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Abstract: Point of interest (POI) data provide digital representations of places in the 

real world, and have been increasingly used to understand human-place interactions, 

support urban management, and build smart cities. Many POI datasets have been 

developed, which often have different geographic coverages, attribute focuses, and data 

quality. From time to time, researchers may need to conflate two or more POI datasets 

in order to build a better representation of the places in the study areas. While various 

POI conflation methods have been developed, there lacks a systematic review, and 

consequently, it is difficult for researchers new to POI conflation to quickly grasp and 

use these existing methods. This paper fills such a gap. Following the protocol of 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we 

conduct a systematic review by searching through three bibliographic databases using 

reproducible syntax to identify related studies. We then focus on a main step of POI 

conflation, i.e., POI matching, and systematically summarize and categorize the 

identified methods. Current limitations and future opportunities are discussed 

afterwards. We hope that this review can provide some guidance for researchers 

interested in conflating POI datasets for their research. 

 

Keywords: Point of interest, POI, POI matching, POI conflation, machine learning, 

urban studies. 

 

1. Introduction 

Point of interest (POI) data provide digital representations of places in the real world 

which may be of interest to some population groups (Psyllidis et al., 2022). Examples 

of POIs include restaurants, grocery stores, parks, gas stations, fitness centers, schools, 

hospitals, and government offices. Some POIs are located in natural regions (De 

Sabbata et al., 2021), while many others are located in urbanized areas and play 

 
1This is a preprint. The formal version is published in the journal Computers, Environment and Urban Systems at: 

https://doi.org/10.1016/j.compenvurbsys.2023.101977   

https://doi.org/10.1016/j.compenvurbsys.2023.101977


2 
 

 

 

important roles in supporting various human activities. Without POI data, it would be 

difficult to represent places and human-place interactions in computational models, 

especially those models focusing on urbanized areas. Accordingly, POI data have been 

increasingly used in smart city projects to build digital twins and support urban 

management decisions (Bilal et al., 2020; Adreani et al., 2022; Ferré-Bigorra et al., 

2022). 

There exists much research that has utilized POI data to understand urban 

environments and address urban issues. Leveraging POI type information, researchers 

conducted research to identify urban functional zones (Gao et al., 2017; K. Liu, Yin, et 

al., 2020; Ponce-Lopez & Ferreira Jr, 2021; Qian et al., 2021), analyze the landscape 

of local restaurants (M. Wu et al., 2021; Liang & Andris, 2022), and classify urban land 

use types (Jiang et al., 2015; R. Wu et al., 2021; Xu et al., 2022). Based on POI locations 

and human mobility data, researchers conducted studies to infer travel purposes (Y. Liu 

et al., 2015; Gong et al., 2016; Sari Aslam et al., 2021) and estimate housing values (Fu 

et al., 2014; Kang et al., 2021). Based on the time when people visit POIs, researchers 

studied temporal dynamics of cities and regional variability across different urban areas 

(McKenzie, Janowicz, Gao, & Gong, 2015; McKenzie, Janowicz, Gao, Yang, et al., 

2015; Sparks et al., 2020). Based on POI reviews and POI names, researchers conducted 

studies to derive urban neighborhood representations (Olson et al., 2021), identify 

urban places to support personal relationships (Bendeck & Andris, 2022), and 

understand the role of place names in preserving local cultures (Hu & Janowicz, 2018). 

POI data were also used in many other topics, including understanding urban cognitive 

places (K. Liu, Qiu, et al., 2020), examining place-related public health issues (Benita 

et al., 2019; Chang et al., 2022), and measuring urban vibrancy (Tu et al., 2020; Z. 

Wang et al., 2022). In addition, POI data are utilized to power location-based services 

(LBS) and location-based social networks (LBSN) (Huang et al., 2021), such as to help 

users find nearby restaurants or the places visited by friends (McKenzie et al., 2014; 

Schiller & Voisard, 2004), or to recommend personalized tourist attractions (Santos et 

al., 2019). 

Many companies, organizations, and communities have developed their POI 

datasets with different geographic coverages and attribute focuses. Commercial 

companies, such as Yelp, Google, Foursquare, Facebook, and SafeGraph, have all 

developed their own POI datasets largely to support their own businesses. Many 

companies require data license purchase for third parties to use their POI data, but some 

companies have opened their data for academic research without a charge, such as the 

Yelp Open Dataset2 and the SafeGraph Core Places data3. Non-profit organizations 

and government agencies may also create and maintain their POI datasets. For example, 

the US Census Bureau maintains a point-based landmark dataset 4  as part of its 

TIGER/Line shapefiles, which includes POIs such as airports, cemeteries, parks, 

 
2 https://www.yelp.com/dataset 
3 https://docs.safegraph.com/docs/core-places 
4 https://catalog.data.gov/dataset/tiger-line-shapefile-2019-series-information-for-the-point-landmark-state-based-shapefile 



3 
 

 

 

mountain peaks/summits, schools, and churches. While published by an authoritative 

agency, this landmark dataset does not aim to provide a complete coverage of places, 

and the Census also indicates on their website that they “made no attempt to ensure that 

all instances of a particular feature were included”. The OpenStreetMap (OSM) 

community has devoted great efforts toward creating and maintaining POI data. The 

POI data on OSM are generally considered as volunteered geographic information 

(VGI), and are subject to typical data quality issues (Touya et al., 2017; Yeow et al., 

2021). However, a main advantage of the OSM data is that they are free to use, as long 

as credits are properly attributed. In addition, OSM POI data are available worldwide, 

although they have different levels of completeness and positional accuracy (Hecht et 

al., 2013; Zheng & Zheng, 2014). 

