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Chapter 20 A Humanistic Future of GeoAI ...................................................406

Bo Zhao and Jiaxin Feng

Chapter 21 Fast Forward from Data to Insight: (Geographic) Knowledge
Graphs and Their Applications....................................................411

Krzysztof Janowicz, Kitty Currier, Cogan Shimizu, Rui Zhu, Meil-
ing Shi, Colby K. Fisher, Dean Rehberger, Pascal Hitzler, Zilong
Liu, and Shirly Stephen

Chapter 22 Forward Thinking on GeoAI .......................................................427

Shawn Newsam

Index......................................................................................................................435



http://taylorandfrancis.com


Acknowledgments
The editors would like to sincerely thank all the chapter authors and reviewers for
their valuable contributions to this GeoAI handbook. The editors would like to thank
Professor Michael F. Goodchild and Professor Krzysztof Janowicz for their valuable
comments and guidance on the organization of this handbook. The editors would
also like to thank the following students from the University of Wisconsin-Madison:
Yuchi Ma, Jacob Kruse, Yuhan Ji, and Dong Gai for their editorial assistance in all
parts of this handbook.

ix



http://taylorandfrancis.com


Foreword
Michael F. Goodchild
Department of Geography, University of California, Santa Barbara
good@geog.ucsb.edu

It’s a great honor for me to be asked to contribute a foreword to this Handbook of
Geospatial Artificial Intelligence. GeoAI has very quickly become a major topic of
new research and development in geography, geographic information science (GI-
Science), and in many of the disciplines that concern themselves with the complex
patterns and processes that can be found in the geographic domain (that is, the sur-
face and near-surface of the Earth). To this old dog, it represents not only an exciting
set of new tricks, but a reinvigoration of the old field of geographic science in di-
rections that are fundamentally different from what came before. It benefits from a
perfect storm of trends: the availability of many new sources of data, from remote
sensing, social media, and sensor networks; access to almost unlimited resources of
computational power; and the emergence of powerful new methods of data analysis
and machine learning.

More fundamentally, GeoAI reflects a radical shift in our approach to under-
standing the geographic domain. Half a century ago the geographic sciences modeled
themselves on the senior sciences of physics and chemistry in searching for universal
principles (Bunge, 1966). These principles should apply everywhere and at all times,
just like Mendeleev’s periodic table of the elements. They should also be simple, in
accordance with the principle known as Occam’s Razor: when two hypotheses might
explain the same phenomenon, one should adopt the simpler. The use of Newton’s
law of gravitation to explain how human communications tend to diminish with in-
creasing distance provides an excellent example, and led to extensive research on the
modeling of social interaction. The fact that such models will never provide perfect
fits to actual geographic data was inconvenient, but their estimates were nevertheless
fit for use in a host of applications. Moreover, the models provided a norm or stan-
dard that would be helpful in identifying exceptions, anomalies, and special cases.

By the mid-1980s, however, this attempt to pursue geographic science by emu-
lating physics had run its course. The geographic world was clearly too complex for
a set of mechanistic explanations, and more powerful techniques would be needed if
we were to discover patterns and identify processes. Some pursued techniques that
abandoned universality by adopting what we have come to call place-based meth-
ods, which allow explanations to vary across space or time, or both (e.g., Geograph-
ically Weighted Regression; Fotheringham, Brunsdon, and Charlton, 2002). Others
began to build analysis engines that would explore entire sets of models rather than
a few narrowly defined hypotheses. Openshaw, for example, built a series of what he
termed geographical analysis machines that would give the data an increasing role in
driving the model selection process; much later this approach became enshrined in

xi
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xii Foreword
the principle of the Fourth Paradigm, “Let the data speak for themselves” (Hey, Tans-
ley, and Tolle, 2009). Openshaw was an early user of the term artificial intelligence,
and his ideas were collected in an appropriately titled but prescient book that was
published shortly before the turn of the century (Openshaw and Openshaw, 1997).
In a similar vein, Dobson began writing about what he called automated geography
(Dobson, 1983); both he and Openshaw argued that the computer should become
increasingly engaged in the research process.

Several decades later these ideas are entering the mainstream of the geographic
sciences, but with an important difference. While both Dobson and Openshaw were
trained in the domain-specific techniques of geographic analysis, today’s methods of
machine learning draw from no particular domain science, but instead apply basic
approaches that are essentially the same whatever the subject matter. Thus one of the
most urgent needs in GeoAI is for techniques that incorporate the general principles
that we know to be true of the geographic domain: spatial dependence, spatial het-
erogeneity, scaling, etc. But while they may appear to be neutral, applying equally
well to any domain, techniques such as neural networks and their more recent devel-
opments such as DCNN (deep convolutional neural networks) may to some extent
emulate rudimentary ideas about the workings of the human brain and its instinctive
search for patterns. It seems somewhat ironic that in rejecting the simple mechanistic
models of classical physics, we have gravitated to the vastly more complex but sim-
ilarly mechanistic world of neural networks. Moreover, as some of the chapters of
this collection show, the use of DCNN to analyze imagery explicitly invokes the geo-
graphic concept of spatial dependence, or what we know familiarly as Tobler’s First
Law of Geography. This shift in the conceptual framework for geographic science,
from Newtonian mechanics to neural networks, has led to another that is equally
fundamental. Science has always been concerned with explanation and understand-
ing and has treated description and prediction as somewhat inferior but nevertheless
useful byproducts. Results that fall short of explaining might be described somewhat
pejoratively as “journalistic”, “curve-fitting”, or “mere description”. Yet much of the
very rapid growth of data science and machine learning has been driven by the appar-
ent commercial success of these approaches in prediction, and while vigorous efforts
have been made to extract understanding and replicability from these techniques, the
results thus far are disappointing. This is not to say that search and classification
over vast digital archives are not important contributions to science when driven by
GeoAI, but they nevertheless fall short of the ultimate and traditional aims of expla-
nation and understanding and might be better understood as hypothesis-generating
rather than hypothesis-confirming. In short, this new discipline of GeoAI not only
introduces some valuable techniques, but also challenges our approach to science in
very fundamental ways. I hope this Foreword provides a context to what is to fol-
low, and helps the reader to understand the very significant shift in the geographic
sciences that it heralds.

BIBLIOGRAPHY
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Dobson, J.E. (1983) Automated geography. The Professional Geographer. 35(2): 135–143.
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1.1 INTRODUCTION
It is not often that geography is touched by a development having the potential to
affect substantially all of the practical, technical, methodological, theoretical and
philosophical aspects of our work. – Couclelis (1986)

Geospatial artificial intelligence (GeoAI) is an interdisciplinary field that has re-
ceived much attention from both academia and industry (Chiappinelli, 2022; Gao,
2021; Hu et al., 2019a; Li, 2020; Richter and Scheider, 2023). It incorporates a wide
range of research topics related to both geography and AI, such as developing intelli-
gent computer programs to mimic human perception of the environment and spatial
reasoning, discovering new knowledge about geographic phenomena, and advancing
our understanding of human-environment interactions and the Earth systems. While
diverse, GeoAI research shares a common focus on spatial contexts and has a root
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4 Handbook of Geospatial Artificial Intelligence
in geography and geographic information science (GIScience). Three major factors
have promoted the fast development of GeoAI: advancements in AI theories and
methods, the availability of various geospatial big data, and improvements in com-
puting hardware (e.g., the graphics processing unit, GPU) and computing capability.
New research is also emerging along with the latest AI technologies, such as large
language models, ChatGPT, and other AI foundation models.

The integration of geography and AI can be traced back to the early work
by Couclelis (1986); Openshaw and Openshaw (1997); Smith (1984). Before the re-
cent disruptive GeoAI research, many AI methods and techniques have already been
integrated and improved in geospatial research. These AI methods and techniques
include artificial neural networks (ANN), heuristic search, knowledge-based expert
systems, neurocomputing, and artificial life (e.g., cellular automata) in the 1980s;
genetic programming, fuzz logics, and hybrid intelligent systems in the 1990s; as
well as ontology, web semantics, and geographic information retrieval (GIR) in the
2000s. Since around 2010, deep learning started to demonstrate outstanding per-
formance with breakthroughs made in training DNNs (Glorot and Bengio, 2010).
In 2012, the deep neural network, AlexNet, achieved the best performance in the
ImageNet Large Scale Visual Recognition Challenge (Krizhevsky et al., 2012). In
the following years, the impact of deep learning reached many domains outside of
computer science (LeCun et al., 2015) including geography and earth sciences (Re-
ichstein et al., 2019).

Noticing the fast development of deep learning and its potential in geospatial
research, we organized a series of workshops and symposiums starting in 2017 to
promote GeoAI research in conferences such as the Annual meetings of the Ameri-
can Association of Geographers (AAG) and ACM SIGSPATIAL (Hu et al., 2019a).
In addition, we also organized special issues in journals, such as the special issue on
Artificial Intelligence Techniques for Geographic Knowledge Discovery in the Inter-
national Journal of Geographical Information Science (Janowicz et al., 2020), the
special issue on Symbolic and subsymbolic GeoAI: Geospatial knowledge graphs
and spatially explicit machine learning in the journal Transactions in GIS (Mai
et al., 2022a), and the special issue on Geospatial Artificial Intelligence in the journal
GeoInformatica (Gao et al., 2023).

As we are preparing this handbook for 2022 and 2023, there already exists
novel GeoAI research on improving individual and population health (Kamel Boulos
et al., 2019; Zhou et al., 2022b), enhancing community resilience in natural disasters
(Scheele et al., 2021; Wang et al., 2020; Zhou et al., 2022a), enabling automated and
intelligent terrain mapping (Arundel et al., 2020; Li and Hsu, 2020; Wang and Li,
2021), predicting spatiotemporal traffic flows (Li et al., 2021a; Zhang et al., 2020),
forecasting the impacts of climate change on ecosystems (Ma et al., 2022; Reich-
stein et al., 2019), building smart and connected communities and cities (Wang
and Biljecki, 2022; Ibrahim et al., 2021a), supporting humanitarian mapping (Chen
et al., 2018; Lunga et al., 2018), extracting knowledge from historic maps (Chiang
et al., 2020), automatic transferring map styles in Cartography (Kang et al., 2019),
and enhancing geoprivacy protection (Kamel Boulos et al., 2022; Rao et al., 2021).
In addition to using GeoAI to address societal challenges, much research has also
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been devoted to methodological developments, such as incorporating spatial princi-
ples into AI models to develop spatially explicit models (Mai et al., 2022a; Xie et al.,
2021), advancing spatial interpolation and prediction methods (Zhu et al., 2020),
better representing geographic features in embedding space (Mai et al., 2022b; Yan
et al., 2017), and increasing the explainability of GeoAI models (Cheng et al., 2021;
Hsu and Li, 2023; Xing and Sieber, 2023; Zheng and Sieber, 2022).

While many studies exist, they are scattered in the literature and, consequently,
it is difficult for scholars and students new to GeoAI to grasp a quick view of the
field and learn some of the possible applications. This Handbook of GeoAI aims to
fill such a gap. In the following, we provide an overview of this book.

1.2 OVERVIEW OF THE GEOAI HANDBOOK
In this handbook, we first review the historical roots for AI in geography and GI-
Science in Section I: Historical Roots of GeoAI (Chapters 1–3). Then, we in-
troduce the foundations and recent developments in GeoAI methods and tools in
Section II: GeoAI Methods (Chapters 4–10). These chapters cover topics on
methodological foundations (deep neural networks and knowledge graphs), spatial
image processing, spatial representation learning, intelligent spatial prediction and
interpolation, spatial heterogeneity-aware deep learning, explainability in GeoAI,
and spatial cross-validation for GeoAI models. Section III: GeoAI Applications
(Chapters 11–17) presents various GeoAI applications in cartography and mapping,
transportation, humanitarian assistance, smart disaster response, public health, agri-
culture, and urban sensing. Lastly, Section IV: Perspectives for the Future of
GeoAI (Chapters 18–22) offers perspectives for future developments of GeoAI, in-
cluding replicability and reproducibility, privacy and ethics, humanistic aspects, for-
ward thinking on geospatial knowledge graph, and other future GeoAI directions. In
the following, we briefly summarize each chapter.

Chapter 2 GeoAI’s Thousand-Year History by H. Couclelis introduces the origin
of the concept of GeoAI throughout history, evident in ancient Greek mythology with
tales like that of the giant Talos and other artificial beings. Transitioning closer to the
present, particularly with the inception of Turing’s contributions to the field, this
chapter provides a brief overview of the advancements in AI spanning the past sev-
enty years. It distinguishes between two interpretations of AI in geography: a broad
interpretation and a more geographically specific one. Then, it discusses different
flavors of GeoAI: Program, Neural Nets, Speculations, and Being Human.

Chapter 3 Philosophical Foundations of GeoAI by K. Janowicz presents some of
the fundamental assumptions and principles that could form the philosophical foun-
dation of GeoAI and spatial data science. Instead of reviewing the well-established
characteristics of spatial data (analysis), including interaction, neighborhoods, and
autocorrelation, the chapter highlights themes such as sustainability, bias in train-
ing data, diversity in schema knowledge, and the (potential lack of) neutrality of
GeoAI systems from a unifying ethical perspective. Reflecting on our profession’s
ethical implications will assist us in conducting potentially disruptive research more
responsibly, identifying pitfalls in designing, training, and deploying GeoAI-based
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systems, and developing a shared understanding of the benefits but also potential
dangers of AI research across academic fields.

Chapter 4 GeoAI Methodological Foundations: Deep Neural Networks and
Knowledge Graphs by Gao et al. provides an overview of the methodological foun-
dations of GeoAI, with a focus on the use of deep learning and knowledge graphs. It
covers a range of key concepts and architectures related to convolutional neural net-
works, recurrent neural networks, transformers, graph neural networks, generative
adversarial networks, reinforcement learning, and knowledge graphs. The goal of
this chapter is to highlight the importance and ways of incorporating spatial thinking
and principles into the development of spatially explicit AI models and geospatial
knowledge graphs.

Chapter 5 GeoAI for Spatial Image Processing by Arundel et al. presents an
overview of the history of (digital) image processing, GeoAI-based image process-
ing applications, and the role of GeoAI in advancing image processing methods and
research. The chapter also discusses the challenges to using GeoAI for image pro-
cessing regarding training data annotation, the issues of scale, resolution, and change
in space over time. Finally, the authors share thoughts on future research on geo-
metric algebra, addressing explainability and ethical issues, combining GeoAI and
physical modeling, and using knowledge base as input/constraint for GeoAI models.

Chapter 6 Spatial Representation Learning in GeoAI by Mai et al. introduces the
concept of spatial representation learning (SRL), which is a set of techniques that use
deep neural networks (DNNs) to encode and featurize various types of spatial data in
the forms of points, polylines, polygons, graphs, etc. This chapter discusses existing
works, key challenges, and uniqueness of SRL on various types of spatial data and
highlights the unique challenges of developing AI models for geospatial data.

Chapter 7 Intelligent Spatial Prediction and Interpolation Methods by Zhu and
Cao presents the GeoAI motivations of spatial data representation, spatial structure
measuring, and the spatial relationship modeling throughout the workflow of spatial
prediction in the context of leveraging AI techniques. This chapter reviews GeoAI
for spatial prediction and interpolation methods, with a particular focus on two ma-
jor fields: geostatistics and spatial regression. Challenges are also discussed around
uncertainty, transferability, and interpretability.

Chapter 8 Heterogeneity-Aware Deep Learning in Space: Performance and Fair-
ness by Xie et al. examines a fundamental attribute of spatial data– spatial hetero-
geneity, and depicts the phenomenon that data distributions are non-stationary over
space. Ignorance of heterogeneity in space not only decreases the prediction per-
formance of the models but also has an impact on the fairness of results – which
has become a major consideration for the responsible use of GeoAI. This chapter
summarizes recent heterogeneity-aware and fairness-aware methods that target on
addressing the heterogeneity challenge for spatial data.

Chapter 9 Explainability in GeoAI by Cheng et al., which is contextualized in de-
bates on the usefulness of AI versus traditional methods in solving geospatial prob-
lems, gives an overview of established XAI methods (e.g., gradient-based methods
and decomposition-based methods) and their basic principles. Moreover, the chapter
highlights the benefits of applying XAI methods for GeoAI applications based on
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several use cases and discusses explicit challenges and opportunities for applying
XAI methods in GeoAI.

Chapter 10 Spatial Cross-Validation for GeoAI by Sun et al. reviews spatial
cross-validation (CV) methods and discusses how spatial CV is different from ran-
dom CV. This chapter suggests that random CV could lead to an overestimate of
model performance on geographic data, due to the existence of spatial autocorrela-
tion. Spatial CV can help address this issue by splitting the data spatially rather than
randomly. Four main spatial CV methods identified from the literature are discussed,
and two examples based on real-world data are used to demonstrate these methods
in comparison with random CV.

Chapter 11 GeoAI for the Digitization of Historical Maps by Chiang et al.
overviews cutting-edge AI methods and systems for processing historical maps to
generate valuable data, insights, and knowledge. Historical maps capture past land-
scapes’ natural and anthropogenic features. In the past decade, numerous maps have
been digitized and made publicly accessible. This chapter highlights recently pub-
lished research findings from the authors across various domains, including the se-
mantic web, big data, data mining, machine learning, document understanding, nat-
ural language processing, remote sensing, and geographic information systems.

Chapter 12 Spatiotemporal AI for Transportation by Cheng et al. reviews im-
portant application domains of Spatiotemporal AI in transport. Spatiotemporal AI
has played an important role in transportation research since the latter part of the
20th century and has facilitated various tasks in intelligent transportation systems.
This chapter reviews data-driven prediction of traffic variables, optimization of traf-
fic networks using reinforcement learning, and computer vision for sensing complex
urban environments. It concludes with some directions for future research in Spa-
tiotemporal AI for transportation.

Chapter 13 GeoAI for Humanitarian Assistance by Dias et al. discusses existing
and prospective GeoAI tools to support humanitarian practices. Humanitarian assis-
tance is essential to saving lives and alleviating the suffering of populations during
crises caused by conflict, violence, and natural disasters. This chapter covers relevant
topics on ethical principles, actors, and data sources, in addition to methodological
applications on population mapping, built environment characterization, vulnerabil-
ity and risk analysis, and agent-based modeling.

Chapter 14 GeoAI for Disaster Response by Zou et al. presents a convergence
of GeoAI and disaster response with three focuses: (1) establishing a comprehen-
sive paradigm that expounds upon the diverse applications of GeoAI with geospatial
big data toward enhancing disaster response efforts; (2) exhibiting the employment
of GeoAI in disaster response through the analysis of social media data during the
2017 Hurricane Harvey with advanced Natural Language Processing models; and (3)
identifying the challenges and opportunities associated with the complete realization
of GeoAI’s potential in disaster response research and practice.

Chapter 15 GeoAI for Public Health by Züfle et al. focuses on using GeoAI for
infectious disease spread prediction. Research interest in GeoAI for public health
has been fueled by the increased availability of rich data sources. This chapter
(1) motivates the need for AI-based solutions in public health by showing the
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heterogeneity of human behavior related to health, (2) provides a brief survey of
current state-of-the-art solutions using AI for infectious disease spread prediction,
(3) describes a use-case of using large-scale human mobility data to inform AI mod-
els for the prediction of infectious disease spread in a city, and (4) provides future
research directions.

Chapter 16 GeoAI for Agriculture by Zhang et al. reviews the development of
GeoAI in agriculture. As yield estimation is one of the most important topics, the
main focus of the chapter is introducing GeoAI-based conceptual framework of crop
yield estimation. The framework comprises the preparation of geospatial modeling
inputs, GeoAI-based yield estimation models, as well as feature importance and un-
certainty analysis. Using the U.S. Corn Belt as a case study, three GeoAI models for
county-level crop yield estimation and uncertainty quantification are discussed.

Chapter 17 GeoAI for Urban Sensing by F. Biljecki provides a high-level
overview of the applications of GeoAI for urban sensing. Urban sensing has been
an important topic in the past decades, and research has been amplified in the last
several years with the emergence of new urban data sources and advancements in
GeoAI. This chapter reviews four examples of GeoAI applied for urban sensing,
which span a variety of data sources, techniques developed, and application domains
such as urban sustainability. It also discusses several challenges and future opportu-
nities as well as ethics and data quality issues.

Chapter 18 Reproducibility and Replicability in GeoAI by Kedron et al. exam-
ines how the reproducibility and replicability of research relates to the development
and use of GeoAI. This chapter first defines reproductions and replications in the
context of GeoAI research. It then offers guidance for researchers interested in en-
hancing the reproducibility of GeoAI studies, giving particular attention to some of
the unique challenges presented when studying phenomena using spatial data and
GeoAI. Looking to the future, this chapter presents several lines of reproduction and
replication-related inquiry that researchers could pursue to quicken the development
of GeoAI.

Chapter 19 Privacy and Ethics in GeoAI by McKenzie et al. discusses the
unique privacy and ethical concerns associated with AI techniques used for analyz-
ing geospatial information. This chapter provides an overview of data privacy within
the field of GeoAI and describes some of the most common techniques and lead-
ing application areas through which data privacy and GeoAI are converging. Finally,
the authors suggest a number of ways that privacy within GeoAI can improve and
highlight emerging topics within the field.

Chapter 20 A Humanistic Future of GeoAI by Zhao and Feng states the need
for a humanistic rewire of GeoAI, emphasizing ethical, inclusive, and human-guided
development. As GeoAI becomes increasingly integrated into our daily lives, it is
crucial to ensure that it benefits society and the environment while upholding essen-
tial ethical principles. This chapter discusses the importance of examining GeoAI
practices, particularly on marginalized communities and nonhuman entities, to iden-
tify potential ethical and social issues and address them proactively.

Chapter 21 Fast Forward from Data to Insight: (Geographic) Knowledge Graphs
and Their Applications by Janowicz et al. introduces what knowledge graphs are,
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how they relate to GeoAI research such as knowledge engineering and representation
learning, discuss their value proposition for geography and the broader geosciences,
outline application areas for knowledge graphs across domains, and introduce the
KnowWhereGraph as an example of a geospatially centered, highly heterogeneous
graph consisting of billions of graph statements extracted from 30 different data lay-
ers at the intersection between humans and the environment.

Chapter 22 Forward Thinking on GeoAI by S. Newsam discusses the importance
of continued interaction between the communities that make up the GeoAI field, the
challenges of interdisciplinary research, the role of industry especially with regard
to ethics, near- to medium-term opportunities, and some interesting recent develop-
ments in generative AI models.

1.3 RESEARCH QUESTIONS AND REFLECTIONS ON THE
DEVELOPMENT OF GEOAI

The key question that drives the developments and contributions in GeoAI is why
(geo-)spatial is interesting and important in AI research. One answer might be be-
cause geographic location or spatial context is often the key for linking heteroge-
neous datasets that have been intensively used for training advanced AI models (Hu
et al., 2019b; Li and Hsu, 2022). Smith (1984) summarizes the applicability of AI
to geographic problem-solving, research, and practices with a focus on individual
and aggregated intelligent spatial decision-making from both cognitive and engi-
neering perspectives. The cognitive approach focuses on the understanding of hu-
man cognitive system and decision-making process modeling while the engineering
approach focuses on the development of computer programs that have capabilities
for understanding, processing, and generating human-like intelligence (e.g., natu-
ral language and vision). A systematic approach might be needed to integrate both.
Several geospatial research streams might benefit from the use of AI, including (1)
individual decision-making in spatial contexts such as the “cognitive maps” of envi-
ronments for way-finding; (2) modeling of human behavior or human-environment
interactions using symbolic representational approach that can mitigate local lan-
guage variations; (3) text-based and image-based GIR and discovery; (4) develop-
ment of neural network-based GeoAI models that rely on fewer statistical assump-
tions; (5) A hybrid modeling approach that integrates earth system process modeling
with data-driven machine learning approaches; and (6) intelligent spatial prediction
in environments inaccessible or with limited scientific observations.

These research directions remain valid today. While AI has been advancing so
fast, making geographers speed up their research to follow the most recent techno-
logical trends, we may also need to pause and reflect on what we have learned in the
past few years and what would be GeoAI’s research agenda in the next 5–10 years?
The following questions may help the community to collectively develop a road map
for the next decade of GeoAI research:

• What are the key geographic research questions that we can now address better
using AI than traditional approaches?
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• What are the unsolved geospatial problems that can now be solved with AI?

• What are the implications of the fast-evolving field of AI to the future research
and education landscape of computational geography, human geography, and
physical geography?

• Are there any new theories or intelligent approaches for building spatial models
and data analysis pipelines in geographic information systems?

• What are the spatial effects that we can extract from machine learning ap-
proaches (Li, 2022)?

• How can we replicate a GeoAI model developed in one location to another given
the underlying spatial heterogeneity of geographic phenomena (Goodchild and
Li, 2021)?

• What kinds of datasets and procedures are required to train a large geospatial
foundation model (Mai et al., 2023) and how is it different from general foun-
dation models?

• How to detect deep fakes in AI-generated geospatial data and maps (Zhao et al.,
2021)?

• How to mitigate the energy consumption and air pollution issues caused
by training large GeoAI models and move toward sustainable AI develop-
ment (Van Wynsberghe, 2021)?

• What are the ethical issues on the development of artificial general intelligence
(AGI) in spatial reasoning and trustworthy decision-making?

• How GeoAI can be a force for social good (Taddeo and Floridi, 2018) and
digital resilience (Wright, 2016)?

• What are the best practices to develop responsible GeoAI while mitigating in-
visible risks and addressing the ethics, empathy, and equity issues (Nelson et al.,
2022)?

• Last but not the least, what is the science of GeoAI?

1.4 SUMMARY
AI technologies are advancing rapidly, and new methods and use cases in GeoAI
are constantly emerging. As GeoAI researchers, we should not purely hunt for lat-
est AI technologies (Openshaw and Openshaw, 1997) but should focus on address-
ing geographic problems and solving grand challenges facing our society as well as
achieving sustainable goals. We also need research efforts toward the development
of responsible, unbiased, explainable, and sustainable GeoAI models to support ge-
ographic knowledge discovery and beyond (Janowicz et al., 2020, 2022; Li et al.,
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2021b). This handbook is completed in the middle of 2023. While we cannot sum-
marize all GeoAI research in this one handbook, we hope that it provides a snapshot
of current GeoAI research and helps stimulate future studies in the coming years.

1.5 A LIST OF GEOAI TOOLS AND RESOURCES
Here, we list a set of open-source datasets, tools, and resources that might be useful
for students interested in GeoAI. The following list is not exhaustive and is intended
to serve as a starting point for exploration rather than a complete collection.

DATASETS
• GeoImageNet: https://github.com/ASUcicilab/GeoImageNet, a multi-

source natural feature (e.g., basins, bays, islands, lakes, ridges, and valleys) benchmark
dataset for GeoAI and supervised machine learning (Li et al., 2022).

• BigEarthNet: https://bigearth.net, a benchmark archive consisting of over 590k
pairs of Sentinel-1 and Sentinel-2 image patches that were annotated with multi-labels
of the CORINE Land Cover types to support deep learning studies in earth remote sens-
ing (Sumbul et al., 2019).

• EarthNets: https://earthnets.github.io, an open-source platform that links to
hundreds of datasets, pre-trained deep learning models, and various tasks in Earth Ob-
servation (Xiong et al., 2022).

• Microsoft Building Footprints: https://www.microsoft.com/maps/building-

footprints, Microsoft Maps & Geospatial teams released open building footprints datasets in
GeoJSON format in United States, Canada, Australia, as well as many countries in Africa and
South America.

• ArcGIS Living Atlas: https://livingatlas.arcgis.com, a large collection of geo-
graphic information (including maps, apps, and GIS data layers) from around the globe.
It also includes a set of pretrained deep learning models for geospatial applications such
as land use classification, tree segmentation, and building footprint extraction.

• MoveBank: https://www.movebank.org, a publicly archived platform containing
over 300 datasets that describe movement behavior of 11k animals.

‚Geolife GPS Trajectories: https://www.microsoft.com/research/

publication/geolife-gps-trajectory-dataset-user-guide, this open
dataset contains 17,621 GPS trajectories by 182 users in a period of over three years
with activity labels such as shopping, sightseeing, dining, hiking, and cycling (Zheng
et al., 2010).

• Travel Flows: https://github.com/GeoDS/COVID19USFlows, a multiscale dynamic
origin-to-destination population flow dataset (aggregated at three geographic scales: cen-
sus tract, county, and state; updated daily and weekly) in the U.S. during the COVID-19
pandemic (Kang et al., 2020).

https://github.com
https://bigearth.net
https://earthnets.github.io
https://www.microsoft.com
https://livingatlas.arcgis.com
https://www.movebank.org
https://www.microsoft.com
https://github.com
https://www.microsoft.com
https://www.microsoft.com
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TOOLS, LIBRARIES AND FRAMEWORKS

• Scikit-learn: https://scikit-learn.org, consists of simple and efficient machine
learning tools, including classificaiton, regression, clustering, dimension reduction, data
preprocessing and model evaluation metrics in Python.

• PyTorch: https://pytorch.org, a computational framework for building machine
and deep learning models in Python.

• Tensorflow: https://www.tensorflow.org, another computational framework for
building machine and deep learning models.

• Keras: https://keras.io, an effective high-level neural network Application Pro-
gramming Interface (API) in Python and it is easy for most machine and deep learning
beginners to learn and use.

• Hugging Face: https://huggingface.co, AI community that builds, trains and de-
ploys state of the art models (e.g., generative pre-trained transformers) powered by the
reference open source in machine and deep learning.

• Google Earth Engine: https://earthengine.google.com, a multi-petabyte catalog
of satellite imagery and geospatial datasets with planetary-scale analysis capabilities
and the Earth Engine API for geocomputation and analsis is available in JavaScript and
Python, e.g., the geemap package by Wu (2020).

• ArcGIS GeoAI Toolbox: https://pro.arcgis.com/en/pro-app/latest/tool-

reference/geoai, contains ready-to-use tools for training and using machine/deep learning mod-
els that perform classification and regression on geospatial feature layers, imagery, tabular and text
datasets.

COMPUTING PLATFORMS
• Google Colab: https://research.google.com/colaboratory, an open plat-

form for developing machine learning models, data analysis and education re-
sources with easy-to-use Web interface powered by cloud computing.

• CyberGISX: https://cybergisxhub.cigi.illinois.edu, an open platform for
developing and sharing open educational resources (e.g., Jupyter Notebooks) on com-
putationally intensive and reproducible geospatial analytics and workflows powered by
CyberGIS middleware and cyberinfrastructure (Baig et al., 2022; Wang et al., 2013).

ACKNOWLEDGMENTS
Song Gao acknowledges the support by the National Science Foundation funded
AI institute (Award No. 2112606) for Intelligent Cyberinfrastructure with Computa-
tional Learning in the Environment (ICICLE) and the H.I. Romnes Faculty Fellow-
ship provided by the University of Wisconsin-Madison Office of the Vice Chancellor
for Research and Graduate Education with funding from the Wisconsin Alumni Re-
search Foundation. Wenwen Li would like to thank the support by the National Sci-
ence Foundation (Award No. 2120943 and 1853864). Any opinions, findings, con-
clusions, or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the funding agencies.

https://scikit-learn.org
https://pytorch.org
https://www.tensorflow.org
https://keras.io
https://huggingface.co
https://earthengine.google.com
https://pro.arcgis.com
https://research.google.com
https://cybergisxhub.cigi.illinois.edu
https://pro.arcgis.com


Introduction to Geospatial Artificial Intelligence (GeoAI) 13
BIBLIOGRAPHY
Arundel, S.T., Li, W., and Wang, S., 2020. GeoNat v1.0: A dataset for natural feature mapping

with artificial intelligence and supervised learning. Transactions in GIS, 24 (3), 556–
572.

Baig, F., et al., 2022. Cybergis-cloud: A unified middleware framework for cloud-based
geospatial research and education. In: Practice and Experience in Advanced Research
Computing, 1–4.

Chen, J., et al., 2018. Deep learning from multiple crowds: A case study of humanitarian
mapping. IEEE Transactions on Geoscience and Remote Sensing, 57 (3), 1713–1722.

Cheng, X., et al., 2021. A method to evaluate task-specific importance of spatio-temporal
units based on explainable artificial intelligence. International Journal of Geographical
Information Science, 35 (10), 2002–2025.

Chiang, Y.Y., et al., 2020. Using Historical Maps in Scientific Studies: Applications, Chal-
lenges, and Best Practices. Springer.

Chiappinelli, C., 2022. Think tank: GeoAI reveals a glimpse of the future. Esri’s WhereNext
Magazine, 1–6.

Couclelis, H., 1986. Artificial intelligence in geography: Conjectures on the shape of things to
come. The Professional Geographer, 38 (1), 1–11.

Gao, S., 2021. Geospatial Artificial Intelligence (GeoAI). Oxford University Press.

Gao, S., et al., 2023. Special issue on geospatial artificial intelligence. GeoInformatica, 1–4.

Glorot, X. and Bengio, Y., 2010. Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on Artifi-
cial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, 249–256.

Goodchild, M.F. and Li, W., 2021. Replication across space and time must be weak in the
social and environmental sciences. Proceedings of the National Academy of Sciences,
118 (35), e2015759118.

Hsu, C.Y. and Li, W., 2023. Explainable GeoAI: can saliency maps help interpret artificial
intelligence’s learning process? An empirical study on natural feature detection. Inter-
national Journal of Geographical Information Science, 1–25.

Hu, Y., et al., 2019a. GeoAI at ACM SIGSPATIAL: progress, challenges, and future direc-
tions. Sigspatial Special, 11 (2), 5–15.

Hu, Y., et al., 2019b. Artificial intelligence approaches. The Geographic Information Science
& Technology Body of Knowledge.

Ibrahim, M.R., Haworth, J., and Cheng, T., 2021. Urban-i: From urban scenes to mapping
slums, transport modes, and pedestrians in cities using deep learning and computer vi-
sion. Environment and Planning B: Urban Analytics and City Science, 48 (1), 76–93.

Janowicz, K., et al., 2020. GeoAI: spatially explicit artificial intelligence techniques for geo-
graphic knowledge discovery and beyond. International Journal of Geographical Infor-
mation Science, 34 (4), 625–636.

Janowicz, K., Sieber, R., and Crampton, J., 2022. GeoAI, counter-AI, and human geography:
A conversation. Dialogues in Human Geography, 12 (3), 446–458.

Kamel Boulos, M.N., et al., 2022. Reconciling public health common good and individual
privacy: new methods and issues in geoprivacy. International Journal of Health Geo-
graphics, 21 (1), 1.



14 Handbook of Geospatial Artificial Intelligence
Kamel Boulos, M.N., Peng, G., and VoPham, T., 2019. An overview of GeoAI applications in

health and healthcare. International Journal of Health Geographics, 18, 1–9.

Kang, Y., et al., 2020. Multiscale dynamic human mobility flow dataset in the u.s. during the
covid-19 epidemic. Scientific Data, 1–13.

Kang, Y., Gao, S., and Roth, R.E., 2019. Transferring multiscale map styles using generative
adversarial networks. International Journal of Cartography, 5 (2-3), 115–141.

Krizhevsky, A., Sutskever, I., and Hinton, G.E., 2012. Imagenet classification with deep con-
volutional neural networks. In: F. Pereira, C. Burges, L. Bottou and K. Weinberger, eds.
Advances in Neural Information Processing Systems. vol. 25, 1–10.

LeCun, Y., Bengio, Y., and Hinton, G., 2015. Deep learning. Nature, 521 (7553), 436–444.

Li, M., et al., 2021a. Prediction of human activity intensity using the interactions in physi-
cal and social spaces through graph convolutional networks. International Journal of
Geographical Information Science, 35 (12), 2489–2516.

Li, W., 2020. GeoAI: Where machine learning and big data converge in GIScience. Journal of
Spatial Information Science, (20), 71–77.

Li, W. and Hsu, C.Y., 2020. Automated terrain feature identification from remote sensing
imagery: a deep learning approach. International Journal of Geographical Information
Science, 34 (4), 637–660.

Li, W. and Hsu, C.Y., 2022. GeoAI for large-scale image analysis and machine vision: Recent
progress of artificial intelligence in geography. ISPRS International Journal of Geo-
Information, 11 (7), 385.

Li, W., Hsu, C.Y., and Hu, M., 2021b. Tobler’s First Law in GeoAI: A spatially explicit deep
learning model for terrain feature detection under weak supervision. Annals of the Amer-
ican Association of Geographers, 111 (7), 1887–1905.

Li, W., et al., 2022. GeoImageNet: a multi-source natural feature benchmark dataset for GeoAI
and supervised machine learning. GeoInformatica, 1–22.

Li, Z., 2022. Extracting spatial effects from machine learning model using local interpretation
method: An example of shap and xgboost. Computers, Environment and Urban Systems,
96, 101845.

Lunga, D., et al., 2018. Domain-adapted convolutional networks for satellite image classifi-
cation: A large-scale interactive learning workflow. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 11 (3), 962–977.

Ma, Y., et al., 2022. Forecasting vegetation dynamics in an open ecosystem by integrating
deep learning and environmental variables. International Journal of Applied Earth Ob-
servation and Geoinformation, 114, 103060.

Mai, G., et al., 2022a. Symbolic and subsymbolic GeoAI: Geospatial knowledge graphs and
spatially explicit machine learning. Transactions in GIS, 26 (8), 3118–3124.

Mai, G., et al., 2022b. A review of location encoding for GeoAI: methods and applications.
International Journal of Geographical Information Science, 36 (4), 639–673.

Mai, G., et al., 2023. On the opportunities and challenges of foundation models for geospatial
artificial intelligence. arXiv preprint arXiv:2304.06798.

Nelson, T., Goodchild, M., and Wright, D., 2022. Accelerating ethics, empathy, and equity in
geographic information science. Proceedings of the National Academy of Sciences, 119
(19), e2119967119.



Introduction to Geospatial Artificial Intelligence (GeoAI) 15
Openshaw, S. and Openshaw, C., 1997. Artificial Intelligence in Geography. John Wiley &

Sons, Inc.

Rao, J., et al., 2021. A privacy-preserving framework for location recommendation using de-
centralized collaborative machine learning. Transactions in GIS, 25 (3), 1153–1175.

Reichstein, M., et al., 2019. Deep learning and process understanding for data-driven earth
system science. Nature, 566 (7743), 195–204.

Richter, K.F. and Scheider, S., 2023. Current topics and challenges in geoai. KI-Kunstliche
Intelligenz, 1–6.

