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Abstract: Cross-validation (CV) has been widely used in GeoAI research to evaluate the
performance of machine learning models. Often, a labeled data set is randomly split into training
and validation data, and a machine learning model is trained on the training data and then
evaluated on the validation data in an iterative manner. Such a random CV approach could lead
to an overestimate of model performance on geographic data, due to the existence of spatial
autocorrelation. Random CV can generate many training and validation data instances that are
spatially close, and a model trained on such training data can be considered as having already
“peeked” into the nearby validation data, given their spatial closeness and likely attribute
similarity. Spatial CV can help address this issue by splitting the data spatially rather than
randomly, thereby increasing the independence between the training and validation data. While a
number of spatial CV methods have been developed, they are scattered in the literature across
multiple disciplines, including ecology, remote sensing, GIScience, and computer science. This
chapter discusses four main spatial CV methods identified from the multidisciplinary literature,
and uses two examples based on real-world data to demonstrate these methods in comparison
with random CV.

Keywords: cross-validation; spatial cross-validation; spatial autocorrelation; spatial dependence;
machine learning; GeoAI.

1. Introduction
Cross-validation (CV) has been widely used in GeoAI research to evaluate the performance of
machine learning models. Often, a labeled data set is split into a number of subsets, with one
subset held out for validation and the remaining subsets used for model training; the
training-and-validation process is then iterated multiple times until all subsets of data are used
for training and validation (Browne 2000). The commonly used k-fold CV splits data into k
subsets (or k folds), and uses one subset for validation and k-1 subsets for model training. The
process is then repeated k times, and the obtained k results are averaged to compute a final score
for the machine learning model (Burman 1989). When k equals to the total number of data
instances n in the data set, k-fold CV becomes leave-one-out CV, in which only one data instance
is held out for validation each time and the process is repeated n times. As an evaluation
technique, CV often provides more robust evaluation scores for machine learning models since

1 This is a preprint. The formal version is published as Chapter 10 in the Handbook of Geospatial Artificial
Intelligence.

1

https://www.zotero.org/google-docs/?2cOziq
https://www.zotero.org/google-docs/?XzHH5z
https://www.taylorfrancis.com/books/edit/10.1201/9781003308423/handbook-geospatial-artificial-intelligence-song-gao-yingjie-hu-wenwen-li
https://www.taylorfrancis.com/books/edit/10.1201/9781003308423/handbook-geospatial-artificial-intelligence-song-gao-yingjie-hu-wenwen-li


the models are trained and evaluated on different subsets of data (Géron 2019). Accordingly, CV
avoids the potential bias when only one particular subset of the data is used for validation.

While increasing evaluation robustness, CV could lead to another type of bias when applied
to geographic data. CV typically randomly splits data into training and validation subsets, and
such a random CV approach can generate many training and validation data instances that are
spatially close. As widely discussed in the spatial study literature, spatially close data instances
are likely to share similar attribute values due to the existence of spatial dependency (Tobler
1970; Diniz‐Filho, Bini, and Hawkins 2003; Fotheringham 2009; Hijmans 2012). A model
trained on such training data, therefore, can be considered as having already “peeked” into the
nearby validation data, given their spatial closeness and likely attribute similarity. Consequently,
we may obtain overly optimistic evaluation results that do not represent the true performance of
the model (Roberts et al. 2017; Pohjankukka et al. 2017; Karasiak et al. 2019; Meyer and
Pebesma 2022; Karasiak et al. 2022).

Spatial cross-validation (spatial CV) is a spatially explicit CV method that can help address
this evaluation bias by splitting data spatially rather than randomly. Spatial CV uses strategies,
such as spatial buffering and grid-based splitting (Valavi et al. 2019), to create subsets of data
that are more independent from each other, thereby decreasing the spatial autocorrelation
between training and validation data. As machine learning models have been increasingly
applied to geographic data, researchers have developed a number of methods and software
packages for spatial CV. However, these methods and software packages are scattered in the
literature across multiple disciplines, including ecology (Roberts et al. 2017; Meyer et al. 2018;
Valavi et al. 2019), remote sensing (Brenning 2012; Karasiak et al. 2019; Karasiak 2020),
GIScience (Pohjankukka et al. 2017; Crosby, Damoulas, and Jarvis 2020; Brenning 2022), and
computer science (Airola et al. 2019; Da Silva, Parmezan, and Batista 2021). Consequently, it is
difficult for researchers new to spatial CV to quickly grasp the main methods and existing
software packages from this multidisciplinary literature. This book chapter fills this gap by
presenting four main spatial CV methods identified from the literature, and uses two examples
based on real-world data to demonstrate these spatial CV methods by comparing them with
random CV.