From time to time, researchers may want to merge two or more POI datasets in 

order to obtain a better representation of the places in their study areas. This process is 

generally called POI conflation (Low et al., 2021; McKenzie et al., 2014). A main 

reason for POI conflation is that different POI datasets may have different attribute 

focuses, place coverages, and data quality. Conflating two or more POI datasets 

therefore allows us to use these different datasets more effectively by making them 

complement each other.  

We identify three common situations under which POI conflation can be helpful. 

First, two POI datasets cover places that overlap partially. For example, we may have 

two POI datasets, each of which covers some but not all restaurants in a similar 

geographic area (see Figure 1(a)). Under such a situation, POI conflation can help us 

achieve an increased coverage of places. In addition, the conflation process also 

combines duplicated POIs (i.e., POI deduplication), and can help reduce potential 

issues in downstream POI-based analysis (e.g., a computing script may mistakenly 

count the visits to a grocery store multiple times if there exist duplicated POIs). Second, 

two POI datasets cover the same places but focus on different attributes. For example, 

one POI dataset may focus on prices and cuisines of restaurants, while the other POI 

dataset may focus on reviews (Figure 1(b)). Under such a situation, POI conflation can 

 
Figure 1. Three common situations under which POI conflation can be helpful: (a) two datasets 

cover partially overlapping places; (b) two datasets provide complementary POI attributes; (c) 

one dataset provides more accurate attributes than those of the other dataset. 
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help increase the comprehensiveness of attributes. Third, one POI dataset has better 

quality in one or more attributes than the other dataset. For example, the second POI 

dataset may provide more accurate business-hour information than the first dataset 

(Figure 1(c)). Therefore, POI conflation can help achieve increased data accuracy. 

These three situations are not exclusive but can happen in any combination or all 

together. 

Many POI conflation methods have been developed in previous research 

(Lamprianidis et al., 2014; Low et al., 2021; Piech et al., 2020; Yang et al., 2014). 

However, there lacks a systematic review and it is difficult for researchers new to POI 

conflation to quickly grasp and use these methods. This review fills such a gap. 

Following the protocol of Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA), we conduct a systematic review by searching through three 

bibliographic databases, i.e., Web of Science, Scopus, and Google Scholar, using 

reproducible syntax to identify studies related to POI conflation. We then focus on a 

main step of conflation, i.e., POI matching, and systematically summarize and 

categorize the identified methods.  

It is worth noting that POI conflation can be considered as part of the more general 

topic of geospatial data conflation. General geospatial data conflation may focus on 

combining geospatial data in different data models (e.g., vector vs. raster data models) 

(Chen et al., 2008; Zhang et al., 2011) or having different geometries (e.g., points, lines, 

and polygons) (Xavier et al. 2016; Lei 2020). While there already exist good review 

articles on general geospatial data conflation (Hastings 2009; Ruiz et al., 2011; Xavier 

et al. 2016; Sun et al. 2019; Vilches-Blázquez and Ramos 2021), POI conflation 

research has its uniqueness and may benefit from its own review. POIs are typically 

vector data and the spatial footprints of most POI datasets are points. Accordingly, some 

methodological details for general geospatial data conflation, such as matching raster 

data to vector data, may be of less interest to a researcher who is particularly interested 

in POI conflation. In addition, POI datasets often contain attributes not available in 

other general geographic datasets, such as customer reviews and website URLs. A 

review paper on general geospatial data conflation usually does not discuss methods for 

these special attributes. In this context, we believe that a review article specifically 

focusing on POI conflation can help researchers interested in this topic to quickly gain 

a more focused view of existing methods.  

The remainder of this paper is organized as follows. Section 2 provides background 

information about POI datasets and POI conflation. Section 3 describes the PRISMA 

approach that we employ for conducting this review. In Section 4, we review and 

categorize similarity measures and classification approaches developed for POI 

matching, and summarize matching results reported in the literature. In Section 5, we 

identify limitations of current research and potential future directions, and finally, 

Section 6 concludes this review. 
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2. Background: POI datasets and POI conflation 

A POI dataset typically consists of a number of POIs located in a geographic region, 

and each POI is associated with a set of attributes. More generally, a POI can be 

represented using Equation (1): 

𝑃𝑂𝐼 =< 𝑁, 𝑇, 𝐹, [𝐴, 𝑅, . . . ] >  , (1) 

where: 

• 𝑁 refers to POI name. A POI can be associated with not only one official place 

name but also one or multiple alternative names. 

• 𝑇 refers to POI type. A place type is typically assigned to a POI, such as restaurant, 

grocery store, and hospital. Different datasets usually define their own POI type 

hierarchies.  

• 𝐹 refers to POI spatial footprint. In most cases, the spatial footprint of a POI is a 

point (de Graaff et al., 2013), but other geometries such as polygons and lines could 

also be used. 

• [𝐴, 𝑅, . . . ] refers to other attributes that may be associated with a POI, such as 

address A, reviews R, and website URL. These attributes are especially common for 

POIs in urban areas. We put them in brackets because these attributes have varied 

availability across different datasets. 

It is worth mentioning that the concept of “POI” is also related to place of interest 

(McKenzie & Janowicz, 2018), area of interest (Hu et al., 2015; Mai et al., 2018), and 

region of interest (Zeng et al., 2017; Paul et al., 2021). These related concepts largely 

keep the interest part of the concept but explicitly allow the spatial footprints of POIs 

to be extended to areas or regions. A sense of place (Tuan, 1977) is also sometimes 

infused into these concepts. In this review, we focus on the commonly used meaning 

of POI, i.e., point of interest. 

Similar to the general process of geospatial data conflation, POI conflation also 

involves two main steps: POI matching and POI merging (Figure 2). The step of POI 

matching identifies the POIs from different datasets that represent the same places in 

the real world. The step of POI merging merges the POIs that are matched in the 

previous step. While Figure 2 illustrates the process using two datasets, the conflation 

of three or more datasets can be done in an iterative manner. 