Scheele, C., Yu, M., and Huang, Q., 2021. Geographic context-aware text mining: enhance
social media message classification for situational awareness by integrating spatial and
temporal features. International Journal of Digital Earth, 14 (11), 1721–1743.

Smith, T.R., 1984. Artificial intelligence and its applicability to geographical problem solving.
The Professional Geographer, 36 (2), 147–158.

Sumbul, G., et al., 2019. Bigearthnet: A large-scale benchmark archive for remote sensing im-
age understanding. In: IGARSS 2019-2019 IEEE International Geoscience and Remote
Sensing Symposium. IEEE, 5901–5904.

Taddeo, M. and Floridi, L., 2018. How AI can be a force for good. Science, 361 (6404), 751–
752.

Van Wynsberghe, A., 2021. Sustainable ai: Ai for sustainability and the sustainability of AI.
AI and Ethics, 1 (3), 213–218.

Wang, J., Hu, Y., and Joseph, K., 2020. Neurotpr: A neuro-net toponym recognition model for
extracting locations from social media messages. Transactions in GIS, 24 (3), 719–735.

Wang, J. and Biljecki, F., 2022. Unsupervised machine learning in urban studies: A systematic
review of applications. Cities, 129, 103925.

Wang, S., et al., 2013. Cybergis software: a synthetic review and integration roadmap. Inter-
national Journal of Geographical Information Science, 27 (11), 2122–2145.

Wang, S. and Li, W., 2021. GeoAI in terrain analysis: Enabling multi-source deep learning and
data fusion for natural feature detection. Computers, Environment and Urban Systems,
90, 101715.

Wright, D.J., 2016. Toward a digital resilience. Elementa: Science of the Anthropocene, 4.

Wu, Q., 2020. geemap: A python package for interactive mapping with google earth engine.
Journal of Open Source Software, 5 (51), 2305.

Xie, Y., et al., 2021. Spatial-net: A self-adaptive and model-agnostic deep learning framework
for spatially heterogeneous datasets. In: Proceedings of the 29th International Confer-
ence on Advances in Geographic Information Systems. 313–323.

Xing, J. and Sieber, R., 2023. The challenges of integrating explainable artificial intelligence
into geoai. Transactions in GIS, 27 (3), 1–20.

Xiong, Z., et al., 2022. Earthnets: Empowering ai in earth observation. arXiv preprint
arXiv:2210.04936.

Yan, B., et al., 2017. From itdl to place2vec: Reasoning about place type similarity and relat-
edness by learning embeddings from augmented spatial contexts. In: Proceedings of the
25th ACM SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems, 1–10.



16 Handbook of Geospatial Artificial Intelligence
Zhang, Y., et al., 2020. A novel residual graph convolution deep learning model for short-term

network-based traffic forecasting. International Journal of Geographical Information
Science, 34 (5), 969–995.

Zhao, B., et al., 2021. Deep fake geography? when geospatial data encounter artificial intelli-
gence. Cartography and Geographic Information Science, 48 (4), 338–352.

Zheng, Y., et al., 2010. Geolife: A collaborative social networking service among user, location
and trajectory. IEEE Data Eng. Bull., 33 (2), 32–39.

Zheng, Z. and Sieber, R., 2022. Putting humans back in the loop of machine learning in cana-
dian smart cities. Transactions in GIS, 26 (1), 8–24.

Zhou, B., et al., 2022a. Victimfinder: Harvesting rescue requests in disaster response from
social media with bert. Computers, Environment and Urban Systems, 95, 101824.

Zhou, R.Z., et al., 2022b. Deriving neighborhood-level diet and physical activity measure-
ments from anonymized mobile phone location data for enhancing obesity estimation.
International Journal of Health Geographics, 21 (1), 1–18.

Zhu, D., et al., 2020. Spatial interpolation using conditional generative adversarial neural net-
works. International Journal of Geographical Information Science, 34 (4), 735–758.



Introduction to Geospatial Artificial Intelligence (GeoAI) 
Arundel, S.T. , Li, W. , and Wang, S. , 2020. GeoNat v1.0: A dataset for natural feature mapping
with artificial intelligence and supervised learning. Transactions in GIS, 24 (3), 556–572. 
Baig, F. , et al. , 2022. Cybergis-cloud: A unified middleware framework for cloud-based
geospatial research and education. In: Practice and Experience in Advanced Research
Computing, 1–4. 
Chen, J. , et al. , 2018. Deep learning from multiple crowds: A case study of humanitarian
mapping. IEEE Transactions on Geoscience and Remote Sensing, 57 (3), 1713–1722. 
Cheng, X. , et al. , 2021. A method to evaluate task-specific importance of spatio-temporal units
based on explainable artificial intelligence. International Journal of Geographical Information
Science, 35 (10), 2002–2025. 
Chiang, Y.Y. , et al. , 2020. Using Historical Maps in Scientific Studies: Applications,
Challenges, and Best Practices. Springer. 
Chiappinelli, C. , 2022. Think tank: GeoAI reveals a glimpse of the future. Esri's WhereNext
Magazine, 1–6. 
Couclelis, H. , 1986. Artificial intelligence in geography: Conjectures on the shape of things to
come. The Professional Geographer, 38 (1), 1–11. 
Gao, S. , 2021. Geospatial Artificial Intelligence (GeoAI). Oxford University Press. 
Gao, S. , et al. , 2023. Special issue on geospatial artificial intelligence. GeoInformatica, 1–4. 
Glorot, X. and Bengio, Y. , 2010. Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics. JMLR Workshop and Conference Proceedings, 249–256. 
Goodchild, M.F. and Li, W. , 2021. Replication across space and time must be weak in the
social and environmental sciences. Proceedings of the National Academy of Sciences, 118
(35), e2015759118. 
Hsu, C.Y. and Li, W. , 2023. Explainable GeoAI: can saliency maps help interpret artificial
intelligence's learning process? An empirical study on natural feature detection. International
Journal of Geographical Information Science, 1–25. 
Hu, Y. , et al. , 2019a. GeoAI at ACM SIGSPATIAL: progress, challenges, and future directions.
Sigspatial Special, 11 (2), 5–15. 
Hu, Y. , et al. , 2019b. Artificial intelligence approaches. The Geographic Information Science &
Technology Body of Knowledge. 
Ibrahim, M.R. , Haworth, J. , and Cheng, T. , 2021a. Urban-i: From urban scenes to mapping
slums, transport modes, and pedestrians in cities using deep learning and computer vision.
Environment and Planning B: Urban Analytics and City Science, 48 (1), 76–93. 
Janowicz, K. , et al. , 2020. GeoAI: spatially explicit artificial intelligence techniques for
geographic knowledge discovery and beyond. International Journal of Geographical Information
Science, 34 (4), 625–636. 
Janowicz, K. , Sieber, R. , and Crampton, J. , 2022. GeoAI, counter-AI, and human geography:
A conversation. Dialogues in Human Geography, 12 (3), 446–458. 
Kamel Boulos, M.N. , et al. , 2022. Reconciling public health common good and individual
privacy: new methods and issues in geoprivacy. International Journal of Health Geographics, 21
(1), 1. 
Kamel Boulos, M.N. , Peng, G. , and VoPham, T. , 2019. An overview of GeoAI applications in
health and healthcare. International Journal of Health Geographics, 18, 1–9. 
Kang, Y. , et al. , 2020. Multiscale dynamic human mobility flow dataset in the u.s. during the
covid-19 epidemic. Scientific Data, 1–13. 
Kang, Y. , Gao, S. , and Roth, R.E. , 2019. Transferring multiscale map styles using generative
adversarial networks. International Journal of Cartography, 5 (2–3), 115–141. 
Krizhevsky, A. , Sutskever, I. , and Hinton, G.E. , 2012. Imagenet classification with deep
convolutional neural networks. In: F. Pereira , C. Burges , L. Bottou and K. Weinberger , eds.
Advances in Neural Information Processing Systems. vol. 25, 1–10. 
LeCun, Y. , Bengio, Y. , and Hinton, G. , 2015. Deep learning. Nature, 521 (7553), 436–444. 
Li, M. , et al. , 2021a. Prediction of human activity intensity using the interactions in physical and
social spaces through graph convolutional networks. International Journal of Geographical
Information Science, 35 (12), 2489–2516. 



Li, W. , 2020. GeoAI: Where machine learning and big data converge in GIScience. Journal of
Spatial Information Science, (20), 71–77. 
Li, W. and Hsu, C.Y. , 2020. Automated terrain feature identification from remote sensing
imagery: a deep learning approach. International Journal of Geographical Information Science,
34 (4), 637–660. 
Li, W. and Hsu, C.Y. , 2022. GeoAI for large-scale image analysis and machine vision: Recent
progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information,
11 (7), 385. 
Li, W. , Hsu, C.Y. , and Hu, M. , 2021b. Tobler's First Law in GeoAI: A spatially explicit deep
learning model for terrain feature detection under weak supervision. Annals of the American
Association of Geographers, 111 (7), 1887–1905. 
Li, W. , et al. , 2022. GeoImageNet: a multi-source natural feature benchmark dataset for GeoAI
and supervised machine learning. GeoInformatica, 1–22. 
Li, Z. , 2022. Extracting spatial effects from machine learning model using local interpretation
method: An example of shap and xgboost. Computers, Environment and Urban Systems, 96,
101845. 
Lunga, D. , et al. , 2018. Domain-adapted convolutional networks for satellite image
classification: A large-scale interactive learning workflow. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 11 (3), 962–977. 
Ma, Y. , et al. , 2022. Forecasting vegetation dynamics in an open ecosystem by integrating
deep learning and environmental variables. International Journal of Applied Earth Observation
and Geoinformation, 114, 103060. 
Mai, G. , et al. , 2022a. Symbolic and subsymbolic GeoAI: Geospatial knowledge graphs and
spatially explicit machine learning. Transactions in GIS, 26 (8), 3118–3124. 
Mai, G. , et al. , 2022b. A review of location encoding for GeoAI: methods and applications.
International Journal of Geographical Information Science, 36 (4), 639–673. 
Mai, G. , et al. , 2023. On the opportunities and challenges of foundation models for geospatial
artificial intelligence. arXiv preprint arXiv:2304.06798. 
Nelson, T. , Goodchild, M. , and Wright, D. , 2022. Accelerating ethics, empathy, and equity in
geographic information science. Proceedings of the National Academy of Sciences, 119 (19),
e2119967119. 
Openshaw, S. and Openshaw, C. , 1997. Artificial Intelligence in Geography. John Wiley &
Sons, Inc. 
Rao, J. , et al. , 2021. A privacy-preserving framework for location recommendation using
decentralized collaborative machine learning. Transactions in GIS, 25 (3), 1153–1175. 
Reichstein, M. , et al. , 2019. Deep learning and process understanding for data-driven earth
system science. Nature, 566 (7743), 195–204. 
Richter, K.F. and Scheider, S. , 2023. Current topics and challenges in geoai. KI-Kunstliche
Intelligenz, 1–6. 
Scheele, C. , Yu, M. , and Huang, Q. , 2021. Geographic context-aware text mining: enhance
social media message classification for situational awareness by integrating spatial and
temporal features. International Journal of Digital Earth, 14 (11), 1721–1743. 
Smith, T.R. , 1984. Artificial intelligence and its applicability to geographical problem solving.
The Professional Geographer, 36 (2), 147–158. 
Sumbul, G. , et al. , 2019. Bigearthnet: A large-scale benchmark archive for remote sensing
image understanding. In: IGARSS 2019-2019 IEEE International Geoscience and Remote
Sensing Symposium . IEEE, 5901–5904. 
Taddeo, M. and Floridi, L. , 2018. How AI can be a force for good. Science, 361 (6404),
751–752. 
Van Wynsberghe, A. , 2021. Sustainable ai: Ai for sustainability and the sustainability of AI. AI
and Ethics, 1 (3), 213–218. 
Wang, J. , Hu, Y. , and Joseph, K. , 2020. Neurotpr: A neuro-net toponym recognition model for
extracting locations from social media messages. Transactions in GIS, 24 (3), 719–735. 
Wang, J. and Biljecki, F. , 2022. Unsupervised machine learning in urban studies: A systematic
review of applications. Cities, 129, 103925. 
Wang, S. , et al. , 2013. Cybergis software: a synthetic review and integration roadmap.
International Journal of Geographical Information Science, 27 (11), 2122–2145.



Wang, S. and Li, W. , 2021. GeoAI in terrain analysis: Enabling multi-source deep learning and
data fusion for natural feature detection. Computers, Environment and Urban Systems, 90,
101715. 
Wright, D.J. , 2016. Toward a digital resilience. Elementa: Science of the Anthropocene, 4. 
Wu, Q. , 2020. geemap: A python package for interactive mapping with google earth engine.
Journal of Open Source Software, 5 (51), 2305. 
Xie, Y. , et al. , 2021. Spatial-net: A self-adaptive and model-agnostic deep learning framework
for spatially heterogeneous datasets. In: Proceedings of the 29th International Conference on
Advances in Geographic Information Systems . 313–323. 
Xing, J. and Sieber, R. , 2023. The challenges of integrating explainable artificial intelligence
into geoai. Transactions in GIS, 27 (3), 1–20. 
Xiong, Z. , et al. , 2022. Earthnets: Empowering ai in earth observation. arXiv preprint
arXiv:2210.04936. 
Yan, B. , et al. , 2017. From itdl to place2vec: Reasoning about place type similarity and
relatedness by learning embeddings from augmented spatial contexts. In: Proceedings of the 
25th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems , 1–10. 
Zhang, Y. , et al. , 2020. A novel residual graph convolution deep learning model for short-term
network-based traffic forecasting. International Journal of Geographical Information Science, 34
(5), 969–995. 
Zhao, B. , et al. , 2021. Deep fake geography? when geospatial data encounter artificial
intelligence. Cartography and Geographic Information Science, 48 (4), 338–352. 
Zheng, Y. , et al. , 2010. Geolife: A collaborative social networking service among user, location
and trajectory. IEEE Data Eng. Bull., 33 (2), 32–39. 
Zheng, Z. and Sieber, R. , 2022. Putting humans back in the loop of machine learning in
canadian smart cities. Transactions in GIS, 26 (1), 8–24. 
Zhou, B. , et al. , 2022a. Victimfinder: Harvesting rescue requests in disaster response from
social media with bert. Computers, Environment and Urban Systems, 95, 101824. 
Zhou, R.Z. , et al. , 2022b. Deriving neighborhood-level diet and physical activity measurements
from anonymized mobile phone location data for enhancing obesity estimation. International
Journal of Health Geographics, 21 (1), 1–18. 
Zhu, D. , et al. , 2020. Spatial interpolation using conditional generative adversarial neural
networks. International Journal of Geographical Information Science, 34 (4), 735–758. 

 
GeoAI's Thousand-Year History 
Bushwick, S. , 2023. Tech talks to animals: Portable sensors and artificial intelligence are
helping researchers to talk back to non-humans. Scientific American, 05, 26–27. 
Couclelis, H. , 1986a. Artificial Intelligence in geography: Conjectures on the shape of things to
come. The Professional Geographer, 38 (1), 1–11. 
Couclelis, H. , 1986b. A theoretical framework for alternative models of spatial decision and
behavior. Annals of the Association of American Geographers, 76 (1), 95–113. 
Dunsany, L. , 1951. The Last Revolution. Talos Press edition. 
Freeth, T. , et al. , 2021. A model of the Cosmos in the ancient Greek Antikythera mechanism.
Scientific Reports, 11 (1), 1–15. 
Langton, C.G. , et al. , 1991. Artificial Life II. Addison-Wesley Longman Publishing Co., Inc. 
Mayor, A. , 2018. Gods and Robots: Myths, Machines, and Ancient Dreams of Technology.
Princeton University Press. 
Openshaw, S. and Openshaw, C. , 1997. Artificial Intelligence in Geography. John Wiley &
Sons, Inc. 
Simon, H.A. , 2019. The Sciences of the Artificial, Reissue of the Third Edition with a New
Introduction by John Laird. MIT Press. 
Smith, T.R. , 1984. Artificial Intelligence and its applicability to geographical problem solving.
The Professional Geographer, 36 (2), 147–158.



Philosophical Foundations of GeoAI: Exploring Sustainability, Diversity,
and Bias in GeoAI and Spatial Data Science 
Abhayaratna, J. , et al. , 2021. The Responsible Use of Spatial Data. W3C. 
Bender, E.M. , et al. , 2021. On the dangers of stochastic parrots: Can language models be too
big? In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and
Transparency . 610–623. 
Bolukbasi, T. , et al. , 2016. Man is to computer programmer as woman is to homemaker?
debiasing word embeddings. Advances in Neural Information Processing Systems, 29. 
Bommasani, R. , et al. , 2021. On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258. 
Cavoukian, A. , 2009. Privacy by Design. Canadian Electronic Library. 
Feng, M. , et al. , 2019. Relative space-based gis data model to analyze the group dynamics of
moving objects. ISPRS Journal of Photogrammetry and Remote Sensing, 153, 74–95. 
Goodchild, M. , et al. , 2022. A white paper on locational information and the public interest.
American Association of Geographers. 
Goodchild, M.F. and Li, W. , 2021. Replication across space and time must be weak in the
social and environmental sciences. Proceedings of the National Academy of Sciences, 118
(35), e2015759118. 
Gupta, U. , et al. , 2022. Chasing carbon: The elusive environmental footprint of computing.
IEEE Micro, 42 (4), 37–47. 
Hagendorff, T. , 2020. The ethics of AI ethics: An evaluation of guidelines. Minds and Machines,
30 (1), 99–120. 
Hendler, J. , et al. , 2008. Web science: an interdisciplinary approach to understanding the web.
Communications of the ACM, 51 (7), 60–69. 
Hogan, A. , et al. , 2021. Knowledge graphs. ACM Computing Surveys (CSUR), 54 (4), 1–37. 
Hsu, C.Y. and Li, W. , 2023. Explainable GeoAI: can saliency maps help interpret artificial
intelligence's learning process? An empirical study on natural feature detection. International
Journal of Geographical Information Science, 1–25. 
Janowicz, K. , et al. , 2014. Towards geographic information observatories. In: GIO@
GIScience. 1–5. 
Janowicz, K. , et al. , 2020. GeoAI: Spatially explicit artificial intelligence techniques for
geographic knowledge discovery and beyond. 
Janowicz, K. , et al. , 2022a. Know, know where, knowwheregraph: A densely connected, cross-
domain knowledge graph and geo-enrichment service stack for applications in environmental
intelligence. AI Magazine, 43 (1), 30–39. 
Janowicz, K. , et al. , 2022b. Diverse data! diverse schemata? Semantic Web, 13 (1), 1–3. 
Janowicz, K. , Sieber, R. , and Crampton, J. , 2022c. GeoAI, counter-AI, and human geography:
A conversation. Dialogues in Human Geography, 12 (3), 446–458. 
Janowicz, K. , et al. , 2015. Why the data train needs semantic rails. AI Magazine, 36 (1), 5–14. 
Janowicz, K. , et al. , 2018. Debiasing knowledge graphs: Why female presidents are not like
female popes. In: ISWC (P&D/Industry/BlueSky). 
Janowicz, K. , et al. , 2022d. Six giscience ideas that must die. AGILE: GIScience Series, 3, 7. 
Jonas, H. , 1985. The Imperative of Responsibility: In Search of an Ethics for the Technological
Age. University of Chicago press. 
Kedron, P. , et al. , 2021. Reproducibility and replicability: opportunities and challenges for
geospatial research. International Journal of Geographical Information Science, 35 (3),
427–445. 
Keßler, C. and McKenzie, G. , 2018. A geoprivacy manifesto. Transactions in GIS, 22 (1), 3–19. 
Kounadi, O. and Leitner, M. , 2014. Why does geoprivacy matter? the scientific publication of
confidential data presented on maps. Journal of Empirical Research on Human Research
Ethics, 9 (4), 34–45. 
Krumm, J. , 2009. A survey of computational location privacy. Personal and Ubiquitous
Computing, 13, 391–399. 
Li, W. , Hsu, C.Y. , and Hu, M. , 2021. Tobler's First Law in GeoAI: A spatially explicit deep
learning model for terrain feature detection under weak supervision. Annals of the American
Association of Geographers, 111 (7), 1887–1905.



Li, Z. , 2022. Extracting spatial effects from machine learning model using local interpretation
method: An example of shap and xgboost. Computers, Environment and Urban Systems, 96,
101845. 
Liu, P. and Biljecki, F. , 2022. A review of spatially-explicit GeoAI applications in Urban
Geography. International Journal of Applied Earth Observation and Geoinformation, 112,
102936. 
Liu, Z. , et al. , 2022. Geoparsing: Solved or biased? an evaluation of geographic biases in
geoparsing. AGILE: GIScience Series, 3, 9. 
Mai, G. , et al. , 2022. A review of location encoding for GeoAI: methods and applications.
International Journal of Geographical Information Science, 36 (4), 639–673. 
McKenzie, G. , et al. , 2022. Privyto: A privacy-preserving location-sharing platform.
Transactions in GIS, 26 (4), 1703–1717. 
Mehrabi, N. , et al. , 2021. A survey on bias and fairness in machine learning. ACM Computing
Surveys (CSUR ), 54 (6), 1–35. 
Mellander, C. , et al. , 2015. Night-time light data: A good proxy measure for economic activity?
PloS One, 10 (10), e0139779. 
Miller, H.J. , 2017. Geographic information science i: Geographic information observatories and
opportunistic giscience. Progress in Human Geography, 41 (4), 489–500. 
Moor, J.H. , 1985. What is computer ethics? Metaphilosophy, 16 (4), 266–275. 
Moor, J.H. , 1997. Towards a theory of privacy in the information age. ACM Sigcas Computers
and Society, 27 (3), 27–32. 
Nüst, D. , et al. , 2018. Reproducible research and giscience: an evaluation using agile
conference papers. PeerJ, 6, e5072. 
Openshaw, S. , 1984. The modifiable areal unit problem. Concepts and Techniques in Modern
Geography. 
O'Sullivan, D. and Unwin, D. , 2003. Geographic Information Analysis. John Wiley & Sons. 
Papadakis, E. , et al. , 2022. Explainable artificial intelligence in the spatial domain (X-GeoAI).
Transactions in GIS, 26 (6), 2413–2414. 
Peppoloni, S. and Di Capua, G. , 2017. Geoethics: ethical, social and cultural implications in
geosciences. Annals of Geophysics. 
Phillips, P.J. , et al. , 2020. Four principles of explainable artificial intelligence. Gaithersburg,
Maryland, 18. 
Rocher, L. , Hendrickx, J.M. , and De Montjoye, Y.A. , 2019. Estimating the success of re-
identifications in incomplete datasets using generative models. Nature Communications, 10 (1),
1–9. 
Scheider, S. and Kuhn, W. , 2015. How to talk to each other via computers: Semantic
interoperability as conceptual imitation. Applications of Conceptual Spaces: The Case for
Geometric Knowledge Representation, 97–122. 
Schwartz, R. , et al. , 2020. Green AI. Communications of the ACM, 63 (12), 54–63. 
Shankar, S. , et al. , 2017. No classification without representation: Assessing geodiversity
issues in open data sets for the developing world. arXiv preprint arXiv:1711.08536. 
Stinson, C. , 2022. Algorithms are not neutral: Bias in collaborative filtering. AI and Ethics, 2 (4),
763–770. 
The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems , 2019. Ethically
aligned design: A vision for prioritizing human well-being with autonomous and intelligent
systems, first edition. IEEE. 
Van Wynsberghe, A. , 2021. Sustainable AI: AI for sustainability and the sustainability of AI. AI
and Ethics, 1 (3), 213–218. 
Wang, S. , Schlobach, S. , and Klein, M. , 2011. Concept drift and how to identify it. Journal of
Web Semantics, 9 (3), 247–265. 
Wiedmann, T.O. , et al. , 2015. The material footprint of nations. Proceedings of the National
Academy of Sciences, 112 (20), 6271–6276. 
Wilkinson, M.D. , et al. , 2016. The FAIR Guiding Principles for scientific data management and
stewardship. Scientific Data, 3 (1), 1–9. 
Wu, C.J. , et al. , 2022. Sustainable AI: Environmental implications, challenges and
opportunities. Proceedings of Machine Learning and Systems, 4, 795–813. 
Xing, J. and Sieber, R. , 2023. The challenges of integrating explainable artificial intelligence
into GeoAI. Transactions in GIS, 27 (3), 1–20.



GeoAI Methodological Foundations: Deep Neural Networks and
Knowledge Graphs 
Al-Najjar, H.A. , et al. , 2021. A new integrated approach for landslide data balancing and spatial
prediction based on generative adversarial networks (gan). Remote Sensing, 13 (19), 4011. 
Arjovsky, M. , Chintala, S. , and Bottou, L. , 2017. Wasserstein generative adversarial networks.
In: International Conference on Machine Learning . PMLR, 214–223. 
Bashmal, L. , et al. , 2018. Siamese-gan: Learning invariant representations for aerial vehicle
image categorization. Remote Sensing, 10 (2), 351. 
Battle, R. and Kolas, D. , 2011. Geosparql: enabling a geospatial semantic web. Semantic Web
Journal, 3 (4), 355–370. 
Bengio, Y. , Simard, P. , and Frasconi, P. , 1994. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5 (2), 157–166. 
Berragan, C. , et al. , 2022. Transformer based named entity recognition for place name
extraction from unstructured text. International Journal of Geographical Information Science,
1–20. 
Bihlo, A. , 2021. A generative adversarial network approach to (ensemble) weather prediction.
Neural Networks, 139, 1–16. 
Biljecki, F. and Ito, K. , 2021. Street view imagery in urban analytics and gis: A review.
Landscape and Urban Planning, 215, 104217. 
Cai, L. , et al. , 2020. Traffic transformer: Capturing the continuity and periodicity of time series
for traffic forecasting. Transactions in GIS, 24 (3), 736–755. 
Chen, X. , et al. , 2016. Infogan: Interpretable representation learning by information maximizing
generative adversarial nets. Advances in Neural Information Processing Systems, 29. 
Chen, Y. , et al. , 2021. Ssd-gan: Measuring the realness in the spatial and spectral domains. In
: Proceedings of the AAAI Conference on Artificial Intelligence . vol. 35, 1105–1112. 
Cheng, G. , et al. , 2020. Remote sensing image scene classification meets deep learning:
Challenges, methods, benchmarks, and opportunities. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 13, 3735–3756. 
Chiang, Y.Y. , et al. , 2020. Training deep learning models for geographic feature recognition
from historical maps. In: Using Historical Maps in Scientific Studies. Springer, 65–98. 
Cho, K. , et al. , 2014. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259. 
Chung, J. , et al. , 2014. Empirical evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555. 
Clementini, E. , 2019. A conceptual framework for modelling spatial relations. Information
Technology and Control, 48 (1), 5–17. 
Cohn, A.G. and Hazarika, S.M. , 2001. Qualitative spatial representation and reasoning: An
overview. Fundamenta informaticae, 46 (1), 1–29. 
Dai, K. , et al. , 2022. Mstcgan: Multi-scale time conditional generative adversarial network for
long-term satellite image sequence prediction. IEEE Transactions on Geoscience and Remote
Sensing. 
Deng, J. , et al. , 2009. Imagenet: A large-scale hierarchical image database. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition . IEEE, 248–255. 
Duan, W. , et al. , 2020. Automatic alignment of contemporary vector data and georeferenced
historical maps using reinforcement learning. International Journal of Geographical Information
Science, 34 (4), 824–849. 
Feng, Y. , Thiemann, F. , and Sester, M. , 2019. Learning cartographic building generalization
with deep convolutional neural networks. ISPRS International Journal of Geo-Information, 8 (6),
258. 
Fritz, S. , et al. , 2017. A global dataset of crowdsourced land cover and land use reference
data. Scientific Data, 4 (1), 1–8. 
Ganapathi Subramanian, S. and Crowley, M. , 2018. Using spatial reinforcement learning to
build forest wildfire dynamics models from satellite images. Frontiers in ICT, 5, 6. 
Gao, H. , et al. , 2018a. Object classification using cnn-based fusion of vision and lidar in
autonomous vehicle environment. IEEE Transactions on Industrial Informatics, 14 (9),
4224–4231.



Gao, S. , 2021. Geospatial Artificial Intelligence (GeoAI). Oxford Bibliographies, (1), 1–16. 
Gao, Y. , Jiang, D. , and Xu, Y. , 2018b. Optimize taxi driving strategies based on reinforcement
learning. International Journal of Geographical Information Science, 32 (8), 1677–1696. 
Getis, A. , 2009. Spatial weights matrices. Geographical Analysis, 41 (4), 404–410. 
Gong, S. , et al. , 2022. Spatio-temporal travel volume prediction and spatial dependencies
discovery using gru, gcn and bayesian probabilities. In: 2022 7th International Conference on
Big Data Analytics (ICBDA) . IEEE, 130–136. 
Goodchild, M.F. , 2004. The validity and usefulness of laws in geographic information science
and geography. Annals of the Association of American Geographers, 94 (2), 300–303. 
Goodfellow, I. , Bengio, Y. , and Courville, A. , 2016. Deep Learning. MIT Press. 
Goodfellow, I. , et al. , 2014. Generative adversarial nets. In: Z. Ghahramani , M. Welling , C.
Cortes , N. Lawrence and K. Weinberger , eds. Advances in Neural Information Processing
Systems. Curran Associates, Inc., vol. 27. 
Guo, D. , et al. , 2022. Deepssn: A deep convolutional neural network to assess spatial scene
similarity. Transactions in GIS, 26 (4), 1914–1938. 
Hamilton, W. , Ying, Z. , and Leskovec, J. , 2017. Inductive representation learning on large
graphs. Advances in Neural Information Processing Systems, 30. 
Hart, G. and Dolbear, C. , 2013. Linked Data: A Geographic Perspective. Taylor & Francis. 
Hawelka, B. , et al. , 2014. Geo-located twitter as proxy for global mobility patterns. Cartography
and Geographic Information Science, 41 (3), 260–271. 
He, K. , et al. , 2017. Mask r-cnn. In: Proceedings of the IEEE International Conference on
Computer Vision . 2961–2969. 
He, K. , et al. , 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition . 770–778. 
Helber, P. , et al. , 2018. Introducing eurosat: A novel dataset and deep learning benchmark for
land use and land cover classification. In: IGARSS 2018-2018 IEEE International Geoscience
and Remote Sensing Symposium . IEEE, 204–207. 
Hochreiter, S. and Schmidhuber, J. , 1997. Long short-term memory. Neural Computation, 9 (8),
1735–1780. 
Hogan, A. , et al. , 2021. Knowledge graphs. ACM Computing Surveys (CSUR), 54 (4), 1–37. 
Hu, S. , et al. , 2021. Urban function classification at road segment level using taxi trajectory
data: A graph convolutional neural network approach. Computers, Environment and Urban
Systems, 87, 101619. 
Hu, X. , et al. , 2022. Gazpne2: A general place name extractor for microblogs fusing gazetteers
and pretrained transformer models. IEEE Internet of Things Journal, 9 (17), 16259–16271. 
Hu, Y. , et al. , 2013. A geo-ontology design pattern for semantic trajectories. In: International
Conference on Spatial Information Theory . Springer, 438–456. 
Huang, G. , et al. , 2017. Densely connected convolutional networks. In: Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition . 4700–4708. 
Janelle, D.G. and Goodchild, M.F. , 2011. Concepts, principles, tools, and challenges in
spatially integrated social science. The SAGE Handbook of GIS and Society, 27–45. 
Janowicz, K. , 2012. Observation-driven geo-ontology engineering. Transactions in GIS, 16 (3),
351–374. 
Janowicz, K. , et al. , 2020. GeoAI: spatially explicit artificial intelligence techniques for
geographic knowledge discovery and beyond. International Journal of Geographical Information
Science, 34 (4), 625–636. 
Janowicz, K. , et al. , 2022. Know, know where, knowwheregraph: A densely connected, cross-
domain knowledge graph and geo-enrichment service stack for applications in environmental
intelligence. AI Magazine, 43 (1), 30–39. 
Janowicz, K. , et al. , 2010. Semantic enablement for spatial data infrastructures. Transactions
in GIS, 14 (2), 111–129. 
Jiang, W. and Luo, J. , 2022. Graph neural network for traffic forecasting: A survey. Expert
Systems with Applications, 117921. 
Kaelbling, L.P. , Littman, M.L. , and Moore, A.W. , 1996. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4, 237–285. 
Kang, Y. , Gao, S. , and Roth, R.E. , 2019. Transferring multiscale map styles using generative
adversarial networks. International Journal of Cartography, 5 (2–3), 115–141.



Kang, Y. , et al. , 2020. A review of urban physical environment sensing using street view
imagery in public health studies. Annals of GIS, 26 (3), 261–275. 
Kipf, T.N. and Welling, M. , 2016. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907. 
Koch, T. and Dugundji, E. , 2020. A review of methods to model route choice behavior of
bicyclists: inverse reinforcement learning in spatial context and recursive logit. In: Proceedings
of the 3rd ACM SIGSPATIAL International Workshop on GeoSpatial Simulation . 30–37. 
Krizhevsky, A. , Sutskever, I. , and Hinton, G.E. , 2017. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60 (6), 84–90. 
Kuhn, W. , 2005. Geospatial semantics: why, of what, and how? In: Journal on Data Semantics
iii. Springer, 1–24. 
LeCun, Y. , Bengio, Y. , and Hinton, G. , 2015. Deep learning. Nature, 521 (7553), 436–444. 
LeCun, Y. , et al. , 1998. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86 (11), 2278–2324. 
Li, K. , et al. , 2020. Object detection in optical remote sensing images: A survey and a new
benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296–307. 
Li, M. , et al. , 2021a. Prediction of human activity intensity using the interactions in physical and
social spaces through graph convolutional networks. International Journal of Geographical
Information Science, 35 (12), 2489–2516. 
Li, S. , et al. , 2021b. Groupformer: Group activity recognition with clustered spatial-temporal
transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision .
13668–13677. 
Li, W. , 2020. GeoAI: Where machine learning and big data converge in GIScience. Journal of
Spatial Information Science, (20), 71–77. 
Li, W. , Hsu, C.Y. , and Hu, M. , 2021c. Tobler's first law in geoai: A spatially explicit deep
learning model for terrain feature detection under weak supervision. Annals of the American
Association of Geographers, 111 (7), 1887–1905. 
Li, W. , et al. , 2022. Geoimagenet: a multi-source natural feature benchmark dataset for geoai
and supervised machine learning. GeoInformatica, 1–22. 
Li, Y. , et al. , 2017. Diffusion convolutional recurrent neural network: Data-driven traffic
forecasting. arXiv preprint arXiv:1707.01926. 
Li, Y. , et al. , 2018. An aircraft detection framework based on reinforcement learning and
convolutional neural networks in remote sensing images. Remote Sensing, 10 (2), 243. 
Li, Y. and Moura, J.M. , 2019. Forecaster: A graph transformer for forecasting spatial and time-
dependent data. arXiv preprint arXiv:1909.04019. 
Liang, Y. , et al. , 2022. Region2vec: community detection on spatial networks using graph
embedding with node attributes and spatial interactions. In: Proceedings of the 30th
International Conference on Advances in Geographic Information Systems . 1–4. 
Liang, Y. , et al. , 2019. Urbanfm: Inferring fine-grained urban flows. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . 3132–3142. 
Lin, D. , et al. , 2017. Marta gans: Unsupervised representation learning for remote sensing
image classification. IEEE Geoscience and Remote Sensing Letters, 14 (11), 2092–2096. 
Liu, Q. , et al. , 2016. Predicting the next location: A recurrent model with spatial and temporal
contexts. In: Thirtieth AAAI Conference on Artificial Intelligence. 
Liu, Y. , Ding, J. , and Li, Y. , 2022. Developing knowledge graph based system for urban
computing. In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial
Knowledge Graphs . 3–7. 
Luo, Y. , et al. , 2018. Multivariate time series imputation with generative adversarial networks.
Advances in Neural Information Processing Systems, 31. 
Mai, G. , et al. , 2022a. Symbolic and subsymbolic GeoAI: Geospatial knowledge graphs and
spatially explicit machine learning. Transactions in GIS, 26 (8), 3118–3124. 
Mai, G. , et al. , 2022b. A review of location encoding for geoai: methods and applications.
International Journal of Geographical Information Science, 36 (4), 639–673. 
Mai, G. , et al. , 2019. Multi-scale representation learning for spatial feature distributions using
grid cells. In: International Conference on Learning Representations. 
Mai, G. , et al. , 2020. Relaxing unanswerable geographic questions using a spatially explicit
knowledge graph embedding model. In: Geospatial Technologies for Local and Regional
Development: Proceedings of the 22nd AGILE Conference on Geographic Information Science



22. Springer, 21–39. 
May Petry, L. , et al. , 2020. Marc: a robust method for multiple-aspect trajectory classification
via space, time, and semantic embeddings. International Journal of Geographical Information
Science, 34 (7), 1428–1450. 
Mehrabi, N. , et al. , 2021. A survey on bias and fairness in machine learning. ACM Computing
Surveys, 54 (6), 1–35. 
Miller, E. , 1998. An introduction to the resource description framework. D-lib Magazine. 
Mirza, M. and Osindero, S. , 2014. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784. 
Mnih, V. , et al. , 2016. Asynchronous methods for deep reinforcement learning. In:
International Conference on Machine Learning . PMLR, 1928–1937. 
Mnih, V. , et al. , 2015. Human-level control through deep reinforcement learning. Nature, 518
(7540), 529–533. 
Oono, K. and Suzuki, T. , 2019. Graph neural networks exponentially lose expressive power for
node classification. arXiv preprint arXiv:1905.10947. 
Ouyang, K. , et al. , 2018. A non-parametric generative model for human trajectories. In: IJCAI.
vol. 18, 3812–3817. 
Ouyang, L. , et al. , 2022. Training language models to follow instructions with human feedback.
arXiv preprint arXiv:2203.02155. 
Patterson, J. and Gibson, A. , 2017. Deep Learning: A Practitioner's Approach. “O'Reilly Media,
Inc.". 
Puterman, M.L. , 1990. Markov decision processes. Handbooks in Operations Research and
Management Science, 2, 331–434. 
Radford, A. , Metz, L. , and Chintala, S. , 2015. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. 
Rao, J. , et al. , 2021a. LSTM-TrajGAN: A Deep Learning Approach to Trajectory Privacy
Protection. In: 11th International Conference on Geographic Information Science (GIScience
2021) . Schloss Dagstuhl–Leibniz-Zentrumfur Informatik, vol. 177, 12. 
Rao, J. , et al. , 2022. Measuring network resilience via geospatial knowledge graph: a case
study of the US multi-commodity flow network. In: Proceedings of the 1st ACM SIGSPATIAL
International Workshop on Geospatial Knowledge Graphs . 17–25. 
Rao, J. , Gao, S. , and Zhu, X. , 2021b. Vtsv: A privacy-preserving vehicle trajectory simulation
and visualization platform using deep reinforcement learning. In: Proceedings of the 4th ACM
SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery . 43–46. 
Ronneberger, O. , Fischer, P. , and Brox, T. , 2015. U-net: Convolutional networks for
biomedical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9,
2015, Proceedings, Part III 18. Springer, 234–241. 
Rui, X. , et al. , 2021. Disastergan: Generative adversarial networks for remote sensing disaster
image generation. Remote Sensing, 13 (21), 4284. 
Rüttgers, M. , et al. , 2019. Prediction of a typhoon track using a generative adversarial network
and satellite images. Scientific Reports, 9 (1), 1–15. 
Schulman, J. , et al. , 2015. Trust region policy optimization. In: International Conference on
Machine Learning . PMLR, 1889–1897. 
Schulman, J. , et al. , 2017. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347. 
Shbita, B. , et al. , 2020. Building linked spatio-temporal data from vectorized historical maps. In
: European Semantic Web Conference . Springer, 409–426. 
Silver, D. , et al. , 2016. Mastering the game of go with deep neural networks and tree search.
nature, 529 (7587), 484–489. 
Srikanth, G. , Nukavarapu, N. , and Durbha, S. , 2021. Deep reinforcement learning
interdependent healthcare critical infrastructure simulation model for dynamically varying covid-
19 scenario-a case study of a metro city. In: 2021 IEEE International Geoscience and Remote
Sensing Symposium IGARSS . IEEE, 8499–8502. 
Szegedy, C. , et al. , 2015. Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition . 1–9. 
Tang, W. , et al. , 2021. Learning disentangled user representation with multi-view information
fusion on social networks. Information Fusion, 74, 77–86.



