRF + 11 60 S/3 | 131 |[0.0444 | 0.4205 | 15.4860
PyGRF + 12 * 20 VS | 125 |0.75 0.3898 | 15.8898
PyGRF + I3 20 VS | 125 |0.75 0.4173 | 15.5280

Performance with each improvement added step-by-step

PyGRF + 11 60 S/3 | 131 |[0.0444 | 0.4205 | 15.4860
PyGRF + 11, 12 * 60 S/3 | 131 |[0.0444 | 0.4205 | 15.4860
PyGRF + 11, 12, I3 60 S/3 | 131 |[0.0444 | 0.4205 |15.4854

*The strategy of local training sample expansion (12) is not activated by the model, since there already exist
sufficient local training samples.

PyGRF + I1 I
PyGRF + I1, 12 I
PYGRF + 11, 12, I3 I

0 250 500 750 1000 1250 1500 1750 2000 2250
Time (second)

Model

Figure 10. Hyperparameter tuning time of PyGRF and the three model improvements added step-
by-step based on the 311 help request data of Buffalo.
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We further explore the global and local feature importance output by the PyGRF + 11, 12, I3
model. Figure 11 shows the global feature importance based on the ten-fold cross-validation result.
As can be seen, two variables related to previous 311 call behavior hold very high importance,
ranking as the 1st and 2nd. The % minority and % 65 older are ranked as 3rd and 5th respectively.
The variable related to snow depth is ranked as the 4th. The other variables exhibit relatively lower
importance for predicting 311 help requests in this case study.
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Figure 11. Box plot of the global feature importance for the case study of 311 help request
prediction in Buffalo obtained from the PyGRF + 11, 12, I3 model.

Figure 12 shows the local feature importance of two variables, historical requests and %
minority, across the study area. As can be seen, historical requests seem to be more important for
local models to predict 311 help requests in the western areas of Buffalo (which is the core city
region) but relatively less important in the northern areas. This result seems to suggest that the
number of 311 calls in the core city region of Buffalo is largely affected by the extent to which the
residents have previously used the 311 call service. Meanwhile, the local feature importance of %
minority shows a different spatial pattern, with higher importance in the central and northern areas
of the city but lower importance in the southern areas. These spatial patterns can be further
investigated to identify the underlying reasons.

23



— - -
Legend 1 ‘ Legend 'A’? - g N "
historical requests % minority E 45 - i A i

0.23-0.28 ‘ 0.01 - 0.03 \ | e
0.28-0.32 ; 0.03 - 0.05 g L i
[7770.32-0.36 0.05 - 0.07 il o=
I 0.36 - 0.39 || Emo.07-0.10 - |
- [ 0.39 - 0.46 - [ 0.10 - 0.14 LA j
« ~ TiCity boundary ¢ ~ CiCity boundary N :
). I
\ ]
\ ]
\ !
\ |
KM KM - L
0 25 5 0 25 5 . 5
1
N A e

(b)

Figure 12. Map visualizations for the local feature importance of two variables in the case study
of 311 help requests prediction in Buffalo obtained from the PyGRF + 11, 12, 13 model: (a)
historical requests; (b) % minority.