 

Most existing POI conflation research focused on the step of POI matching 

(McKenzie et al., 2014; Piech et al., 2020; Scheffler et al., 2012). A likely reason is that 

POI matching is a more general step, and methods developed in one study can be 

 
Figure 2. The two steps of POI conflation: POI matching and POI merging.  
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applied to other studies too. By contrast, POI merging is a more study-specific step and 

POI merging rules developed for one study may not be suitable for another study. With 

this consideration and following the literature, we focus on reviewing POI matching 

methods in this paper, but also provide a whole picture of the entire process of POI 

conflation. 

3. Approach for conducting the review 

We conduct a systematic review following the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Moher et al., 2009). 

This approach has been increasingly adopted by researchers in GIScience and urban 

studies to conduct systematic reviews using clearly specified and reproducible syntax. 

Examples include systematic reviews on the applications of machine learning 

approaches to bike-sharing systems (Albuquerque et al., 2021), the role of urban green 

space in supporting biodiversity (Berthon et al., 2021), the use of unsupervised machine 

learning and deep learning in urban studies (Grekousis, 2019; J. Wang & Biljecki, 

2022), and spatially-explicit GeoAI applications in urban geography (P. Liu & Biljecki, 

2022). In the following, we report the methodological details of conducting this review. 

3.1. Literature searching 

We used three bibliography databases to search relevant papers, which are Web of 

Science5, Scopus6, and Google Scholar7. These three databases have been widely used 

by researchers to search for literature, and were also used in previous review articles 

(Biljecki & Ito, 2021; Fernandes et al., 2020; Vilches-Blázquez & Ramos, 2021). We 

then used keywords (including key phrases), wildcards, and boolean operators to 

construct queries to search through these three databases. Specifically, we used the 

following ten keywords to construct more advanced queries: 

“Point of Interest”, “Points of Interest”, POI$, conflating, conflation, matching, 

match, fusing, fusion, and geo* 

The first three keywords limit the topics of the returned literature to those related to 

POI. Note that “Point of Interest” and “Points of Interest” are surrounded by double 

quotes because we want them to be considered as whole phrases. The dollar symbol 

$ represents a wildcard for zero or one character, and the keyword POI$ allows us to 

find papers that contain the keywords of POI and POIs. The fourth to ninth keywords, 

namely conflating, conflation, matching, match, fusing, and fusion, restrict the methods 

of the returned literature to conflation, matching, or fusion. Finally, the last keyword 

geo* narrows down the returned literature to those related to geography and geospatial. 

The asterisk symbol * represents a wildcard for any combination of characters including 

no character. In addition to the ten keywords, we also tested other keywords, such as 

POI*; however, many irrelevant papers were returned which contain words starting 

 
5 https://www.webofknowledge.com/ 
6 https://www.scopus.com/ 
7 https://scholar.google.com/ 
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with poi, such as poison and poisson. Thus, we eventually excluded POI* from the final 

keyword set. There also exist other keywords that can help identify relevant papers from 

the broad geospatial data conflation literature, such as point data, places, or gazetteer. 

While these other keywords could further expand the breadth of this review, they could 

also dilute its focus on POI data. While we did not include these other keywords in our 

final searches, interested readers could look into relevant papers, such as Beeri et al. 

(2004), Hastings, (2008), Li & Goodchild (2011), Xavier et al. (2016), Lei (2020), 

Acheson et al. (2020), and Lei (2021).  

With the keyword set, we connected individual keywords using boolean operators 

(AND and OR) and parentheses to construct queries which will be used to search 

through the three bibliography databases. The searches were conducted in the first week 

of March 2022. The constructed queries were applied to different search fields 

supported by the corresponding bibliography database, which are “Topic” and “Title, 

abstract, and keywords” for Web of Science, “Title, abstract, and keywords” and 

“Anywhere” for Scopus, and “Title” for Google Scholar. We only searched “Title” for 

Google Scholar because it supports only two search fields (i.e., “Title” and 

“Anywhere”); and when we tested searching in “Anywhere”, it resulted in a huge 

number of results (e.g., Google Scholar indicated that “about 106,000 results” were 

found when we applied the first query). Because Google Scholar does not provide any 

function or Application Programming Interface (API) to download the search results, it 

is practically impossible to manually go through this huge number of results. Thus, we 

eventually decided to focus on “Title” only for Google Scholar. Nevertheless, the 

search results from Web of Science and Scopus already provided a rich set of relevant 

papers, and the results from Google Scholar further added to this richness.     

 Table 1 summarizes the used queries, applied data fields, and obtained numbers of 

returned papers in our searches. We limit the literature language to English and no other 

limitations were set. Note that because Google Scholar does not support partial 

matching with wildcards (e.g., the asterisk symbol * will be treated as a place holder of 

full word) and boolean operators when they are nested, we obtained four sets of results 

separately using four simpler and non-nested queries (shown in Table 1) and then 

manually combined the results. A total of 1298 papers were obtained in the final 

searches based on these three bibliography databases. We assembled the metadata of 

these papers into a comma-separated values (CSV) file for further analysis, and these 

metadata include titles, authors, published venues, and years. 
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Table 1. Queries and the obtained results from the three bibliography databases. 