Tobler, W.R. , 1970. A computer movie simulating urban growth in the detroit region. Economic
Geography, 46 (sup1), 234–240. 
Toutouh, J. , 2021. Conditional generative adversarial networks to model urban outdoor air
pollution. In: Smart Cities: Third Ibero-American Congress, ICSC-Cities 2020, San José, Costa
Rica, November 9-11, 2020, Revised Selected Papers 3. Springer, 90–105. 
Vaswani, A. , et al. , 2017. Attention is all you need. Advances in Neural Information Processing
Systems, 30. 
Velickovic, P. , et al. , 2017. Graph attention networks. arXiv preprint arXiv:1710.10903. 
Wang, H. , et al. , 2019. Learning graph representation with generative adversarial nets. IEEE
Transactions on Knowledge and Data Engineering, 33 (8), 3090–3103. 
Wang, P. , et al. , 2020. Incremental mobile user profiling: Reinforcement learning with spatial
knowledge graph for modeling event streams. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining . 853–861. 
Wang, S. , et al. , 2023. Sta-gan: A spatio-temporal attention generative adversarial network for
missing value imputation in satellite data. Remote Sensing, 15 (1), 88. 
Watkins, C.J. and Dayan, P. , 1992. Q-learning. Machine Learning, 8, 279–292. 
Wilkinson, M.D. , et al. , 2016. The fair guiding principles for scientific data management and
stewardship. Scientific Data, 3 (1), 1–9. 
Wu, A.N. and Biljecki, F. , 2022. Ganmapper: geographical data translation. International
Journal of Geographical Information Science, 1–29. 
Wu, Z. , et al. , 2020. A comprehensive survey on graph neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 32 (1), 4–24. 
Xia, R. , et al. , 2014. Supervised hashing for image retrieval via image representation learning.
In: Twenty-Eighth AAAI Conference on Artificial Intelligence. 
Xu, M. , et al. , 2020. Spatial-temporal transformer networks for traffic flow forecasting. arXiv
preprint arXiv:2001.02908. 
Yan, B. , et al. , 2018. xnet+ sc: Classifying places based on images by incorporating spatial
contexts. In: 10th International Conference on Geographic Information Science (GIScience
2018) . Informatik. 
Yan, B. , et al. , 2019. A spatially explicit reinforcement learning model for geographic
knowledge graph summarization. Transactions in GIS, 23 (3), 620–640. 
Yang, B. , et al. , 2021. St-lbagan: Spatio-temporal learnable bidirectional attention generative
adversarial networks for missing traffic data imputation. Knowledge-Based Systems, 215,
106705. 
Yoon, J. , Jordon, J. , and Schaar, M. , 2018. Gain: Missing data imputation using generative
adversarial nets. In: International Conference on Machine Learning . PMLR, 5689–5698. 
Yu, Y. , et al. , 2019. A review of recurrent neural networks: Lstm cells and network
architectures. Neural Computation, 31 (7), 1235–1270. 
Zhang, B. , et al. , 2022. Styleswin: Transformer-based gan for high-resolution image
generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition . 11304–11314. 
Zhang, F. , et al. , 2018a. Measuring human perceptions of a large-scale urban region using
machine learning. Landscape and Urban Planning, 180, 148–160. 
Zhang, T. , et al. , 2018b. Spatial–temporal recurrent neural network for emotion recognition.
IEEE Transactions on Cybernetics, 49 (3), 839–847. 
Zhang, Y. and Cheng, T. , 2020. Graph deep learning model for network-based predictive
hotspot mapping of sparse spatio-temporal events. Computers, Environment and Urban
Systems, 79, 101403. 
Zhao, B. , et al. , 2021. Deep fake geography? when geospatial data encounter artificial
intelligence. Cartography and Geographic Information Science, 48 (4), 338–352. 
Zhao, L. , et al. , 2019. T-gcn: A temporal graph convolutional network for traffic prediction.
IEEE Transactions on Intelligent Transportation Systems, 21 (9), 3848–3858. 
Zhou, B. , et al. , 2017. Places: A 10 million image database for scene recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40 (6), 1452–1464. 
Zhou, B. , et al. , 2014. Learning deep features for scene recognition using places database.
Advances in Neural Information Processing Systems, 27. 
Zhou, F. , et al. , 2021. Improving human mobility identification with trajectory augmentation.
GeoInformatica, 25 (3), 453–483.



Zhou, J. , et al. , 2020. Graph neural networks: A review of methods and applications. AI Open,
1, 57–81. 
Zhu, A.X. , et al. , 2018. Spatial prediction based on third law of geography. Annals of GIS, 24
(4), 225–240. 
Zhu, D. , et al. , 2020a. Spatial interpolation using conditional generative adversarial neural
networks. International Journal of Geographical Information Science, 34 (4), 735–758. 
Zhu, D. , et al. , 2020b. Understanding place characteristics in geographic contexts through
graph convolutional neural networks. Annals of the American Association of Geographers, 110
(2), 408–420. 
Zhu, J.Y. , et al. , 2017a. Unpaired image-to-image translation using cycle-consistent
adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision
. 2223–2232. 
Zhu, R. , et al. , 2021a. Providing humanitarian relief support through knowledge graphs. In:
Proceedings of the 11th nowledge Capture Conference . 285–288. 
Zhu, R. , et al. , 2022a. Reasoning over higher-order qualitative spatial relations via spatially
explicit neural networks. International Journal of Geographical Information Science, 36 (11),
2194–2225. 
Zhu, R. , et al. , 2022b. Covid-forecast-graph: An open knowledge graph for consolidating covid-
19 forecasts and economic indicators via place and time. AGILE: GIScience Series, 3, 21. 
Zhu, R. , et al. , 2021b. Environmental observations in knowledge graphs. In: DaMaLOS. 1–11. 
Zhu, X.X. , et al. , 2017b. Deep learning in remote sensing: A comprehensive review and list of
resources. IEEE Geoscience and Remote Sensing Magazine, 5 (4), 8–36. 

 
GeoAI for Spatial Image Processing 
Abhar, K.C. , et al. , 2015. Spatial–temporal evolution of aeolian blowout dunes at cape cod.
Geomorphology, 236, 148–162. 
Acosta, J. and Cherrier, B. , 2021. The transformation of economic analysis at the board of
governors of the federal reserve system during the 1960s. Journal of the History of Economic
Thought, 43 (3), 323–349. 
Al-Mistarehi, B. , et al. , 2022. Using machine learning models to forecast severity level of traffic
crashes by r studio and arcgis. Frontiers in Built Environment, 8, 54. 
Amato, F. , et al. , 2020. A novel framework for spatio-temporal prediction of environmental data
using deep learning. Scientific Reports, 10 (1), 22243. 
Arundel, S.T. , Li, W. , and Wang, S. , 2020. Geonat v1. 0: A dataset for natural feature
mapping with artificial intelligence and supervised learning. Transactions in GIS, 24 (3),
556–572. 
Arundel, S.T. , Morgan, T.P. , and Thiem, P.T. , 2022. Deep learning detection and recognition
of spot elevations on historical topographic maps. Frontiers in Environmental Science, 117. 
Barnes, T.J. , 2004. Placing ideas: genius loci, heterotopia and geography's quantitative
revolution. Progress in Human Geography, 28 (5), 565–595. 
Behnke, S. , 2003. Hierarchical Neural Networks for Image Interpretation. vol. 2766. Springer. 
Benos, L. , et al. , 2021. Machine learning in agriculture: A comprehensive updated review.
Sensors, 21 (11), 3758. 
Bhatti, U.A. , et al. , 2020. Geometric algebra applications in geospatial artificial intelligence and
remote sensing image processing. IEEE Access, 8, 155783–155796. 
Bhavsar, P. , et al. , 2017. Machine learning in transportation data analytics. In: Data Analytics
for Intelligent Transportation Systems. Elsevier, 283–307. 
Bickel, V.T. , Mandrake, L. , and Doran, G. , 2021. A labeled image dataset for deep learning-
driven rockfall detection on the moon and mars. Frontiers in Remote Sensing, 2, 640034. 
Bielecki, A. , 2019. Models of Neurons and Perceptrons: Selected Problems and Challenges.
Springer. 
Blaschke, T. , 2010. Object based image analysis for remote sensing. ISPRS Journal of
Photogrammetry and Remote Sensing, 65 (1), 2–16.



Bryant, R.G. and Baddock, M.C. , 2021. Remote sensing of aeolian processes. Reference
Module in Earth Systems and Environmental Sciences. 
Burnett, C. and Blaschke, T. , 2003. A multi-scale segmentation/object relationship modelling
methodology for landscape analysis. Ecological Modelling, 168 (3), 233–249. 
Campos-Taberner, M. , et al. , 2020. Understanding deep learning in land use classification
based on sentinel-2 time series. Scientific Reports, 10 (1), 17188. 
Cheng, K.S. , Lin, J.S. , and Mao, C.W. , 1996. The application of competitive hopfield neural
network to medical image segmentation. IEEE Transactions on Medical Imaging, 15 (4),
560–567. 
Chisolm, E. , 2012. Geometric algebra. arXiv preprint arXiv:1205.5935. 
Church, M. , 2010. The trajectory of geomorphology. Progress in Physical Geography, 34 (3),
265–286. 
Cracknell, A. , 1998. Synergy in remote sensing-what's in a pixel? Int. J. Remote Sens, 19,
2025–2057. 
Cresswell, T. , 2013. Spatial science and the quantitative revolution. Geographic Thought: A
Critical Introduction. 
Daranagama, S. and Witayangkurn, A. , 2021. Automatic building detection with polygonizing
and attribute extraction from high-resolution images. ISPRS International Journal of Geo-
Information, 10 (9), 606. 
Dechter, R. , 1986. Learning while searching in constraint-satisfaction problems. In: AAAI-86
Proceedings. 178–185. 
Dong, G. , et al. , 2020. Real-time high-performance semantic image segmentation of urban
street scenes. IEEE Transactions on Intelligent Transportation Systems, 22 (6), 3258–3274. 
Dosovitskiy, A. , et al. , 2020. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929. 
Douard, J. , 1996. Review: Reviewed works: Trust in numbers: The pursuit of objectivity in
science and public life by theodore m. porter; quantification and the quest for medical certainty
by j. rosser mathews. Polit. Life Sci, 15, 350–353. 
Duan, W. , et al. , 2020. Automatic alignment of contemporary vector data and georeferenced
historical maps using reinforcement learning. International Journal of Geographical Information
Science, 34 (4), 824–849. 
Dyrmann, M. , et al. , 2016. Pixel-wise classification of weeds and crops in images by using a
fully convolutional neural network. In: Proceedings of the International Conference on
Agricultural Engineering, Aarhus, Denmark . 26–29. 
Ellenson, A. , et al. , 2020. An application of a machine learning algorithm to determine and
describe error patterns within wave model output. Coastal Engineering, 157, 103595. 
Escalera, D. , Fraile-Jurado, P. , and Peña Alonso, C. , 2016. Evaluation of the Impact of Dune
Management on the Coast of Huelva Using Repeat Photography Techniques (1986, 2001 and
2015). 137–156. 
Feizizadeh, B. , et al. , 2021. A comparison of the integrated fuzzy object-based deep learning
approach and three machine learning techniques for land use/cover change monitoring and
environmental impacts assessment. GIScience & Remote Sensing, 58 (8), 1543–1570. 
Féret, J.B. , et al. , 2019. Estimating leaf mass per area and equivalent water thickness based
on leaf optical properties: Potential and limitations of physical modeling and machine learning.
Remote Sensing of Environment, 231, 110959. 
Fernandes, S. , Duseja, D. , and Muthalagu, R. , 2021. Application of image processing
techniques for autonomous cars. Proceedings of Engineering and Technology Innovation, 17, 1. 
Fisher, A.R. , et al. , 2020. Use of convolutional neural networks for semantic image
segmentation across different computing systems. 
Fu, K.S. and Mui, J. , 1981. A survey on image segmentation. Pattern Recognition, 13 (1),
3–16. 
Gagne II, D.J. , et al. , 2019. Interpretable deep learning for spatial analysis of severe
hailstorms. Monthly Weather Review, 147 (8), 2827–2845. 
Gibson, P.B. , et al. , 2021. Training machine learning models on climate model output yields
skillful interpretable seasonal precipitation forecasts. Communications Earth & Environment, 2
(1), 159. 
Gonzales-Inca, C. , et al. , 2022. Geospatial artificial intelligence (geoai) in the integrated
hydrological and fluvial systems modeling: Review of current applications and trends. Water, 14



(14), 2211. 
Goodchild, M.F. , 2018. Reimagining the history of gis. Annals of GIS, 24 (1), 1–8. 
Goodchild, M.F. and Li, W. , 2021. Replication across space and time must be weak in the
social and environmental sciences. Proceedings of the National Academy of Sciences, 118
(35), e2015759118. 
Goodfellow, I. , Bengio, Y. , and Courville, A. , 2016. Deep Learning. MIT Press. 
Graff, L.H. and Usery, E.L. , 1993. Automated classification of generic terrain features in digital
elevation models. Photogrammetric Engineering and Remote Sensing, 59 (9), 1409–1417. 
Gustafsson, K. , Öktem, O. , and Boman, E.J. , 2014. The role of linear algebra in computed
tomography. 
Hammond, E.H. , 1954. Small-scale continental landform maps. Annals of the Association of
American Geographers, 44 (1), 33–42. 
Hattersley-Smith, G. , 1966. The symposium on glacier mapping. Canadian Journal of Earth
Sciences, 3 (6), 737–741. 
Hay, G.J. and Castilla, G. , 2008. Geographic object-based image analysis (geobia): A new
name for a new discipline. Object-Based Image Analysis: Spatial Concepts for Knowledge-
Driven Remote Sensing Applications, 75–89. 
Hebb, D.O. , 2005. The Organization of Behavior: A Neuropsychological Theory. Psychology
press. 
Hernández, E. , et al. , 2016. Rainfall prediction: A deep learning approach. In: Hybrid Artificial
Intelligent Systems 2016. Springer, 151–162. 
Hoffmann, C. , 2013. Superpositions: Ludwig mach and étienne-jules marey's studies in
streamline photography. Studies in History and Philosophy of Science Part A, 44 (1), 1–11. 
Honavar, V. , 1995. Symbolic artificial intelligence and numeric artificial neural networks:
towards a resolution of the dichotomy. Computational Architectures Integrating Neural and
Symbolic Processes: A Perspective on the State of the Art, 351–388. 
Hopfield, J.J. , 1982. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79 (8), 2554–2558. 
Howell, S.B. , 2006. Handbook of ccd Astronomy. vol. 5. Cambridge University Press. 
Hsu, C.Y. and Li, W. , 2023. Explainable geoai: can saliency maps help interpret artificial
intelligence's learning process? an empirical study on natural feature detection. International
Journal of Geographical Information Science, 37 (5), 963–987. 
Hsu, C.Y. , Li, W. , and Wang, S. , 2021. Knowledge-driven geoai: Integrating spatial knowledge
into multi-scale deep learning for mars crater detection. Remote Sensing, 13 (11), 2116. 
Hughes, D. , 2016. Natural Visions: Photography and Ecological Knowledge, 1895-1939. Thesis
(PhD). De Montfort University. 
Janowicz, K. , et al. , 2022. Know, know where, knowwheregraph: A densely connected, cross-
domain knowledge graph and geo-enrichment service stack for applications in environmental
intelligence. AI Magazine, 43 (1), 30–39. 
Kettig, R.L. and Landgrebe, D. , 1976. Classification of multispectral image data by extraction
and classification of homogeneous objects. IEEE Transactions on Geoscience Electronics, 14
(1), 19–26. 
Khan, A.A. , Laghari, A.A. , and Awan, S.A. , 2021. Machine learning in computer vision: a
review. EAI Endorsed Transactions on Scalable Information Systems, 8 (32), e4–e4. 
Kirsch, R.A. , 1998. Seac and the start of image processing at the national bureau of standards.
IEEE Annals of the History of Computing, 20 (2), 7–13. 
Kirsch, R.A. , 2010. Precision and accuracy in scientific imaging. Journal of Research of the
National Institute of Standards and Technology, 115 (3), 195. 
Kirsch, R.A. , et al. , 1957. Experiments in processing pictorial information with a digital
computer. In: Papers and Discussions Presented at the December 9-13, 1957, Eastern Joint
Computer Conference: Computers with Deadlines to Meet. 221–229. 
Koc, M. and Acar, A. , 2021. Investigation of urban climates and built environment relations by
using machine learning. Urban Climate, 37, 100820. 
Kohn, C.F. , 1970. The 1960's: A decade of progress in geographical research and instruction.
Annals of the Association of American Geographers, 60 (2), 211–219. 
Krizhevsky, A. , Sutskever, I. , and Hinton, G.E. , 2012. Imagenet classification with deep
convolutional neural networks. In: Proceedings of NIPS'12, Red Hook, NY, USA. 1097–1105.



Kucharczyk, M. , et al. , 2020. Geographic object-based image analysis: a primer and future
directions. Remote Sensing, 12 (12), 2012. 
Kurth, T. , et al. , 2018. Exascale deep learning for climate analytics. In: SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis . IEEE,
649–660. 
Lee, R.S. , 2020. Artificial Intelligence in Daily Life. Springer. 
Li, W. , 2020. Geoai: Where machine learning and big data converge in GIScience. Journal of
Spatial Information Science, (20), 71–77. 
Li, W. , 2022. Geoai in social science. Handbook of Spatial Analysis in the Social Sciences,
291–304. 
Li, W. and Arundel, S.T. , 2022. Geoai and the future of spatial analytics. In: New Thinking in
GIScience. Springer, 151–158. 
Li, W. and Hsu, C.Y. , 2020. Automated terrain feature identification from remote sensing
imagery: a deep learning approach. International Journal of Geographical Information Science,
34 (4), 637–660. 
Li, W. and Hsu, C.Y. , 2022. Geoai for large-scale image analysis and machine vision: Recent
progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information,
11 (7), 385. 
Li, W. , Hsu, C.Y. , and Hu, M. , 2021a. Tobler's first law in geoai: A spatially explicit deep
learning model for terrain feature detection under weak supervision. Annals of the American
Association of Geographers, 111 (7), 1887–1905. 
Li, W. , et al. , 2022a. Real-time geoai for high-resolution mapping and segmentation of arctic
permafrost features: the case of ice-wedge polygons. In: Proceedings of the 5th ACM
SIGSPATIAL Workshop on AI for Geographic Knowledge Discovery . 62–65. 
Li, W. , et al. , 2022b. Geoimagenet: a multi-source natural feature benchmark dataset for geoai
and supervised machine learning. GeoInformatica, 1–22. 
Li, W. , et al. , 2023. Geographvis: a knowledge graph and geovisualization empowered
cyberinfrastructure to support disaster response and humanitarian aid. ISPRS International
Journal of Geo-Information, 12 (3), 112. 
Li, W. , et al. , 2022c. Performance benchmark on semantic web repositories for spatially
explicit knowledge graph applications. Computers, Environment and Urban Systems, 98,
101884. 
Li, W. , et al. , 2017. Recognizing terrain features on terrestrial surface using a deep learning
model: An example with crater detection. In: Proceedings of the 1st Workshop on Artificial
Intelligence and Deep Learning for Geographic Knowledge Discovery . 33–36. 
Li, X. , et al. , 2021b. Vehicle detection in very-high-resolution remote sensing images based on
an anchor-free detection model with a more precise foveal area. ISPRS International Journal of
Geo-Information, 10 (8), 549. 
Lin, T.Y. , et al. , 2017. Focal loss for dense object detection. In: Proceedings of the IEEE
International Conference on Computer Vision . 2980–2988. 
Liu, T. , et al. , 2020. Superpixel-based shallow convolutional neural network (sscnn) for
scanned topographic map segmentation. Remote Sensing, 12 (20), 3421. 
Lloyd, C.T. , et al. , 2020. Using gis and machine learning to classify residential status of urban
buildings in low and middle income settings. Remote Sensing, 12 (23), 3847. 
Lundberg, G.A. , 1960. Quantitative methods in sociology: 1920–1960. Social Forces, 39 (1),
19–24. 
Mackay, C.D. , 1986. Charge-coupled devices in astronomy. Annual Review of Astronomy and
Astrophysics, 24 (1), 255–283. 
Magnuson, J.J. , 1990. Long-term ecological research and the invisible present. BioScience, 40
(7), 495–501. 
Mahadevkar, S.V. , et al. , 2022. A review on machine learning styles in computer vision-
techniques and future directions. IEEE Access. 
McCarthy, J. , et al. , 2006. A proposal for the dartmouth summer research project on artificial
intelligence, august 31, 1955. AI Magazine, 27 (4), 12–12. 
McCulloch, W.S. and Pitts, W. , 1943. A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics, 5, 115–133. 
McFarlane, M.D. , 1972. Digital pictures fifty years ago. Proceedings of the IEEE, 60 (7),
768–770.



Mengwall, S. and Guzewich, S.D. , 2023. Cloud identification in mars daily global maps with
deep learning. Icarus, 389, 115252. 
Miller, B.A. , et al. , 2019. Progress in soil geography i: Reinvigoration. Progress in Physical
Geography: Earth and Environment, 43 (6), 827–854. 
Milnor, J. , 1941. Picture transmission by submarine cable. Transactions of the American
Institute of Electrical Engineers, 60 (3), 105–108. 
Minasny, B. and McBratney, A.B. , 2016. Digital soil mapping: A brief history and some lessons.
Geoderma, 264, 301–311. 
Minsky, M. and Papert, S.A. , 2017. Perceptrons: An Introduction to Computational Geometry.
The MIT Press. 
Moor, J. , 2006. The dartmouth college artificial intelligence conference: The next fifty years. AI
Magazine, 27 (4), 87–87. 
Mulyono, S. , et al. , 2016. Identifying sugarcane plantation using landsat-8 images with support
vector machines. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing,
vol. 47, 012008. 
Naghibi, S.A. , Pourghasemi, H.R. , and Dixon, B. , 2016. Gis-based groundwater potential
mapping using boosted regression tree, classification and regression tree, and random forest
machine learning models in iran. Environmental Monitoring and Assessment, 188, 1–27. 
Nir, D. and Nir, D. , 1990. The ‘quantitative revolution’: Regional geography at its apogee.
Region as a Socio-environmental System: An Introduction to a Systemic Regional Geography,
43–57. 
Olazaran, M. , 1996. A sociological study of the official history of the perceptrons controversy.
Social Studies of Science, 26 (3), 611–659. 
Pal, N.R. and Pal, S.K. , 1993. A review on image segmentation techniques. Pattern
Recognition, 26 (9), 1277–1294. 
Quirke, V. and Gaudillière, J.P. , 2008. The era of biomedicine: science, medicine, and public
health in britain and france after the second world war. Medical history, 52 (4), 441–452. 
Rahmati, O. , et al. , 2019. Spatial modeling of snow avalanche using machine learning models
and geo-environmental factors: Comparison of effectiveness in two mountain regions. Remote
Sensing, 11 (24), 2995. 
Redmon, J. and Farhadi, A. , 2018. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767. 
Reichstein, M. , et al. , 2019. Deep learning and process understanding for data-driven earth
system science. Nature, 566 (7743), 195–204. 
Ren, S. , et al. , 2015. Faster r-cnn: Towards real-time object detection with region proposal
networks. Advances in Neural Information Processing Systems, 28. 
Rogers, G.F. , Malde, H.E. , and Turner, R.M. , 1984. Bibliography of Repeat Photography for
Evaluating Landscape Change. 
Rolnick, D. , et al. , 2022. Tackling climate change with machine learning. ACM Computing
Surveys (CSUR), 55 (2), 1–96. 
Romans, L.E. , 1995. Introduction to Computed Tomography. Lippincott Williams & Wilkins. 
Ronneberger, O. , Fischer, P. , and Brox, T. , 2015. U-net: Convolutional networks for
biomedical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9,
2015, Proceedings, Part III 18 . Springer, 234–241. 
Rosenblatt, F. , 1958. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review, 65 (6), 386. 
Rouse, J.W. , et al. , 1974. Monitoring vegetation systems in the great plains with erts. NASA
Spec. Publ, 351 (1), 309. 
Ruggles, S. and Magnuson, D.L. , 2019. The history of quantification in history: The jih as a
case study. Journal of Interdisciplinary History, 50 (3), 363–381. 
Rumelhart, D.E. , Hinton, G.E. , and Williams, R.J. , 1986. Learning representations by back-
propagating errors. Nature, 323 (6088), 533–536. 
Sarikan, S.S. and Ozbayoglu, A.M. , 2018. Anomaly detection in vehicle traffic with image
processing and machine learning. Procedia Computer Science, 140, 64–69. 
Saska, H. , 2010. Anna atkins: Photographs of british algae. Bulletin of the Detroit Institute of
Arts, 84 (14), 8–15.



Sexton, N.J. and Love, B.C. , 2022. Reassessing hierarchical correspondences between brain
and deep networks through direct interface. Science Advances, 8 (28), eabm2219. 
Shirzadi, A. , et al. , 2018. Shallow landslide susceptibility mapping. Sensors, 18, 1–28. 
Song, H. , et al. , 2019. Vision-based vehicle detection and counting system using deep learning
in highway scenes. European Transport Research Review, 11, 1–16. 
Song, M. , et al. , 2016. Spatiotemporal data representation and its effect on the performance of
spatial analysis in a cyberinfrastructure environment–a case study with raster zonal analysis.
Computers & Geosciences, 87, 11–21. 
Starrs, P.F. , 1998. Brinck jackson in the realm of the everyday. Geographical Review, 88 (4),
492–506. 
Stegner, W. , 1992. Beyond the Hundredth Meridian: John Wesley Powell and the Second
Opening of the West. Penguin. 
Stokes, C. , et al. , 2013. Formation of mega-scale glacial lineations on the dubawnt lake ice
stream bed: 1. size, shape and spacing from a large remote sensing dataset. Quaternary
Science Reviews, 77, 190–209. 
Talukdar, S. , et al. , 2020. Land-use land-cover classification by machine learning classifiers for
satellite observations—a review. Remote Sensing, 12 (7), 1135. 
Tarran, B. and Ghahramani, Z. , 2015. How machines learned to think statistically. Significance,
12 (1), 8–15. 
Tu, K.L. , et al. , 2018. Selection for high quality pepper seeds by machine vision and classifiers.
Journal of Integrative Agriculture, 17 (9), 1999–2006. 
Tucker, C. , Miller, L. , and Pearson, R. , 1973. Measurement of the combined effect of green
biomass, chlorophyll, and leaf water on canopy spectroreflectance of the shortgrass prairie.
Remote Sensing of Earth Resources. 
Vogel, C. , et al. , 2019. A delphi study to build consensus on the definition and use of big data
in obesity research. International Journal of Obesity, 43 (12), 2573–2586. 
Wang, S. and Li, W. , 2021. Geoai in terrain analysis: Enabling multi-source deep learning and
data fusion for natural feature detection. Computers, Environment and Urban Systems, 90,
101715. 
Weng, Q. , et al. , 2018. Land-use scene classification based on a cnn using a constrained
extreme learning machine. International Journal of Remote Sensing, 39 (19), 6281–6299. 
Wheeler, J.O. , 2001. urban geography in the 1960s. Urban Geography, 22 (6), 511–513. 
White, R.A. , et al. , 2019. Measurement of vegetation change in critical dune sites along the
eastern shores of lake michigan from 1938 to 2014 with object-based image analysis. Journal of
Coastal Research, 35 (4), 842–851. 
Worboys, M.F. , 1999. Relational databases and beyond. Geographical Information Systems, 1,
373–384. 
Wu, H. , et al. , 2022. Runoff modeling in ungauged catchments using machine learning
algorithm-based model parameters regionalization methodology. Engineering. 
Yamashita, R. , et al. , 2018. Convolutional neural networks: an overview and application in
radiology. Insights into Imaging, 9, 611–629. 
Yu, Z. , et al. , 2016. Geometric algebra model for geometry-oriented topological relation
computation. Transactions in GIS, 20 (2), 259–279. 
Yuan, L. , et al. , 2012. Geometric algebra method for multidimensionally-unified gis
computation. Chinese Science Bulletin, 57, 802–811. 
Yuan, L. , Yu, Z. , and Luo, W. , 2019. Towards the next-generation gis: A geometric algebra
approach. Annals of GIS, 25 (3), 195–206. 
Zhong, L. , Hu, L. , and Zhou, H. , 2019. Deep learning based multi-temporal crop classification.
Remote Sensing of Environment, 221, 430–443. 
Zhou, P. and Chang, Y. , 2021. Automated classification of building structures for urban built
environment identification using machine learning. Journal of Building Engineering, 43, 103008. 

 



Spatial Representation Learning in GeoAI 
Acuna, D. , et al. , 2018. Efficient interactive annotation of segmentation datasets with Polygon-
RNN++. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition .
859–868. 
Alahi, A. , et al. , 2016. Social lstm: Human trajectory prediction in crowded spaces. In:
Proceedings of the IEEE Conference on CVPR . 961–971. 
Ayush, K. , et al. , 2021. Geography-aware self-supervised learning. In: Proceedings of the 
IEEE International Conference on Computer Vision . 10181–10190. 
Bengio, Y. , Courville, A. , and Vincent, P. , 2013. Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (8),
1798–1828. 
Berg, T. , et al. , 2014. Birdsnap: Large-scale fine-grained visual categorization of birds. In:
CVPR 2014. 2011–2018. 
Bronstein, M.M. , et al. , 2017. Geometric deep learning: going beyond euclidean data. IEEE
Signal Processing Magazine, 34 (4), 18–42. 
Brown, T. , et al. , 2020. Language models are few-shot learners. NIPS 2020, 33, 1877–1901. 
Cai, L. , et al. , 2020. Traffic transformer: Capturing the continuity and periodicity of time series
for traffic forecasting. Transactions in GIS, 24 (3), 736–755. 
Castrejon, L. , et al. , 2017. Annotating object instances with a Polygon-RNN. In: Proceedings of
CVPR'17. 5230–5238. 
Chami, I. , et al. , 2022. Machine learning on graphs: A model and comprehensive taxonomy.
Journal of Machine Learning Research, 23 (89), 1–64. 
Chen, D. , et al. , 2017. Reading wikipedia to answer open-domain questions. arXiv preprint
arXiv:1704.00051. 
Chen, Y. , Liu, S. , and Wang, X. , 2021. Learning continuous image representation with local
implicit image function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition . 8628–8638. 
Chu, G. , et al. , 2019. Geo-aware networks for fine-grained recognition. In: Proceedings of the 
IEEE International Conference on Computer Vision Workshops . 0–0. 
Cong, Y. , et al. , 2022. Satmae: Pre-training transformers for temporal and multi-spectral
satellite imagery. In: Advances in Neural Information Processing Systems. 
Das, R. , et al. , 2019. Multi-step retriever-reader interaction for scalable open-domain question
answering. In: International Conference on Learning Representations. 
DeAngelis, D.L. and Yurek, S. , 2017. Spatially explicit modeling in ecology: a review.
Ecosystems, 20 (2), 284–300. 
Dosovitskiy, A. , et al. , 2020. An image is worth 16x16 words: Transformers for image
recognition at scale. In: International Conference on Learning Representations. 
Dupont, E. , et al. , 2021. Coin: Compression with implicit neural representations. arXiv preprint
arXiv:2103.03123. 
Gao, R. , et al. , 2019. Learning grid cells as vector representation of self-position coupled with
matrix representation of self-motion. In: Proceedings of ICLR 2019. 
Girshick, R. , 2015. Fast r-cnn. In: Proceedings of the IEEE International Conference on
Computer Vision . 1440–1448. 
Goodchild, M. , 2001. Issues in spatially explicit modeling. Agent-Based Models of Land-Use
and Land-Cover Change, 13–17. 
Goodchild, M.F. and Li, W. , 2021. Replication across space and time must be weak in the
social and environmental sciences. PNAS, 118 (35). 
Goodfellow, I. , et al. , 2020. Generative adversarial networks. Communications of the ACM, 63
(11), 139–144. 
Guo, M.H. , et al. , 2022. Attention mechanisms in computer vision: A survey. Computational
Visual Media, 1–38. 
Gupta, J. , et al. , 2021. Spatial variability aware deep neural networks (svann): A general
approach. ACM Transactions on Intelligent Systems and Technology (TIST), 12 (6), 1–21. 
Ha, D. and Eck, D. , 2018. A neural representation of sketch drawings. In: International
Conference on Learning Representations. 
Hamilton, W.L. , Ying, R. , and Leskovec, J. , 2017. Representation learning on graphs:
Methods and applications. arXiv preprint arXiv:1709.05584.



Hamzei, E. , Tomko, M. , and Winter, S. , 2022. Translating place-related questions to
geosparql queries. In: Proceedings of the ACM Web Conference 2022 . 902–911. 
Haw, D.J. , et al. , 2020. Strong spatial embedding of social networks generates nonstandard
epidemic dynamics independent of degree distribution and clustering. Proceedings of the
National Academy of Sciences, 117 (38), 23636–23642. 
He, K. , et al. , 2022. Masked autoencoders are scalable vision learners. In: Proceedings of the 
IEEE/CVF Conference on CVPR . 16000–16009. 
He, Y. , et al. , 2021. Spatial-temporal super-resolution of satellite imagery via conditional pixel
synthesis. Advances in Neural Information Processing Systems, 34, 27903–27915. 
Hoffart, J. , et al. , 2013. Yago2: A spatially and temporally enhanced knowledge base from
wikipedia. Artificial Intelligence, 194, 28–61. 
Holt, D. , et al. , 1996. Aggregation and ecological effects in geographically based data.
Geographical Analysis, 28 (3), 244–261. 
Horner, M.W. and Murray, A.T. , 2002. Excess commuting and the modifiable areal unit
problem. Urban Studies, 39 (1), 131–139. 
Hu, Y. , et al. , 2015. Metadata topic harmonization and semantic search for linked-data-driven
geoportals: A case study using arcgis online. Transactions in GIS, 19 (3), 398–416. 
Janowicz, K. , et al. , 2020. Geoai: spatially explicit artificial intelligence techniques for
geographic knowledge discovery and beyond. 
Janowicz, K. , et al. , 2022. Know, know where, knowwheregraph: A densely connected, cross-
domain knowledge graph and geo-enrichment service stack for applications in environmental
intelligence. AI Magazine, 43 (1), 30–39. 
Jean, N. , et al. , 2019. Tile2vec: Unsupervised representation learning for spatially distributed
data. In: Proceedings of the AAAI Conference on Artificial Intelligence . vol. 33, 3967–3974. 
Jiang, C. , et al. , 2019a. DDSL: Deep differentiable simplex layer for learning geometric signals.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision . 8769–8778. 
Jiang, C.M. , et al. , 2019b. Convolutional neural networks on non-uniform geometrical signals
using euclidean spectral transformation. In: International Conference on Learning
Representations. 
Karpukhin, V. , et al. , 2020. Dense passage retrieval for open-domain question answering. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP) . 6769–6781. 
Kenton, J.D.M.W.C. and Toutanova, L.K. , 2019. Bert: Pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of NAACL-HLT. 4171–4186. 
Kingma, D.P. and Welling , M., 2013. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114. 
Kuhn, W. , et al. , 2021. The semantics of place-related questions. Journal of Spatial
Information Science, (23), 157–168. 
Li, W. , 2020. Geoai: Where machine learning and big data converge in GIScience. Journal of
Spatial Information Science, (20), 71–77. 
Li, W. , Hsu, C.Y. , and Hu, M. , 2021. Tobler's first law in geoai: A spatially explicit deep
learning model for terrain feature detection under weak supervision. Annals of the American
Association of Geographers, 111 (7), 1887–1905. 
Li, Y. , et al. , 2018a. Diffusion convolutional recurrent neural network: Data-driven traffic
forecasting. In: International Conference on Learning Representations. 
Li, Y. , et al. , 2018b. PointCNN: Convolution on x-transformed points. Advances in Neural
Information Processing Systems, 31. 
Li, Y. , et al. , 2018c. Deep learning for remote sensing image classification: A survey. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8 (6), e1264. 
Liang, J. , et al. , 2020. Polytransform: Deep polygon transformer for instance segmentation. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition .
9131–9140. 
Mac Aodha, O. , Cole, E. , and Perona, P. , 2019. Presence-only geographical priors for fine-
grained image classification. In: Proceedings of the IEEE International Conference on Computer
Vision . 9596–9606. 
Mai, G. , et al. , 2022a. Towards a foundation model for geospatial artificial intelligence (vision
paper). In: Proceedings of the 30th International Conference on Advances in Geographic
Information Systems . 1–4.