Before we move on to discussing spatial CV methods, it is worth noting that spatial CV is not
always better than random CV when machine learning models are applied to geographic data.
This can be understood based on two common situations in GeoAI research: within-area
prediction and between-area prediction (Roberts et al. 2017; Goodchild and Li 2021). For
within-area prediction or interpolation (in Figure 1(a)), a model is trained on the known values in
the study area and is then used to predict unknown values in the same area. In such a case,
random CV is in fact preferred since the real test data can be spatially close to known training
data too, and we want to leverage the existence of spatial autocorrelation to generate more
accurate predictions. For between-area prediction or extrapolation (in Figure 1(b)), a model is
trained on known values in one geographic area and is then used to predict unknown values in
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another area (which could be adjacent to the training data area as shown in Figure 1(b) or be
further away). In such a case, spatial CV is likely to provide a more realistic evaluation of model
performance since the spatially-split validation data can better mimic the real test scenario that
the trained model will be used for (Crosby, Damoulas, and Jarvis 2020; Meyer and Pebesma
2021). In short, whether we should choose spatial CV or random CV depends on which strategy
better mimics the real application scenario of the trained machine learning model.

Figure 1. An illustration of two common situations under which machine learning models are applied to
geographic data: (a) within-area prediction or interpolation; (b) between-area prediction or extrapolation.

The remainder of this chapter is organized as follows. Section 2 presents four main spatial
CV methods and software packages that implement these methods. In section 3, we use two
examples based on real-world data to demonstrate the use of these four spatial CV methods in
comparison with random CV. Finally, Section 4 concludes this chapter.

2. Four main spatial CV methods
While various spatial CV methods have been developed, they can be organized into four main
types: clustering-based spatial CV, grid-based spatial CV, geo-attribute-based spatial CV, and
spatial leave-one-out CV. These four methods share the common idea of spatially splitting
training and validation data while differing in their specific ways of splitting the data. A number
of software packages have been developed to implement these spatial CV methods. Given the
popularity of the R programming language in the ecology research community where spatial CV
has received much attention, a lot of these packages are developed in R which include:

● sperrorest: https://cran.r-project.org/web/packages/sperrorest/index.html (Brenning 2012)
● spatialsample: https://cran.r-project.org/web/packages/spatialsample/index.html
● blockCV: https://cran.r-project.org/web/packages/blockCV/index.html (Valavi et al. 2019)
● ENMeval: https://cran.r-project.org/web/packages/ENMeval/index.html (Muscarella et al.

2014)
● Mlr3spatiotempcv: https://cran.r-project.org/web/packages/mlr3spatiotempcv/index.html

(Schratz et al. 2021)
● CAST: https://cran.r-project.org/web/packages/CAST/index.html (Meyer et al. 2018)
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There also exist two Python-based spatial CV packages, which are:
● spacv: https://github.com/SamComber/spacv
● MuseoToolbox: https://museotoolbox.readthedocs.io/en/latest/ (Karasiak 2020)

Each package implements its own set of spatial CV methods, which may overlap with some
other packages. In the following, we present each of the four main spatial CV methods and the
software packages that have implemented the method. Interested readers can choose the software
package based on the spatial CV methods needed and their preferred programming language.

2.1 Clustering-based spatial CV
One method to split data spatially is to perform spatial clustering. Based on the geospatial
coordinates of the data and leveraging a clustering algorithm (e.g., K-means clustering), we can
split data into several subsets with data instances within the same subset being spatially
continuous and those in different subsets being relatively separated from each other. Figure 2
illustrates this clustering-based spatial CV using K-means clustering (k=3). With the split data in
Figure 2(b), one can then use, e.g., the data in Cluster 1 for validation and the data in Cluster 2
and Cluster 3 for model training, and then iterate this process. In addition, we are not limited to
using only one cluster for validation but can use multiple clusters too. For example, we could
split the data into ten clusters using a clustering algorithm, and then use three clusters for
validation and seven clusters for model training.

Figure 2. An illustration of clustering-based spatial CV: (a) original training data; (b) training data split
into three folds using K-means clustering.

Clustering-based spatial CV has been implemented in the following packages: spatialsample
(R), sperrorest (R), Mlr3spatiotempcv (R), blockCV (R), and spacv (Python). K-means is the
most commonly used clustering algorithm in these packages. The package spatialsample also
implements another clustering algorithm, hierarchical clustering, for clustering-based spatial CV.