Database Queries Fields Results 

Web of 

Science 

("point of interest" OR "points of interest" OR 

poi$) AND (conflation OR conflating OR match 

OR matching OR fusion OR fusing) AND geo* 

Title, 

abstract, and 

keywords 

179 

Topic 199 

Scopus ("point of interest" OR "points of interest" OR 

poi$) AND (conflation OR conflating OR match 

OR matching OR fusion OR fusing) AND geo*  

Title, 

abstract, and 

keywords 

266 

  

("point of interest" OR "points of interest" OR 

poi$) AND (conflation OR conflating OR match 

OR matching OR fusion OR fusing) AND 

geospatial 

Anywhere 591 

Google 

Scholar 

"point of interest" AND (conflation OR conflating 

OR match OR matching OR fusion OR fusing); 

"points of interest" AND (conflation OR conflating 

OR match OR matching OR fusion OR fusing); 

"poi" AND (conflation OR conflating OR match 

OR matching OR fusion OR fusing);  

"pois" AND (conflation OR conflating OR match 

OR matching OR fusion OR fusing) 

Title  63  

3.2. Paper screening 

With the initial set of 1298 potentially relevant papers, our next step is to do paper 

screening in order to narrow down the large number of retrieved papers by filtering out 

irrelevant ones. As the papers returned from three different databases contain duplicates, 

we first performed a duplication check by writing a simple Python program to go 

through the metadata CSV file and detect the papers with the same titles and authors. 

A total of 433 duplicates were detected and removed in this process, and 865 papers 

remained. By quickly scanning through the titles of these 865 paper records, we found 

that there were 13 data records which were not research papers but were conference 

proceeding volumes (e.g., 14th International Conference on Location Based Services). 

These conference proceeding volumes were included because one of their papers 

contained POI-related keywords, and those papers were already included in the 

remaining paper records. We therefore removed these 13 conference proceeding 

volumes, resulting in a remainder of 852 records. Although we specified the language 

to be English in the search process, there were still 11 non-English papers included in 
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the result. Thus, we removed them. With the remaining 841 papers, we conducted a 

title screening process with three authors of this review independently reading through 

these paper titles and labeling out those papers that are clearly irrelevant to POI 

conflation. Here, we took a conservative approach and only labeled out those papers 

that are clearly not about POI conflation based on their titles. For example, a paper titled 

“A Gabor Filter-Based Protocol for Automated Image-Based Building Detection” was 

labeled as irrelevant. Note that such a paper was included in the initial set because its 

abstract contains “point of interest” and “POI”. With the titles independently labeled 

by three authors, we then used the strategy of majority vote to combine the three labeled 

results. Papers that were labeled as irrelevant by at least two authors were removed, 

and 552 records were removed through this title screening process. After that, we 

manually read through the remaining 289 papers primarily focusing on abstracts but 

also read full paper content if the abstract does not provide sufficient information for 

determining relevance. In order to identify a final set of core papers for POI conflation 

and matching, we excluded the following two types of papers: 

• Papers that are related to POIs but do not focus on POI matching or conflation. 

These papers often use POIs as one of their geographic data layers to examine 

social issues, or they may develop software systems for managing or indexing 

POI data. 

• Papers that are related to matching or conflation but do not focus on matching 

POI datasets. These papers are often about matching POIs with non-POI data, 

such as remote sensing images, or matching POIs with social media users, i.e., 

POI recommendation. 

These two types of papers have their own research merits, but do not focus on matching 

POI datasets. We therefore removed them (254 papers were removed in this step) and 

obtained a set of 35 papers. 

During the revision of this manuscript in December 2022, we also conducted two 

sets of additional searches to further expand the literature. First, we conducted four 

rounds of additional Google Scholar searches by applying the queries to “anywhere” in 

the article, and manually checked the first 10 pages of the returned search results. 

Because Google Scholar does not support nested boolean operations, we did four 

simpler and non-nested queries (thus, four rounds of searches in total). We checked the 

top 10 pages of each of the four rounds of searches (there are 10 papers on each page 

and 400 papers in these 40 pages). In the second set of searches, we traced the references 

of the identified 35 papers to see whether we can identify any additional papers. 

Through these two sets of searches, we did identify 6 more relevant papers. Among the 

6 papers, 4 were published after March 2022 when we did our previous searches, and 

these 4 papers include 1 journal paper, 2 conference papers, and 1 master’s thesis. The 

2 other papers that were published before March 2022 include 1 master’s thesis and 1 

conference paper. With these 6 more papers, we obtained a final set of 41 papers closely 

focusing on POI conflation. 
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Figure 3 summarizes our review approach, and a complete list of the 41 papers is 

provided in the Supplementary. While 41 is not a large number, similar numbers are 

not uncommon in systematic reviews (Albuquerque et al., 2021; P. Liu & Biljecki, 

2022). We also believe that some POI matching and conflation research was done 

internally by location-based companies, which was probably not shared as research 

publications. While we do focus on this core set of 41 papers to analyze their methods, 

our review goes beyond them and we have referred to over 100 papers in this article.  

 

4. Methods for matching POIs 

A common workflow for matching POI datasets is to first measure similarity between 

any two candidate POIs (or a POI pair) and then use a classification method to classify 

the POI pair as a match or not match based on the obtained similarity scores. In the 

following, we review methods for measuring POI similarity in Section 4.1 and 

classifying POI matches in Section 4.2. After that, we review methods proposed to 

speed up POI matching for big datasets by generating POI pairs that are more likely to 

be matches in Section 4.3. In Section 4.4, we discuss evaluation scores achieved in 

existing POI matching research, and Section 4.5 summarizes this section. 

 
Figure 3. The process of literature searching and screening following the guidelines of the 

preferred reporting items for systematic reviews and meta-analyses (PRISMA). 
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4.1. Measuring POI similarity 

POI similarity can be measured over POI names, POI types, and spatial footprints. 

These three main attributes and the geometries associated with spatial footprints have 

been used in not only POI conflation but also general geospatial data conflation 

(Hastings 2009; Ruiz et al., 2011; Xavier et al. 2016). In the following, we review 

similarity measures based on these three main attributes as well as other attributes 

associated with POIs. 