Mai, G. , et al. , 2022b. Symbolic and subsymbolic geoai: Geospatial knowledge graphs and
spatially explicit machine learning. Transactions in GIS, 26 (8), 3118–3124. 
Mai, G. , et al. , 2020a. Se-kge: A location-aware knowledge graph embedding model for
geographic question answering and spatial semantic lifting. Transactions in GIS, 24 (3),
623–655. 
Mai, G. , et al. , 2022c. A review of location encoding for geoai: methods and applications.
International Journal of Geographical Information Science, 36 (4), 639–673. 
Mai, G. , et al. , 2020b. Multi-scale representation learning for spatial feature distributions using
grid cells. In: The Eighth International Conference on Learning Representations. openreview. 
Mai, G. , et al. , 2021. Geographic question answering: challenges, uniqueness, classification,
and future directions. AGILE: GIScience Series, 2, 1–21. 
Mai, G. , et al. , 2022d. Towards general-purpose representation learning of polygonal
geometries. GeoInformatica, 1–52. 
Mai, G. , et al. , 2022e. Sphere2vec: Multi-scale representation learning over a spherical surface
for geospatial predictions. arXiv preprint arXiv:2201.10489. 
Mai, G. , et al. , 2019. Relaxing unanswerable geographic questions using a spatially explicit
knowledge graph embedding model. In: AGILE 2019. Springer, 21–39. 
Manas, O. , et al. , 2021. Seasonal contrast: Unsupervised pre-training from uncurated remote
sensing data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision .
9414–9423. 
Maturana, D. and Scherer, S. , 2015. Voxnet: A 3d convolutional neural network for real-time
object recognition. In: 2015 IEEE/RSJ IROS. IEEE, 922–928. 
Mikolov, T. , et al. , 2013. Distributed representations of words and phrases and their
compositionality. Advances in Neural Information Processing Systems, 26. 
Mildenhall, B. , et al. , 2021. Nerf: Representing scenes as neural radiance fields for view
synthesis. Communications of the ACM, 65 (1), 99–106. 
Musleh, M. , Mokbel, M.F. , and Abbar, S. , 2022. Let's speak trajectories. In: Proceedings of
the 30th ACM SIGSPATIAL . 1–4. 
Nickel, M. , et al. , 2015. A review of relational machine learning for knowledge graphs.
Proceedings of the IEEE, 104 (1), 11–33. 
Niemeyer, M. and Geiger, A. , 2021. Giraffe: Representing scenes as compositional generative
neural feature fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition . 11453–11464. 
Pennington, J. , Socher, R. , and Manning, C.D. , 2014. Glove: Global vectors for word
representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP) . 1532–1543. 
Qi, C.R. , et al. , 2017a. Pointnet: Deep learning on point sets for 3d classification and
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition . 652–660. 
Qi, C.R. , et al. , 2017b. Pointnet++: Deep hierarchical feature learning on point sets in a metric
space. Advances in Neural Information Processing Systems, 30. 
Qi, Y. , et al. , 2019. A hybrid model for spatiotemporal forecasting of pm2. 5 based on graph
convolutional neural network and long short-term memory. Science of the Total Environment,
664, 1–10. 
Rahimi, A. and Recht, B. , 2007. Random features for large-scale kernel machines. Advances in
Neural Information Processing Systems, 20. 
Rao, J. , et al. , 2020. LSTM-TrajGAN: A deep learning approach to trajectory privacy
protection. In: GIScience 2020. 12:1–12:17. 
Rumelhart, D.E. , Hinton, G.E. , and Williams, R.J. , 1986. Learning representations by back-
propagating errors. Nature, 323 (6088), 533–536. 
Schuster, M. and Paliwal, K.K. , 1997. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45 (11), 2673–2681. 
Soni, A. and Boddhu, S. , 2022. Finding map feature correspondences in heterogeneous
geospatial datasets. In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on
Geospatial Knowledge Graphs . 7–16. 
Su, H. , et al. , 2015. Multi-view convolutional neural networks for 3d shape recognition. In:
ICCV 2015. 945–953.



Sutskever, I. , Vinyals, O. , and Le, Q.V. , 2014. Sequence to sequence learning with neural
networks. Advances in Neural Information Processing Systems, 27. 
Tancik, M. , et al. , 2020. Fourier features let networks learn high frequency functions in low
dimensional domains. Advances in Neural Information Processing Systems, 33, 7537–7547. 
Tang, K. , et al. , 2015. Improving image classification with location context. In: Proceedings of
the IEEE International Conference on Computer Vision . 1008–1016. 
Tenzer, M. , et al. , 2022. Meta-learning over time for destination prediction tasks. In:
Proceedings of the 30th International Conference on Advances in Geographic Information
Systems . 1–10. 
Terry, J.C.D. , Roy, H.E. , and August, T.A. , 2020. Thinking like a naturalist: Enhancing
computer vision of citizen science images by harnessing contextual data. Methods in Ecology
and Evolution, 11 (2), 303–315. 
Tobler, W.R. , 1970. A computer movie simulating urban growth in the detroit region. Economic
Geography, 46 (sup1), 234–240. 
Trisedya, B.D. , Qi, J. , and Zhang, R. , 2019. Entity alignment between knowledge graphs
using attribute embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 33, 297–304. 
Vaswani, A. , et al. , 2017. Attention is all you need. Advances in Neural Information Processing
Systems, 30. 
Veer, R.V. , Bloem, P. , and Folmer, E. , 2018. Deep learning for classification tasks on
geospatial vector polygons. arXiv preprint arXiv:1806.03857. 
Wang, L. , et al. , 2019a. Graph attention convolution for point cloud semantic segmentation. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition .
10296–10305. 
Wang, Q. , et al. , 2017. Knowledge graph embedding: A survey of approaches and
applications. IEEE Transactions on Knowledge and Data Engineering, 29 (12), 2724–2743. 
Wang, Y. , et al. , 2019b. Dynamic graph CNN for learning on point clouds. ACM Transactions
on Graphics (tog), 38 (5), 1–12. 
Wu, W. , Qi, Z. , and Fuxin, L. , 2019. Pointconv: Deep convolutional networks on 3d point
clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition . 9621–9630. 
Wu, Z. , et al. , 2020. A comprehensive survey on graph neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 32 (1), 4–24. 
Xie, Y. , et al. , 2021. A statistically-guided deep network transformation and moderation
framework for data with spatial heterogeneity. In: 2021 IEEE International Conference on Data
Mining (ICDM) . IEEE, 767–776. 
Yan, B. , et al. , 2017. From itdl to place2vec: Reasoning about place type similarity and
relatedness by learning embeddings from augmented spatial contexts. In: Proceedings of the 
25th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems . 1–10. 
Yan, X. , et al. , 2021. Graph convolutional autoencoder model for the shape coding and
cognition of buildings in maps. International Journal of Geographical Information Science, 35
(3), 490–512. 
Yan, X. , et al. , 2019. A graph convolutional neural network for classification of building patterns
using spatial vector data. ISPRS Journal of Photogrammetry and Remote Sensing, 150,
259–273. 
Yang, J. , et al. , 2021. Implicit transformer network for screen content image continuous super-
resolution. Advances in Neural Information Processing Systems, 34. 
Yang, L. , et al. , 2022. Dynamic mlp for fine-grained image classification by leveraging
geographical and temporal information. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition . 10945–10954. 
Yin, Y. , et al. , 2019. Gps2vec: Towards generating worldwide gps embeddings. In:
Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems . 416–419. 
Yu, W. and Chen, Y. , 2022. Filling gaps of cartographic polylines by using an encoder–decoder
model. IJGIS, 1–26. 
Zhang, K. , 2021. Implicit neural representation learning for hyperspectral image super-
resolution. arXiv preprint arXiv:2112.10541.



Zhong, E.D. , et al. , 2020. Reconstructing continuous distributions of 3d protein structure from
cryo-em images. In: ICLR 2020. 
Zhu, R. , et al. , 2022. Reasoning over higher-order qualitative spatial relations via spatially
explicit neural networks. International Journal of Geographical Information Science, 36 (11),
2194–2225. 

 
Intelligent Spatial Prediction and Interpolation Methods 
Anselin, L. , 1988. Spatial Econometrics: Methods and Models. vol. 4. Springer Science &
Business Media. 
Anselin, L. , 1992. Space and applied econometrics: introduction. Regional Science and Urban
Economics, 22 (3), 307–316. 
Anselin, L. , 2010. Thirty years of spatial econometrics. Papers in Regional Science, 89 (1),
3–25. 
Anselin, L. and Bera, A.K. , 1998. Spatial dependence in linear regression models with an
introduction to spatial econometrics. Statistics Textbooks and Monographs, 155, 237–290. 
Anselin, L. and Rey, S.J. , 2014. Modern Spatial Econometrics in Practice: A Guide to Geoda,
Geodaspace and Pysal. GeoDa Press LLC. 
Arbia, G. , 2014. A primer for spatial econometrics with applications in r. Springer. 
Arjovsky, M. , Chintala, S. , and Bottou, L. , 2017. Wasserstein Generative Adversarial
Networks. In: Proceedings of the 34th International Conference on Machine Learning , July.
PMLR, 214–223. 
Bai, J. , et al. , 2021. A3t-gcn: Attention temporal graph convolutional network for traffic
forecasting. ISPRS International Journal of Geo-Information, 10 (7), 485. 
Besag, J. , 1974. Spatial interaction and the statistical analysis of lattice systems. Journal of the
Royal Statistical Society: Series B (Methodological), 36 (2), 192–225. 
Bui, K.H.N. , Cho, J. , and Yi, H. , 2021. Spatial-temporal graph neural network for traffic
forecasting: An overview and open research issues. Applied Intelligence, 1–12. 
Burrough, P.A. , McDonnell, R.A. , and Lloyd, C.D. , 2015. Principles of Geographical
Information Systems. Oxford University Press. 
Caers, J. , 2002. Multiple-point geostatistics: A quantitative vehicle for integrating geologic
analogs into Stanford University, Stanford Center for Reservoir Forecasting. 1–24. 
Cao, G. , Kyriakidis, P.C. , and Goodchild, M.F. , 2011a. A multinomial logistic mixed model for
the prediction of categorical spatial data. International Journal of Geographical Information
Science. 
Cao, G. , Kyriakidis, P. , and Goodchild, M. , 2013. On spatial transition probabilities as
continuity measures in categorical fields. arXiv preprint arXiv:1312.5391. 
Cao, G. , Kyriakidis, P.C. , and Goodchild, M.F. , 2011b. Combining spatial transition
probabilities for stochastic simulation of categorical fields. International Journal of Geographical
Information Science, 25 (11), 1773–1791. 
Cao, G. , Yoo, E.H. , and Wang, S. , 2014. A statistical framework of data fusion for spatial
prediction of categorical variables. Stochastic Environmental Research and Risk Assessment,
28 (7), 1785–1799. 
Carle, S.F. and Fogg, G.E. , 1996. Transition probability-based indicator geostatistics.
Mathematical Geology, 28 (4), 453–476. 
Chen, L. , et al. , 2019a. Quantifying the scale effect in geospatial big data using semi-
variograms. PloS One, 14 (11), e0225139. 
Chen, R. , et al. , 2019b. A hybrid CNN-LSTM model for typhoon formation forecasting.
GeoInformatica, 23 (3), 375–396. 
Chiles, J.P. and Delfiner, P. , 1999. Geostatistics: Modeling Spatial Uncertainty. vol. 136. Wiley-
Interscience. 
Chu, X. , et al. , 2021. Twins: Revisiting the design of spatial attention in vision transformers.
Advances in Neural Information Processing Systems, 34, 9355–9366. 
Cressie, N. , 2015. Statistics for Spatial Data. John Wiley & Sons.



Dai, Z. , et al. , 2022. Geographically convolutional neural network weighted regression: a
method for modeling spatially non-stationary relationships based on a global spatial proximity
grid. International Journal of Geographical Information Science, 0 (0), 1–22. 
Dale, M.R. and Fortin, M.J. , 2014. Spatial Analysis: A Guide for Ecologists. Cambridge
University Press. 
Darmofal, D. , 2015. Spatial Analysis for the Social Sciences. Cambridge University Press. 
Defferrard, M. , Bresson, X. , and Vandergheynst, P. , 2016. Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information Processing
Systems. 3844–3852. 
Diggle, P.J. , Tawn, J.A. , and Moyeed, R.A. , 1998. Model-based Geostatistics. Applied
Statistics, 47 (3), 299–350. 
Draxl, C. , et al. , 2015a. Overview and Meteorological Validation of the Wind Integration
National Dataset Toolkit. National Renewable Energy Lab.(NREL), Golden, CO (United States). 
Draxl, C. , et al. , 2015b. The wind integration national dataset (wind) toolkit. Applied Energy,
151, 355–366. 
Du, Z. , et al. , 2020. Geographically neural network weighted regression for the accurate
estimation of spatial non-stationarity. International Journal of Geographical Information Science,
34 (7), 1353–1377. 
Fischer, M.M. , 1998. Computational neural networks: a new paradigm for spatial analysis.
Environment and Planning A, 30 (10), 1873–1891. 
Fischer, M.M. and Wang, J. , 2011. Spatial Data Analysis: Models, Methods and Techniques.
Springer Science & Business Media. 
Fotheringham, A.S. , Yang, W. , and Kang, W. , 2017. Multiscale geographically weighted
regression (mgwr). Annals of the American Association of Geographers, 107 (6), 1247–1265. 
Gal, Y. , 2016. Uncertainty in Deep Learning. PhD Thesis. 
Gal, Y. and Ghahramani, Z. , 2016. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In: International Conference on Machine Learning. 1050–1059. 
Gao, S. , 2020. A review of recent researches and reflections on geospatial artificial intelligence.
Geomatics and Information Science of Wuhan University, 45 (12), 1865–1874. 
Goodchild, M.F. , 2004a. Giscience, geography, form, and process. Annals of the Association of
American Geographers, 94 (4), 709–714. 
Goodchild, M.F. , 2004b. The validity and usefulness of laws in geographic information science
and geography. Annals of the Association of American Geographers, 94 (2), 300–303. 
Goodchild, M.F. , 2008. Statistical perspectives on geographic information science.
Geographical Analysis, 40 (3), 310–325. 
Goodchild, M.F. , 2020. How well do we really know the world? Uncertainty in GIScience.
Journal of Spatial Information Science, (20), 97–102. 
Goodchild, M.F. and Li, W. , 2021. Replication across space and time must be weak in the
social and environmental sciences. Proceedings of the National Academy of Sciences, 118
(35). 
Goovaerts, P. , 2005. Geostatistical analysis of disease data: estimation of cancer mortality risk
from empirical frequencies using poisson kriging. International Journal of Health Geographics, 4
(1), 1–33. 
Griffith, D.A. and Paelinck, J.H.P. , 2011. Non-standard Spatial Statistics and Spatial
Econometrics. Springer Science & Business Media. 
Hu, S. , et al. , 2021. Urban function classification at road segment level using taxi trajectory
data: A graph convolutional neural network approach. Computers, Environment and Urban
Systems, 87, 101619. 
Janowicz, K. , et al. , 2020. Geoai: spatially explicit artificial intelligence techniques for
geographic knowledge discovery and beyond. International Journal of Geographical Information
Science, 34 (4), 625–636. 
Jean, N. , et al. , 2016. Combining satellite imagery and machine learning to predict poverty.
Science, 353 (6301), 790–794. 
Karras, T. , et al. , 2018. Progressive growing of gans for improved quality, stability, and
variation. 26. 
Kedron, P. , et al. , 2021. Reproducibility and replicability: Opportunities and challenges for
geospatial research. International Journal of Geographical Information Science, 35 (3),
427–445.



Kelejian, H.H. and Prucha, I.R. , 1998. A generalized spatial two-stage least squares procedure
for estimating a spatial autoregressive model with autoregressive disturbances. The Journal of
Real Estate Finance and Economics, 17 (1), 99–121. 
Kelejian, H.H. and Prucha, I.R. , 1999. A generalized moments estimator for the autoregressive
parameter in a spatial model. International Economic Review, 40 (2), 509–533. 
Kelejian, H.H. and Prucha, I.R. , 2007. The relative efficiencies of various predictors in spatial
econometric models containing spatial lags. Regional Science and Urban Economics, 37 (3),
363–374. 
King, J. , Clifton, A. , and Hodge, B.M. , 2014. Validation of Power Output for the Wind Toolkit.
National Renewable Energy Lab.(NREL), Golden, CO (United States). 
Kipf, T.N. and Welling, M. , 2017. Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations. 
Kitanidis, P.K. and Shen, K.F. , 1996. Geostatistical interpolation of chemical concentration.
Advances in Water Resources, 19 (6), 369–378. 
Kleiber, W. and Nychka, D. , 2012. Nonstationary modeling for multivariate spatial processes.
Journal of Multivariate Analysis, 112, 76–91. 
Klemmer, K. and Neill, D.B. , 2021. Auxiliary-task learning for geographic data with
autoregressive embeddings. In: Proceedings of the 29th International Conference on Advances
in Geographic Information Systems . 141–144. 
Kyriakidis, P.C. , 2004. A geostatistical framework for area-to-point spatial interpolation.
Geographical Analysis, 36, 259–289. 
Lam, N.S.N. , 1983. Spatial interpolation methods: a review. The American Cartographer, 10
(2), 129–150. 
LeCun, Y. , Bengio, Y. , and Hinton, G. , 2015. Deep learning. Nature, 521 (7553), 436–444. 
Ledig, C. , et al. , 2017. Photo-realistic single image super-resolution using a generative
adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition . 4681–4690. 
Lehmann, A. , Overton, J.M. , and Leathwick, J.R. , 2002. Grasp: generalized regression
analysis and spatial prediction. Ecological Modelling, 157 (2–3), 189–207. 
LeSage, J. and Pace, R.K. , 2009. Introduction to Spatial Econometrics. Chapman and
Hall/CRC. 
LeSage, J.P. , 1997. Regression analysis of spatial data. Journal of Regional Analysis and
Policy, 27 (1100-2016-89650), 83–94. 
LeSage, J.P. and Fischer, M.M. , 2008. Spatial growth regressions: model specification,
estimation and interpretation. Spatial Economic Analysis, 3 (3), 275–304. 
Li, W. and Hsu, C.Y. , 2020. Automated terrain feature identification from remote sensing
imagery: a deep learning approach. International Journal of Geographical Information Science,
34 (4), 637–660. 
Li, W. , Hsu, C.Y. , and Hu, M. , 2021. Tobler's first law in geoai: A spatially explicit deep
learning model for terrain feature detection under weak supervision. Annals of the American
Association of Geographers, 111 (7), 1887–1905. 
Lieberman-Cribbin, W. , Draxl, C. , and Clifton, A. , 2014. Guide to Using the Wind Toolkit
Validation Code. National Renewable Energy Lab.(NREL), Golden, CO (United States). 
Lim, B. , et al. , 2017. Enhanced deep residual networks for single image super-resolution. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops .
136–144. 
Liu, P. and De Sabbata, S. , 2021. A graph-based semi-supervised approach to classification
learning in digital geographies. Computers, Environment and Urban Systems, 86, 101583. 
Liu, Y. , et al. , 2018. Improve ground-level pm2. 5 concentration mapping using a random
forests-based geostatistical approach. Environmental Pollution, 235, 272–282. 
Lu, B. , et al. , 2014. Geographically weighted regression with a non-euclidean distance metric:
a case study using hedonic house price data. International Journal of Geographical Information
Science, 28 (4), 660–681. 
Mennis, J. and Guo, D. , 2009. Spatial data mining and geographic knowledge discovery—an
introduction. Computers, Environment and Urban Systems, 33 (6), 403–408. 
Miller, H.J. , 2004. Tobler's first law and spatial analysis. Annals of the association of American
geographers, 94 (2), 284–289.



Oliver, M.A. and Webster, R. , 1990. Kriging: a method of interpolation for geographical
information systems. International Journal of Geographical Information System, 4 (3), 313–332. 
Ord, K. , 1975. Estimation methods for models of spatial interaction. Journal of the American
Statistical Association, 70 (349), 120–126. 
Paciorek, C.J. and Schervish, M.J. , 2006. Spatial Modelling Using a New Class of
Nonstationary Covariance Functions. Environmetrics (London, Ont.), 17 (5), 483–506. 
Paelinck, J.H. , et al. , 1979. Spatial Econometrics. vol. 1. Saxon House. 
Parks, B.O. , Steyaert, L.T. , and Goodchild, M.F. , 1993. Environmental Modeling with gis.
Oxford University Press. 
Pearl, J. , 2019. The seven tools of causal inference, with reflections on machine learning.
Communications of the ACM, 62 (3), 54–60. 
Raissi, M. , Perdikaris, P. , and Karniadakis, G.E. , 2019. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378, 686–707. 
Reichstein, M. , et al. , 2019. Deep learning and process understanding for data-driven earth
system science. Nature, 566 (7743), 195–204. 
Ripley, B. , 1981. Spatial Statistics. New York: John Wiley & Sons. 
Scheider, S. and Huisjes, M.D. , 2019. Distinguishing extensive and intensive properties for
meaningful geocomputation and mapping. International Journal of Geographical Information
Science, 33 (1), 28–54. 
Sengupta, M. , et al. , 2018. The national solar radiation data base (nsrdb). Renewable and
Sustainable Energy Reviews, 89, 51–60. 
Shepard, D. , 1968. A two-dimensional interpolation function for irregularly-spaced data. In:
Proceedings of the 1968 23rd ACM National Conference . 517–524. 
Solow, A.R. , 1986. Mapping by simple indicator kriging. Mathematical Geology, 18 (3),
335–352. 
Strebelle, S. , 2002. Conditional simulation of complex geological structures using multiple-point
statistics. Mathematical Geology, 34 (1), 1–21. 
Tobler, W. , 2004. On the first law of geography: A reply. Annals of the Association of American
Geographers, 94 (2), 304–310. 
Tobler, W.R. , 1970. A computer movie simulating urban growth in the detroit region. Economic
Geography, 46 (sup1), 234–240. 
Ulyanov, D. , Vedaldi, A. , and Lempitsky, V. , 2018. Deep Image Prior. In: Proceedings of the 
IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 
van den Boogaart, K.G. and Schaeben, H. , 2002. Kriging of regionalized directions, axes, and
orientations i. directions and axes. Mathematical Geology, 34 (5), 479–503. 
Van Westen, C.J. , Castellanos, E. , and Kuriakose, S.L. , 2008. Spatial data for landslide
susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102
(3–4), 112–131. 
Wang, H. and Yeung, D.Y. , 2020. A Survey on Bayesian Deep Learning. ACM Computing
Surveys, 53 (5), 108:1–108:37. 
Wang, Q. , Shi, W. , and Atkinson, P.M. , 2016. Area-to-point regression kriging for pan-
sharpening. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 151–165. 
Wang, X. , et al. , 2018. Esrgan: Enhanced super-resolution generative adversarial networks. In
: Proceedings of the European Conference on Computer Vision (ECCV) Workshops . 0–0. 
Whittle, P. , 1954. On stationary processes in the plane. Biometrika, 434–449. 
Wu, S. , et al. , 2021a. Geographically and temporally neural network weighted regression for
modeling spatiotemporal non-stationary relationships. International Journal of Geographical
Information Science, 35 (3), 582–608. 
Wu, Y. , et al. , 2021b. Inductive graph neural networks for spatiotemporal kriging. In:
Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, 4478–4485. 
Xiao, L. , et al. , 2021. Predicting vibrancy of metro station areas considering spatial
relationships through graph convolutional neural networks: The case of Shenzhen, China.
Environment and Planning B: Urban Analytics and City Science, 48 (8), 2363–2384. 
Xie, Y. , et al. , 2021. A statistically-guided deep network transformation and moderation
framework for data with spatial heterogeneity. In: 2021 IEEE International Conference on Data
Mining (ICDM) . IEEE, 767–776.



Yan, B. , et al. , 2017. From ITDL to Place2Vec: Reasoning about place type similarity and
relatedness by learning embeddings from augmented spatial contexts. In: Proceedings of the 
25th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems . 1–10. 
Yan, X. , et al. , 2019. A graph convolutional neural network for classification of building patterns
using spatial vector data. ISPRS Journal of Photogrammetry and Remote Sensing, 150,
259–273. 
Zhang, H. , et al. , 2019. Self-attention generative adversarial networks. In: International
Conference on Machine Learning . PMLR, 7354–7363. 
Zhang, Y. , et al. , 2020. A novel residual graph convolution deep learning model for short-term
network-based traffic forecasting. International Journal of Geographical Information Science, 34
(5), 969–995. 
Zhang, Y. and Yu, W. , 2022. Comparison of dem super-resolution methods based on
interpolation and neural networks. Sensors, 22 (3), 745. 
Zhang, Y. , Yu, W. , and Zhu, D. , 2022. Terrain feature-aware deep learning network for digital
elevation model superresolution. ISPRS Journal of Photogrammetry and Remote Sensing, 189,
143–162. 
Zhao, L. , et al. , 2019. T-GCN: A temporal graph convolutional network for traffic prediction.
IEEE Transactions on Intelligent Transportation Systems. 
Zhu, A.X. , et al. , 2018. Spatial prediction based on third law of geography. Annals of GIS, 24
(4), 225–240. 
Zhu, D. , et al. , 2020a. Spatial interpolation using conditional generative adversarial neural
networks. International Journal of Geographical Information Science, 34 (4), 735–758. 
Zhu, D. , Gao, S. , and Cao, G. , 2022. Towards the intelligent era of spatial analysis and
modeling. In: Proceedings of the 5th ACM SIGSPATIAL International Workshop on AI for
Geographic Knowledge Discovery . 10–13. 
Zhu, D. , et al. , 2021. Spatial regression graph convolutional neural networks: A deep learning
paradigm for spatial multivariate distributions. GeoInformatica, 1–32. 
Zhu, D. , et al. , 2020b. Understanding place characteristics in geographic contexts through
graph convolutional neural networks. Annals of the American Association of Geographers, 110
(2), 408–420. 

 
Heterogeneity-Aware Deep Learning in Space: Performance and
Fairness 
Alasadi, J. , Al Hilli, A. , and Singh, V.K. , 2019. Toward fairness in face matching algorithms. In
: Proceedings of the 1st International Workshop on Fairness, Accountability, and Transparency
in MultiMedia . 19–25. 
Atluri, G. , Karpatne, A. , and Kumar, V. , 2018. Spatio-temporal data mining: A survey of
problems and methods. ACM Computing Surveys (CSUR), 51 (4), 1–41. 
Bao, H. , et al. , 2020. Covid-gan: Estimating human mobility responses to covid-19 pandemic
through spatio-temporal conditional generative adversarial networks. In: Proceedings of the 
28th International Conference on Advances in Geographic Information Systems . 273–282. 
Ben-David, S. , et al. , 2007. Analysis of representations for domain adaptation. Advances in
Neural Information Processing Systems, 19, 137. 
Brunsdon, C. , Fotheringham, A.S. , and Charlton, M. , 1999. Some notes on parametric
significance tests for geographically weighted regression. Journal of Regional Science, 39 (3),
497–524. 
Chen, T. , et al. , 2020. A simple framework for contrastive learning of visual representations. In
: International Conference on Machine Learning . PMLR, 1597–1607. 
Du, M. , et al. , 2021. Fairness via representation neutralization. Advances in Neural Information
Processing Systems, 34, 12091–12103. 
Du, M. , et al. , 2020. Fairness in deep learning: A computational perspective. IEEE Intelligent
Systems, 36 (4), 25–34. 
Finn, C. , Abbeel, P. , and Levine, S. , 2017. Model-agnostic meta-learning for fast adaptation of
deep networks. In: International Conference on Machine Learning . PMLR, 1126–1135.



Finn, C. , et al. , 2016. Deep spatial autoencoders for visuomotor learning. In: 2016 IEEE
International Conference on Robotics and Automation (ICRA) . IEEE, 512–519. 
Fotheringham, A.S. , Yang, W. , and Kang, W. , 2017. Multiscale geographically weighted
regression (mgwr). Annals of the American Association of Geographers, 107 (6), 1247–1265. 
Gao, Y. , et al. , 2019. Incomplete label multi-task deep learning for spatio-temporal event
subtype forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33,
3638–3646. 
Goodchild, M.F. and Li, W. , 2021. Replication across space and time must be weak in the
social and environmental sciences. Proceedings of the National Academy of Sciences, 118
(35). 
Gupta, J. , et al. , 2020. Towards spatial variability aware deep neural networks (svann): A
summary of results. In: ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data,
App. & Sys. 
Gupta, J. , et al. , 2021. Spatial variability aware deep neural networks (svann): A general
approach. ACM Trans. Intell. Syst. Technol., 12 (6). 
He, E. , et al. , 2022. Sailing in the location-based fairness-bias sphere. In: Proceedings of the 
30th International Conference on Advances in Geographic Information Systems . 1–10. 
He, E. , et al. , 2023. Physics guided neural networks for time-aware fairness: An application in
crop yield prediction. In: AAAI Conference on Artificial Intelligence. 
He, K. , et al. , 2016. Deep residual learning for image recognition. In: CVPR. 770–778. 
Jean, N. , et al. , 2019. Tile2vec: Unsupervised representation learning for spatially distributed
data. In: Proceedings of the AAAI Conference on Artificial Intelligence . vol. 33, 3967–3974. 
Jia, X. , et al. , 2019. Spatial context-aware networks for mining temporal discriminative period
in land cover detection. In: SDM. SIAM, 513–521. 
Jiang, Z. , et al. , 2019. Spatial ensemble learning for heterogeneous geographic data with class
ambiguity. ACM Trans. on Intelligent Sys. and Tech. (TIST ), 10 (4). 
Jiang, Z. , et al. , 2017. Spatial ensemble learning for heterogeneous geographic data with class
ambiguity: A summary of results. In: Proceedings of the 25th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems . 1–10. 
Jo, E.S. and Gebru, T. , 2020. Lessons from archives: Strategies for collecting sociocultural
data in machine learning. In: Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency . 306–316. 
Kamishima, T. , Akaho, S. , and Sakuma, J. , 2011. Fairness-aware learning through
regularization approach. In: 2011 IEEE 11th International Conference on Data Mining
Workshops . IEEE, 643–650. 
Kaya, A. , et al. , 2019. Analysis of transfer learning for deep neural network based plant
classification models. Computers and Electronics in Agriculture, 158, 20–29. 
Kilbertus, N. , et al. , 2018. Blind justice: Fairness with encrypted sensitive attributes. In:
International Conference on Machine Learning . PMLR, 2630–2639. 
Krizhevsky, A. , Sutskever, I. , and Hinton, G.E. , 2012. Imagenet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems, 25,
1097–1105. 
Kulldorff, M. , et al. , 2007. Multivariate scan statistics for disease surveillance. Statistics in
Medicine, 26 (8), 1824–1833. 
Li, Z. , et al. , 2023. Point-to-region co-learning for poverty mapping at high resolution using
satellite imagery. In: AAAI Conference on Artificial Intelligence. 
Liu, X.P. , et al. , 2019. Risk assessment using transfer learning for grassland fires. Agricultural
and Forest Meteorology, 269, 102–111. 
Ma, J. , et al. , 2019. Improving air quality prediction accuracy at larger temporal resolutions
using deep learning and transfer learning techniques. Atmospheric Environment, 214, 116885. 
Mai, G. , et al. , 2022. A review of location encoding for geoai: methods and applications.
International Journal of Geographical Information Science, 36 (4), 639–673. 
Mehrabi, N. , et al. , 2021. A survey on bias and fairness in machine learning. ACM Computing
Surveys (CSUR), 54 (6), 1–35. 
Morales, A. , et al. , 2020. Sensitivenets: Learning agnostic representations with application to
face images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43 (6),
2158–2164.



Neill, D.B. , 2012. Fast subset scan for spatial pattern detection. Journal of the Royal Statistical
Society, 74 (2), 337–360. 
Neill, D.B. , McFowland III, E. , and Zheng, H. , 2013. Fast subset scan for multivariate event
detection. Statistics in Medicine, 32 (13), 2185–2208. 
NPR , 2019. Supreme court rules partisan gerrymandering is beyond the reach of federal
courts. 
Pan, S.J. , et al. , 2010. Domain adaptation via transfer component analysis. IEEE Transactions
on Neural Networks, 22 (2), 199–210. 
Pan, S.J. and Yang, Q. , 2009. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22 (10), 1345–1359. 
Serna, I. , et al. , 2020. Sensitiveloss: Improving accuracy and fairness of face representations
with discrimination-aware deep learning. arXiv preprint arXiv:2004.11246. 
Shekhar, S. , Feiner, S.K. , and Aref, W.G. , 2015. Spatial computing. Communications of the
ACM, 59 (1), 72–81. 
Shekhar, S. and Xiong, H. , 2007. Encyclopedia of gis. Springer Science & Business Media. 
Steed, R. and Caliskan, A. , 2021. Image representations learned with unsupervised pre-
training contain human-like biases. In: Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency . 701–713. 
Sweeney, C. and Najafian, M. , 2020. Reducing sentiment polarity for demographic attributes in
word embeddings using adversarial learning. In: Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency . 359–368. 
Vilalta, R. and Drissi, Y. , 2002. A perspective view and survey of meta-learning. Artificial
Intelligence Review, 18 (2), 77–95. 
Wang, M. and Deng, W. , 2018. Deep visual domain adaptation: A survey. Neurocomputing,
312, 135–153. 
Wei, Z. , et al. , 2021. Large-scale river mapping using contrastive learning and multi-source
satellite imagery. Remote Sensing, 13 (15), 2893. 
Xie, Y. , et al. , 2023a. Harnessing heterogeneity in space with statistically-guided meta-
learning. Knowledge and Information Systems, 65, 2699–2729. 
Xie, Y. , et al. , 2021a. A statistically-guided deep network transformation and moderation
framework for data with spatial heterogeneity. In: 2021 IEEE International Conference on Data
Mining (ICDM) . IEEE, 767–776. 
Xie, Y. , et al. , 2022a. Statistically-guided deep network transformation to harness
heterogeneity in space (extended abstract). In: L.D. Raedt, ed. Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence , IJCAI-22, 7, 5364–5368. 
Xie, Y. , et al. , 2022b. Fairness by “where”: A statistically-robust and model-agnostic bi-level
learning framework. Proceedings of the AAAI Conference on Artificial Intelligence, 36 (11),
12208–12216. 
Xie, Y. , et al. , 2021b. Spatial-net: A self-adaptive and model-agnostic deep learning framework
for spatially heterogeneous datasets. In: Proceedings of the 29th International Conference on
Advances in Geographic Information Systems . 313–323. 
Xie, Y. , et al. , 2023b. Auto-cm: Unsupervised deep learning for satellite imagery composition
and cloud masking using spatio-temporal dynamics. In: AAAI Conference on Artificial
Intelligence. 
Xie, Y. , Shekhar, S. , and Li, Y. , 2022c. Statistically-robust clustering techniques for mapping
spatial hotspots: A survey. ACM Computing Surveys (CSUR ), 55 (2), 1–38. 
Yan, A. and Howe, B. , 2019. Fairst: Equitable spatial and temporal demand prediction for new
mobility systems. In: Proceedings of the 27th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems . 552–555. 
Yang, K. , et al. , 2020. Towards fairer datasets: Filtering and balancing the distribution of the
people subtree in the imagenet hierarchy. In: Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency . 547–558. 
Yao, H. , et al. , 2019. Learning from multiple cities: A meta-learning approach for spatial-
temporal prediction. In: The World Wide Web Conference. 2181–2191. 
Yuan, Z. , Zhou, X. , and Yang, T. , 2018. Hetero-convlstm: A deep learning approach to traffic
accident prediction on heterogeneous spatio-temporal data. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining . 984–992.



Zafar, M.B. , et al. , 2017. Fairness beyond disparate treatment & disparate impact: Learning
classification without disparate mistreatment. In: Proceedings of the 26th International
Conference on World Wide Web . 1171–1180. 
Zhang, H. and Davidson, I. , 2021. Towards fair deep anomaly detection. In: Proceedings of the 
2021 ACM Conference on Fairness, Accountability, and Transparency . 138–148. 

 
Explainability in GeoAI 
Achtibat, R. , et al. , 2022. From “Where" to “What": Towards human-understandable
explanations through concept relevance propagation. arXiv preprint arXiv:2206.03208. 
Anders, C.J. , et al. , 2022. Finding and removing Clever Hans: Using explanation methods to
debug and improve deep models. Information Fusion, 77, 261–295. 
Arras, L. , et al. , 2019a. Explaining and Interpreting LSTMs. In: Explainable AI: Interpreting,
Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science, vol. 11700.
211–238. 
Arras, L. , et al. , 2017. Explaining recurrent neural network predictions in sentiment analysis. In
: Proceedings of the EMNLP'17 Workshop on Computational Approaches to Subjectivity,
Sentiment & Social Media Analysis . 159–168. 
Arras, L. , et al. , 2019b. Evaluating recurrent neural network explanations. In: Proceedings of
the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP .
113–126. 
Arras, L. , Osman, A. , and Samek, W. , 2022. CLEVR-XAI: A benchmark dataset for the ground
truth evaluation of neural network explanations. Information Fusion, 81, 14–40. 
Assael, Y.M. , et al. , 2016. LipNet: End-to-end sentence-level lipreading. arXiv preprint
arXiv:1611.01599. 
Bach, S. , et al. , 2015. On pixel-wise explanations for non-linear classifier decisions by layer-
wise relevance propagation. PloS ONE, 10 (7), e0130140. 
Başağaoğlu, H. , et al. , 2022. A review on interpretable and explainable artificial intelligence in
hydroclimatic applications. Water, 14 (8), 1230. 
Berner, C. , et al. , 2019. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680. 
Beven, K.J. , 2011. Rainfall-Runoff Modelling: The primer. John Wiley & Sons. 
Blöschl, G. , 2006. Rainfall-runoff modeling of ungauged catchments. In: Encyclopedia of
Hydrological Sciences. John Wiley & Sons, Ltd, Ch. 133. 
Castelvecchi, D. , 2016. Can we open the black box of AI? Nature News, 538 (7623), 20. 
Cheng, X. , Doosthosseini, A. , and Kunkel, J. , 2022. Improve the deep learning models in
forestry based on explanations and expertise. Frontiers in Plant Science, 1531. 
Cheng, X. , et al. , 2021a. A method to evaluate task-specific importance of spatio-temporal
units based on explainable artificial intelligence. International Journal of Geographical
Information Science, 35 (10), 2002–2025. 
Cheng, X. , et al. , 2021b. Multi-scale detection and interpretation of spatio-temporal anomalies
of human activities represented by time-series. Computers, Environment and Urban Systems,
88, 101627. 
Dorhöfer, G. , Hannappel, S. , and Voigt, H.J. , 2001. Die hydrogeologische Übersichskarte von
Deutschland (HÜK 200). Die hydrogeologische Übersichskarte von Deutschland (HÜK 200), 47
(3 4), 153–159. 
Erhan, D. , et al. , 2009. Visualizing higher-layer features of a deep network. University of
Montreal, 1341 (3), 1. 
Fel, T. , et al. , 2022a. Harmonizing the object recognition strategies of deep neural networks
with humans. Advances in Neural Information Processing Systems (NeurIPS). 
Fel, T. , et al. , 2022b. CRAFT: Concept recursive activation factorization for explainability.
arXiv preprint arXiv:2211.10154. 
Fong, R.C. and Vedaldi, A. , 2017. Interpretable explanations of black boxes by meaningful
perturbation. ICCV 2017, 3449–3457. 