2.2 Grid-based spatial CV
Another method to spatially split data is to use spatial grids. By dividing the entire geographic
area of the data into n rows and m columns, we can split the data into n m grid cells. Figure 3×
illustrates grid-based spatial CV using nine grid cells. We can then use the data in one grid cell
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for validation and those in the remaining grid cells for model training, and then iterate this
process. Similar to clustering-based spatial CV, data from multiple grid cells can be used for
validation too. In addition to squares or rectangles, grid cells can be in other shapes too, such as
hexagons which have often been used in GIScience research (Montello, Friedman, and Phillips
2014; Gao et al. 2017).

Figure 3. An illustration of grid-based spatial CV: (a) original training data; (b) training data split into
nine grid cells.

Grid-based spatial CV has been implemented in the following packages: ENMeval (R),
spatialsample (R), sperrorest (R), Mlr3spatiotempcv (R), blockCV (R), and spacv (Python).
These packages implement rectangle-based grids, and two of them, spatialsample and spacv,
also implement hexagonal grids. In addition, sperrorest provides an extra feature that allows
users to specify a minimum number of data points inside a grid cell, and grid cells with smaller
numbers of data instances will be merged into their neighboring cells.

2.3 Geo-attribute-based spatial CV
When a geo-attribute is available, such as an attribute containing county names or city district
names, the data can be split based on the spatial regions defined by the geo-attribute. Figure 4
illustrates this spatial CV using four geographic regions. Since we are using pre-defined
geographic regions to split the data, the evaluation results can be communicated relatively easily
using the names of the geographic regions. For example, we can clearly describe the geographic
regions whose data are used for model training and the region(s) whose data are used for
validation in each iteration of the CV.
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Figure 4. An illustration of geo-attribute-based spatial CV: (a) original training data; (b) training data split
based on four geographic regions defined by the geo-attribute.

Geo-attribute-based spatial CV has been implemented in Mlr3spatiotempcv (R) and spacv
(Python). Mlr3spatiotempcv requires the user to specify a target attribute, while spacv expects
the user to provide polygons related to the geo-attribute. In addition, we can also use typical
spatial data processing packages, such as geopandas (Python), to implement geo-attribute-based
spatial CV by splitting data based on the geo-attribute.

2.4 Spatial leave-one-out CV
The fourth spatial CV method is an extension of the classic leave-one-out CV. Instead of simply
using one data instance for validation and the remaining data for model training, spatial
leave-one-out CV creates a buffer zone surrounding the validation data. Data falling into the
buffer zone will not be used for model training. Figure 5 illustrates spatial leave-one-out CV.
Note that this method is not limited to using one validation data instance only in each iteration,
but can include more data within the same local region. This extension is called spatial
leave-one-disc-out (Schratz et al. 2021), where a disc is a circular local region for validation, a
buffer zone is created around the disc, and the remaining data are used for model training.

Figure 5. An illustration of spatial leave-one-out CV: (a) original training data; (b) training data split into
validation data, a buffer zone (data in which are not used for model training), and training data.

Spatial leave-one-out CV has been implemented in the following packages: CAST (R),
Mlr3spatiotempcv (R), blockCV (R), sperrorest (R), spatialsample (R), spacv (Python), and
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museotoolbox (Python). The extended spatial leave-one-disc-out CV has been implemented in
Mlr3spatiotempcv and sperrorest. In addition, the technique of adding a buffer zone to further
increase the independence between training and validation data is not limited to spatial
leave-one-out CV only, but has been implemented in the three other spatial CV methods as well.

2.5 Summary
We have presented four main spatial CV methods and their corresponding software package
implementations. In practice, the decision of which spatial CV method to use depends on which
method best mimics the real application scenario of the trained model. For example, if the
trained model will be used for making predictions in predefined administrative regions, then a
geo-attribute-based spatial CV may be more suitable. By contrast, if the trained model will be
used to make predictions in new regions defined by grid cells (or tiles), then a grid-based spatial
CV may be preferred. The principle of mimicking the real application scenario also guides our
choice between spatial CV and random CV (e.g., interpolation). Each spatial CV method
involves certain parameters, such as the number of clusters, the size of the grids, and the distance
of the buffer zone. There is no single best way for specifying the parameter values, and existing
research generally recommends considering the effect of spatial autocorrelation and domain
knowledge related to the machine learning task (Karasiak et al. 2019; Valavi et al. 2019;
Brenning 2022).

3. Examples based on real-world data
In this section, we use two examples based on real-world data to demonstrate the use of the four
spatial CV methods and how they may affect the model evaluation results compared with using
random CV. To quantify the performance of the trained models, we use two metrics, R2 and Root
Mean Square Error (RMSE) calculated using the following two equations:
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3.1 Example 1: Predicting domestic violence using random forest
In the first example, we leverage the domestic violence data in the city of Chicago from our
previous study (Chang et al. 2022), and use a random forest model to predict domestic violence
based on socioeconomic and demographic variables. The geographic unit of analysis for this
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example is census block groups (CBGs), and the time period of the data is from December 31,
2018 to January 6, 2020.