4.1.1. Similarity measures over POI names 

High similarity between the names of two POIs is a piece of evidence suggesting that 

the two POIs may refer to the same place in the real world. Since POI names are 

generally in the data type of string, one approach to measuring POI name similarity is 

to directly calculate the string similarity of two names. Edit distance has often been 

used to do so, which measures the similarity of two strings by counting the number of 

editing operations required to transform one string to another. A smaller number of 

required operations suggests a higher similarity between two strings. There exist 

different implementations for edit distance, and each allows a different set of editing 

operations. The most common one is the Levenshtein distance which only allows the 

operations of removal, insertion, and substitution (the term “Levenshtein distance” has 

often been used interchangeably with “edit distance”). Many studies directly used 

Levenshtein distance for measuring POI name similarity, such as Scheffler et al. (2012), 

McKenzie et al. (2014), Xia et al. (2014), L. Li et al. (2016), Zhang and Yao (2018), Y. 

Deng et al. (2019), Barret et al. (2019), Aminy and Lissner (2021), and Zhao et al., 

(2022). In addition to the Levenshtein distance, other types of edit distance were also 

used, such as Jaro distance and its variant Jaro-Winkler distance (Barret et al., 2019; 

Toccu et al., 2019; Piech et al., 2020) and Hamming distance (Barret et al., 2019). 

Another approach to measuring POI name similarity is to first apply some text 

preprocessing steps to POI names and then calculate the similarity based on the 

preprocessed names. These preprocessing steps include removing non-alphanumeric 

characters, converting POI names into the same upper or lower cases, filtering out stop 

words, and tokenizing name strings into individual words. These preprocessing steps 

generally help remove string differences due to syntactic issues, such as different uses 

of upper and lower cases or different word orders, and help the similarity measurement 

focus on the remaining and more meaningful parts of the POI names. Novack et al. 

(2018) and Low et al. (2021) used token sort ratio which tokenizes POI names into 

individual words, sorts them in alphabetical order to form new strings, and then 

calculates the Levenshtein distance between the new strings. Similar methods, such as 

token set ratio (based on common tokens in two POI names while ignoring token 

orders), were also used in Piech et al. (2020). Scheffler et al. (2012) tokenzied POI 

names into individual words and then used the technique of term frequency and inverse 

document frequency (TF-IDF) to derive weighted vector representations for POI names; 

the similarity of POI names was then measured using cosine similarity based on the TF-
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IDF vector representations. Berjawi (2017) first represented POI names as sequences 

of tri-grams, and then calculated POI name similarity based on the number of common 

tri-grams. C. Li et al. (2020) proposed a method that first automatically labels the 

semantic roles of the words in a POI name, and then measures POI name similarity 

using different weights for words based on their semantic roles. The semantic role is 

defined as the function of a word in a POI name. For example, for a POI name “Hilton 

Garden Inn New York”, the semantic role of “Hilton Garden” is proper name, that of 

“Inn” is common name, and the role of “New York” is place name.  

A third approach for measuring POI name similarity is based on the pronunciations 

of two POI names. Typically, POI names are first converted into sequences of phonetic 

codes based on their pronunciations using an algorithm such as Double Metaphone. The 

similarity of the converted phonetic code sequences is then measured using a metric 

such as the Levenshtein distance. This approach was used by McKenzie et al. (2014). 

A similar approach was used by L. Li et al. (2016) who leveraged the Microsoft voice 

packet to transform Chinese POI names into phonetic representations and then 

measured similarity via the Levenshtein distance. 

A fourth approach for measuring POI name similarity is to leverage word 

embeddings generated by neural network models (S. Wang et al., 2020). Word 

embeddings are vector representations capturing the meaning of words, and words that 

share similar meanings are closer to each other in the vector space (Mikolov et al., 2013; 

Mai et al., 2022). Word embeddings therefore provide a way for measuring semantic 

similarity of two words even when they have largely different spellings (e.g., “road” 

and “street”). Similar to word embeddings, character embeddings are vector 

representations for individual characters, which can help capture the semantics of the 

strings formed by the characters. Cousseau and Barbosa (2021) trained a deep neural 

network model that generated both word embeddings and character embeddings to 

represent POI names, and then concatenated these embeddings for POI matching. Xing 

et al., (2022) used a pre-trained language model of BERT to encode POI names as 

vectors. Li et al., (2022) integrated Word2vec and Text-CNN (Kim, 2014) to represent 

POI names as vector representations.  

Table 2 summarizes the four main approaches for measuring POI name similarity 

and their specific methods. Multiple approaches are often used together in one study 

(e.g., Albinsson & Sölve (2022) combined multiple name similarity measures from the 

first, second, and fourth category), and as a result, the same study may show up after 

different methods in Table 2. 

Table 2. Summary of similarity measures over POI names. 

Category Methods Studies 

Similarity based on 

original POI name 

strings 

Levenshtein 

distance 

Scheffler et al. (2012); McKenzie et al. (2014); 

Xia et al. (2014); L. Li et al. (2016); Zhang and 

Yao (2018); Y. Deng et al. (2019); Barret et al. 
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(2019); Aminy and Lissner (2021); Zhao et al., 

(2022) 

Jaro distance or 

Jaro-Winkler 

distance 

Barret et al. (2019); Toccu et al., (2019); 

Piech et al. (2020); Albinsson & Sölve (2022)  

Hamming 

distance 

Barret et al. (2019) 

Similarity based on 

preprocessed POI 

name strings  

Token sort ratio, 

token set ratio 

Novack et al. (2018); Low et al. (2021); Piech 

et al. (2020) 

TF-IDF Scheffler et al. (2012); Albinsson & Sölve 

(2022)  

Tri-grams Berjawi (2017) 

Semantic roles C. Li et al. (2020) 

Similarity based on 

POI name 

pronunciations 

Double 

Metaphone 

McKenzie et al. (2014) 

Microsoft voice 

packet 

L. Li et al. (2016) 

Similarity based on 

POI name 

embeddings 

Word and 

character 

embeddings 

Cousseau and Barbosa (2021); Xing et al., 

(2022); Li et al., (2022); Albinsson & Sölve 

(2022) 

4.1.2. Similarity measures over POI types 

POI types provide important category information about places. Having the same or 

similar POI types is another piece of evidence supporting that two POIs may be a match. 