GeoBasis-DE/BKG , 2012. CORINE Land Cover 5 ha, Stand 2012 (CLC5-2012). Accessed:
(2023/02/28), Available from: https://gdz.bkg.bund.de/index.php/default/corine-land-cover-5-ha-
stand-2012-clc5-2012.html. 
GeoBasis-DE/BKG , 2021. Digitales Geländemodell Gitterweite 200 m. Accessed: (2023/02/28),
Available from: https://mis.bkg.bund.de/trefferanzeige?docuuid=eaaa67a1-5ecb-4e57-af38-
b5f1d6d57e2a#metadata_info. 
Hedström, A. , et al. , 2023. Quantus: An explainable AI toolkit for responsible evaluation of
neural network explanations and beyond. Journal of Machine Learning Research, 24 (34), 1–11. 
Hilburn, K.A. , Ebert-Uphoff, I. , and Miller, S.D. , 2021. Development and interpretation of a
neural-network-based synthetic radar reflectivity estimator using GOES-R satellite observations.
Journal of Applied Meteorology and Climatology, 60 (1), 3–21. 
Hinton, G.E. , Osindero, S. , and Teh, Y.W. , 2006. A fast learning algorithm for deep belief
nets. Neural Computation, 18 (7), 1527–1554. 
Hinton, G.E. and Salakhutdinov, R.R. , 2006. Reducing the dimensionality of data with neural
networks. Science, 313 (5786), 504–507. 
Holzinger, A. , et al. , 2022. Explainable ai methods - a brief overview. In: xxAI - Beyond
Explainable AI. Lecture Notes in Artificial Intelligence, vol. 13200. Springer, 13–38. 
Huang, J. , et al. , 2022a. ConceptExplainer: Interactive explanation for deep neural networks
from a concept perspective. IEEE Transactions on Visualization and Computer Graphics, 29 (1),
831–841. 
Huang, Q. , et al. , 2022b. GraphLIME: Local interpretable model explanations for graph neural
networks. IEEE Transactions on Knowledge and Data Engineering. 
Iten, R. , et al. , 2020. Discovering physical concepts with neural networks. Physical Review
Letters, 124 (1), 010508. 
Janowicz, K. , et al. , 2020. GeoAI: Spatially explicit artificial intelligence techniques for
geographic knowledge discovery and beyond. International Journal of Geographical Information
Science, 34 (4), 625–636. 
Kim, B. , et al. , 2018. Interpretability beyond feature attribution: Quantitative testing with
concept activation vectors (TCAV). In: ICML. vol. 80, 2673–2682. 
Kratzert, F. , et al. , 2018. Rainfall– runoff modelling using long short-term memory (LSTM)
networks. Hydrology and Earth System Sciences, 22 (11), 6005–6022. 
Kratzert, F. , et al. , 2019. Towards learning universal, regional, and local hydrological behaviors
via machine learning applied to large-sample datasets. Hydrology and Earth System Sciences,
23 (12), 5089–5110. 
Krizhevsky, A. , Sutskever, I. , and Hinton, G.E. , 2017. ImageNet classification with deep
convolutional neural networks. Communications of the ACM, 60 (6), 84–90. 
Krug, D. , Stegger, U. , and Eberhardt, E. , 2015. Bodenübersichtskarte 1:200.000 (BÜK200) –
Status 2015. In: Jahrestagung der DBG 2015: Unsere Böden - unser Leben, München. 
Lapuschkin, S. , et al. , 2019. Unmasking Clever Hans predictors and assessing what machines
really learn. Nature Communications, 10 (1), 1–8. 
LeCun, Y. , Bengio, Y. , and Hinton, G. , 2015. Deep learning. Nature, 521 (7553), 436–444. 
Li, Z. , 2022. Extracting spatial effects from machine learning model using local interpretation
method: An example of SHAP and XGBoost. Computers, Environment and Urban Systems, 96,
101845. 
Liu, P. and Biljecki, F. , 2022. A review of spatially-explicit GeoAI applications in Urban
Geography. International Journal of Applied Earth Observation and Geoinformation, 112,
102936. 
Liu, Y. , et al. , 2012. Urban land uses and traffic ‘source-sink areas': Evidence from GPS-
enabled taxi data in Shanghai. Landscape and Urban Planning, 106 (1), 73–87. 
Lundberg, S.M. , et al. , 2020. From local explanations to global understanding with explainable
AI for trees. Nature Machine Intelligence, 2 (1), 56–67. 
Lundberg, S.M. and Lee, S.I. , 2017. A unified approach to interpreting model predictions.
Advances in Neural Information Processing Systems, 30. 
Mamalakis, A. , Barnes, E.A. , and Ebert-Uphoff, I. , 2022a. Investigating the fidelity of
explainable artificial intelligence methods for applications of convolutional neural networks in
geoscience. Artificial Intelligence for the Earth Systems, 1 (4), e220012. 
Mamalakis, A. , Ebert-Uphoff, I. , and Barnes, E.A. , 2022b. Explainable artificial intelligence in
meteorology and climate science: Model fine-tuning, calibrating trust and learning new science.



In: International Workshop on Extending Explainable AI Beyond Deep Models and Classifiers.
Springer, 315–339. 
Matin, S.S. and Pradhan, B. , 2021. Earthquake-induced building-damage mapping using
Explainable AI (XAI). Sensors, 21 (13), 4489. 
Mayer, K.J. and Barnes, E.A. , 2021. Subseasonal forecasts of opportunity identified by an
explainable neural network. Geophysical Research Letters, 48 (10), e2020GL092092. 
McGovern, A. , et al. , 2019. Making the black box more transparent: Understanding the
physical implications of machine learning. Bulletin of the American Meteorological Society, 100
(11), 2175–2199. 
Miller, T. , 2019. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 267, 1–38. 
Montavon, G. , et al. , 2019. Layer-wise relevance propagation: An overview. In: Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science,
vol. 11700. Springer, 193–209. 
Montavon, G. , et al. , 2017. Explaining nonlinear classification decisions with deep Taylor
decomposition. Pattern Recognition, 65, 211–222. 
Montavon, G. , Samek, W. , and Müller, K.R. , 2018. Methods for interpreting and understanding
deep neural networks. Digital Signal Processing, 73, 1–15. 
Peel, M.C. and McMahon, T.A. , 2020. Historical development of rainfall-runoff modeling. Wiley
Interdisciplinary Reviews: Water, 7 (5). 
Poerner, N. , Roth, B. , and Schütze, H. , 2018. Evaluating neural network explanation methods
using hybrid documents and morphosyntactic agreement. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics . 340–350. 
Reichstein, M. , et al. , 2019. Deep learning and process understanding for data-driven Earth
system science. Nature, 566 (7743), 195–204. 
Ribeiro, M.T. , Singh, S. , and Guestrin, C. , 2016. “Why should I trust you?": Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining , KDD ‘16. 1135–1144. 
Rieckmann, A. , et al. , 2022. Causes of Outcome Learning: a causal inference-inspired
machine learning approach to disentangling common combinations of potential causes of a
health outcome. International Journal of Epidemiology, 51 (5), 1622–1636. 
Roscher, R. , et al. , 2020. Explainable machine learning for scientific insights and discoveries.
IEEE Access, 8, 42200–42216. 
Ross, A.S. , Hughes, M.C. , and Doshi-Velez, F. , 2017. Right for the right reasons: Training
differentiable models by constraining their explanations. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence . 2662–2670. 
Russakovsky, O. , et al. , 2015. ImageNet large scale visual recognition challenge. International
Journal of Computer Vision, 115 (3), 211–252. 
Samek, W. , et al. , 2019. Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning. Lecture Notes in Computer Science, vol. 11700. Springer Nature. 
Samek, W. , et al. , 2021. Explaining deep neural networks and beyond: A review of methods
and applications. Proceedings of the IEEE, 109 (3), 247–278. 
Schnake, T. , et al. , 2020. Higher-order explanations of graph neural networks via relevant
walks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 7581–7596. 
Schölkopf, B. , 2022. Causality for Machine Learning, 1st ed. New York, NY, USA: Association
for Computing Machinery, 765–804. 
Schramowski, P. , et al. , 2020. Making deep neural networks right for the right scientific
reasons by interacting with their explanations. Nature Machine Intelligence, 2 (8), 476–486. 
Selvaraju, R.R. , et al. , 2017. Grad-CAM: Visual explanations from deep networks via gradient-
based localization. In: Proceedings of the IEEE International Conference on Computer Vision .
618–626. 
Silver, D. , et al. , 2016. Mastering the game of Go with deep neural networks and tree search.
Nature, 529 (7587), 484–489. 
Simonyan, K. , Vedaldi, A. , and Zisserman, A. , 2014. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In: Proceedings of the International
Conference on Learning Representations (ICLR) . ICLR. 
Sitterson, J. , et al. , 2018. An overview of rainfall-runoff model types. International Congress on
Environmental Modelling and Software.



Smilkov, D. , et al. , 2017. SmoothGrad: removing noise by adding noise. In: ICML. 
Sundararajan, M. , Taly, A. , and Yan, Q. , 2017. Axiomatic attribution for deep networks. In:
Proceedings of the 34th International Conference on Machine Learning - Volume 70 , ICML'17.
3319–3328. 
Toms, B.A. , Barnes, E.A. , and Ebert-Uphoff, I. , 2020. Physically interpretable neural networks
for the Geosciences: Applications to Earth system variability. Journal of Advances in Modeling
Earth Systems, 12 (9). 
Toms, B.A. , Barnes, E.A. , and Hurrell, J.W. , 2021. Assessing decadal predictability in an
Earth-system model using explainable neural networks. Geophysical Research Letters, 48 (12),
e2021GL093842. 
Van Der Knijff, J. , Younis, J. , and De Roo, A. , 2010. LISFLOOD: a GIS-based distributed
model for river basin scale water balance and flood simulation. International Journal of
Geographical Information Science, 24 (2), 189–212. 
Weber, L. , et al. , 2023. Beyond explaining: Opportunities and challenges of XAI-based model
improvement. Information Fusion, 92, 154–176. 
Xing, J. and Sieber, R. , 2021. Integrating XAI and GeoAI. In: GIScience 2021 Short Paper
Proceedings. UC Santa Barbara: Center for Spatial Studies. 
Xing, X. , et al. , 2020. Mapping human activity volumes through remote sensing imagery. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5652–5668. 
Yang, Y. , et al. , 2018. Explaining therapy predictions with layer-wise relevance propagation in
neural networks. In: 2018 IEEE International Conference on Healthcare Informatics (ICHI) .
IEEE, 152–162. 
Yeom, S.K. , et al. , 2021. Pruning by explaining: A novel criterion for deep neural network
pruning. Pattern Recognition, 115, 107899. 
Zeiler, M.D. and Fergus, R. , 2014. Visualizing and understanding convolutional networks. In:
Computer Vision–ECCV 2014: 13th European Conference . 818–833. 
Zhang, F. , et al. , 2019. Social sensing from street-level imagery: A case study in learning
spatio-temporal urban mobility patterns. ISPRS Journal of Photogrammetry and Remote
Sensing, 153, 48–58. 
Zink, M. , et al. , 2017. A high-resolution dataset of water fluxes and states for Germany
accounting for parametric uncertainty. Hydrology and Earth System Sciences, 21 (3),
1769–1790. 
Zintgraf, L.M. , et al. , 2017. Visualizing deep neural network decisions: Prediction difference
analysis. In: ICLR 2017. 
Zou, Q. , et al. , 2015. Deep learning based feature selection for remote sensing scene
classification. IEEE Geoscience and Remote Sensing Letters, 12 (11), 2321–2325. 

 
Spatial Cross-Validation for GeoAI 
Airola, A. , et al. , 2019. The spatial leave-pair-out cross-validation method for reliable auc
estimation of spatial classifiers. Data Mining and Knowledge Discovery, 33, 730–747. 
Brenning, A. , 2012. Spatial cross-validation and bootstrap for the assessment of prediction
rules in remote sensing: The r package sperrorest. In: 2012 IEEE International Geoscience and
Remote Sensing Symposium . IEEE, 5372–5375. 
Brenning, A. , 2023. Spatial machine-learning model diagnostics: a model-agnostic distance-
based approach. International Journal of Geographical Information Science, 37 (3), 584–606. 
Browne, M.W. , 2000. Cross-validation methods. Journal of Mathematical Psychology, 44 (1),
108–132. 
Burman, P. , 1989. A comparative study of ordinary cross-validation, v-fold cross-validation and
the repeated learning-testing methods. Biometrika, 76 (3), 503–514. 
Chang, T. , et al. , 2022. The role of alcohol outlet visits derived from mobile phone location
data in enhancing domestic violence prediction at the neighborhood level. Health & Place, 73,
102736. 
Crosby, H. , Damoulas, T. , and Jarvis, S.A. , 2020. Road and travel time cross-validation for
urban modelling. International Journal of Geographical Information Science, 34 (1), 98–118.



Da Silva, T.P. , Parmezan, A.R. , and Batista, G.E. , 2021. A graph-based spatial cross-
validation approach for assessing models learned with selected features to understand election
results. In: 2021 20th IEEE International Conference on Machine Learning and Applications
(ICMLA) . IEEE, 909–915. 
Diniz-Filho, J.A.F. , Bini, L.M. , and Hawkins, B.A. , 2003. Spatial autocorrelation and red
herrings in geographical ecology. Global ecology and Biogeography, 12 (1), 53–64. 
Fotheringham, A.S. , 2009. “the problem of spatial autocorrelation” and local spatial statistics.
Geographical Analysis, 41 (4), 398–403. 
Gao, S. , et al. , 2017. A data-synthesis-driven method for detecting and extracting vague
cognitive regions. International Journal of Geographical Information Science, 31 (6),
1245–1271. 
Géron, A. , 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and Tensorflow.
“O'Reilly Media, Inc.". 
Goodchild, M.F. and Li, W. , 2021. Replication across space and time must be weak in the
social and environmental sciences. Proceedings of the National Academy of Sciences, 118
(35), e2015759118. 
Hijmans, R.J. , 2012. Cross-validation of species distribution models: removing spatial sorting
bias and calibration with a null model. Ecology, 93 (3), 679–688. 
Karasiak, N. , 2020. Museo toolbox: A python library for remote sensing including a new way to
handle rasters. Journal of Open Source Software, 5 (48), 1978. 
Karasiak, N. , et al. , 2022. Spatial dependence between training and test sets: another pitfall of
classification accuracy assessment in remote sensing. Machine Learning, 111 (7), 2715–2740. 
Karasiak, N. , et al. , 2019. Statistical stability and spatial instability in mapping forest tree
species by comparing 9 years of satellite image time series. Remote Sensing, 11 (21), 2512. 
Meyer, H. and Pebesma, E. , 2021. Predicting into unknown space? estimating the area of
applicability of spatial prediction models. Methods in Ecology and Evolution, 12 (9), 1620–1633. 
Meyer, H. and Pebesma, E. , 2022. Machine learning-based global maps of ecological variables
and the challenge of assessing them. Nature Communications, 13 (1), 2208. 
Meyer, H. , et al. , 2018. Improving performance of spatio-temporal machine learning models
using forward feature selection and target-oriented validation. Environmental Modelling &
Software, 101, 1–9. 
Montello, D.R. , Friedman, A. , and Phillips, D.W. , 2014. Vague cognitive regions in geography
and geographic information science. International Journal of Geographical Information Science,
28 (9), 1802–1820. 
Muscarella, R. , et al. , 2014. Enm eval: An r package for conducting spatially independent
evaluations and estimating optimal model complexity for maxent ecological niche models.
Methods in Ecology and Evolution, 5 (11), 1198–1205. 
Pohjankukka, J. , et al. , 2017. Estimating the prediction performance of spatial models via
spatial k-fold cross validation. International Journal of Geographical Information Science, 31
(10), 2001–2019. 
Roberts, D.R. , et al. , 2017. Cross-validation strategies for data with temporal, spatial,
hierarchical, or phylogenetic structure. Ecography, 40 (8), 913–929. 
Schratz, P. , et al. , 2021. mlr3spatiotempcv: Spatiotemporal resampling methods for machine
learning in r. arXiv preprint arXiv:2110.12674. 
Tobler, W.R. , 1970. A computer movie simulating urban growth in the detroit region. Economic
Geography, 46 (sup1), 234–240. 
Valavi, R. , et al. , 2018. blockcv: An r package for generating spatially or environmentally
separated folds for k-fold cross-validation of species distribution models. Biorxiv, 357798. 
Zhou, R.Z. , et al. , 2022. Deriving neighborhood-level diet and physical activity measurements
from anonymized mobile phone location data for enhancing obesity estimation. International
Journal of Health Geographics, 21 (1), 1–18. 

 



GeoAI for the Digitization of Historical Maps 
Allord, G.J. , Fishburn, K.A. , and Walter, J.L. , 2014. Standard for the us geological survey
historical topographic map collection. US Geological Survey: Reston, VA, USA, 3. 
Athanasiou, S. , et al. , 2014. Geoknow: making the web an exploratory place for geospatial
knowledge. ERCIM News, 96 (12–13), 119–120. 
Battle, R. and Kolas, D. , 2011. Geosparql: enabling a geospatial semantic web. Semantic Web
Journal, 3 (4), 355–370. 
Bhushan Damodaran, B. , et al. , 2018. An entropic optimal transport loss for learning deep
neural networks under label noise in remote sensing images. arXiv e-prints, arXiv–1810. 
Boeing, G. , 2017. Osmnx: New methods for acquiring, constructing, analyzing, and visualizing
complex street networks. Computers, Environment and Urban Systems, 65, 126–139. 
Bone, C. , et al. , 2016. A geospatial search engine for discovering multi-format geospatial data
across the web. International Journal of Digital Earth, 9 (1), 47–62. 
Burghardt, K. , et al. , 2022. Road network evolution in the urban and rural united states since
1900. Computers, Environment and Urban Systems, 95, 101803. 
Carion, N. , et al. , 2020. End-to-end object detection with transformers. In: European
Conference on Computer Vision . Springer, 213–229. 
Chan, T. and Zhu, W. , 2005. Level set based shape prior segmentation. In: 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) . IEEE,
vol. 2, 1164–1170. 
Chen, L.C. , et al. , 2018. Encoder-decoder with atrous separable convolution for semantic
image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV)
. 801–818. 
Chen, X. , et al. , 2021. Text recognition in the wild: A survey. ACM Computing Surveys
(CSUR), 54 (2), 1–35. 
Chiang, Y.Y. , 2015. Querying historical maps as a unified, structured, and linked
spatiotemporal source: Vision paper. SIGSPATIAL ‘15, New York, NY, USA. Association for
Computing Machinery. Available from: https://doi.org/10.1145/2820783.2820887. 
Chiang, Y.Y. , et al. , 2020. Using Historical Maps in Scientific Studies: Applications,
Challenges, and Best Practices. Springer. 
Chiang, Y.Y. , Leyk, S. , and Knoblock, C.A. , 2014. A survey of digital map processing
techniques. ACM Computing Surveys (CSUR), 47 (1), 1–44. 
Chiron, G. , et al. , 2017. Icdar2017 competition on post-ocr text correction. In: 2017 ICDAR.
vol. 01, 1423–1428. 
Devlin, J. , et al. , 2019. BERT: Pre-training of deep bidirectional transformers for language
understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers) , June, Minneapolis, Minnesota. ACL, 4171–4186. 
Duan, W. , et al. , 2017. Automatic alignment of geographic features in contemporary vector
data and historical maps. In: Proceedings of the 1st Workshop on Artificial Intelligence and
Deep Learning for Geographic Knowledge Discovery . 45–54. 
Duan, W. , et al. , 2021a. Guided generative models using weak supervision for detecting object
spatial arrangement in overhead images. In: 2021 IEEE International Conference on Big Data
(Big Data) . IEEE, 725–734. 
Duan, W. , et al. , 2021b. A label correction algorithm using prior information for automatic and
accurate geospatial object recognition. In: 2021 IEEE International Conference on Big Data (Big
Data) . IEEE, 1604–1610. 
Florczyk, A.J. , et al. , 2019. Ghsl data package 2019. Luxembourg, EUR, 29788 (10.2760),
290498. 
Goodchild, M.F. , 2007. Citizens as sensors: the world of volunteered geography. GeoJournal,
69 (4), 211–221. 
Gupta, A. , Vedaldi, A. , and Zisserman, A. , 2016. Synthetic data for text localisation in natural
images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition .
2315–2324. 
Hosseini, K. , et al. , 2022. Mapreader: a computer vision pipeline for the semantic exploration
of maps at scale. In: Proceedings of the 6th ACM SIGSPATIAL International Workshop on
Geospatial Humanities . 8–19.



Huang, M. , et al. , 2022. Swintextspotter: Scene text spotting via better synergy between text
detection and text recognition. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition . 4593–4603. 
Jaderberg, M. , et al. , 2014. Synthetic data and artificial neural networks for natural scene text
recognition. arXiv preprint arXiv:1406.2227. 
Kang, J. , et al. , 2021. Noise-tolerant deep neighborhood embedding for remotely sensed
images with label noise. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 14, 2551–2562. 
Lan, Z. , et al. , 2020. ALBERT: A lite BERT for self-supervised learning of language
representations. In: 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. Available from:
https://openreview.net/forum?id=H1eA7AEtvS. 
Levenshtein, V. , 1966. Binary codes capable of correcting deletions, insertions, and reversals.
In: Soviet Physics Doklady. Soviet Union, vol. 10, 707–710. 
Lewis, M. , et al. , 2020. BART: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. In: Proceedings of the 58th Annual
Meeting of the ACL , July. ACL, 7871–7880. 
Leyk, S. , et al. , 2020. Two centuries of settlement and urban development in the united states.
Science Advances, 6 (23), eaba2937. 
Li, H. , Liu, J. , and Zhou, X. , 2018. Intelligent map reader: A framework for topographic map
understanding with deep learning and gazetteer. IEEE Access, 6, 25363–25376. 
Li, Z. , et al. , 2020. An Automatic Approach for Generating Rich, Linked Geo-Metadata from
Historical Map Images. New York, NY, USA: Association for Computing Machinery, 3290–3298. 
Li, Z. , et al. , 2021. Synthetic map generation to provide unlimited training data for historical
map text detection. In: Proceedings of the 4th ACM SIGSPATIAL International Workshop on AI
for Geographic Knowledge Discovery . 17–26. 
Li, Z. , et al. , 2022. Spabert: A pretrained language model from geographic data for geo-entity
representation. In: EMNLP-findings. 
Liu, X. , et al. , 2018. Fots: Fast oriented text spotting with a unified network. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition . 5676–5685. 
Liu, Y. , et al. , 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692. 
Liu, Y. , et al. , 2020. Abcnet: Real-time scene text spotting with adaptive bezier-curve network.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition .
9809–9818. 
Long, S. , He, X. , and Yao, C. , 2021. Scene text detection and recognition: The deep learning
era. International Journal of Computer Vision, 129 (1), 161–184. 
Namgung, M. and Chiang, Y.Y. , 2022. Incorporating spatial context for post-ocr in map images.
In: Proceedings of the 5th ACM SIGSPATIAL International Workshop on AI for Geographic
Knowledge Discovery . 14–17. 
Nguyen, T. , et al. , 2020. Neural machine translation with bert for post-ocr error detection and
correction. In: Proceedings of the ACM/IEEE JCDL , New York, NY, USA. ACM, 333–336. 
Rothe, S. , Narayan, S. , and Severyn, A. , 2020. Leveraging pre-trained checkpoints for
sequence generation tasks. Transactions of the Association for Computational Linguistics, 8,
264–280. 
Rumsey, D. and Williams, M. , 2002. Historical Maps in GIS. Cartography Associates. 
Sanh, V. , et al. , 2019. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter.
arXiv preprint arXiv:1910.01108. 
Shbita, B. , et al. , 2022. Building spatio-temporal knowledge graphs from vectorized
topographic historical maps. Semantic Web, (Preprint), 1–23. 
Song, B. and Chan, T. , 2002. A fast algorithm for level set based optimization. UCLA Cam
Report, 2 (68). 
Soper, E. , Fujimoto, S. , and Yu, Y. , 2021. BART for post-correction of OCR newspaper text.
In: Proceedings of W-NUT 2021, November, Online. ACL, 284–290. 
Uhl, J.H. , 2021. How the U.S. was mapped - visualizing 130 years of topographic mapping in
the conterminous U.S. Available from: https://doi.org/10.6084/m9.figshare.17209433.v3. 
Uhl, J.H. and Duan, W. , 2020. Automating information extraction from large historical
topographic map archives: New opportunities and challenges. Handbook of Big Geospatial Data



, 509–522. 
Uhl, J.H. , et al. , 2018. Map archive mining: visual-analytical approaches to explore large
historical map collections. ISPRS International Journal of Geo-Information, 7 (4), 148. 
Uhl, J.H. , et al. , 2022a. Towards the automated large-scale reconstruction of past road
networks from historical maps. Computers, Environment and Urban Systems, 94, 101794. 
Uhl, J.H. , et al. , 2022b. Unmapped terrain and invisible communities: Analyzing topographic
mapping disparities across settlements in the united states from 1885 to 2015. July. Zenodo.
Available from: https://doi.org/10.5281/zenodo.6789259. 
Uhl, J.H. , et al. , 2021. Combining remote-sensing-derived data and historical maps for long-
term back-casting of urban extents. Remote Sensing, 13 (18), 3672. 
Vrandečić, D. and Krötzsch, M. , 2014. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57 (10), 78–85. 
Wang, H. and Song, M. , 2011. Ckmeans. 1d. dp: optimal k-means clustering in one dimension
by dynamic programming. The R Journal, 3 (2), 29. 
Wang, T. , et al. , 2012. End-to-end text recognition with convolutional neural networks. In:
Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012) . IEEE,
3304–3308. 
Weinman, J. , et al. , 2019. Deep neural networks for text detection and recognition in historical
maps. In: Proceedings of IEEE ICDAR ‘19. IEEE, 902–909. 
Wu, S. , et al. , 2019. Road extraction from very high resolution images using weakly labeled
openstreetmap centerline. ISPRS International Journal of Geo-Information, 8 (11), 478. 
Xia, Z. , et al. , 2022. Vision transformer with deformable attention. In: Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition . 4794–4803. 
Yang, S. , et al. , 2019. Exploring pre-trained language models for event extraction and
generation. In: Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics , July, Florence, Italy. ACL, 5284–5294. 
Zhang, X. , et al. , 2022. Text spotting transformers. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition . 9519–9528. 
Zhu, X. , et al. , 2020. Deformable detr: Deformable transformers for end-to-end object
detection. arXiv preprint arXiv:2010.04159. 

 
Spatiotemporal AI for Transportation 
Asad, M.H. , et al. , 2022. Pothole detection using deep learning: A real-time and ai-on-the-edge
perspective. Advances in Civil Engineering, 2022, e9221211. 
Basso, R. , et al. , 2022. Dynamic stochastic electric vehicle routing with safe reinforcement
learning. Transportation Research Part E: Logistics and Transportation Review, 157, 102496. 
Chen, C. , et al. , 2020. An intelligent path planning scheme of autonomous vehicles platoon
using deep reinforcement learning on network edge. IEEE Access, 8, 99059–99069. 
Cheng, T. , Haworth, J. , and Wang, J. , 2012. Spatio-temporal autocorrelation of road network
data. Journal of Geographical Systems, 14, 389–413. 
Cheng, T. , Zhang, Y. , and Haworth, J. , 2022. Network spacetime ai: Concepts, methods and
applications. Journal of Geodesy and Geoinformation Science, 5 (3), 78. 
Chu, T. , et al. , 2019. Multi-agent deep reinforcement learning for large-scale traffic signal
control. IEEE Transactions on Intelligent Transportation Systems, 21 (3), 1086–1095. 
Edrisi, A. , Bagherzadeh, K. , and Nadi, A. , 2022. Applying markov decision process to
adaptive dynamic route selection model. In: Proceedings of the Institution of Civil Engineers
Transport . vol. 175, 359–372. 
Fayyad, J. , et al. , 2020. Deep learning sensor fusion for autonomous vehicle perception and
localization: A review. Sensors, 20 (15), 4220. 
Grunitzki, R. , de Oliveira Ramos, G. , and Bazzan, A.L.C. , 2014. Individual versus difference
rewards on reinforcement learning for route choice. In: 2014 Brazilian Conference on Intelligent
Systems . IEEE, 253–258. 
Hassan, L.A.H. , Mahmassani, H.S. , and Chen, Y. , 2020. Reinforcement learning framework
for freight demand forecasting to support operational planning decisions. Transportation



Research Part E: Logistics and Transportation Review, 137, 101926. 
Ibrahim, M.R. , Haworth, J. , and Cheng, T. , 2019. Weathernet: Recognising weather and
visual conditions from street-level images using deep residual learning. ISPRS International
Journal of Geo-Information, 8 (12), 549. 
Ibrahim, M.R. , Haworth, J. , and Cheng, T. , 2021a. Urban-i: From urban scenes to mapping
slums, transport modes, and pedestrians in cities using deep learning and computer vision.
Environment and Planning B: Urban Analytics and City Science, 48 (1), 76–93. 
Ibrahim, M.R. , et al. , 2021b. Cyclingnet: Detecting cycling near misses from video streams in
complex urban scenes with deep learning. IET Intelligent Transport Systems, 15 (10),
1331–1344. 
Ibrahim, M.R. , et al. , 2020. Cycling near misses: a review of the current methods, challenges
and the potential of an ai-embedded system. Transport Reviews, 41 (3), 304–328. 
Irannezhad, E. , Prato, C.G. , and Hickman, M. , 2020. An intelligent decision support system
prototype for hinterland port logistics. Decision Support Systems, 130, 113227. 
Jindal, I. , et al. , 2018. Optimizing taxi carpool policies via reinforcement learning and spatio-
temporal mining. In: 2018 IEEE International Conference on Big Data . 1417–1426. 
Kamarianakis, Y. and Prastacos, P. , 2003. Forecasting traffic flow conditions in an urban
network: Comparison of multivariate and univariate approaches. Transportation Research
Record, 1857 (1), 74–84. 
Kang, Y. , Lee, S. , and Do Chung, B. , 2019. Learning-based logistics planning and scheduling
for crowdsourced parcel delivery. Computers & Industrial Engineering, 132, 271–279. 
Karlaftis, M.G. and Vlahogianni, E.I. , 2011. Statistical methods versus neural networks in
transportation research: Differences, similarities and some insights. Transportation Research
Part C: Emerging Technologies, 19 (3), 387–399. 
Khadilkar, H. , 2018. A scalable reinforcement learning algorithm for scheduling railway lines.
IEEE Transactions on Intelligent Transportation Systems, 20 (2), 727–736. 
Kiela, K. , et al. , 2020. Review of v2x–iot standards and frameworks for its applications. Applied
Sciences, 10 (12), 4314. 
Li, X. and Chen, D. , 2022. A survey on deep learning-based panoptic segmentation. Digital
Signal Processing, 120, 103283. 
Liu, Q. and Xu, J. , 2012. Traffic signal timing optimization for isolated intersections based on
differential evolution bacteria foraging algorithm. Procedia-Social and Behavioral Sciences, 43,
210–215. 
Matos, G.P. , et al. , 2021. Solving periodic timetabling problems with sat and machine learning.
Public Transport, 13 (3), 625–648. 
Miletic, M. , et al. , 2022. A review of reinforcement learning applications in adaptive traffic
signal control. IET Intelligent Transport Systems, 16 (10), 1269–1285. 
Mo, Y. , et al. , 2022. Review the state-of-the-art technologies of semantic segmentation based
on deep learning. Neurocomputing, 493, 626–646. 
Mostafa, T.S. and Talaat, H. , 2010. Intelligent geographical information system for vehicle
routing (igis-vr): A modeling framework. In: 13th International IEEE Conference on Intelligent
Transportation Systems . IEEE, 801–805. 
Pal, S.K. , et al. , 2021. Deep learning in multi-object detection and tracking: state of the art.
Applied Intelligence, 51, 6400–6429. 
Ren, Y. , et al. , 2020. A hybrid integrated deep learning model for the prediction of citywide
spatio-temporal flow volumes. International Journal of Geographical Information Science, 34 (4),
802–823. 
Ren, Y. , Cheng, T. , and Zhang, Y. , 2019. Deep spatio-temporal residual neural networks for
road-network-based data modeling. International Journal of Geographical Information Science,
33 (9), 1894–1912. 
Rosenfeld, A. , 1988. Computer vision: basic principles. Proceedings of the IEEE, 76 (8),
863–868. 
Shi, D. , et al. , 2019. Optimal transportation network company vehicle dispatching via deep
deterministic policy gradient. In: Wireless Algorithms, Systems, and Applications: 14th
International Conference, WASA 2019 , Honolulu, HI, USA , June 24–26, 2019. Springer,
297–309. 
Silver, D. , et al. , 2016. Mastering the game of go with deep neural networks and tree search.
Nature, 529 (7587), 484–489.



Smith, B.L. and Demetsky, M.J. , 1997. Traffic flow forecasting: comparison of modeling
approaches. Journal of Transportation Engineering, 123 (4), 261–266. 
Smith, B.L. , Williams, B.M. , and Oswald, R.K. , 2002. Comparison of parametric and
nonparametric models for traffic flow forecasting. Transportation Research Part C: Emerging
Technologies, 10 (4), 303–321. 
Sutton, R.S. and Barto, A.G. , 2018. Reinforcement Learning: An Introduction. MIT Press. 
Tamagawa, D. , Taniguchi, E. , and Yamada, T. , 2010. Evaluating city logistics measures using
a multi-agent model. Procedia-Social and Behavioral Sciences, 2 (3), 6002–6012. 
Tang, J. , Li, S. , and Liu, P. , 2021. A review of lane detection methods based on deep
learning. Pattern Recognition, 111, 107623. 
Van Lint, J. , Hoogendoorn, S. , and van Zuylen, H.J. , 2005. Accurate freeway travel time
prediction with state-space neural networks under missing data. Transportation Research Part
C: Emerging Technologies, 13 (5–6), 347–369. 
Veres, M. and Moussa, M. , 2019. Deep learning for intelligent transportation systems: A survey
of emerging trends. IEEE Transactions on Intelligent Transportation Systems, 21 (8),
3152–3168. 
Vikharev, S. and Liapustin, M. , 2019. Reinforcement learning cases for passengers behavior
modeling. In: AIP Conference Proceedings . AIP Publishing, vol. 2142, 170020. 
Vlahogianni, E.I. , Karlaftis, M.G. , and Golias, J.C. , 2014. Short-term traffic forecasting: Where
we are and where we're going. Transportation Research Part C: Emerging Technologies, 43,
3–19. 
Wali, S.B. , et al. , 2019. Vision-based traffic sign detection and recognition systems: Current
trends and challenges. Sensors, 19 (9), 2093. 
Walraven, E. , Spaan, M.T. , and Bakker, B. , 2016. Traffic flow optimization: A reinforcement
learning approach. Engineering Applications of Artificial Intelligence, 52, 203–212. 
Wang, J. , et al. , 2019. A survey of vehicle to everything (v2x) testing. Sensors, 19 (2), 334. 
Wang, J. and Sun, L. , 2020. Dynamic holding control to avoid bus bunching: A multi-agent
deep reinforcement learning framework. Transportation Research Part C: Emerging
Technologies, 116, 102661. 
Wei, H. , et al. , 2021. Recent advances in reinforcement learning for traffic signal control: A
survey of models and evaluation. ACM SIGKDD Explorations Newsletter, 22 (2), 12–18. 
Welch, T.F. and Widita, A. , 2019. Big data in public transportation: a review of sources and
methods. Transport Reviews, 39 (6), 795–818. 
Williams, B.M. and Hoel, L.A. , 2003. Modeling and forecasting vehicular traffic flow as a
seasonal arima process: Theoretical basis and empirical results. Journal of Transportation
Engineering, 129 (6), 664–672. 
Wu, Y. and Tan, H. , 2016. Short-term traffic flow forecasting with spatial-temporal correlation in
a hybrid deep learning framework. arXiv preprint arXiv:1612.01022. 
Xiao, Y. , et al. , 2020. A review of object detection based on deep learning. Multimedia Tools
and Applications, 79, 23729–23791. 
Yang, M. , et al. , 2020. Inferring passengers' interactive choices on public transits via MA-AL:
Multi-agent apprenticeship learning. In: Proceedings of the Web Conference 2020 . 1637–1647. 
Yang, Z. and Pun-Cheng, L.S. , 2018. Vehicle detection in intelligent transportation systems and
its applications under varying environments: A review. Image and Vision Computing, 69,
143–154. 
Yao, G. , Lei, T. , and Zhong, J. , 2019. A review of convolutional-neural-network-based action
recognition. Pattern Recognition Letters, 118, 14–22. 
Yu, B. , Yin, H. , and Zhu, Z. , 2018. Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. In: Proceedings of the 27th International Joint
Conference on Artificial Intelligence . 3634–3640. 
Yu, X. and Marinov, M. , 2020. A study on recent developments and issues with obstacle
detection systems for automated vehicles. Sustainability, 12 (8), 3281. 
Zhang, H. , et al. , 2019a. A comprehensive survey of vision-based human action recognition
methods. Sensors, 19 (5), 1005. 
Zhang, S. , et al. , 2019b. Graph convolutional networks: A comprehensive review.
Computational Social Networks, 6 (1), 11. 
Zhang, Y. , Cheng, T. , and Ren, Y. , 2019c. A graph deep learning method for short-term traffic
forecasting on large road networks. Computer-Aided Civil and Infrastructure Engineering, 34



(10), 877–896. 
Zhao, Z. , et al. , 2017. Lstm network: A deep learning approach for short-term traffic forecast.
IET Intelligent Transport Systems, 11 (2), 68–75. 
Zhou, Y. , Fu, R. , and Wang, C. , 2020. Learning the car-following behavior of drivers using
maximum entropy deep inverse reinforcement learning. Journal of Advanced Transportation,
2020 (4752651), 1–13. 