The dependent variable is the domestic violence rate at the CBGs level. The global Moran’s I
of the domestic violence data is 0.648 (p<0.001) The independent variables are 19
socioeconomic and demographic variables in five categories: (1) race and ethnicity, (2) age, (3)
social disadvantage level, (4) residential instability, and (5) urbanicity. More details about the
dependent and independent variables are available in the original article (Chang et al. 2022).

We use a random forest (RF) model to predict domestic violence rate based on the 19
independent variables. The RF model has two major hyperparameters to be set: n_estimators
controlling the number of trees in the RF model, and max_features controlling the number of
features to be considered when a node of a tree is split. Here, we use the hyperparameter values

identified from our previous study by setting n_estimators to 80 and max_features to where𝑛
𝑣

is the number of independent variables.𝑛
𝑣

3.1.1 Data partition using spatial and random CV
We use the four spatial CV methods and a random CV method to split the data into training and
validation sets. The parameters of these five CV methods are set as follows. The data splitting
result of each method is visualized in Figure 6.

● Random CV: We employ the traditional 10-fold CV by randomly splitting all CBGs into
10 subsets.

● Clustering-based spatial CV: We use k-means clustering to split the whole data set also
into 10 clusters (i.e., k = 10).

● Grid-based spatial CV: We use a 3 3 grid to split the data into 9 grid cells. Among these×
9 grid cells, 7 of them contain data and therefore a 7-fold cross-validation is used.

● Geo-attribute-based spatial CV: Using a geo-attribute of community names in Chicago,
we split the data (2,146 CBGs) to 96 communities.

● Spatial leave-one-out CV. We set the buffer distance to 0.05 quantile of all distances
among CBGs. One CBG is used for each iteration of the validation process.
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Figure 6. Data splitting results for CBGs in Chicago: (a) random CV; (b) clustering-based spatial CV; (c)
grid-based spatial CV; (d) geo-attribute-based spatial CV; (e) spatial leave-one-out CV.

In Figure 6, each color in subfigures (a)-(d) indicates one subset of data, and subfigure (e)
shows one CBG used for validation (in red color) and its surrounding buffer zone (in blue). As
can be seen in subfigure (a), the training and validation data generated by random CV are
scattered across the entire study area and can be spatially adjacent to each other. By contrast, the
training and validation data generated by clustering-based, grid-based, and geo-attribute-based
spatial CV (in subfigures (b), (c), and (d)) are more spatially separated from each other. In
subfigure (c), i.e., grid-based spatial CV, we can also clearly see the horizontal and vertical lines
formed by the 3 3 grid.×

3.1.2 Results and discussion
Table 1 presents the evaluation results using different CV methods. The hyperparameters of the
RF model are fixed during the entire evaluation process to ensure that the performance difference
only comes from the way that the data is split.

Table 1. Performance of the RF model using random CV and four spatial CV methods.

CV method R2 RMSE

Random CV 0.5952 8.9398
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Clustering-based spatial CV 0.5443 9.4853

Grid-based spatial CV 0.5643 9.2752

Geo-attribute-based spatial CV 0.5667 9.2501

Spatial leave-one-out CV 0.5470 9.4575

As can be seen, different performance scores are obtained when different CV methods are
used for splitting the data. The performance scores by themselves do not suggest which CV
method should be ideally used; instead we should choose the CV method that best mimics the
real application scenario of the trained model. Overall, the results in Table 1 show that the
highest performance scores are obtained using random CV, while lower performance scores are
obtained using the four spatial CV methods. The highest performance scores from random CV
are likely due to the many spatially adjacent training and validation data instances generated by
random CV, which allows the RF model to “peek” into nearby validation data during the training
process. The performance scores obtained based on random CV are about 5% - 8% higher than
those obtained via the four spatial CV methods, but are not radically different in this example.
This suggests that the scores of random CV in this example are not entirely invalid even when
spatial CV should ideally be used, but will likely present an overestimate of the model
performance. If the real application scenario of the trained RF model is to predict domestic
violence rate in CBGs of Chicago (i.e., the same study area), the evaluation scores obtained from
random CV can still reflect the true performance of the model; if the application scenario is to
predict domestic violence rate in nearby cities or regions, using random CV could lead to a 5% -
8% overestimate of the model performance.