A main difficulty in measuring POI type similarity lies in the different POI type systems 

adopted by different datasets. Two POI type systems can have largely different numbers 

of POI categories (e.g., there were 385 categories in Foursquare and 668 categories in 

Yelp in the study by McKenzie et al. (2014), different numbers of hierarchies, and 

different ways to name similar POI types (e.g., two datasets may use two different terms, 

“Food” and “Restaurant”, to refer to a similar POI type). Accordingly, it is necessary 

to consider semantic similarity when we compare two POI types.  

One approach to measuring the semantic similarity between POI types is to leverage 

an external lexical resource, such as WordNet. WordNet is a large lexical database that 

groups words into synsets and links synsets through their semantic and lexical relations 

(Miller, 1995). As words are linked into a network (with synsets as nodes and 

semantic/lexical relations as edges), the semantic similarity between two words can be 
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measured using network-based metrics, such as the number of edges between the 

synsets of the words. WordNet can be used via existing APIs or customized computer 

programs. McKenzie et al. (2014) used Alignment API 4.0 (David et al., 2011) to 

measure semantic similarity between POI types using the Path metric. The Path metric 

is based on the shortest path that connects two synsets in WordNet. Piech et al. (2020) 

used the library of NLTK to measure semantic similarity based on WordNet, and they 

used the average of three metrics which are: the Path metric, the Wu–Palmer metric, 

and the Lin metric. The Wu-Palmer metric is measured based on the depth of two 

synsets in WordNet and that of their Least Common Subsumer (LCS; or the most 

specific ancestor node). The Lin metric is measured based on the Information Content 

(IC; often calculated based on the hyponyms of a synset in WordNet) of the two synsets 

and that of their LCS. Novack et al. (2018) developed their own program to use 

WordNet, and they used the average of two metrics, namely the Path metric and the Lin 

metric. As noted by Novack et al. (2018) and in the literature (Ballatore et al., 2013), 

the performance of these different metrics largely depends on the specific application 

and data. 

Another approach for measuring the semantic similarity between POI types is to 

integrate two different POI type systems into one unified system and then measure type 

similarity based on this unified system. Two POI type systems can be integrated using 

different methods. Y. Deng et al. (2019) and C. Li et al. (2020) manually integrated two 

POI type systems from Baidu Maps and Gaode Maps based on the similarity of their 

top-level POI types. Palumbo et al. (2019) manually linked POI types from eight 

different sources, including Google, Facebook, and Wikimapia, to OSM tags to form a 

unified POI type system by considering the activities supported by POI types and the 

time of these activities. Cai et al. (2021) developed their own 2-level POI type system 

and manually linked POI types from other datasets to this new POI type. Gong, Gao, 

and McKenzie (2015) matched the POI types in Foursquare with the POI types in 

Jiepang (a location-based social media in China) based on POI type names and temporal 

visiting patterns of people to POI types. Since the unified POI type system is typically 

in a tree structure, similarity scores between POI types can be calculated using metrics 

similar to those used in WordNet, such as the number of edges between the 

corresponding POI type nodes (Barret et al., 2019), similarity score based on common 

matching ancestors (C. Li et al., 2020; Morana et al., 2014), normalized path distance 

between two POI type nodes (Y. Deng et al., 2019), and cosine similarity between 

conception vectors constructed by considering the node depth and descendant density 

(L. Li et al., 2016). 

A third approach for measuring the semantic similarity between POI types is to 

convert POI types into embeddings via neural network models and then calculate 

similarity scores based on these POI type embeddings. The rationale is that embeddings 

can help capture the semantics of POI types and therefore support semantic similarity 

measurement. One method is to directly use a pre-trained model, such as Sentence-

BERT (Silvao & Fox, 2021) or fastText (Low et al., 2021), to generate embeddings for 
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POI types. A main advantage of using pre-trained models for generating POI type 

embeddings is that it does not require additional labeled training data from the current 

POI conflation project. A main disadvantage is that the generated POI type embeddings 

may not fit the specific POI datasets in hand. When labeled training data are available, 

project-specific POI type embeddings can be generated. Cousseau and Barbosa (2021) 

built their customized encoder model which generated POI type embeddings based on 

labeled POI pairs. Melo et al. (2022) trained a neural network model based on high-

confidence POI matches generated from their previous experiments to learn POI type 

embeddings. Li et al., (2022) first employed Word2vec to generate encodings for POI 

types and then used Text-CNN to further refine the vector representations. Once POI 

type embeddings are generated, their similarity can be measured by cosine similarity 

(Silvao & Fox, 2021; Low et al., 2021) or dot product (Melo et al., 2022). Table 3 

summarizes the three main approaches and their specific methods for POI type 

similarity measurement. 

Table 3. Summary of similarity measures over POI types. 

Category Methods Studies 

Similarity based on an 

external lexical resource, 

such as WordNet 

Path metric based on WordNet (via 

Alignment API 4.0) 

McKenzie et al. 