 
GeoAI for Humanitarian Assistance 
Abel, G.J. , et al. , 2019. Climate, conflict and forced migration. Global Environmental Change,
54, 239–249. 
Alegana, V.A. , et al. , 2015. Fine resolution mapping of population age-structures for health and
development applications. Journal of The Royal Society Interface, 12 (105), 20150073. 
Alfons, A. , et al. , 2011. Simulation of close-to-reality population data for household surveys
with application to EU-SILC. Statistical Methods & Applications, 20, 383–407. 
Arndt, J. and Lunga, D. , 2020. Sampling subjective polygons for patch-based deep learning
land-use classification in satellite images. In: IGARSS 2020 - 2020 IEEE International
Geoscience and Remote Sensing Symposium . 1953–1956. 
Arndt, J. and Lunga, D. , 2021. Large-scale classification of urban structural units from remote
sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 14, 2634–2648. 
Batty, M. , 2007. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-
Based Models, and Fractals. Boston: The MIT Press. 
Beckman, R.J. , Baggerly, K.A. , and McKay, M.D. , 1996. Creating synthetic baseline
populations. Transportation Research Part A: Policy and Practice, 30 (6), 415–429. 
Beine, M. and Jeusette, L. , 2021. A meta-analysis of the literature on climate change and
migration. Journal of Demographic Economics, 87 (3), 293–344. 
Benenson, I. and Torrens, P.M. , 2004. Geosimulation: Automata-Based Modeling of Urban
Phenomena. London: John Wiley & Sons, Ltd. 
Bhaduri, B. , et al. , 2007. Landscan usa: a high-resolution geospatial and temporal modeling
approach for population distribution and dynamics. GeoJournal, 69 (1), 103–117. 
Black, R. , et al. , 2011a. The effect of environmental change on human migration. Global
Environmental Change, 21, S3–S11. 
Black, R. , et al. , 2011b. Migration as adaptation. Nature, 478 (7370), 447–449. 
Blumenstock, J. , 2018. Don't forget people in the use of big data for development. 
Bosco, C. , et al. , 2017. Exploring the high-resolution mapping of gender-disaggregated
development indicators. Journal of The Royal Society Interface, 14 (129), 20160825. 
Burris, J.W. , et al. , 2013. Uncertainty quantification techniques for population density estimates
derived from sparse open source data. In: Proc. SPIE 8747, Geospatial InfoFusion III . vol.
8747, 254–258. 
Burris, J.W. , et al. , 2015. Machine learning for the activation of contraflows during hurricane
evacuation. In: 2015 IEEE Global Humanitarian Technology Conference (GHTC) . vol. 1,
254–258. 
Carvalhaes, T. , et al. , 2022a. A spatially non-stationary approach to identify multi-dimensional
push factors for international emigration. Social Science Research Network. 
Carvalhaes, T. , et al. , 2022b. Integrating spatial and ethnographic methods for resilience
research: A thick mapping approach for hurricane maria in puerto rico. Annals of the American
Association of Geographers. 
Carvalhaes, T.M. , et al. , 2021. An overview & synthesis of disaster resilience indices from a
complexity perspective. International Journal of Disaster Risk Reduction, 57, 102165. 
Casali, Y. , Aydin, N.Y. , and Comes, T. , 2022. Machine learning for spatial analyses in urban
areas: a scoping review. Sustainable Cities and Society, 85, 104050. 
Coppi, G. , Moreno Jimenez, R. , and Kyriazi, S. , 2021. Explicability of humanitarian ai: a
matter of principles. Journal of International Humanitarian Action, 6 (1), 1–22.



Crooks, A. , et al. , 2021. Agent-based modeling and the city: A gallery of applications. In: W.
Shi , M.F. Goodchild , M. Batty , M.P. Kwan and A. Zhang , eds. Urban Informatics. Singapore:
Springer, Ch. 46, 885–910. 
Cutter, S.L. and Finch, C. , 2008. Temporal and spatial changes in social vulnerability to natural
hazards. Proceedings of the National Academy of Sciences, 105 (7), 2301–2306. 
de Blasio, G. , D'Ignazio, A. , and Letta, M. , 2022. Gotham city. Predicting ‘corrupted’
municipalities with machine learning. Technological Forecasting and Social Change, 184,
122016. 
Dias, P. , et al. , 2022a. Human-machine collaboration for reusable and scalable models for
remote sensing imagery analysis. Presented at the ICML 2022 Workshop on Human-Machine
Collaboration and Teaming. 
Dias, P. and Lunga, D. , 2022. Embedding ethics and trustworthiness for sustainable AI in earth
sciences: Where do we begin? In: IGARSS 2022 - 2022 IEEE International Geoscience and
Remote Sensing Symposium . 4639–4642. 
Dias, P. , et al. , 2022b. Model assumptions and data characteristics: Impacts on domain
adaptation in building segmentation. IEEE Transactions on Geoscience and Remote Sensing,
60, 1–18. 
Dodgson, K. , et al. , 2020. A framework for the ethical use of advanced data science methods
in the humanitarian sector. Data Science and Ethics Group. 
Durst, D. , Lämmel, G. , and Klüpfel, H. , 2014. Large-scale multi-modal evacuation analysis
with an application to hamburg. In: Pedestrian and Evacuation Dynamics 2012. Springer,
361–369. 
Epstein, J.M. and Axtell, R.L. , 1996. Growing Artificial Societies: Social Science from the
Bottom Up. Boston: The MIT Press. 
Feitosa, F.F. , Le, Q.B. , and Vlek, P.L. , 2011. Multi-agent simulator for urban segregation
(masus): A tool to explore alternatives for promoting inclusive cities. Computers, Environment
and Urban Systems, 35 (2), 104–115. 
Flowerdew, R. and Aitkin, M. , 1982. A method of fitting the gravity model based on the poisson
distribution. Journal of Regional Science, 22 (2), 191–202. 
Fotheringham, A.S. , et al. , 2004. The Development of a Migration Model for England and
Wales: Overview and Modelling Out-Migration. Environment and Planning A: Economy and
Space, 36 (9), 1633–1672. 
Fotheringham, A.S. , Yang, W. , and Kang, W. , 2017. Multiscale Geographically Weighted
Regression. Annals of the American Association of Geographers, 107 (6), 1247–1265. 
Fotheringham, A. , 1983. A new set of spatial-interaction models: The theory of competing
destinations. Environment and Planning A: Economy and Space, 15 (1), 15–36. 
Frazier, T. and Alfons, A. , 2012. Generating a close-to-reality synthetic population of ghana.
Social Science Research Network, 15. 
Garcia, A.J. , et al. , 2014. Modeling internal migration flows in sub-Saharan Africa using census
microdata. Migration Studies, 3 (1), 89–110. 
Gething, P. , et al. , 2015. Creating spatial interpolation surfaces with DHS data. DHS Spatial
Analysis Reports, No. 11, pp. 86. 
Helbing, D. and Molnar, P. , 1995. Social force model for pedestrian dynamics. Physical Review
E, 51 (5), 4282–4286. 
Jayachandran, S. , Biradavolu, M. , and Cooper, J. , 2023. Using machine learning and
qualitative interviews to design a five-question survey module for women's agency. World
Development, 161, 106076. 
Knippenberg, E. , Jensen, N. , and Constas, M. , 2019. Quantifying household resilience with
high frequency data: Temporal dynamics and methodological options. World Development, 121,
1–15. 
Kraemer, M.U.G. , et al. , 2019. Utilizing general human movement models to predict the spread
of emerging infectious diseases in resource poor settings. Scientific Reports, 9 (5151). 
Kuffer, M. , et al. , 2022. The missing millions in maps: Exploring causes of uncertainties in
global gridded population datasets. ISPRS International Journal of Geo-Information, 11 (7), 403. 
Kuner, C. , et al. , 2020. Handbook on Data Protection in Humanitarian Action. International
Committee of the Red Cross. 
Lai, S. , et al. , 2019. Exploring the use of mobile phone data for national migration statistics.
Palgrave Communications, 5 (34), 89–110.



Lämmel, G. , Klüpfel, H. , and Nagel, K. , 2009. The matsim network flow model for traffic
simulation adapted to large-scale emergency egress and an application to the evacuation of the
indonesian city of padang in case of a tsunami warning. In: Pedestrian Behavior. Emerald
Group Publishing Limited, 245–265. 
Le, Q.B. , Park, S.J. , and Vlek, P.L. , 2010. Land use dynamic simulator (ludas): A multi-agent
system model for simulating spatio-temporal dynamics of coupled human–landscape system.
Ecological Informatics, 5 (3), 203–221. 
Leslie, D. , 2019. Understanding artificial intelligence ethics and safety. arXiv preprint
arXiv:1906.05684. 
Li, W. , 2020. Geoai: Where machine learning and big data converge in GIScience. Journal of
Spatial Information Science, (20), 71–77. 
Luca, M. , et al. , 2020. Deep learning for human mobility: a survey on data and models. CoRR,
abs/2012.02825. 
Lunga, D. , et al. , 2021. Resflow: A remote sensing imagery data-flow for improved model
generalization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 14, 10468–10483. 
Lunga, D. , et al. , 2020. Apache spark accelerated deep learning inference for large scale
satellite image analytics. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 13, 271–283. 
Lunga, D. , et al. , 2022. GeoAI at ACM SIGSPATIAL: The New Frontier of Geospatial Artificial
Intelligence Research. 
Martnez-Rivera, W. , et al. , 2022. A treatment-effect model to quantify human dimensions of
disaster impacts: the case of hurricane maria in puerto rico. Natural Hazards, 1–36. 
McAuliffe, M. and Triandafyllidou, A. , 2020. World Migration Report 2022. Geneva:
International Organization for Migration (IOM). 
McLeman, R. , et al. , 2016. Environmental migration and displacement: What we know and
don't know. In: Laurier Environmental Migration Workshop. 
Milán-Garca, J. , et al. , 2021. Climate change-induced migration: a bibliometric review.
Globalization and Health, 17 (1), 74. 
Miller, E.J. , 2021. Transportation modeling. In: W. Shi , M.F. Goodchild , M. Batty , M.P. Kwan
and A. Zhang , eds. Urban Informatics. Singapore: Springer, Ch. 46, 911–931. 
Mitchell, M. , 1998. An Introduction to Genetic Algorithms. Boston: The MIT Press. 
Munnich, R. and Schurle, J. , 2003. On the simulation of complex universes in the case of
applying the german microcensus. DACSEIS Research Paper Series, No. 4, 2003, No. 4, pp.
22. 
Nagel, K. and Schreckenberg, M. , 1992. A cellular automaton model for freeway traffic. Journal
de Physique, 2 (12), 2221–2229. 
Newman, M.E.J. , 2003. The structure and function of complex networks. SIAM Review, 45 (2),
167–256. 
Ortiz, D.A. , 2020. Geographic information systems (gis) in humanitarian assistance: a meta-
analysis. Pathways: A Journal of Humanistic and Social Inquiry, 1 (2), 4. 
Pagels, H. , 1989. The Dreams of Reason. USA: Simon & Schuster, Inc. 
Pandey, B. , Brelsford, C. , and Seto, K.C. , 2022. Infrastructure inequality is a characteristic of
urbanization. Proceedings of the National Academy of Sciences, 119 (15), e2119890119. 
Persello, C. , et al. , 2022. Deep learning and earth observation to support the sustainable
development goals: Current approaches, open challenges, and future opportunities. IEEE
Geoscience and Remote Sensing Magazine, 10 (2), 172–200. 
Pizzi, M. , Romanoff, M. , and Engelhardt, T. , 2020. AI for humanitarian action: Human rights
and ethics. International Review of the Red Cross, 102 (913), 145–180. 
Presner, T. , Shepard, D. , and Kawano, Y. , 2014. Hypercities Thick Mapping in the Digital
Humanities. UCLA Previously Published Works. UCLA eScholarship. 
Quinn, J.A. , et al. , 2018. Humanitarian applications of machine learning with remote-sensing
data: review and case study in refugee settlement mapping. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 376 (2128), 20170363. 
Reddy, T.A. , 2020. Resilience of complex adaptive systems: A pedagogical framework for
engineering education and research. ASME Journal of Engineering for Sustainable Buildings
and Cities, 1 (2), 021004.



Sallah, K. , et al. , 2017. Mathematical models for predicting human mobility in the context of
infectious disease spread: introducing the impedance model. International Journal of Health
Geographics, 16 (42). 
Saprykin, A. , Chokani, N. , and Abhari, R.S. , 2022. Accelerating agent-based demand-
responsive transport simulations with gpus. Future Generation Computer Systems, 131, 43–58. 
Schiavina, M. , et al. , 2022. GHSL Data Package 2022 GHS-BUILT-S R2022A - GHS built-up
surface grid, derived from Sentinel-2 composite and Landsat, multitemporal (1975-2030). 
Schindler, J. , 2013. About the uncertainties in model design and their effects: An illustration
with a land-use model. Journal of Artificial Societies and Social Simulation, 16 (4), 6. 
Spielman, S.E. , et al. , 2020. Evaluating social vulnerability indicators: criteria and their
application to the social vulnerability index. Natural Hazards, 100 (1), 417–436. 
Stewart, R. , et al. , 2016. A bayesian machine learning model for estimating building occupancy
from open source data. Natural Hazards, 81. 
Sumbul, G. , et al. , 2019. BigEarthNet: A Large-Scale Benchmark Archive For Remote Sensing
Image Understanding. CoRR, arxiv.org/abs/1902.06148. 
Taubenbock, H. , et al. , 2009. "last-mile" preparation for a potential disaster – interdisciplinary
approach towards tsunami early warning and an evacuation information system for the coastal
city of padang, indonesia. Natural Hazards and Earth System Sciences, 9 (4), 1509–1528. 
Tsegai, D. and Le, Q.B. , 2010. District-level spatial analysis of migration flows in ghana:
Determinants and implications for policy. ZEF-Discussion Papers on Development Policy, No.
144, pp. 18. 
Utazi, C. , et al. , 2018. High resolution age-structured mapping of childhood vaccination
coverage in low and middle income countries. Vaccine, 36 (12), 1583–1591. 
Verjee, F. , 2005. The application of geomatics in complex humanitarian emergencies. Journal
of Humanitarian Assistance. 
Villamor, G.B. , et al. , 2014. Biodiversity in rubber agroforests, carbon emissions, and rural
livelihoods: An agent-based model of land-use dynamics in lowland sumatra. Environmental
Modelling & Software, 61, 151–165. 
Vinuesa, R. , et al. , 2020. The role of artificial intelligence in achieving the sustainable
development goals. Nature Communications, 11 (1), 1–10. 
Waddell, P. , 2002. Urbansim: Modeling urban development for land use, transportation, and
environmental planning. Journal of the American Planning Association, 68 (3), 297–314. 
Wardrop, N. , et al. , 2018. Spatially disaggregated population estimates in the absence of
national population and housing census data. Proceedings of the National Academy of
Sciences, 115 (14), 3529–3537. 
Wesolowski, A. , et al. , 2013. The use of census migration data to approximate human
movement patterns across temporal scales. PLOS ONE, 8 (1), 1–8. 
Wilson, A. , 1971. A family of spatial interaction models, and associated developments.
Environment and Planning A: Economy and Space, 3 (1), 1–32. 
Wisetjindawat, W. , et al. , 2013. Modeling disaster response operations including road network
vulnerability. Journal of the Eastern Asia Society for Transportation Studies, 10, 196–214. 
Yang, H.L. , et al. , 2018. Building extraction at scale using convolutional neural network:
Mapping of the united states. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 11 (8), 2600–2614. 

 
GeoAI for Disaster Response 
British Geological Survey . (2023). ALARMS — Assessment of Landslides using Acoustic Real-
time Monitoring Systems. British Geological Survey. Retrieved March 21, 2023, from
https://www.bgs.ac.uk/geology-projects/geophysical-tomography/technologies/ 
Cai, H. , N. S. Lam , Y. Qiang , L. Zou , R. M. Correll , and V. Mihunov (2018). A synthesis of
disaster resilience measurement methods and indices. International Journal of Disaster Risk
Reduction 31 , 844–855. 
Deng, H. , D. P. Aldrich , M. M. Danziger , J. Gao , N. E. Phillips , S. P. Cornelius , and Q. R.
Wang (2021). High-resolution human mobility data reveal race and wealth disparities in disaster
evacuation patterns. Humanities and Social Sciences Communications 8 (1), 1–8.



Devlin, J. , M.-W. Chang , K. Lee , and K. Toutanova (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. 
Dong, E. , H. Du , and L. Gardner (2020). An interactive web-based dashboard to track covid-19
in real time. The Lancet Infectious Diseases 20 (5), 533–534. 
Dong, L. and J. Shan (2013). A comprehensive review of earthquake-induced building damage
detection with remote sensing techniques. ISPRS Journal of Photogrammetry and Remote
Sensing 84 , 85–99. 
Gao, S. , J. Rao , Y. Kang , Y. Liang , and J. Kruse (2020). Mapping county-level mobility
pattern changes in the united states in response to covid-19. SIGSpatial Special 12 (1), 16–26. 
Gao, S. , J. Rao , X. Liu , Y. Kang , Q. Huang , and J. App (2019). Exploring the effectiveness of
geomasking techniques for protecting the geoprivacy of twitter users. Journal of Spatial
Information Science (19), 105–129. 
Hu, T. , S. Wang , B. She , M. Zhang , X. Huang , Y. Cui , J. Khuri , Y. Hu , X. Fu , X. Wang , et
al. (2021). Human mobility data in the covid-19 pandemic: characteristics, applications, and
challenges. International Journal of Digital Earth 14 (9), 1126–1147. 
Huang, X. , C. Wang , and Z. Li (2018). A near real-time flood-mapping approach by integrating
social media and post-event satellite imagery. Annals of GIS 24 (2), 113–123. 
Janowicz, K. , S. Gao , G. McKenzie , Y. Hu , and B. Bhaduri (2020). Geoai: spatially explicit
artificial intelligence techniques for geographic knowledge discovery and beyond. International
Journal of Geographical Information Science 34 (4), 625–636. 
Jiang, Y. , Z. Li , and S. L. Cutter (2019). Social network, activity space, sentiment, and
evacuation: what can social media tell us? Annals of the American Association of Geographers
109 (6), 1795–1810. 
Kryvasheyeu, Y. , H. Chen , N. Obradovich , E. Moro , P. Van Hentenryck , J. Fowler , and M.
Cebrian (2016). Rapid assessment of disaster damage using social media activity. Science
Advances 2 (3), e1500779. 
Lam, N. S.-N. , Y. J. Xu , K.-B. Liu , D. E. Dismukes , M. Reams , R. K. Pace , Y. Qiang , S.
Narra , K. Li , T. A. Bianchette , et al. (2018). Understanding the mississippi river delta as a
coupled natural-human system: Research methods, challenges, and prospects. Water 10 (8),
1054. 
Lee, C.-C. , M. Maron , and A. Mostafavi (2022). Community-scale big data reveals disparate
impacts of the texas winter storm of 2021 and its managed power outage. Humanities and
Social Sciences Communications 9 (1), 1–12. 
Li, L. , Y. Fan , M. Tse , and K.-Y. Lin (2020). A review of applications in federated learning.
Computers & Industrial Engineering 149 , 106854. 
Li, Z. , C. Wang , C. T. Emrich , and D. Guo (2018). A novel approach to leveraging social
media for rapid flood mapping: a case study of the 2015 south carolina floods. Cartography and
Geographic Information Science 45 (2), 97–110. 
Lin, B. , L. Zou , N. Duffield , A. Mostafavi , H. Cai , B. Zhou , J. Tao , M. Yang , D. Mandal , and
J. Abedin (2022). Revealing the linguistic and geographical disparities of public awareness to
covid-19 outbreak through social media. International Journal of Digital Earth 15 (1), 868–889. 
Martin, Y. , Z. Li , and S. L. Cutter (2017). Leveraging twitter to gauge evacuation compliance:
Spatiotemporal analysis of hurricane matthew. PLoS One 12 (7), e0181701. 
Mihunov, V. V. , N. H. Jafari , K. Wang , N. S. Lam , and D. Govender (2022). Disaster impacts
surveillance from social media with topic modeling and feature extraction: Case of hurricane
harvey. International Journal of Disaster Risk Science 13 (5), 729–742. 
Mihunov, V. V. , N. S. Lam , L. Zou , Z. Wang , and K. Wang (2020). Use of twitter in disaster
rescue: lessons learned from hurricane harvey. International Journal of Digital Earth 13 (12),
1454–1466. 
Nelson, T. , M. Goodchild , and D. Wright (2022). Accelerating ethics, empathy, and equity in
geographic information science. Proceedings of the National Academy of Sciences 119 (19),
e2119967119. 
Nex, F. , D. Duarte , F. G. Tonolo , and N. Kerle (2019). Structural building damage detection
with deep learning: Assessment of a state-of-the-art cnn in operational conditions. Remote
Sensing 11 (23), 2765. 
Ray, P. P. , M. Mukherjee , and L. Shu (2017). Internet of things for disaster management:
State-of-the-art and prospects. IEEE Access 5 , 18818–18835.



Simonyan, K. and A. Zisserman (2015). Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556. 
Song, X. , R. Shibasaki , N. J. Yuan , X. Xie , T. Li , and R. Adachi (2017). Deepmob: learning
deep knowledge of human emergency behavior and mobility from big and heterogeneous data.
ACM Transactions on Information Systems (TOIS) 35 (4), 1–19. 
Song, X. , Q. Zhang , Y. Sekimoto , and R. Shibasaki (2014). Prediction of human emergency
behavior and their mobility following large-scale disaster. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 5–14. 
Wang, J. , Y. Hu , and K. Joseph (2020). Neurotpr: A neuro-net toponym recognition model for
extracting locations from social media messages. Transactions in GIS 24 (3), 719–735. 
Wang, K. , N. S. Lam , L. Zou , and V. Mihunov (2021). Twitter use in hurricane isaac and its
implications for disaster resilience. ISPRS International Journal of Geo-Information 10 (3), 116. 
Yabe, T. , Y. Zhang , and S. V. Ukkusuri (2020). Quantifying the economic impact of disasters
on businesses using human mobility data: a bayesian causal inference approach. EPJ Data
Science 9 (1), 36. 
Yuan, F. and R. Liu (2020). Mining social media data for rapid damage assessment during
hurricane matthew: Feasibility study. Journal of Computing in Civil Engineering 34 (3),
05020001. 
Zhai, W. and Z.-R. Peng (2020). Damage assessment using google street view: Evidence from
hurricane michael in mexico beach, florida. Applied Geography 123 , 102252. 
Zhang, B. , Z. Chen , D. Peng , J. A. Benediktsson , B. Liu , L. Zou , J. Li , and A. Plaza (2019).
Remotely sensed big data: Evolution in model development for information extraction [point of
view]. Proceedings of the IEEE 107 (12), 2294–2301. 
Zhao, F. and C. Zhang (2020). Building damage evaluation from satellite imagery using deep
learning. In 2020 IEEE 21st International Conference on Information Reuse and Integration for
Data Science (IRI) , pp. 82–89. IEEE. 
Zhou, B. , L. Zou , Q. Y. Hu, Yingjie , and D. Goldberg (2023). Topobert: Plug and play toponym
recognition module harnessing fine-tuned bert. arXiv preprint arXiv:2301.13631. 
Zhou, B. , L. Zou , A. Mostafavi , B. Lin , M. Yang , N. Gharaibeh , H. Cai , J. Abedin , and D.
Mandal (2022). Victimfinder: Harvesting rescue requests in disaster response from social media
with bert. Computers, Environment and Urban Systems 95 , 101824. 
Zou, L. , N. S. Lam , H. Cai , and Y. Qiang (2018). Mining twitter data for improved
understanding of disaster resilience. Annals of the American Association of Geographers 108
(5), 1422–1441. 
Zou, L. , N. S. Lam , S. Shams , H. Cai , M. A. Meyer , S. Yang , K. Lee , S.-J. Park , and M. A.
Reams (2019). Social and geographical disparities in twitter use during hurricane harvey.
International Journal of Digital Earth 12 (11), 1300–1318. 
Zou, L. , D. Liao , N. S. Lam , M. A. Meyer , N. G. Gharaibeh , H. Cai , B. Zhou , and D. Li
(2023). Social media for emergency rescue: An analysis of rescue requests on twitter during
hurricane harvey. International Journal of Disaster Risk Reduction 85 , 103513. 

 
GeoAI for Public Health 
Abdulkareem, S.A. , 2019. Enhancing Agent-Based Models with Artificial Intelligence for
Complex Decision Making. Thesis (PhD). University of Twente. 
Abdulkareem, S.A. , et al. , 2019. Bayesian networks for spatial learning: a workflow on using
limited survey data for intelligent learning in spatial agent-based models. Geoinformatica, 23 (2),
243–268. 
Aboubakr, H.A. and Magdy, A. , 2020. On improving toll accuracy for COVID-like epidemics in
underserved communities using user-generated data. In: Proceedings of the 1st ACM
SIGSPATIAL International Workshop on Modeling and Understanding the Spread of COVID-19
. 32–35. 
Adhikari, B. , et al. , 2021. The 4th international workshop on epidemiology meets data mining
and knowledge discovery (epidamik 4.0@ kdd2021). In: Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining . 4104–4105.



Adhikari, B. , et al. , 2019. Epideep: Exploiting embeddings for epidemic forecasting. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining . 577–586. 
Adhikari, B. , et al. , 2022. epidamik 5.0: The 5th international workshop on epidemiology meets
data mining and knowledge discovery. In: Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining . 4850–4851. 
Adiga, A. , et al. , 2020. Mathematical models for COVID-19 pandemic: a comparative analysis.
Journal of the Indian Institute of Science, 100 (4), 793–807. 
Agarwal, R. and Banerjee, A. , 2020. Infection risk score: Identifying the risk of infection
propagation based on human contact. In: Proceedings of the 1st ACM SIGSPATIAL
International Workshop on Modeling and Understanding the Spread of COVID-19 . 1–10. 
Agusto, F.B. , et al. , 2020. To isolate or not to isolate: The impact of changing behavior on
COVID-19 transmission. medRxiv. 
Ajayakumar, J. , Curtis, A. , and Curtis, J. , 2021. A clustering environment for real-time tracking
and analysis of COVID-19 case clusters. In: Proceedings of the 2nd ACM SIGSPATIAL
International Workshop on Spatial Computing for Epidemiology (SpatialEpi 2021) . 1–9. 
Alam, M. , Tanaka, M. , and Tanimoto, J. , 2019. A game theoretic approach to discuss the
positive secondary effect of vaccination scheme in an infinite and well-mixed population. Chaos,
Solitons & Fractals, 125, 201–213. 
Anderson, T. and Dragićević, S. , 2020. Neat approach for testing and validation of geospatial
network agent-based model processes: case study of influenza spread. International Journal of
Geographical Information Science, 1–30. 
Anderson, T. , et al. , 2022. Proceedings of the 3rd ACM SIGSPATIAL International Workshop
on Spatial Computing for Epidemiology (SpatialEpi 2022) . ACM. 
Anderson, T. , et al. , 2021a. Proceedings of the 2nd ACM SIGSPATIAL International Workshop
on Spatial Computing for Epidemiology (SpatialEpi 2021) . ACM. 
Anderson, T. , Yu, J. , and Züfle, A. , 2021b. The 1st acm sigspatial international workshop on
modeling and understanding the spread of COVID-19. SIGSPATIAL Special, 12 (3), 35–40. 
Aron, J.L. and Schwartz, I.B. , 1984. Seasonality and period-doubling bifurcations in an
epidemic model. Journal of Theoretical Biology, 110 (4), 665–679. 
Azad, F.T. , et al. , 2022. Sirtem: Spatially informed rapid testing for epidemic modeling and
response to COVID-19. ACM Transactions on Spatial Algorithms and Systems, 8 (4), 1–43. 
Baldassare, M. , 1978. Human spatial behavior. Annual Review of Sociology, 4 (1), 29–56. 
Barrett, C. , et al. , 2011. Economic and social impact of influenza mitigation strategies by
demographic class. Epidemics, 3 (1), 19–31. 
Bauch, C. , d'Onofrio, A. , and Manfredi, P. , 2013. Behavioral epidemiology of infectious
diseases: an overview. In: Modeling the Interplay Between Human Behavior and the Spread of
Infectious Diseases. Springer, 1–19. 
Behera, S. , Dogra, D.P. , and Satpathy, M. , 2022. Effect of migrant labourer inflow on the early
spread of COVID-19 in odisha: A case study. ACM Transactions on Spatial Algorithms and
Systems, 8 (4), 1–18. 
Bertsimas, D. and Kallus, N. , 2020. From predictive to prescriptive analytics. Management
Science, 66 (3), 1025–1044. 
Bharti, N. , 2021. Linking human behaviors and infectious diseases. Proceedings of the National
Academy of Sciences, 118 (11). 
Bian, L. , 2004. A conceptual framework for an individual-based spatially explicit epidemiological
model. Environment and Planning B: Planning and Design, 31 (3), 381–395. 
Blei, D.M. , Ng, A.Y. , and Jordan, M.I. , 2003. Latent dirichlet allocation. Journal of Machine
Learning Research, 3 (Jan), 993–1022. 
Bobashev, G. , et al. , 2020. Geospatial forecasting of COVID-19 spread and risk of reaching
hospital capacity. SIGSPATIAL Special, 12 (2), 25–32. 
Bossert, A. , et al. , 2020. Limited containment options of COVID-19 outbreak revealed by
regional agent-based simulations for south africa. arXiv preprint arXiv:2004.05513. 
Brearcliffe, D.K. and Crooks, A. , 2021. Creating intelligent agents: Combining agent-based
modeling with machine learning. In: Proceedings of the 2020 Conference of The Computational
Social Science Society of the Americas . Springer, 31–58. 
Brooks, L.C. , et al. , 2018. Nonmechanistic forecasts of seasonal influenza with iterative one-
week-ahead distributions. PLoS Computational Biology, 14 (6), e1006134.



Burke, D.S. , et al. , 2006. Individual-based computational modeling of smallpox epidemic
control strategies. Academic Emergency Medicine, 13 (11), 1142–1149. 
Burtner, S. and Murray, A.T. , 2022. Covid-19 and minimizing micro-spatial interactions. ACM
Transactions on Spatial Algorithms and Systems, 8 (3), 1–17. 
Cabana, E. , et al. , 2022. Using mobile network data to color epidemic risk maps. In:
Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Spatial Computing for
Epidemiology . 35–44. 
Cardoso, M. , et al. , 2021. Modeling the geospatial evolution of COVID-19 using spatio-
temporal convolutional sequence-to-sequence neural networks. ACM Transactions on Spatial
Systems and Algorithms. 
CDC , 2020. Contact tracing for COVID-19. Centers for Disease Control and Prevention. 
Chai, D. , Wang, L. , and Yang, Q. , 2018. Bike flow prediction with multi-graph convolutional
networks. In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems . 397–400. 
Chao, D.L. , et al. , 2010. Flute, a publicly available stochastic influenza epidemic simulation
model. PLoS Comput Biol, 6 (1), e1000656. 
Chen, E. and McKenzie, G. , 2021. Mobility response to COVID-19-related restrictions in new
york city. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Spatial
Computing for Epidemiology (SpatialEpi 2021) . 10–13. 
Chen, L.C. , et al. , 2006. Model alignment of anthrax attack simulations. Decision Support
Systems, 41 (3), 654–668. 
Coro, G. and Bove, P. , 2022. A high-resolution global-scale model for COVID-19 infection rate.
ACM Transactions on Spatial Algorithms and Systems, 8 (3), 1–24. 
Cramer, E.Y. , et al. , 2022. Evaluation of individual and ensemble probabilistic forecasts of
COVID-19 mortality in the united states. Proceedings of the National Academy of Sciences, 119
(15), e2113561119. 
Davies, N.G. , et al. , 2020. Age-dependent effects in the transmission and control of COVID-19
epidemics. MedRxiv. 
Del Valle, S.Y. , Mniszewski, S.M. , and Hyman, J.M. , 2013. Modeling the impact of behavior
changes on the spread of pandemic influenza. In: Modeling the Interplay Between Human
Behavior and the Spread of Infectious Diseases. Springer, 59–77. 
Deng, S. , et al. , 2020. Cola-gnn: Cross-location attention based graph neural networks for
long-term ili prediction. In: Proceedings of the 29th ACM International Conference on
Information & Knowledge Management . 245–254. 
Dignum, F. , et al. , 2020. Analysing the combined health, social and economic impacts of the
corovanvirus pandemic using agent-based social simulation. arXiv preprint arXiv:2004.12809. 
Dong, Y. , Yu, C. , and Xia, L. , 2020. Hierarchical reinforcement learning for epidemics
intervention. In: First International KDD Workshop for Prescriptive Analytics for the Physical
World (PAPW 2020). 
D'Orazio, M. , Bernardini, G. , and Quagliarini, E. , 2020. How to restart? an agent-based
simulation model towards the definition of strategies for COVID-19" second phase" in public
buildings. arXiv preprint arXiv:2004.12927. 
Elarde, J. , et al. , 2021. Change of human mobility during COVID-19: A united states case
study. PloS One, 16 (11), e0259031. 
Elsaka, T. , et al. , 2021. Correlation analysis of spatio-temporal arabic COVID-19 tweets. In:
Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Spatial Computing for
Epidemiology (SpatialEpi 2021) . 14–17. 
Fan, Z. , et al. , 2020. Human mobility based individual-level epidemic simulation platform.
SIGSPATIAL Special, 12 (1), 34–40. 
Fan, Z. , et al. , 2022. Human mobility-based individual-level epidemic simulation platform. ACM
Transactions on Spatial Algorithms and Systems, 8 (3), 1–16. 
Fanticelli, H.C. , et al. , 2022. Data-driven mobility analysis and modeling: Typical and confined
life of a metropolitan population. ACM Transactions on Spatial Systems and Algorithms. 
Frazzetto, D. , et al. , 2019. Prescriptive analytics: a survey of emerging trends and
technologies. The VLDB Journal, 28 (4), 575–595. 
Frias-Martinez, E. , Williamson, G. , and Frias-Martinez, V. , 2011. An agent-based model of
epidemic spread using human mobility and social network information. In: 2011 IEEE Third
International Conference on Social Computing . IEEE, 57–64.



Fu, F. , et al. , 2011. Imitation dynamics of vaccination behaviour on social networks.
Proceedings of the Royal Society B: Biological Sciences, 278 (1702), 42–49. 
Funk, S. , et al. , 2015. Nine challenges in incorporating the dynamics of behaviour in infectious
diseases models. Epidemics, 10, 21–25. 
Funk, S. , Salathé, M. , and Jansen, V.A. , 2010. Modelling the influence of human behaviour on
the spread of infectious diseases: a review. Journal of the Royal Society Interface, 7 (50),
1247–1256. 
Gao, S. , et al. , 2020. Mapping county-level mobility pattern changes in the united states in
response to COVID-19. SIGSPATIAL Special, 12 (1), 16–26. 
Ginsberg, J. , et al. , 2009. Detecting influenza epidemics using search engine query data.
Nature, 457 (7232), 1012–1014. 
Golledge, R.G. , 1997. Spatial Behavior: A Geographic Perspective. Guilford Press. 
Gollwitzer, A. , et al. , 2020. Partisan differences in physical distancing are linked to health
outcomes during the COVID-19 pandemic. Nature Human Behaviour, 1–12. 
Halder, N. , Kelso, J.K. , and Milne, G.J. , 2010. Developing guidelines for school closure
interventions to be used during a future influenza pandemic. BMC Infectious Diseases, 10 (1),
221. 
Hehman, E. , et al. , 2019. Establishing construct validity evidence for regional measures of
explicit and implicit racial bias. Journal of Experimental Psychology: General, 148 (6), 1022. 
Hehman, E. , Ofosu, E.K. , and Calanchini, J. , 2020. Using environmental features to maximize
prediction of regional intergroup bias. Social Psychological and Personality Science,
1948550620909775. 
Hoertel, N. , et al. , 2020. A stochastic agent-based model of the sars-cov-2 epidemic in france.
Nature Medicine, 1–5. 
Holmdahl, I. and Buckee, C. , 2020. Wrong but useful—what COVID-19 epidemiologic models
can and cannot tell us. New England Journal of Medicine. 
Imran, M. , Qazi, U. , and Ofli, F. , 2022. Tbcov: two billion multilingual COVID-19 tweets with
sentiment, entity, geo, and gender labels. Data, 7 (1), 8. 
Islam, S. , et al. , 2021. Spatiotemporal prediction of foot traffic. In: Proceedings of the 5th ACM
SIGSPATIAL International Workshop on Location-Based Recommendations, Geosocial
Networks and Geoadvertising . 1–8. 
Jing, Q.L. , et al. , 2020. Household secondary attack rate of COVID-19 and associated
determinants in Guangzhou, China: a retrospective cohort study. The Lancet Infectious
Diseases. 
Kang, Y. , et al. , 2020. Multiscale dynamic human mobility flow dataset in the us during the
COVID-19 epidemic. Scientific Data, 7 (1), 1–13. 
Karl, S. , et al. , 2014. A spatial simulation model for dengue virus infection in urban areas. BMC
Infectious Diseases, 14 (1), 1–17. 
Kavak, H. , et al. , 2018. Big data, agents, and machine learning: towards a data-driven agent-
based modeling approach. In: Proceedings of the Annual Simulation Symposium . 1–12. 
Kiamari, M. , et al. , 2020. Covid-19 risk estimation using a time-varying sir-model. In:
Proceedings of the 1st ACM SIGSPATIAL International Workshop on Modeling and
Understanding the Spread of COVID-19 . 36–42. 
Kim, J.S. , Jin, H. , and Züfle, A. , 2020a. Expert-in-the-loop prescriptive analytics using mobility
intervention for epidemics. In: First International KDD Workshop for Prescriptive Analytics for
the Physical World (PAPW 2020). 
Kim, J.S. , et al. , 2019. Advancing simulation experimentation capabilities with runtime
interventions. In: SpringSim 2019. IEEE, 1–11. 
Kim, J.S. , et al. , 2020b. Location-based social simulation for prescriptive analytics of disease
spread. SIGSPATIAL Special, 12 (1), 53–61. 
Kim, J.S. , et al. , 2020c. Covid-19 ensemble models using representative clustering.
SIGSPATIAL Special, 12 (2), 33–41. 
Klompas, M. , Baker, M.A. , and Rhee, C. , 2020. Airborne transmission of sars-cov-2:
theoretical considerations and available evidence. JAMA. 
Laato, S. , et al. , 2020. Unusual purchasing behavior during the early stages of the COVID-19
pandemic: The stimulus-organism-response approach. Journal of Retailing and Consumer
Services, 57, 102224.