3.2 Example 2: Predicting obesity prevalence using deep neural network
In this second example, we use the obesity prevalence data in New York City (NYC) from
another recent study (Zhou et al. 2022), and use a deep neural network (DNN) model to predict
obesity prevalence. The geographic unit of analysis is census tract and the time period of the data
is the entire year of 2018.

The dependent variable is the obesity prevalence at the census tract level, and its global
Moran’s I is 0.740 (p < 0.001). The original data were obtained from the PLACES project of the
Centers for Disease Control and Prevention (CDC). The independent variables are 21
socioeconomic and demographic factors related to race and ethnicity, gender, age, education,
income, and housing conditions. More details about the dependent and independent variables are
available in the original article (Zhou et al. 2022).

We use DNN in this example for predicting obesity prevalence. The hyperparameters of the
model are set based on our previous study, and the model has 9 hidden layers with 160, 208, 160,
160, 256, 32, 240, 96, and 208 neurons for them respectively.
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3.2.1 Data partition using spatial and random CV
Same as the last example, we use the four spatial CV methods and a random CV method to split
the data. The parameters of these five CV methods are set as follows. The splitting results are
visualized in Figure 7.

● Random CV. We use the same classic 10-fold random CV as used in the previous
example.

● Clustering-based spatial CV. We use the same K-means clustering method (k =10) to
split the data.

● Grid-based spatial CV. We split the NYC area using a 3 3 grid, and 8 of the grid cells×
contain census tracts.

● Geo-attribute-based spatial CV. NYC consists of five boroughs. We split data into these
five boroughs.

● Spatial leave-one-out CV. Similar to the previous example, the 0.05 quantile of distances
among all census tracts is used as the buffer distance.

3.2.2 Results and discussion
Table 2 presents the evaluation results using different CV methods. Similar to the previous
example, the hyperparameters of the DNN model are fixed during the entire evaluation process
to ensure that the performance difference only comes from the way that the data is split.

Figure 7. Data splitting results for census tracts in NYC: (a) random CV; (b) clustering-based spatial CV;
(c) grid-based spatial CV; (d) geo-attribute-based spatial CV; (e) spatial leave-one-out CV.
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Table 2. Performance of the DNN model using random CV and four spatial CV methods.

CV method R2 RMSE

Random CV 0.8692 2.1287

Clustering-based spatial CV 0.7244 3.0899

Grid-based spatial CV 0.7466 2.9624

Geo-attribute-based spatial CV 0.6613 3.4250

Spatial leave-one-out CV 0.8083 2.5766

As can be seen from Table 2, the overall pattern of the obtained performance scores holds,
i.e., the scores from random CV are the highest compared with the scores obtained via the four
spatial CV methods. As shown in Figure 7(a), random CV again generates many training and
validation census tracts that are spatially adjacent, allowing the DNN model to “peek” into
nearby validation census tracts during the training process. The performance scores from random
CV are 8% - 31% higher. In particular, the random CV scores are about 31% higher than the
performance scores obtained via geo-attribute-based spatial CV. Note that the spatial
autocorrelation in the obesity prevalence data is higher than that in the domestic violence data
used in the previous example. This higher spatial autocorrelation likely contributes to the higher
overestimate of performance scores from random CV. If the real application scenario of the
trained model is to predict into other nearby geographic regions not in the training data, using
random CV in this case could present a relatively large overestimate of the model performance.

4. Conclusions
Cross-validation is an evaluation approach that has been widely used in GeoAI research. In this
chapter, we have discussed the concept of spatial CV and why we may need it over random CV
under certain situations (e.g., extrapolation). We then present four main spatial CV methods
identified and synthesized from the multidisciplinary literature, which are: clustering-based
spatial CV, grid-based spatial CV, geo-attribute-based spatial CV, and spatial leave-one-out CV.
We also list the software packages that have implemented these methods and their corresponding
programming languages to inform the choice of interested readers. Two examples based on
real-world data are used to demonstrate the different performance scores obtained via spatial CV
and random CV. While the two examples involve different topics, study areas, and machine
learning models, the obtained results share a similar pattern, i.e., the performance scores obtained
via random CV tend to be higher than performance scores obtained via spatial CV methods.
While random CV can still provide some extent of evaluation when spatial CV should ideally be
used, we need to be cautious about these scores and know that those evaluation scores from
random CV are likely to be overestimates of the true model performance. The ultimate goal of
model evaluation is to provide realistic estimates that can reflect the true performance of a model
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when it is put into use. We hope that these spatial CV methods and their software packages can
help expand the model evaluation toolbox of researchers in GeoAI and spatial data science.

Data and code availability statement
Data and code supporting this work are available at: https://github.com/geoai-lab/spatialCV
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