(2014) 

Path metric, Wu–Palmer metric, 

and Lin metric based on WordNet 

(via NLTK) 

 

Piech et al. (2020) 

Path metric and Lin metric based on 

WordNet  

Novack et al. (2018) 

Similarity based on a 

unified POI type system 

Number of edges between POI type 

nodes 

Barret et al. (2019) 

Similarity score based on common 

matching ancestors 

Morana et al. (2014); 

C. Li et al. (2020) 

Normalized path distance between 

two POI type nodes 

Y. Deng et al. (2019) 

Cosine similarity between 

conception vectors constructed with 

nodes feature 

L. Li et al. (2016) 

Similarity based on POI 

type embeddings 

Pre-trained embedding models, 

such as Sentence-BERT and 

fastText 

Low et al. (2021); 

Silvao and Fox 

(2021) 
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POI type embeddings trained based 

on labeled POI matches 

Cousseau and 

Barbosa (2021); 

Melo et al. (2022); 

Li et al., (2022) 

4.1.3. Similarity measures over POI spatial footprints 

Spatial proximity of two POIs is another important piece of evidence suggesting that 

the two POIs may be a match. Given that the spatial footprints of POIs are typically 

points, one approach for measuring their similarity is through distance calculation 

between the two points, such as using Euclidean distance (Almeida et al., 2018; Berjawi 

et al., 2014; N. Wang et al., 2020). Another method is to take into account the curvature 

of the surface of the Earth and measure geodesic distance (McKenzie et al., 2014; Tré 

et al., 2013; Zhang & Yao, 2018; Toccu et al., 2019; Zhou et al., 2021; Zhao et al., 

2022). As distance measures are often in real numbers, researchers also developed 

methods to convert real-value spatial distances to similarity measures ranging from 0 

to 1. For example, Berjawi (2017) designed an equation based on ellipse function to 

produce spatial similarity between 0 and 1. Novack et al. (2018) also designed an 

equation, in which the spatial similarity is calculated as 1 minus the ratio between the 

Euclidean distance of two points and the maximum possible distance. Y. Deng et al. 

(2019) used a negative exponential equation to convert the distance between two POIs 

into the range of [0, 1]. 

Another approach for measuring the similarity between the locations of two POIs 

is to leverage embeddings. This approach is primarily used to feed POI distance 

information to deep neural networks. Cousseau and Barbosa (2021) calculated the 

geodesic distances between any two POIs and then discretized the distance values of 

all POI pairs into equal-width bins. They then built a neural network encoder model 

that generated embeddings for each distance bin, which was then incorporated in a deep 

learning model for POI matching. Li et al., (2022) used multi-layer perceptron (MLP) 

to transform the longitude and latitude of POIs into vectors. Table 4 summarizes the 

two main approaches and their specific methods for similarity measures over spatial 

footprints.  

Table 4. Summary of similarity measures over POI spatial footprints. 

Category Methods Studies 

Spatial distance Euclidean distance Berjawi et al. (2014); N. Wang et al. 

(2020); Almeida et al. (2018) 

Geodesic distance Tré et al. (2013); McKenzie et al. (2014); 

Zhang and Yao (2018); Toccu et al., 

(2019); Zhou et al. (2021); Zhao et al., 

(2022) 
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Normalized distance 

similarity 

Berjawi (2017); Novack et al. (2018); Y. 

Deng et al. (2019) 

Distance 

embedding 

Discretized distance 

embedding 

Cousseau and Barbosa (2021) 

Spatial coordinate 

embedding 

Li et al., (2022) 

4.1.4. Similarity measures over other POI attributes 

While almost all POI datasets contain POI name, POI type, and spatial footprints, some 

datasets contain other attributes, such as addresses, customer reviews, website URLs, 

and phone numbers. When these and other POI attributes are present, they can be 

leveraged for POI matching and conflation as well. 

POI address 

POI addresses are commonly available in datasets focusing on business establishments 

in urbanized areas, such as restaurants, grocery stores, and gas stations. Most POI 

addresses are in the data type of string, and their similarity has been treated in ways 

similar to POI names in the literature (Lin et al., 2020). One approach is to directly 

measure the string similarity of two addresses using metrics such as the Levenshtein 

distance and the Jaro-Winkler distance (Charif et al., 2010; Berjawi, 2017; Comber & 

Arribas‐Bel, 2019; Piech et al., 2020; Psaila & Toccu, 2019; Zhao et al., 2022). Some 

studies also first standardized addresses into the same address format (e.g., using the 

format of door number, street name, city, postcode, country) before measuring their 

similarity (J. Liu et al., 2013; Morana et al., 2014; Zhou et al., 2021). A second approach 

is to segment an address into individual elements, such as street name, city name, and 

postcode, and then calculate the similarity scores over these individual elements (Y. 

Deng et al., 2019; C. Li et al., 2020; Low et al., 2021; Melo et al., 2022). A third 

approach is to leverage embeddings by converting addresses into vector representations 

using a neural network model before measuring its similarity (Cousseau & Barbosa, 

2021; Li et al., 2022). 

Reviews 

Reviews from social media users are available in some POI datasets, such as Yelp and 

Foursquare. McKenzie et al. (2014) measured review similarity for POI matching. The 

rationale is that if two POIs refer to the same place in the real world, social media users 

may discuss similar topics about this POI. To measure the similarity between the 

reviews of POIs, McKenzie et al. (2014) used an unsupervised topic model, Latent 

Dirichlet allocation (LDA), to discover topics discussed in user reviews from 

Foursquare and Yelp, and then leveraged the algorithm of Jensen-Shannon divergence 

to compute review similarity between two POIs. As reported by the authors, 61.7% of 

the POIs can be correctly matched purely based on publicly available reviews using 

their approach (McKenzie et al., 2014). 