Lamperti, F. , Roventini, A. , and Sani, A. , 2018. Agent-based model calibration using machine
learning surrogates. Journal of Economic Dynamics and Control, 90, 366–389. 
Lee, B.Y. , et al. , 2010. A computer simulation of vaccine prioritization, allocation, and rationing
during the 2009 h1n1 influenza pandemic. Vaccine, 28 (31), 4875–4879. 
Lepenioti, K. , et al. , 2020. Prescriptive analytics: Literature review and research challenges.
International Journal of Information Management, 50, 57–70. 
Li, Y. , et al. , 2015. Traffic prediction in a bike-sharing system. In: Proceedings of the 23rd
SIGSPATIAL International Conference on Advances in Geographic Information Systems . 1–10. 
Lopes, G.R. , et al. , 2022. Multimaps: a tool for decision-making support in the analyzes of
multiple epidemics. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on
Spatial Computing for Epidemiology . 22–25. 
López, L. , Fernández, M. , and Giovanini, L. , 2020. Influenza epidemic model using dynamic
social networks of individuals with cognition maps. MethodsX, 7, 101030. 
Lorch, L. , et al. , 2022. Quantifying the effects of contact tracing, testing, and containment
measures in the presence of infection hotspots. ACM Transactions on Spatial Algorithms and
Systems, 8 (4), 1–28. 
Lukens, S. , et al. , 2014. A large-scale immuno-epidemiological simulation of influenza a
epidemics. BMC Public Health, 14 (1), 1–15. 
Manfredi, P. and D'Onofrio, A. , 2013. Modeling the Interplay Between Human Behavior and the
Spread of Infectious Diseases. Springer Science & Business Media. 
Mao, L. , 2014. Modeling triple-diffusions of infectious diseases, information, and preventive
behaviors through a metropolitan social network—an agent-based simulation. Applied
Geography, 50, 31–39. 
Marathe, M. and Vullikanti, A.K.S. , 2013. Computational epidemiology. Communications of the
ACM, 56 (7), 88–96. 
Mehrab, Z. , et al. , 2021. Evaluating the utility of high-resolution proximity metrics in predicting
the spread of COVID-19. ACM Transactions on Spatial Systems and Algorithms. 
Mei, S. , et al. , 2013. Individual decision making can drive epidemics: a fuzzy cognitive map
study. IEEE Transactions on Fuzzy Systems, 22 (2), 264–273. 
Merler, S. , et al. , 2015. Spatiotemporal spread of the 2014 outbreak of ebola virus disease in
liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling
analysis. The Lancet Infectious Diseases, 15 (2), 204–211. 
Mokbel, M. , Abbar, S. , and Stanojevic, R. , 2020. Contact tracing: Beyond the apps.
SIGSPATIAL Special, 12 (2), 15–24. 
Mokbel, M. , et al. , 2022. Mobility data science (dagstuhl seminar 22021). In: Dagstuhl reports.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 
Nardin, L.G. , et al. , 2016. Planning horizon affects prophylactic decision-making and epidemic
dynamics. PeerJ, 4, e2678. 
Oruc, B.E. , et al. , 2021. Homebound by covid19: the benefits and consequences of non-
pharmaceutical intervention strategies. BMC Public Health, 21 (1), 1–8. 
Painter, M. and Qiu, T. , 2020. Political beliefs affect compliance with COVID-19 social
distancing orders. Available at SSRN 3569098. 
Pan, Z. , et al. , 2019. Urban traffic prediction from spatio-temporal data using deep meta
learning. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining . 1720–1730. 
Pechlivanoglou, T. , et al. , 2022. Microscopic modeling of spatiotemporal epidemic dynamics.
In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Spatial Computing for
Epidemiology . 11–21. 
Pejó, B. and Biczók, G. , 2020. Corona games: Masks, social distancing and mechanism
design. In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Modeling and
Understanding the Spread of COVID-19 . 24–31. 
Pesavento, J. , et al. , 2020. Data-driven mobility models for COVID-19 simulation. In:
Proceedings of the 3rd ACM SIGSPATIAL Workshop on Advances in Resilient and Intelligent
Cities, Seattle, WA, USA . 
Pew Research Center , 2000. Most Americans Say Coronavirus Outbreak Has Impacted Their
Lives, March 2020. 
Qazi, U. , Imran, M. , and Ofli, F. , 2020. Geocov19: a dataset of hundreds of millions of
multilingual COVID-19 tweets with location information. SIGSPATIAL Special, 12 (1), 6–15.



Ramchandani, P. , Paich, M. , and Rao, A. , 2017. Incorporating learning into decision making in
agent based models. In: EPIA Conference on Artificial Intelligence. Springer, 789–800. 
Ray, E.L. , et al. , 2020. Ensemble forecasts of coronavirus disease 2019 (COVID-19) in the us.
medRxiv. 
Reich, N.G. , et al. , 2019. A collaborative multiyear, multimodel assessment of seasonal
influenza forecasting in the united states. Proceedings of the National Academy of Sciences,
116 (8), 3146–3154. 
Rizzo, C. , et al. , 2013. Survey on the likely behavioural changes of the general public in four
european countries during the 2009/2010 pandemic. In: Modeling the Interplay Between Human
Behavior and the Spread of Infectious Diseases. Springer, 23–41. 
Rizzo, S.G. , 2020. Balancing precision and recall for cost-effective epidemic containment. In:
First International KDD Workshop for Prescriptive Analytics for the Physical World (PAPW
2020). 
Rodrguez, A. , et al. , 2022. Data-centric epidemic forecasting: A survey. arXiv preprint
arXiv:2207.09370. 
Russell, S. and Norvig, P. , 2005. Ai a modern approach. Learning, 2 (3), 4. 
Sajjadi, S. , Hashemi, A. , and Ghanbarnejad, F. , 2021. Social distancing in pedestrian
dynamics and its effect on disease spreading. Physical Review E, 104 (1), 014313. 
Samet, H. , et al. , 2020. Using animation to visualize spatio-temporal varying COVID-19 data.
In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Modeling and
Understanding the Spread of COVID-19 . 53–62. 
Schneider, C.M. , et al. , 2013. Unravelling daily human mobility motifs. Journal of The Royal
Society Interface, 10 (84), 20130246. 
Sert, E. , Bar-Yam, Y. , and Morales, A.J. , 2020. Segregation dynamics with reinforcement
learning and agent based modeling. Scientific Reports, 10 (1), 1–12. 
Siettos, C. , et al. , 2015. Modeling the 2014 ebola virus epidemic–agent-based simulations,
temporal analysis and future predictions for liberia and sierra leone. PLoS Currents, 7. 
Silva, P.C. , et al. , 2020. Covid-abs: An agent-based model of COVID-19 epidemic to simulate
health and economic effects of social distancing interventions. Chaos, Solitons & Fractals, 139,
110088. 
Susarla, A. , et al. , 2022. Spatiotemporal disease case prediction using contrastive predictive
coding. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Spatial
Computing for Epidemiology . 26–34. 
Sydora, C. , et al. , 2022. Building occupancy simulation and analysis under virus scenarios.
ACM Transactions on Spatial Algorithms and Systems, 8 (3), 1–20. 
Tanaka, M. and Tanimoto, J. , 2020. Is subsidizing vaccination with hub agent priority policy
really meaningful to suppress disease spreading? Journal of Theoretical Biology, 486, 110059. 
Taskesen, E. , 2019. distfit. https://github.com/erdogant/distfit. 
Thakur, G. , et al. , 2020. Covid-19 joint pandemic modeling and analysis platform. In:
Proceedings of the 1st ACM SIGSPATIAL International Workshop on Modeling and
Understanding the Spread of COVID-19 . 43–52. 
Vallejo, M. , Corne, D.W. , and Rieser, V. , 2013. Evolving urbanisation policies-using a
statistical model to accelerate optimisation over agent-based simulations. In: ICAART (2).
Citeseer, 171–181. 
Van Bavel, J.J. , et al. , 2020. Using social and behavioural science to support COVID-19
pandemic response. Nature Human Behaviour, 1–12. 
Venkatramanan, S. , et al. , 2018. Using data-driven agent-based models for forecasting
emerging infectious diseases. Epidemics, 22, 43–49. 
Volkova, S. , et al. , 2017. Forecasting influenza-like illness dynamics for military populations
using neural networks and social media. PloS One, 12 (12), e0188941. 
Wang, X. , et al. , 2017. Predicting the city foot traffic with pedestrian sensor data. In:
Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services . 1–10. 
Wang, Z. and Cruz, I.F. , 2020. Analysis of the impact of COVID-19 on education based on
geotagged twitter. In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on
Modeling and Understanding the Spread of COVID-19 . 15–23. 
Weill, J.A. , et al. , 2020. Social distancing responses to COVID-19 emergency declarations
strongly differentiated by income. Proceedings of the National Academy of Sciences, 117 (33),



19658–19660. 
Williams, A.D. , et al. , 2011. An individual-based simulation of pneumonic plague transmission
following an outbreak and the significance of intervention compliance. Epidemics, 3 (2), 95–102. 
Wu, Y. , et al. , 2018. Deep learning for epidemiological predictions. In: The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval . 1085–1088. 
Xiong, L. , et al. , 2020. React: Real-time contact tracing and risk monitoring using privacy-
enhanced mobile tracking. SIGSPATIAL Special, 12 (2), 3–14. 
Ye, W. and Gao, S. , 2022. Understanding the spatiotemporal heterogeneities in the
associations between COVID-19 infections and both human mobility and close contacts in the
united states. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Spatial
Computing for Epidemiology . 1–9. 
Zakaria, C. , et al. , 2022. Analyzing the impact of COVID-19 control policies on campus
occupancy and mobility via wifi sensing. ACM Transactions on Spatial Algorithms and Systems,
8 (3), 1–26. 
Zhao, L. , et al. , 2019. T-gcn: A temporal graph convolutional network for traffic prediction.
IEEE Transactions on Intelligent Transportation Systems, 21 (9), 3848–3858. 
Züfle, A. and Anderson, T. , 2020. Introduction to this special issue: Modeling and
understanding the spread of COVID-19: (part i). SIGSPATIAL Special, 12 (1), 1–2. 
Züfle, A. , Anderson, T. , and Gao, S. , 2022a. Introduction to the special issue on
understanding the spread of COVID-19, part 1. 
Züfle, A. , Gao, S. , and Anderson, T. , 2022b. Introduction to the special issue on
understanding the spread of COVID-19, part 2. 

 
GeoAI for Agriculture 
Anagnostis, A. , et al. , 2021. A deep learning approach for anthracnose infected trees
classification in walnut orchards. Computers and Electronics in Agriculture, 182, 105998. 
Archontoulis, S.V. , et al. , 2020. Predicting crop yields and soil-plant nitrogen dynamics in the
us corn belt. Crop Science, 60 (2), 721–738. 
Barbosa, A. , et al. , 2020. Modeling yield response to crop management using convolutional
neural networks. Computers and Electronics in Agriculture, 170, 105197. 
Barnes, W.L. , Xiong, X. , and Salomonson, V.V. , 2003. Status of terra modis and aqua modis.
Advances in Space Research, 32 (11), 2099–2106. 
Benos, L. , Bechar, A. , and Bochtis, D. , 2020. Safety and ergonomics in human-robot
interactive agricultural operations. Biosystems Engineering, 200, 55–72. 
Breiman, L. , 2001. Random forests. Machine Learning, 45, 5–32. 
Challinor, A.J. , et al. , 2014. A meta-analysis of crop yield under climate change and
adaptation. Nature Climate Change, 4 (4), 287–291. 
Chlingaryan, A. , Sukkarieh, S. , and Whelan, B. , 2018. Machine learning approaches for crop
yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and
Electronics in Agriculture, 151, 61–69. 
Conrad, Z. , et al. , 2018. Relationship between food waste, diet quality, and environmental
sustainability. PloS One, 13 (4), e0195405. 
Coopersmith, E.J. , et al. , 2014. Machine learning assessments of soil drying for agricultural
planning. Computers and Electronics in Agriculture, 104, 93–104. 
Crane-Droesch, A. , 2018. Machine learning methods for crop yield prediction and climate
change impact assessment in agriculture. Environmental Research Letters, 13 (11), 114003. 
Dadsetan, S. , et al. , 2021. Detection and prediction of nutrient deficiency stress using
longitudinal aerial imagery. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 35, 14729–14738. 
Diao, C. , 2019. Innovative pheno-network model in estimating crop phenological stages with
satellite time series. ISPRS Journal of Photogrammetry and Remote Sensing, 153, 96–109. 
Diao, C. , 2020. Remote sensing phenological monitoring framework to characterize corn and
soybean physiological growing stages. Remote Sensing of Environment, 248, 111960.



Diao, C. and Li, G. , 2022. Near-surface and high-resolution satellite time series for detecting
crop phenology. Remote Sensing, 14 (9), 1957. 
Diao, C. , et al. , 2021. Hybrid phenology matching model for robust crop phenological retrieval.
ISPRS Journal of Photogrammetry and Remote Sensing, 181, 308–326. 
Drusch, M. , et al. , 2012. Sentinel-2: Esa's optical high-resolution mission for gmes operational
services. Remote Sensing of Environment, 120, 25–36. 
Feng, Y. , et al. , 2017. Modeling reference evapotranspiration using extreme learning machine
and generalized regression neural network only with temperature data. Computers and
Electronics in Agriculture, 136, 71–78. 
Folberth, C. , et al. , 2019. Spatio-temporal downscaling of gridded crop model yield estimates
based on machine learning. Agricultural and Forest Meteorology, 264, 1–15. 
Gal, Y. and Ghahramani, Z. , 2015. Bayesian convolutional neural networks with bernoulli
approximate variational inference. arXiv preprint arXiv:1506.02158. 
Gal, Y. and Ghahramani, Z. , 2016. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In: Proceedings of PMLR , 1050–1059. 
Garca Pereira, A. , et al. , 2020. Data acquisition and processing for geoai models to support
sustainable agricultural practices. 
Grassini, P. , et al. , 2015. High-yield maize–soybean cropping systems in the us corn belt. In:
Crop Physiology. Elsevier, 17–41. 
Hamida, A.B. , et al. , 2018. 3-d deep learning approach for remote sensing image
classification. IEEE Transactions on Geoscience and Remote Sensing, 56 (8), 4420–4434. 
Hengl, T. , et al. , 2017. Soilgrids250m: Global gridded soil information based on machine
learning. PLoS One, 12 (2), e0169748. 
Islam, N. , et al. , 2021. Early weed detection using image processing and machine learning
techniques in an australian chilli farm. Agriculture, 11 (5), 387. 
Jeffries, G.R. , et al. , 2020. Mapping sub-field maize yields in Nebraska, USA by combining
remote sensing imagery, crop simulation models, and machine learning. Precision Agriculture,
21, 678–694. 
Jeong, J.H. , et al. , 2016. Random forests for global and regional crop yield predictions. PloS
One, 11 (6), e0156571. 
Jiang, H. , et al. , 2020a. A deep learning approach to conflating heterogeneous geospatial data
for corn yield estimation: A case study of the us corn belt at the county level. Global Change
Biology, 26 (3), 1754–1766. 
Jiang, Z. , et al. , 2020b . Predicting county-scale maize yields with publicly available data.
Scientific Reports, 10 (1), 1–12. 
Johann, A.L. , et al. , 2016. Soil moisture modeling based on stochastic behavior of forces on a
no-till chisel opener. Computers and Electronics in Agriculture, 121, 420–428. 
Jumrani, K. and Bhatia, V.S. , 2018. Impact of combined stress of high temperature and water
deficit on growth and seed yield of soybean. Physiology and Molecular Biology of Plants, 24 (1),
37–50. 
Kang, Y. , et al. , 2020. Comparative assessment of environmental variables and machine
learning algorithms for maize yield prediction in the us midwest. Environmental Research
Letters, 15 (6), 064005. 
Kattenborn, T. , et al. , 2021. Review on convolutional neural networks (cnn) in vegetation
remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 24–49. 
Kendall, A. and Gal, Y. , 2017. What uncertainties do we need in bayesian deep learning for
computer vision? Advances in Neural Information Processing Systems, 30. 
Khaki, S. and Wang, L. , 2019. Crop yield prediction using deep neural networks. Frontiers in
Plant Science, 10, 621. 
Lencucha, R. , et al. , 2020. Government policy and agricultural production: a scoping review to
inform research and policy on healthy agricultural commodities. Globalization and Health, 16,
1–15. 
Li, Z. , Zhang, Z. , and Zhang, L. , 2021. Improving regional wheat drought risk assessment for
insurance application by integrating scenario-driven crop model, machine learning, and satellite
data. Agricultural Systems, 191, 103141. 
Lin, T. , et al. , 2020. Deepcropnet: a deep spatial-temporal learning framework for county-level
corn yield estimation. Environmental Research Letters, 15 (3), 034016.



Lobell, D.B. , et al. , 2015. A scalable satellite-based crop yield mapper. Remote Sensing of
Environment, 164, 324–333. 
Ma, Y. , et al. , 2021. Corn yield prediction and uncertainty analysis based on remotely sensed
variables using a bayesian neural network approach. Remote Sensing of Environment, 259,
112408. 
Maestrini, B. , et al. , 2022. Mixing process-based and data-driven approaches in yield
prediction. European Journal of Agronomy, 139, 126569. 
Maimaitijiang, M. , et al. , 2020. Soybean yield prediction from uav using multimodal data fusion
and deep learning. Remote Sensing of Environment, 237, 111599. 
Meng, T. , et al. , 2017. Analyzing temperature and precipitation influences on yield distributions
of canola and spring wheat in saskatchewan. Journal of Applied Meteorology and Climatology,
56 (4), 897–913. 
Menze, B.H. , et al. , 2009. A comparison of random forest and its gini importance with standard
chemometric methods for the feature selection and classification of spectral data. BMC
Bioinformatics, 10, 1–16. 
Mobiny, A. , et al. , 2021. Dropconnect is effective in modeling uncertainty of bayesian deep
networks. Scientific Reports, 11 (1), 1–14. 
Mohammadi, K. , et al. , 2015. Extreme learning machine based prediction of daily dew point
temperature. Computers and Electronics in Agriculture, 117, 214–225. 
Morellos, A. , et al. , 2016. Machine learning based prediction of soil total nitrogen, organic
carbon and moisture content by using vis-nir spectroscopy. Biosystems Engineering, 152,
104–116. 
Müller, C. , et al. , 2021. Exploring uncertainties in global crop yield projections in a large
ensemble of crop models and cmip5 and cmip6 climate scenarios. Environmental Research
Letters, 16 (3), 034040. 
Muruganantham, P. , et al. , 2022. A systematic literature review on crop yield prediction with
deep learning and remote sensing. Remote Sensing, 14 (9), 1990. 
Nahvi, B. , et al. , 2016. Using self-adaptive evolutionary algorithm to improve the performance
of an extreme learning machine for estimating soil temperature. Computers and Electronics in
Agriculture, 124, 150–160. 
Nassani, A.A. , et al. , 2019. Management of natural resources and material pricing: Global
evidence. Resources Policy, 64, 101500. 
Nembrini, S. , König, I.R. , and Wright, M.N. , 2018. The revival of the gini importance?
Bioinformatics, 34 (21), 3711–3718. 
Nguyen, G. , et al. , 2019. Machine learning and deep learning frameworks and libraries for
large-scale data mining: a survey. Artificial Intelligence Review, 52, 77–124. 
Patil, A.P. and Deka, P.C. , 2016. An extreme learning machine approach for modeling
evapotranspiration using extrinsic inputs. Computers and Electronics in Agriculture, 121,
385–392. 
Pourmohammadali, B. , et al. , 2019. Effects of soil properties, water quality and management
practices on pistachio yield in rafsanjan region, southeast of iran. Agricultural Water
Management, 213, 894–902. 
Raun, W.R. , et al. , 2002. Improving nitrogen use efficiency in cereal grain production with
optical sensing and variable rate application. Agronomy Journal, 94 (4), 815–820. 
Russello, H. , 2018. Convolutional neural networks for crop yield prediction using satellite
images. IBM Center for Advanced Studies. 
Saha, D. , Basso, B. , and Robertson, G.P. , 2021. Machine learning improves predictions of
agricultural nitrous oxide (n2o) emissions from intensively managed cropping systems.
Environmental Research Letters, 16 (2), 024004. 
Schwalbert, R. , et al. , 2020. Mid-season county-level corn yield forecast for us corn belt
integrating satellite imagery and weather variables. Crop Science, 60 (2), 739–750. 
Shahhosseini, M. , Hu, G. , and Archontoulis, S.V. , 2020. Forecasting corn yield with machine
learning ensembles. Frontiers in Plant Science, 11, 1120. 
Shahhosseini, M. , et al. , 2021. Coupling machine learning and crop modeling improves crop
yield prediction in the us corn belt. Scientific Reports, 11 (1), 1–15. 
Shirani, H. , et al. , 2015. Determining the features influencing physical quality of calcareous
soils in a semiarid region of iran using a hybrid pso-dt algorithm. Geoderma, 259, 1–11.



Shridhar, K. , Laumann, F. , and Liwicki, M. , 2019. A comprehensive guide to bayesian
convolutional neural network with variational inference. arXiv preprint arXiv:1901.02731. 
Sishodia, R.P. , Ray, R.L. , and Singh, S.K. , 2020. Applications of remote sensing in precision
agriculture: A review. Remote Sensing, 12 (19), 3136. 
Sun, J. , et al. , 2019. County-level soybean yield prediction using deep cnn-lstm model.
Sensors, 19 (20), 4363. 
Terliksiz, A.S. and Altỳlar, D.T. , 2019. Use of deep neural networks for crop yield prediction: A
case study of soybean yield in lauderdale county, Alabama, USA. In: 2019 8th International
Conference on Agro-Geoinformatics (Agro-Geoinformatics) . IEEE, 1–4. 
Thayer, A.W. , et al. , 2020. Integrating agriculture and ecosystems to find suitable adaptations
to climate change. Climate, 8 (1), 10. 
Tian, H. , et al. , 2021. An lstm neural network for improving wheat yield estimates by integrating
remote sensing data and meteorological data in the Guanzhong plain, PR China. Agricultural
and Forest Meteorology, 310, 108629. 
Van Klompenburg, T. , Kassahun, A. , and Catal, C. , 2020. Crop yield prediction using machine
learning: A systematic literature review. Computers and Electronics in Agriculture, 177, 105709. 
VoPham, T. , et al. , 2018. Emerging trends in geospatial artificial intelligence (geoai): potential
applications for environmental epidemiology. Environmental Health, 17 (1), 1–6. 
Wang, X. , et al. , 2020. Winter wheat yield prediction at county level and uncertainty analysis in
main wheat-producing regions of China with deep learning approaches. Remote Sensing, 12
(11), 1744. 
Wang, Y. , et al. , 2021. A new attention-based cnn approach for crop mapping using time
series sentinel-2 images. Computers and Electronics in Agriculture, 184, 106090. 
Woo, S. , et al. , 2018. Cbam: Convolutional block attention module. In: Proceedings of the 
European Conference on Computer Vision (ECCV) . 3–19. 
Yao, Y. , et al. , 2012. Active canopy sensor-based precision n management strategy for rice.
Agronomy for Sustainable Development, 32, 925–933. 
Yoosefzadeh-Najafabadi, M. , Tulpan, D. , and Eskandari, M. , 2021. Using hybrid artificial
intelligence and evolutionary optimization algorithms for estimating soybean yield and fresh
biomass using hyperspectral vegetation indices. Remote Sensing, 13 (13), 2555. 
You, J. , et al. , 2017. Deep gaussian process for crop yield prediction based on remote sensing
data. In: Proceedings of the AAAI Conference on Artificial Intelligence . vol. 31. 
Zhang, J. , et al. , 2021. Identification of cucumber leaf diseases using deep learning and small
sample size for agricultural internet of things. International Journal of Distributed Sensor
Networks, 17 (4), 15501477211007407. 
Zhang, S. , et al. , 2020. Plant species recognition methods using leaf image: Overview.
Neurocomputing, 408, 246–272. 
Zhong, L. , et al. , 2019. Deep learning based winter wheat mapping using statistical data as
ground references in Kansas and Northern Texas, US. Remote Sensing of Environment, 233,
111411. 
Ziliani, M.G. , et al. , 2022. Early season prediction of within-field crop yield variability by
assimilating cubesat data into a crop model. Agricultural and Forest Meteorology, 313, 108736. 

 
GeoAI for Urban Sensing 
Abirami, S. and Chitra, P. , 2022. Probabilistic air quality forecasting using deep learning
spatial–temporal neural network. GeoInformatica, 27 (2), 199–235. 
Andris, C. and Lee, S. , 2021. Romantic relationships and the built environment: a case study of
a U.S. college town. Journal of Urbanism: International Research on Placemaking and Urban
Sustainability, 1–22. 
Arjunan, P. , et al. , 2021. Operational characteristics of residential air conditioners with
temporally granular remote thermographic imaging. In: BuildSys ‘21: Proceedings of the 8th
ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation . 184–187. 
Bai, Y. , et al. , 2022. Knowledge distillation based lightweight building damage assessment
using satellite imagery of natural disasters. GeoInformatica, 27 (2), 237–261.



Biljecki, F. and Ito, K. , 2021. Street view imagery in urban analytics and GIS: A review.
Landscape and Urban Planning, 215, 104217. 
Bódis, K. , et al. , 2019. A high-resolution geospatial assessment of the rooftop solar
photovoltaic potential in the European Union. Renewable and Sustainable Energy Reviews,
114, 109309. 
Byun, G. and Kim, Y. , 2022. A street-view-based method to detect urban growth and decline: A
case study of Midtown in Detroit, Michigan, USA. PLOS ONE, 17 (2), e0263775. 
Calabrese, F. , et al. , 2013. Understanding individual mobility patterns from urban sensing data:
A mobile phone trace example. Transportation Research Part C: Emerging Technologies, 26,
301–313. 
Chen, L.C. , et al. , 2018. Encoder-decoder with atrous separable convolution for semantic
image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV)
. 801–818. 
Chen, M. , et al. , 2023. Artificial intelligence and visual analytics in geographical space and
cyberspace: Research opportunities and challenges. Earth-Science Reviews, 104438. 
Chen, S. and Biljecki, F. , 2023. Automatic assessment of public open spaces using street view
imagery. Cities, 137, 104329. 
Chen, X. and Biljecki, F. , 2022. Mining real estate ads and property transactions for building
and amenity data acquisition. Urban Informatics, 1 (1), 12. 
Cordts, M. , et al. , 2016. The cityscapes dataset for semantic urban scene understanding. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition .
3213–3223. 
Das, S. , Sun, Q.C. , and Zhou, H. , 2022. GeoAI to implement an individual tree inventory:
Framework and application of heat mitigation. Urban Forestry & Urban Greening, 74, 127634. 
deSouza, P. , et al. , 2020. Air quality monitoring using mobile low-cost sensors mounted on
trash-trucks: Methods development and lessons learned. Sustainable Cities and Society, 60,
102239. 
Ding, X. , Fan, H. , and Gong, J. , 2021. Towards generating network of bikeways from
Mapillary data. Computers, Environment and Urban Systems, 88, 101632. 
Dobler, G. , et al. , 2021. The urban observatory: A multi-modal imaging platform for the study of
dynamics in complex urban systems. Remote Sensing, 13 (8), 1426. 
Duarte, F. and Ratti, C. , 2021. What urban cameras reveal about the city: The work of the
senseable city lab. In: Urban Informatics. Springer Singapore, 491–502. 
Gao, S. , et al. , 2023. Special issue on geospatial artificial intelligence. GeoInformatica, 27 (2),
133–136. 
Gao, S. , et al. , 2021. User-generated content: A promising data source for urban informatics.
In: Urban Informatics. Springer Singapore, 503–522. 
Garrido-Valenzuela, F. , Cats, O. , and van Cranenburgh, S. , 2023. Where are the people?
Counting people in millions of street-level images to explore associations between people's
urban density and urban characteristics. Computers, Environment and Urban Systems, 102,
101971. 
Ghahramani, M. , Zhou, M. , and Wang, G. , 2020. Urban sensing based on mobile phone data:
approaches, applications, and challenges. IEEE/CAA Journal of Automatica Sinica, 7 (3),
627–637. 
Hamilton, W. , Ying, Z. , and Leskovec, J. , 2017. Inductive representation learning on large
graphs. Advances in Neural Information Processing Systems, 30. 
Han, J.Y. , Chen, Y.C. , and Li, S.Y. , 2022. Utilising high-fidelity 3D building model for
analysing the rooftop solar photovoltaic potential in urban areas. Solar Energy, 235, 187–199. 
He, X. and He, S.Y. , 2023. Using open data and deep learning to explore walkability in
Shenzhen, China. Transportation Research Part D: Transport and Environment, 118, 103696. 
Hochreiter, S. and Schmidhuber, J. , 1997. Long short-term memory. Neural Computation, 9 (8),
1735–1780. 
Hou, Y. and Biljecki, F. , 2022. A comprehensive framework for evaluating the quality of street
view imagery. International Journal of Applied Earth Observation and Geoinformation, 115,
103094. 
Hsu, C.Y. and Li, W. , 2023. Explainable GeoAI: can saliency maps help interpret artificial
intelligence's learning process? an empirical study on natural feature detection. International
Journal of Geographical Information Science, 37 (5), 963–987.



Hu, Y. , et al. , 2015. Extracting and understanding urban areas of interest using geotagged
photos. Computers, Environment and Urban Systems, 54, 240–254. 
Ibrahim, M.R. , Haworth, J. , and Cheng, T. , 2020. Understanding cities with machine eyes: A
review of deep computer vision in urban analytics. Cities, 96, 102481. 
Janowicz, K. , 2023. Philosophical foundations of geoai: Exploring sustainability, diversity, and
bias in geoai and spatial data science. 
Janowicz, K. , et al. , 2019. GeoAI: spatially explicit artificial intelligence techniques for
geographic knowledge discovery and beyond. International Journal of Geographical Information
Science, 34 (4), 625–636. 
Jayathissa, P. , et al. , 2019. Is your clock-face cozie? A smartwatch methodology for the in-situ
collection of occupant comfort data. Journal of Physics: Conference Series, 1343 (1), 012145. 
Ju, Y. , Dronova, I. , and Delclòs-Alió, X. , 2022. A 10 m resolution urban green space map for
major Latin American cities from Sentinel-2 remote sensing images and OpenStreetMap.
Scientific Data, 9 (1). 
Juhász, L. and Hochmair, H.H. , 2016. User contribution patterns and completeness evaluation
of Mapillary, a crowdsourced street level photo service. Transactions in GIS, 20 (6), 925–947. 
Kang, Y. , et al. , 2023. Assessing differences in safety perceptions using GeoAI and survey
across neighbourhoods in Stockholm, Sweden. Landscape and Urban Planning, 236, 104768. 
Kang, Y. , et al. , 2020a. Multiscale dynamic human mobility flow dataset in the U.S. during the
COVID-19 epidemic. Scientific Data, 7 (1). 
Kang, Y. , Gao, S. , and Roth, R.E. , 2019. Transferring multiscale map styles using generative
adversarial networks. International Journal of Cartography, 5 (2-3), 115–141. 
Kang, Y. , et al. , 2020b. A review of urban physical environment sensing using street view
imagery in public health studies. Annals of GIS, 26 (3), 261–275. 
Kang, Y. , et al. , 2021. Human settlement value assessment from a place perspective:
Considering human dynamics and perceptions in house price modeling. Cities, 118, 103333. 
Kruse, J. , et al. , 2021. Places for play: Understanding human perception of playability in cities
using street view images and deep learning. Computers, Environment and Urban Systems, 90,
101693. 
Lai, W.W.L. , 2021. Underground utilities imaging and diagnosis. In: Urban Informatics. Springer
Singapore, 415–438. 
Li, M. , et al. , 2022. Marked crosswalks in US transit-oriented station areas, 2007–2020: A
computer vision approach using street view imagery. Environment and Planning B: Urban
Analytics and City Science, 50 (2), 350–369. 
Li, W. , 2020. GeoAI: Where machine learning and big data converge in GIScience. Journal of
Spatial Information Science, (20). 
Li, W. and Hsu, C.Y. , 2022. GeoAI for Large-Scale Image Analysis and Machine Vision: Recent
Progress of Artificial Intelligence in Geography. ISPRS International Journal of Geo-Information,
11 (7), 385. 
Liang, X. and Andris, C. , 2021. Measuring McCities: Landscapes of chain and independent
restaurants in the United States. Environment and Planning B: Urban Analytics and City
Science, 49 (2), 585–602. 
Liu, P. and Biljecki, F. , 2022. A review of spatially-explicit GeoAI applications in Urban
Geography. International Journal of Applied Earth Observation and Geoinformation, 112,
102936. 
Liu, P. , et al. , 2023a. Towards human-centric digital twins: Leveraging computer vision and
graph models to predict outdoor comfort. Sustainable Cities and Society, 93, 104480. 
Liu, X. , et al. , 2019. Inside 50,000 living rooms: an assessment of global residential
ornamentation using transfer learning. EPJ Data Science, 8 (1). 
Liu, Y. , et al. , 2015. Social sensing: A new approach to understanding our socioeconomic
environments. Annals of the Association of American Geographers, 105 (3), 512–530. 
Liu, Y. , et al. , 2023b. An interpretable machine learning framework for measuring urban
perceptions from panoramic street view images. iScience, 26 (3), 106132. 
Lu, Y. , et al. , 2023. Assessing urban greenery by harvesting street view data: A review. Urban
Forestry & Urban Greening, 83, 127917. 
Luo, J. , et al. , 2022a. Semantic Riverscapes: Perception and evaluation of linear landscapes
from oblique imagery using computer vision. Landscape and Urban Planning, 228, 104569.



Luo, J. , et al. , 2022b. Water View Imagery: Perception and evaluation of urban waterscapes
worldwide. Ecological Indicators, 145, 109615. 
Ma, D. , et al. , 2019. The State of Mapillary: An Exploratory Analysis. ISPRS International
Journal of Geo-Information, 9 (1), 10. 
Ma, N. , et al. , 2023. Learning building occupants' indoor environmental quality complaints and
dissatisfaction from text-mining Booking.com reviews in the United States. Building and
Environment, 237, 110319. 
Mart, P. , Serrano-Estrada, L. , and Nolasco-Cirugeda, A. , 2019. Social media data:
Challenges, opportunities and limitations in urban studies. Computers, Environment and Urban
Systems, 74, 161–174. 
Martin, M. , et al. , 2022. Infrared thermography in the built environment: A multi-scale review.
Renewable and Sustainable Energy Reviews, 165, 112540. 
O'Keeffe, K.P. , et al. , 2019. Quantifying the sensing power of vehicle fleets. Proceedings of the
National Academy of Sciences, 116 (26), 12752–12757. 
Pang, H.E. and Biljecki, F. , 2022. 3D building reconstruction from single street view images
using deep learning. International Journal of Applied Earth Observation and Geoinformation,
112, 102859. 
Piadyk, Y. , et al. , 2023. StreetAware: A high-resolution synchronized multimodal urban scene
dataset. Sensors, 23 (7), 3710. 
Psyllidis, A. , et al. , 2022. Points of interest (POI): a commentary on the state of the art,
challenges, and prospects for the future. Computational Urban Science, 2 (1). 
Richter, K.F. and Scheider, S. , 2023. Current topics and challenges in geoAI. KI - Künstliche
Intelligenz. 
Rottensteiner, F. , et al. , 2014. Results of the ISPRS benchmark on urban object detection and
3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 93,
256–271. 
Shahtahmassebi, A.R. , et al. , 2021. Remote sensing of urban green spaces: A review. Urban
Forestry & Urban Greening, 57, 126946. 
Shi, W. , 2021. Introduction to urban sensing. In: Urban Informatics. Springer Singapore,
311–314. 
Shin, D. , et al. , 2015. Urban sensing: Using smartphones for transportation mode
classification. Computers, Environment and Urban Systems, 53, 76–86. 
Song, Y. , et al. , 2023. Advances in geocomputation and geospatial artificial intelligence
(GeoAI) for mapping. International Journal of Applied Earth Observation and Geoinformation,
103300. 
Tartarini, F. , Miller, C. , and Schiavon, S. , 2022. Cozie Apple: An iOS mobile and smartwatch
application for environmental quality satisfaction and physiological data collection. 
Tu, W. , et al. , 2021. User-generated content and its applications in urban studies. In: Urban
Informatics. Springer Singapore, 523–539. 
Wilson, J.P. , et al. , 2020. A Five-Star Guide for Achieving Replicability and Reproducibility
When Working with GIS Software and Algorithms. Annals of the American Association of
Geographers, 111 (5), 1311–1317. 
Wu, A.N. and Biljecki, F. , 2021. Roofpedia: Automatic mapping of green and solar roofs for an
open roofscape registry and evaluation of urban sustainability. Landscape and Urban Planning,
214, 104167. 
Wu, W.B. , et al. , 2023. A first Chinese building height estimate at 10 m resolution (CNBH-10
m) using multi-source earth observations and machine learning. Remote Sensing of
Environment, 291, 113578. 
Xie, E. , et al. , 2021. SegFormer: Simple and efficient design for semantic segmentation with
transformers. Advances in Neural Information Processing Systems, 34. 
Xing, J. and Sieber, R. , 2023. The challenges of integrating explainable artificial intelligence
into GeoAI. Transactions in GIS. 
Xu, S. , et al. , 2022a. Detecting spatiotemporal traffic events using geosocial media data.
Computers, Environment and Urban Systems, 94, 101797. 
Xu, Y. , et al. , 2022b. Perception of urban population characteristics through dietary taste
patterns based on takeout data. Cities, 131, 103910. 
Yan, Y. , et al. , 2020. Volunteered geographic information research in the first decade: a
narrative review of selected journal articles in GIScience. International Journal of Geographical



Information Science, 34 (9), 1–27. 
Yang, J. , et al. , 2021. The financial impact of street-level greenery on New York commercial
buildings. Landscape and Urban Planning, 214, 104162. 
Yang, Y. , et al. , 2023. Embracing geospatial analytical technologies in tourism studies.
Information Technology & Tourism. 
Yap, W. , Chang, J.H. , and Biljecki, F. , 2022. Incorporating networks in semantic
understanding of streetscapes: Contextualising active mobility decisions. Environment and
Planning B: Urban Analytics and City Science, 239980832211388. 
Zhang, F. , et al. , 2023a. Street-level imagery analytics and applications. ISPRS Journal of
Photogrammetry and Remote Sensing, 199, 195–196. 
Zhang, F. , et al. , 2020. Uncovering inconspicuous places using social media check-ins and
street view images. Computers, Environment and Urban Systems, 81, 101478. 
Zhang, Y. , Liu, P. , and Biljecki, F. , 2023b. Knowledge and topology: A two layer spatially
dependent graph neural networks to identify urban functions with time-series street view image.
ISPRS Journal of Photogrammetry and Remote Sensing, 198, 153–168. 
Zhang, Z. , et al. , 2022. Vectorized rooftop area data for 90 cities in China. Scientific Data, 9
(1). 
Zhao, T. , et al. , 2023. Sensing urban soundscapes from street view imagery. Computers,
Environment and Urban Systems, 99, 101915. 