6 Discussion

6.1 Effectiveness of the proposed model improvements

We have proposed three model improvements for GRF building on the work of Georganos et al.
(2021; 2022). The three improvements are: theory-informed hyperparameter determination (11),
local training sample expansion (12), and spatially-weighted local prediction (13). The results from
the example data and two case studies suggest that the theory-informed hyperparameter
determination is highly effective in reducing the time cost of hyperparameter tuning. By first
understanding the spatial autocorrelation of the data, rather than directly training and testing many
GRF models based on different hyperparameter combinations, we reduce 96%, 87%, and 94% of
hyperparameter tuning time for the example income dataset, NYC obesity prevalence dataset, and
Buffalo help request dataset respectively. This time cost reduction is important, as it enables
researchers and machine learning practitioners to explore the use of GRF in their data more
efficiently. For example, in the case study of obesity prevalence estimation in NYC, the dataset
has a moderate size of 1995 data records; yet, it takes over one day for the trial-and-error approach
to find suitable hyperparameter values. Our theory-informed hyperparameter determination
reduces this time cost to about 3 hours, and makes it more realistic for model users to explore GRF.
In terms of model performance, 11 slightly reduces prediction accuracy on the example income
dataset and the NYC obesity prevalence dataset, while increasing accuracy on the Buffalo help
request dataset. It is worth noting that the improvement is compared against optimized GRF
models in all experiments. In situations when there is not enough time to perform comprehensive
hyperparameter tuning, GRF can have much lower performance based on arbitrarily selected
hyperparameter values, as shown in the original paper (Georganos et al., 2021). Thus, our theory-
informed hyperparameter determination allows the GRF model to still achieve a close-to-optimal
performance when there is only limited time for hyperparameter tuning.
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For local training sample expansion (I2) and spatially-weighted local prediction (13), our
experiments suggest that they are overall effective in improving model performance. In particular,
our second set of experiments that evaluate the effectiveness of each improvement individually
show that the improvements of 12 and 13 can be substantial compared with the improvement
brought by GRF to RF. Nevertheless, the absolute numbers of improvements in R? and RMSE are
small. For 12, although it increases the size of the local training samples, it does not bring in new
information for the local RF models. In our earlier experiments, we also tried another approach to
address the issue of insufficient local training samples by reducing the complexity of local RF
models (e.g., reducing the number of trees in local RF models). However, we found that this
approach did not work as well as our current 12, i.e., expanding local training samples while
keeping the same number of trees in local RF models. The issue of lacking sufficient local training
data might be better addressed when additional local data are made available. For 13, our
experiments with simulated data outliers in Section 4.3 have shown that it can increase model
robustness when outliers are present in the data. In our developed PyGRF package, we have
incorporated all three improvements. To provide more flexibility for model users, we have
implemented PyGRF in a way that allows the user to turn on and off any of the three model
improvements. Thus, the users of PyGRF can choose to use the original version of GRF by turning
off all improvements, but can also turn on any combination or all improvements to further increase
model performance.

6.2 Limitations

This research is not without limitations. First, while we have tested PyGRF and the proposed model
improvements on three different datasets, testing and using the model on more datasets in a variety
of domains can help further understand its advantages and limitations. To this end, we hope that
our implemented PyGRF package published in the widely used pip package management system,
source code shared on GitHub, and the Jupyter Notebooks of the case studies can help more
machine learning and GeoAl practitioners to try this model and further improve it. Second, while
PyGRF improves over GRF and RF, it is only one of the possible models that we can choose from,
and it may not always provide the best performance among all possible models for a given dataset.
In practice, it is necessary to test multiple models and choose the most suitable one (Wiedemann
et al., 2023). Third, our current PyGRF model focuses on regression tasks, and this focus is
consistent with the original R-based GRF model. However, random forest has also been used for
classification tasks. Future studies could extend PyGRF for handling classification tasks, and may
assess its classification accuracy and the usefulness of local feature importance derived from those
tasks.

7 Conclusions

In this work, we have proposed three model improvements, including theory-informed
hyperparameter determination, local training sample expansion, and spatially-weighted local
prediction, to address limitations identified from the current GRF model. We have also developed
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PyGRF, which is a Python-based Geographical Random Forest model and package, to incorporate
these improvements. We have evaluated the consistency between the PyGRF model and the
original R-based model, and have applied PyGRF and the improved models to two case studies in
public health and natural disasters. The results show that the PyGRF provides overall consistent
output with the R-based GRF model, and the three proposed improvements increase model
performance while substantially reducing the time cost for hyperparameter tuning. This work
contributes to both GeoAl methods and the development of open-source GIS packages. Regarding
the latter, we have published PyGRF on the Python package management system pip, shared its
source code on GitHub, and provided Jupyter Notebooks for the two case studies. We hope that
this effort can make it easier for others to use this open-source package. While PyGRF is not
without limitations, we hope that it can serve as a tool for researchers and machine learning
practitioners to explore spatial variation of local feature importance, improve prediction accuracy,
and derive more insights from geospatial data.
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