 
Reproducibility and Replicability in GeoAI 
Abadi, M. , et al. , 2015. Tensorflow: Large-scale machine learning on heterogeneous systems.
arXiv preprint arXiv:1603.04467. 
Arnold, B. , et al. , 2019. The turing way: a handbook for reproducible data science. Zenodo. 
Barba, L.A. , 2018. Terminologies for reproducible research. arXiv preprint arXiv:1802.03311. 
Brdar, S. , et al. , 2016. Unveiling spatial epidemiology of hiv with mobile phone data. Scientific
Reports, 6 (1), 19342. 
Brinckman, A. , et al. , 2019. Computing environments for reproducibility: Capturing the “whole
tale”. Future Generation Computer Systems, 94, 854–867. 
Brunsdon, C. , 2017. Quantitative methods ii: Issues of inference in quantitative human
geography. Progress in Human Geography, 41 (4), 512–523. 
Chard, K. , et al. , 2020. Toward enabling reproducibility for data-intensive research using the
whole tale platform. In: Parallel Computing: Technology Trends. IOS Press, 766–778. 
Couclelis, H. , 1986. Artificial intelligence in geography: Conjectures on the shape of things to
come. The Professional Geographer, 38 (1), 1–11. 
Crigger, E. and Khoury, C. , 2019. Making policy on augmented intelligence in health care. AMA
Journal of Ethics, 21 (2), 188–191. 
Davidson, S.B. and Freire, J. , 2008. Provenance and scientific workflows: challenges and
opportunities. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data . 1345–1350. 
Dsouza, A. , et al. , 2021. Worldkg: A world-scale geographic knowledge graph. In:
Proceedings of the 30th ACM International Conference on Information & Knowledge
Management . 4475–4484. 
Duque, J.C. , Anselin, L. , and Rey, S.J. , 2012. The max-p-regions problem. Journal of
Regional Science, 52 (3), 397–419. 
Emsley, I. and De Roure, D. , 2017. A framework for the preservation of a docker container.
International Journal of Digital Curation, 12 (2), 125–135. 
Goodchild, M.F. , et al. , 2021. Introduction: Forum on reproducibility and replicability in
geography. Annals of the American Association of Geographers, 111 (5), 1271–1274. 
Goodchild, M.F. and Li, W. , 2021. Replication across space and time must be weak in the
social and environmental sciences. Proceedings of the National Academy of Sciences, 118
(35), e2015759118. 
Goodman, S.N. , Fanelli, D. , and Ioannidis, J.P. , 2016. What does research reproducibility
mean? Science Translational Medicine, 8 (341), 341ps12–341ps12.



Gundersen, O.E. , Gil, Y. , and Aha, D.W. , 2018. On reproducible ai: Towards reproducible
research, open science, and digital scholarship in ai publications. AI Magazine, 39 (3), 56–68. 
Gundersen, O.E. and Kjensmo, S. , 2018. State of the art: Reproducibility in artificial
intelligence. In: The AAAI Conference on Artificial Intelligence . vol. 32. 
Haibe-Kains, B. , et al. , 2020. Transparency and reproducibility in artificial intelligence. Nature,
586 (7829), E14–E16. 
Hartter, J. , et al. , 2013. Spatially explicit data: stewardship and ethical challenges in science.
PLoS Biology, 11 (9), e1001634. 
Hastie, T. , et al. , 2009. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction. vol. 2. Springer. 
Hey, A.J. , et al. , 2009. The Fourth Paradigm: Data-Intensive Scientific Discovery. vol. 1.
Microsoft Research. 
Holler, J. and Kedron, P. , 2022. Mainstreaming metadata into research workflows to advance
reproducibility and open geographic information science. The Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences, 48, 201–208. 
Hutson, M. , 2018. Artificial intelligence faces reproducibility crisis. Science, 359 (6377),
725–726. 
Janowicz, K. , et al. , 2020. Geoai: spatially explicit artificial intelligence techniques for
geographic knowledge discovery and beyond. 
Janowicz, K. , Sieber, R. , and Crampton, J. , 2022. Geoai, counter-ai, and human geography: A
conversation. Dialogues in Human Geography, 12 (3), 446–458. 
Jupyter, P. , et al. , 2018. Binder 2.0-reproducible, interactive, sharable environments for
science at scale. In: Proceedings of the 17th Python in Science Conference . 113–120. 
Kang, Y. , Gao, S. , and Roth, R. , 2022. A review and synthesis of recent geoai research for
cartography: Methods, applications, and ethics. In: Proceedings of AutoCarto . 2–4. 
Kapoor, S. and Narayanan, A. , 2022. Leakage and the reproducibility crisis in ml-based
science. arXiv preprint arXiv:2207.07048. 
Kaufman, S. , et al. , 2012. Leakage in data mining: Formulation, detection, and avoidance.
ACM TKDD, 6 (4), 1–21. 
Kedron, P. , et al. , 2021a. Reproducibility and replicability in geographical analysis.
Geographical Analysis, 53 (1), 135–147. 
Kedron, P. , et al. , 2022. Reproducibility, replicability, and open science practices in the
geographical sciences. OSF, Center for Open Science, 1–10. 
Kedron, P. , et al. , 2021b. Reproducibility and replicability: opportunities and challenges for
geospatial research. International Journal of Geographical Information Science, 35 (3),
427–445. 
Konkol, M. , Kray, C. , and Pfeiffer, M. , 2019. Computational reproducibility in geoscientific
papers: Insights from a series of studies with geoscientists and a reproduction study.
International Journal of Geographical Information Science, 33 (2), 408–429. 
Leipzig, J. , et al. , 2021. The role of metadata in reproducible computational research. Patterns,
2 (9), 100322. 
Li, W. , 2020. Geoai: Where machine learning and big data converge in GIScience. Journal of
Spatial Information Science, (20), 71–77. 
Li, W. , 2022. Geoai in social science. Handbook of Spatial Analysis in the Social Sciences,
291–304. 
Li, W. and Hsu, C.Y. , 2022. Geoai for large-scale image analysis and machine vision: Recent
progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information,
11 (7), 385. 
Lin, T.Y. , Belongie, S. , and Hays, J. , 2013. Cross-view image geolocalization. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . 891–898. 
Liu, P. and Biljecki, F. , 2022. A review of spatially-explicit geoai applications in urban
geography. International Journal of Applied Earth Observation and Geoinformation, 112,
102936. 
Mai, G. , et al. , 2022. A review of location encoding for geoai: methods and applications.
International Journal of Geographical Information Science, 36 (4), 639–673. 
Miller, H.J. and Wentz, E.A. , 2003. Representation and spatial analysis in geographic
information systems. Annals of the Association of American Geographers, 93 (3), 574–594.



Missier, P. , Belhajjame, K. , and Cheney, J. , 2013. The w3c prov family of specifications for
modelling provenance metadata. In: Proceedings of the 16th International Conference on
Extending Database Technology . 773–776. 
National Academies of Sciences , Engineering, and Medicine and others, 2019. Reproducibility
and Replicability in Science. National Academies Press. 
Nüst, D. , et al. , 2018. Reproducible research and giscience: an evaluation using agile
conference papers. PeerJ, 6, e5072. 
Nüst, D. and Hinz, M. , 2019. Containerit: Generating dockerfiles for reproducible research with
r. Journal of Open Source Software, 4 (40), 1603. 
Nüst, D. and Pebesma, E. , 2021. Practical reproducibility in geography and geosciences.
Annals of the American Association of Geographers, 111 (5), 1300–1310. 
Openshaw, S. , 1984. The modifiable areal unit problem. Concepts and Techniques in Modern
Geography, 60–69. 
Openshaw, S. and Openshaw, C. , 1997. Artificial Intelligence in Geography. John Wiley &
Sons, Inc. 
Parasidis, E. , Pike, E. , and McGraw, D. , 2019. A belmont report for health data. The New
England Journal of Medicine, 380 (16), 1493–1495. 
Paszke, A. , et al. , 2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in Neural Information Processing Systems, 32. 
Plesser, H.E. , 2018. Reproducibility vs. replicability: a brief history of a confused terminology.
Frontiers in Neuroinformatics, 11, 76. 
Rey, S.J. and Franklin, R.S. , 2022. Handbook of Spatial Analysis in the Social Sciences.
Edward Elgar Publishing. 
Smith, T.R. , 1984. Artificial intelligence and its applicability to geographical problem solving.
The Professional Geographer, 36 (2), 147–158. 
Stewart, A.J. , et al. , 2022. Torchgeo: deep learning with geospatial data. In: Proceedings of
the 30th International Conference on Advances in Geographic Information Systems . 1–12. 
Tullis, J.A. and Kar, B. , 2021. Where is the provenance? ethical replicability and reproducibility
in GIScience and its critical applications. Annals of the American Association of Geographers,
111 (5), 1318–1328. 
Wang, S. and Li, W. , 2021. Geoai in terrain analysis: Enabling multi-source deep learning and
data fusion for natural feature detection. Computers, Environment and Urban Systems, 90,
101715. 
Watada, J. , et al. , 2019. Emerging trends, techniques and open issues of containerization: a
review. IEEE Access, 7, 152443–152472. 
Wilkinson, M.D. , et al. , 2016. The fair guiding principles for scientific data management and
stewardship. Scientific Data, 3 (1), 1–9. 
Wilson, J.P. , et al. , 2021. A five-star guide for achieving replicability and reproducibility when
working with gis software and algorithms. Annals of the American Association of Geographers,
111 (5), 1311–1317. 
Workman, S. , Souvenir, R. , and Jacobs, N. , 2015. Wide-area image geolocalization with
aerial reference imagery. In: Proceedings of the IEEE International Conference on Computer
Vision . 3961–3969. 
Yao, X. , et al. , 2020. Spatial origin-destination flow imputation using graph convolutional
networks. IEEE Transactions on Intelligent Transportation Systems, 22 (12), 7474–7484. 
Yin, D. , et al. , 2017. A cybergis-jupyter framework for geospatial analytics at scale. In:
Proceedings of the Practice and Experience in Advanced Research Computing on
Sustainability, Success and Impact . 1–8. 
Zhou, F. , et al. , 2021. Land deformation prediction via slope-aware graph neural networks. In:
AAAI Conference on Artificial Intelligence. vol. 35, 15033–15040. 
Zhu, D. , et al. , 2021. Spatial regression graph convolutional neural networks: A deep learning
paradigm for spatial multivariate distributions. GeoInformatica, 26, 645–676. 

 



Privacy and Ethics in GeoAI 
Acar, A. , et al. , 2018. A survey on homomorphic encryption schemes: Theory and
implementation. ACM Computing Surveys, 51 (4), 1–35. 
Adams, B. and Janowicz, K. , 2012. On the geo-indicativeness of non-georeferenced text. In:
Proceedings of the International AAAI Conference on Web and Social Media . vol. 6, 375–378. 
Alanwar, A. , et al. , 2017. Proloc: Resilient localization with private observers using partial
homomorphic encryption. In: Proceedings of the 16th ACM/IEEE International Conference on
Information Processing in Sensor Networks . 41–52. 
Andrés, M.E. , et al. , 2013. Geo-indistinguishability: Differential privacy for location-based
systems. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security . 901–914. 
Armstrong, M.P. , Rushton, G. , and Zimmerman, D.L. , 1999. Geographically masking health
data to preserve confidentiality. Statistics in Medicine, 18 (5), 497–525. 
Armstrong, M.P. , Tsou, M.H. , and Seidl, D.E. , 2018. 1.28-geoprivacy. In: Comprehensive
Geographic Information Systems. Elsevier Inc, 415–430. 
Arumugam, S. and Bhargavi, R. , 2019. A survey on driving behavior analysis in usage based
insurance using big data. Journal of Big Data, 6, 1–21. 
Beckman, R.J. , Baggerly, K.A. , and McKay, M.D. , 1996. Creating synthetic baseline
populations. Transportation Research Part A: Policy and Practice, 30 (6), 415–429. 
Boerman, S.C. , Kruikemeier, S. , and Zuiderveen Borgesius, F.J. , 2017. Online behavioral
advertising: A literature review and research agenda. Journal of Advertising, 46 (3), 363–376. 
Brunila, M. , et al. , 2022. Drift: E2ee spatial feature sharing & instant messaging. In:
Proceedings of the 6th ACM SIGSPATIAL International Workshop on Location-Based
Recommendations, Geosocial Networks and Geoadvertising . 1–11. 
Burgess, M. , 2022. How gdpr is failing. Wired Magazine. 
Charleux, L. and Schofield, K. , 2020. True spatial k-anonymity: Adaptive areal elimination vs.
adaptive areal masking. Cartography and Geographic Information Science, 47 (6), 537–549. 
Clarke, R. , 2009. Privacy impact assessment: Its origins and development. Computer Law &
Security Review, 25 (2), 123–135. 
Crawford, K. and Schultz, J. , 2014. Big data and due process: Toward a framework to redress
predictive privacy harms. BCL Rev., 55, 93. 
Cunningham, T. , Cormode, G. , and Ferhatosmanoglu, H. , 2021. Privacy-preserving synthetic
location data in the real world. In: 17th International Symposium on Spatial and Temporal
Databases . 23–33. 
Dakalbab, F. , et al. , 2022. Artificial intelligence & crime prediction: A systematic literature
review. Social Sciences & Humanities Open, 6 (1), 100342. 
Dhar, S. and Varshney, U. , 2011. Challenges and business models for mobile location-based
services and advertising. Communications of the ACM, 54 (5), 121–128. 
Dobson, J.E. and Fisher, P.F. , 2003. Geoslavery. IEEE Technology and Society Magazine, 22
(1), 47–52. 
Dressel, J. and Farid, H. , 2018. The accuracy, fairness, and limits of predicting recidivism.
Science Advances, 4 (1), eaao5580. 
Dubber, M.D. , Pasquale, F. , and Das, S. , 2020. The Oxford Handbook of Ethics of AI. Oxford
Handbooks. 
Dwork, C. , 2006. Differential privacy. In: Automata, Languages and Programming: 33rd
International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II 33 .
Springer, 1–12. 
Finn, R.L. , Wright, D. , and Friedewald, M. , 2013. Seven types of privacy. European Data
Protection: Coming of Age, 3–32. 
Fontes, C. , et al. , 2022. Ai-powered public surveillance systems: why we (might) need them
and how we want them. Technology in Society, 71, 102137. 
Gambs, S. , Killijian, M.O. , and del Prado Cortez, M.N. , 2014. De-anonymization attack on
geolocated data. Journal of Computer and System Sciences, 80 (8), 1597–1614. 
Ghinita, G. , et al. , 2010. A reciprocal framework for spatial k-anonymity. Information Systems,
35 (3), 299–314. 
Grekousis, G. and Liu, Y. , 2021. Digital contact tracing, community uptake, and proximity
awareness technology to fight covid-19: a systematic review. Sustainable Cities and Society,



71, 102995. 
Griffith, D.A. , 2018. Uncertainty and context in geography and giscience: reflections on spatial
autocorrelation, spatial sampling, and health data. Annals of the American Association of
Geographers, 108 (6), 1499–1505. 
Guha, S. , et al. , 2012. Koi: A location-privacy platform for smartphone apps. In: NSDI. vol. 12,
14. 
Harmanci, A. and Gerstein, M. , 2016. Quantification of private information leakage from
phenotype-genotype data: linking attacks. Nature Methods, 13 (3), 251–256. 
Hasan, R. , et al. , 2020. Automatically detecting bystanders in photos to reduce privacy risks. In
: 2020 IEEE Symposium on Security and Privacy (SP) . IEEE, 318–335. 
Hojati, M. , et al. , 2021. Decentralized geoprivacy: leveraging social trust on the distributed
web. International Journal of Geographical Information Science, 35 (12), 2540–2566. 
Janowicz, K. , et al. , 2019. Using semantic signatures for social sensing in urban environments.
In: Mobility Patterns, Big Data and Transport Analytics. Elsevier, 31–54. 
Jiang, H. , et al. , 2021. Location privacy-preserving mechanisms in location-based services: A
comprehensive survey. ACM Computing Surveys, 54 (1), 1–36. 
Jiang, J. , et al. , 2019. A survey on location privacy protection in wireless sensor networks.
Journal of Network and Computer Applications, 125, 93–114. 
Jobin, A. , Ienca, M. , and Vayena, E. , 2019. The global landscape of ai ethics guidelines.
Nature Machine Intelligence, 1 (9), 389–399. 
Kamel Boulos, M.N. , Peng, G. , and VoPham, T. , 2019. An overview of geoai applications in
health and healthcare. International Journal of Health Geographics, 18, 1–9. 
Keßler, C. and McKenzie, G. , 2018. A geoprivacy manifesto. Transactions in GIS, 22 (1), 3–19. 
Kim, J.W. , et al. , 2021. A survey of differential privacy-based techniques and their applicability
to location-based services. Computers & Security, 111, 102464. 
Kounadi, O. and Leitner, M. , 2014. Why does geoprivacy matter? the scientific publication of
confidential data presented on maps. Journal of Empirical Research on Human Research
Ethics, 9 (4), 34–45. 
Kounadi, O. and Leitner, M. , 2016. Adaptive areal elimination (aae): A transparent way of
disclosing protected spatial datasets. Computers, Environment and Urban Systems, 57, 59–67. 
Kounadi, O. , et al. , 2020. A systematic review on spatial crime forecasting. Crime Science, 9
(1), 1–22. 
Kumar, D. and Jakhar, S.D. , 2022. Artificial intelligence in animal surveillance and
conservation. Impact of Artificial Intelligence on Organizational Transformation, 73–85. 
Liu, B. , et al. , 2018. Location privacy and its applications: A systematic study. IEEE Access, 6,
17606–17624. 
Liu, Y. , et al. , 2017. Point-of-interest demand modeling with human mobility patterns. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining . 947–955. 
Mayson, S.G. , 2019. Bias in, bias out. The Yale Law Journal, 128 (8), 2218–2300. 
McKenzie, G. , Janowicz, K. , and Seidl, D. , 2016. Geo-privacy beyond coordinates. In:
Geospatial Data in a Changing World: Selected Papers of the 19th AGILE Conference on
Geographic Information Science . Springer, 157–175. 
McKenzie, G. and Mwenda, K. , 2021. Identifying regional variation in place visit behavior during
a global pandemic. Journal of Spatial Information Science, 1 (23), 95–124. 
McKenzie, G. , et al. , 2022. Privyto: A privacy-preserving location-sharing platform.
Transactions in GIS. 
Mittelstadt, B. , 2019. Principles alone cannot guarantee ethical ai. Nature Machine Intelligence,
1 (11), 501–507. 
Mökander, J. and Floridi, L. , 2021. Ethics-based auditing to develop trustworthy ai. Minds and
Machines, 31 (2), 323–327. 
Munir, K. , et al. , 2019. Cancer diagnosis using deep learning: a bibliographic review. Cancers,
11 (9), 1235. 
Munjal, K. and Bhatia, R. , 2022. A systematic review of homomorphic encryption and its
contributions in healthcare industry. Complex & Intelligent Systems, 1–28. 
Naik, N. , et al. , 2022. Legal and ethical consideration in artificial intelligence in healthcare: who
takes responsibility? Frontiers in Surgery, 266.



Narayanan, A. and Shmatikov, V. , 2008. Robust de-anonymization of large sparse datasets. In
: 2008 IEEE Symposium on Security and Privacy (sp 2008) . IEEE, 111–125. 
Naylor, C.D. , 2018. On the prospects for a (deep) learning health care system. JAMA, 320 (11),
1099–1100. 
Nelson, T. , Goodchild, M. , and Wright, D. , 2022. Accelerating ethics, empathy, and equity in
geographic information science. Proceedings of the National Academy of Sciences, 119 (19),
e2119967119. 
Nikolenko, S.I. , 2021. Synthetic Data for Deep Learning. vol. 174. Springer. 
Olteanu, A.M. , et al. , 2016. Quantifying interdependent privacy risks with location data. IEEE
Transactions on Mobile Computing, 16 (3), 829–842. 
Pan, X. , et al. , 2020. Privacy risks of general-purpose language models. In: 2020 IEEE
Symposium on Security and Privacy (SP) . IEEE, 1314–1331. 
Pedersen, D.M. , 1979. Dimensions of privacy. Perceptual and Motor Skills, 48 (3_suppl),
1291–1297. 
Pensa, R.G. , Di Blasi, G. , and Bioglio, L. , 2019. Network-aware privacy risk estimation in
online social networks. Social Network Analysis and Mining, 9, 1–15. 
Rao, J. , et al. , 2020. LSTM-TrajGAN: A Deep Learning Approach to Trajectory Privacy
Protection. In: K. Janowicz and J.A. Verstegen , eds. 11th International Conference on
Geographic Information Science (GIScience 2021) - Part I, Dagstuhl, Germany. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, Leibniz International Proceedings in Informatics
(LIPIcs), vol. 177, 12:1–12:17. Available from:
https://drops.dagstuhl.de/opus/volltexte/2020/13047. 
Rao, J. , et al. , 2021. A privacy-preserving framework for location recommendation using
decentralized collaborative machine learning. Transactions in GIS, 25 (3), 1153–1175. 
Ribeiro-Navarrete, S. , Saura, J.R. , and Palacios-Marqués, D. , 2021. Towards a new era of
mass data collection: Assessing pandemic surveillance technologies to preserve user privacy.
Technological Forecasting and Social Change, 167, 120681. 
Richardson, D.B. , et al. , 2015. Replication of scientific research: addressing geoprivacy,
confidentiality, and data sharing challenges in geospatial research. Annals of GIS, 21 (2),
101–110. 
Riederer, C. , et al. , 2016. Linking users across domains with location data: Theory and
validation. In: Proceedings of the 25th International Conference on World Wide Web . 707–719. 
Seidl, D.E. , Jankowski, P. , and Tsou, M.H. , 2016. Privacy and spatial pattern preservation in
masked gps trajectory data. International Journal of Geographical Information Science, 30 (4),
785–800. 
Stahl, B.C. and Wright, D. , 2018. Ethics and privacy in ai and big data: Implementing
responsible research and innovation. IEEE Security & Privacy, 16 (3), 26–33. 
Stevens, R. , et al. , 2012. Investigating user privacy in android ad libraries. In: Workshop on
Mobile Security Technologies (MoST). vol. 10, 195–197. 
Sun, G. , et al. , 2019. Location privacy preservation for mobile users in location-based services.
IEEE Access, 7, 87425–87438. 
Swanlund, D. , Schuurman, N. , and Brussoni, M. , 2020. Maskmy. xyz: An easy-to-use tool for
protecting geoprivacy using geographic masks. Transactions in GIS, 24 (2), 390–401. 
Sweeney, L. , 2002. k-anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 10 (05), 557–570. 
Thompson, S.A. and Warzel, C. , 2019. Twelve million phones, one dataset, zero privacy. In:
Ethics of Data and Analytics. Auerbach Publications, 161–169. 
Tobler, W.R. , 1970. A computer movie simulating urban growth in the detroit region. Economic
Geography, 46 (sup1), 234–240. 
Vaishya, R. , et al. , 2020. Artificial intelligence (ai) applications for covid-19 pandemic. Diabetes
& Metabolic Syndrome: Clinical Research & Reviews, 14 (4), 337–339. 
Verhelst, H.M. , Stannat, A. , and Mecacci, G. , 2020. Machine learning against terrorism: how
big data collection and analysis influences the privacy-security dilemma. Science and
Engineering Ethics, 26, 2975–2984. 
VoPham, T. , et al. , 2018. Emerging trends in geospatial artificial intelligence (geoai): potential
applications for environmental epidemiology. Environmental Health, 17 (1), 1–6. 
Wang, Q. , et al. , 2019. Learning from synthetic data for crowd counting in the wild. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition .



8198–8207. 
Wang, R. , et al. , 2016. A de-anonymization attack on geo-located data considering spatio-
temporal influences. In: Information and Communications Security: 17th International
Conference, ICICS 2015, Beijing, China, December 9–11, 2015, Revised Selected Papers 17 .
Springer, 478–484. 
Zhang, H. , et al. , 2010. Privacy issues and user attitudes towards targeted advertising: A focus
group study. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting.
SAGE Publications Sage CA: Los Angeles, CA, vol. 54, 1416–1420. 
Zhang, H. and McKenzie, G. , 2022. Rehumanize geoprivacy: from disclosure control to human
perception. GeoJournal, 1–20. 
Zhao, B. , et al. , 2021. Deep fake geography? when geospatial data encounter artificial
intelligence. Cartography and Geographic Information Science, 48 (4), 338–352. 
Zhong, Y. , et al. , 2015. You are where you go: Inferring demographic attributes from location
check-ins. In: Proceedings of the Eighth ACM International Conference on Web Search and
Data Mining . 295–304. 

 
A Humanistic Future of GeoAI 
Anika Berger , Teresa Schofield , Amy Pickens , Johannes Reiche , and Y. Gou , 2022. Looking
for the quickest signal of deforestation? Turn to GFW's integrated alerts. Global Forest Watch . 
Buolamwini, J. , and T. Gebru . 2018. Gender shades: Intersectional accuracy disparities in
commercial gender classification. In Proceedings of the 1st Conference on Fairness,
Accountability and Transparency, eds. A. F. Sorelle and W. Christo , 77–91. Proceedings of
Machine Learning Research: PMLR. 
Esri-AAG , 2023. GeoMentors - supporting K-12 geography and GIS education. 
Foderaro, L. W. , 2017. Navigation apps are turning quiet neighborhoods into traffic nightmares.
The New York Times. 
Heaven, W. D. , 2020. Predictive policing algorithms are racist. They need to be dismantled.
MIT Technology Review. 
Huang, Z. , 2021. AI in urban planning: 3 ways it will strengthen how we plan for the future.
Urban Redevelopment Authority . 
Joseph, D. , 2018. How Red Cross uses data during global disasters. Mapillary . 
Labbe, M. , 2021. Energy consumption of AI poses environmental problems. TechTarget . 
Mcilwain, C. , 2020. AI has exacerbated racial bias in housing. Could it help eliminate it instead?
MIT Technology Review. 
Michaux, S. , 2019. Farming for the future: UGA leads the way in precision agriculture.
University of Georgia Research . 
Microsoft , 2023. Using AI for good with Microsoft AI. 
Netzley, L. , 2023. Artificial intelligence used to reduce traffic congestion. Downtown Los
Angeles News. 
Torres, D. L. , J. N. Turnes , P. J. Soto Vega , R. Q. Feitosa , D. E. Silva , J. Marcato Junior ,
and C. Almeida , 2021. Deforestation detection with fully convolutional networks in the Amazon
forest from Landsat-8 and Sentinel-2 images. Remote Sensing, 13 (24), 5084. 
Uddin, K. , M. A. Matin , and F. J. Meyer , 2019. Operational flood mapping using multi-temporal
Sentinel-1 SAR images: A case study from Bangladesh. Remote Sensing, 11 (13), 1581. 
USGIF , 2023. USGIF K-12 educational outreach. Accessed on March 31 2023, available from
https://usgif.org/k-12. 
Weston, M. A. , C. O'Brien , K. N. Kostoglou , and M. R. E. Symonds , 2020. Escape responses
of terrestrial and aquatic birds to drones: Towards a code of practice to minimize disturbance.
Journal of Applied Ecology, 57 (4), 777–785. 
Women+ in Geospatial , 2023. Accessed on March 31 2023, available from
https://womeningeospatial.org. 
Zastrow, M. , 2014. Crisis mappers turn to citizen scientists. Nature, 515 (7527), 321–321. 
Zhao, B. , 2022. Humanistic GIS: Toward a research agenda. Annals of the American
Association of Geographers, 112 (6), 1576–1592.



Fast Forward from Data to Insight: (Geographic) Knowledge Graphs
and Their Applications 
Allemang, D. and Hendler, J. , 2011. Semantic Web for the Working Ontologist: Effective
Modeling in RDFs and OWL. Elsevier. 
Amini, R. , Zhou, L. , and Hitzler, P. , 2020. Geolink cruises: A non-synthetic benchmark for co-
reference resolution on knowledge graphs. In: Proceedings of the 29th ACM International
Conference on Information & Knowledge Management . 2959–2966. 
Baranzini, S. , et al. , 2022. A biomedical open knowledge network harnesses the power of ai to
understand deep human biology. AI Magazine, 43 (1), 46–58. 
Battle, R. and Kolas, D. , 2011. Geosparql: enabling a geospatial semantic web. Semantic Web
Journal, 3 (4), 355–370. 
Bizer, C. , Heath, T. , and Berners-Lee, T. , 2011. Linked data: The story so far. In: Semantic
Services, Interoperability and Web Applications: Emerging Concepts. IGI global, 205–227. 
Bordes, A. , et al. , 2013. Translating embeddings for modeling multi-relational data. Advances
in Neural Information Processing Systems, 26. 
Cox, S. , et al. , 2017. Time ontology in owl. W3C Recommendation, 19. 
Fisher, J. , et al. , 2020. Debiasing knowledge graph embeddings. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP) . 7332–7345. 
Frank, A.U. , 1997. Spatial ontology: A geographical information point of view. Spatial and
Temporal Reasoning, 135–153. 
Gangemi, A. and Presutti, V. , 2009. Ontology design patterns. In: Handbook on Ontologies.
Springer, 221–243. 
Hart, G. and Dolbear, C. , 2013. Linked Data: A Geographic Perspective. Taylor & Francis. 
Hitzler, P. and Krisnadhi, A. , 2016. On the roles of logical axiomatizations for ontologies. In: P.
Hitzler , A. Gangemi , K. Janowicz , A. Krisnadhi and V. Presutti , eds. Ontology Engineering
with Ontology Design Patterns - Foundations and Applications. Studies on the Semantic Web,
vol. 25. IOS Press, 73–80. 
Hitzler, P. , Krotzsch, M. , and Rudolph, S. , 2009. Foundations of Semantic Web Technologies.
CRC Press. 
Hogan, A. , et al. , 2021. Knowledge graphs. ACM Computing Surveys (CSUR), 54 (4), 1–37. 
Hu, Y. , 2018. Geo-text data and data-driven geospatial semantics. Geography Compass, 12
(11), e12404. 
Hu, Y. , et al. , 2013. A geo-ontology design pattern for semantic trajectories. In: Spatial
Information Theory: 11th International Conference, COSIT 2013, Scarborough, UK, September
2-6, 2013. Proceedings 11. Springer, 438–456. 
Janowicz, K. , et al. , 2019. Sosa: A lightweight ontology for sensors, observations, samples,
and actuators. Journal of Web Semantics, 56, 1–10. 
Janowicz, K. , et al. , 2022. Know, know where, knowwheregraph: A densely connected, cross-
domain knowledge graph and geo-enrichment service stack for applications in environmental
intelligence. AI Magazine, 43 (1), 30–39. 
Janowicz, K. , et al. , 2012. Geospatial semantics and linked spatiotemporal data–past, present,
and future. Semantic Web, 3 (4), 321–332. 
Janowicz, K. , et al. , 2015. Why the data train needs semantic rails. AI Magazine, 36 (1), 5–14. 
Janowicz, K. , et al. , 2018. Debiasing knowledge graphs: Why female presidents are not like
female popes. In: ISWC (P&D/Industry/BlueSky). 
Johnson, J.M. , et al. , 2022. Knowledge graphs to support real-time flood impact evaluation. AI
Magazine, 43 (1), 40–45. 
Kuhn, W. , 2005. Geospatial semantics: why, of what, and how? In: Journal on Data Semantics
III. Springer, 1–24. 
Kuhn, W. , et al. , 2021. The semantics of place-related questions. Journal of Spatial
Information Science, (23), 157–168. 
Kuhn, W. , Kauppinen, T. , and Janowicz, K. , 2014. Linked data-a paradigm shift for geographic
information science. In: Geographic Information Science: 8th International Conference,
GIScience 2014, Vienna, Austria, September 24-26, 2014. Proceedings 8. Springer, 173–186. 
Lehmann, J. , et al. , 2015. Dbpedia–a large-scale, multilingual knowledge base extracted from
wikipedia. Semantic Web, 6 (2), 167–195.



Li, W. , Song, M. , and Tian, Y. , 2019. An ontology-driven cyberinfrastructure for intelligent
spatiotemporal question answering and open knowledge discovery. ISPRS International Journal
of Geo-Information, 8 (11), 496. 
Li, W. , et al. , 2023. Geographvis: a knowledge graph and geovisualization empowered
cyberinfrastructure to support disaster response and humanitarian aid. ISPRS International
Journal of Geo-Information, 12 (3), 112. 
Mai, G. , et al. , 2022. Symbolic and subsymbolic geoai: Geospatial knowledge graphs and
spatially explicit machine learning. Transactions in GIS, 26 (8), 3118–3124. 
Mai, G. , et al. , 2020. Se-kge: A location-aware knowledge graph embedding model for
geographic question answering and spatial semantic lifting. Transactions in GIS, 24 (3),
623–655. 
Polleres, A. , et al. , 2020. A more decentralized vision for linked data. Semantic Web, 11 (1),
101–113. 
Purves, R.S. , et al. , 2018. Geographic information retrieval: Progress and challenges in spatial
search of text. Foundations and Trends in Information Retrieval, 12 (2-3), 164–318. 
Scheider, S. and Kuhn, W. , 2015. How to talk to each other via computers: Semantic
interoperability as conceptual imitation. Applications of Conceptual Spaces: The Case for
Geometric Knowledge Representation, 97–122. 
Scheider, S. , et al. , 2020. Ontology of core concept data types for answering geo-analytical
questions. Journal of Spatial Information Science, (20), 167–201. 
Shbita, B. , et al. , 2020. Building linked spatio-temporal data from vectorized historical maps. In
: The Semantic Web: 17th International Conference, ESWC 2020, Heraklion, Crete, Greece,
May 31–June 4, 2020, Proceedings 17. Springer, 409–426. 
Shimizu, C. , et al. , 2022. Ontology design facilitating Wikibase integration – and a worked
example for historical data. CoRR, abs/2205.14032. 
Shimizu, C. , Hammar, K. , and Hitzler, P. , 2023. Modular ontology modeling. Semantic Web,
14 (3), 459–489. 
Shimizu, C. , et al. , 2020. The enslaved ontology: Peoples of the historic slave trade. J. Web
Semant., 63, 100567. 
Smith, B. and Mark, D.M. , 2001. Geographical categories: an ontological investigation.
International Journal of Geographical Information Science, 15 (7), 591–612. 
Stadler, C. , et al. , 2012. Linkedgeodata: A core for a web of spatial open data. Semantic Web,
3 (4), 333–354. 
Vrandečić, D. and Krötzsch, M. , 2014. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57 (10), 78–85. 
Vrandečić, D. , Pintscher, L. , and Krötzsch, M. , 2023. Wikidata: The making of. In: Companion
Proceedings of the ACM Web Conference 2023 . 615–624. 
Wang, Q. , et al. , 2017. Knowledge graph embedding: A survey of approaches and
applications. IEEE Transactions on Knowledge and Data Engineering, 29 (12), 2724–2743. 
Wiafe-Kwakye, K. , Hahmann, T. , and Beard, K. , 2022. An ontology design pattern for spatial
and temporal aggregate data (stad). 
Wilkinson, M.D. , et al. , 2016. The fair guiding principles for scientific data management and
stewardship. Scientific Data, 3 (1), 1–9. 
Yan, B. , et al. , 2017. From itdl to place2vec: Reasoning about place type similarity and
relatedness by learning embeddings from augmented spatial contexts. In: Proceedings of the 
25th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems . 1–10. 
Zacharopoulou, D. , et al. , 2022. A web-based application to support the interaction of spatial
and semantic representation of knowledge. AGILE: GIScience Series, 3, 70. 
Zhu, R. , et al. , 2021. Providing humanitarian relief support through knowledge graphs. In:
Proceedings of the 11th on Knowledge Capture Conference . 285–288. 
Zhu, R. , et al. , 2016. Spatial signatures for geographic feature types: Examining gazetteer
ontologies using spatial statistics. Transactions in GIS, 20 (3), 333–355. 
Zhu, R. , et al. , 2022. Covid-forecast-graph: An open knowledge graph for consolidating covid-
19 forecasts and economic indicators via place and time. AGILE: GIScience Series, 3, 21. 



Forward Thinking on GeoAI 
Goodchild, M. , 2001. Issues in spatially explicit modeling. In: D.C. Parker , T. Berger and S.M.
Manson , eds. Agent-Based Models of Land-Use and Land-Cover Change Report and Review
of an International Workshop, October. 12–15. 
Janowicz, K. , et al. , 2020. GeoAI: spatially explicit artificial intelligence techniques for
geographic knowledge discovery and beyond. International Journal of Geographical Information
Science, 34 (4), 625–636. 
Lunga, D. , et al. , 2022. GeoAI at ACM SIGSPATIAL: The New Frontier of Geospatial Artificial
Intelligence Research. SIGSPATIAL Special, 13 (3), 21–32. 
Richarson, L.F. , 1961. The problem of contiguity: An appendix to statistics of deadly quarrels.
General Systems Yearbook, 6, 139–187. 
Wang, W. , et al. , 2022. Image as a Foreign Language: BEiT Pretraining for All Vision and
Vision-Language Tasks. arXiv:2208.10442. 

 