Website URL, phone number, and others 
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Various other attributes may exist in the POI datasets. For attributes in the data type of 

string (e.g., website URLs and phone numbers), string-based similarity measures, such 

as the Levenshtein distance, can be applied in ways similar to measuring POI name 

similarity. For attributes in the data type of integer or float, numeric value differences, 

such as absolute difference, can be calculated for measuring their similarity. A number 

of studies leveraged these additional attributes for POI matching and conflation 

(Morana et al., 2014; Berjawi, 2017; Almeida et al., 2018; Piech et al., 2020), and they 

found that additional POI attributes, particularly website URLs and phone numbers, can 

help effectively identify POI matches when they are present in the POI datasets. Table 

5 summarizes the methods for measuring POI similarity over other attributes. 

Table 5. Summary of similarity measures over other POI attributes. 

Attribute Methods Studies 

POI address Similarity based on string 

measures, such as 

Levenshtein distance 

Charif et al. (2010); Berjawi (2017); 

Comber and Arribas‐Bel (2019); 

Psaila and Toccu (2019); Piech et al. 

(2020); J. Liu et al. (2013); Morana et 

al. (2014); Zhou et al. (2021) 

Similarity based on POI 

address elements 

Y. Deng et al. (2019); C. Li et al., 

(2020); Low et al., (2021); Melo et 

al., (2022) 

Similarity based on POI 

address embeddings 

Cousseau and Barbosa (2021); Li et 

al., (2022) 

Reviews Latent Dirichlet allocation McKenzie et al. (2014) 

Website URL and 

phone number 

Similarity based on string 

measures, such as 

Levenshtein distance 

Morana et al. (2014); Berjawi (2017); 

Almeida et al., (2018); Piech et al. 

(2020)  

4.2. Classifying POI matches 

With similarity scores calculated over different attributes, we can then combine these 

similarity scores to determine whether two POIs are a match. Generally, similarity 

scores over multiple attributes, instead of a single attribute, need to be considered, 

because matching errors can easily happen if we consider only one single attribute. For 

example, considering POI name similarity only can lead to different chain stores under 

the same name, such as different McDonald's, being classified as a match. Likewise, 

considering spatial proximity only can lead to different stores located near each other, 

e.g., different stores located in the same plaza, being classified as a match. There exist 

two main types of approaches for classifying POI matches: rule-based approaches and 

machine learning-based approaches. In the following, we review these two types of 

approaches respectively. 
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4.2.1. Rule-based approaches 

In rule-based approaches, researchers define a number of rules to determine POI 

matches. One approach is to define rules with crisp matching thresholds for individual 

attributes, and then combine matching results obtained based on these individual 

attributes. For example, Scheffler et al. (2012) considered two POIs to be a match if 

their spatial distance is smaller than 0.01 degree and their POI name dissimilarity 

(measured by the Levenshtein distance) is less than 10% of the length of the target POI. 

Ennis et al. (2013) considered two POIs as a match if their POI name similarity is larger 

than 0.8 (based on a Levenshtein distance measure normalized to [0, 1]), and they have 

matched POI types, and they are within 20 nearest neighbors based on their spatial 

distance. Xia et al. (2014) considered two POIs to be a match if they are the nearest 

neighbor based on spatial distance, and their name and address similarity is higher than 

0.6. Similar POI matching rules were also defined in other studies (Lamprianidis et al., 

2014; F. Yu et al., 2016). In addition to crisp threshold values, fuzzy logic and fuzzy 

set theory were also used by researchers to determine POI matches (De Tre & 

Bronselaer, 2010; Psaila & Toccu, 2019; Toccu et al., 2019). 

Another rule-based approach is to first combine different attribute similarity scores 

into a final score, and then classify a POI pair based on this final score. In this approach, 

rules are defined to determine the weights of different similarity scores and to decide 

how the final score should be used for matching. There exist three main types of rules 

for determining the weights of similarity scores. The first type is that the weights can 

be determined based on certain assumptions or domain knowledge. For example, 

Morana et al. (2014), McKenzie et al. (2014), and Berjawi (2017) simply assigned equal 

weight to each similarity score. Barret et al. (2019) assigned a weight of 0.7 to POI 

name similarity and a weight of 0.3 to spatial distance similarity, assuming name 

similarity is more important. A second type of rules is that the weights can be assigned 

based on relations between the target attributes and other attributes. Novack et al. (2018) 

designed a method to dynamically calculate the weight for each attribute based on its 

similarity score over all attributes obtained for the POI pair. Y. Deng et al. (2019) and 

Zhao et al., (2022) used the Dempster–Shafer evidence theory and analytic hierarchy 

process as methodological frameworks to calculate weights for attribute similarity 

scores. The third type of rules is that the weights can be tuned based on a small set of 

labeled POI pairs (e.g., 200 POI pairs), if such labeled data are available. Note that this 

approach is different from the machine learning-based approaches that will be discussed 

in the following subsection, since the tuning process here is about testing different 

weights in a computational manner, instead of training a machine learning model. For 

example, N. Wang et al. (2020) used a grid search algorithm to determine the weights 

for POI name similarity and spatial distance similarity by testing different weights 

ranging from 0.1 to 0.9. L. Li et al. (2016) developed a method based on information 

entropy theory to evaluate the entropy of each attribute based on 300 labeled POI pairs, 

and then calculated the weights of attribute similarity based on the obtained entropy 

values. Once similarity scores are combined into a final score, POI matches can be 
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determined based on rules, such as the candidate with the highest final score (McKenzie 

et al., 2014; Morana et al., 2014) or a threshold value based on the final score (L. Li et 

al., 2016; Melo et al., 2022).  

The main advantage of rule-based approaches is that they either do not require any 

labeled data for training POI matching models or only require a small dataset for weight 

tuning. The main disadvantage is that it can be difficult to find the most suitable weights 

and attribute thresholds for these rules. Knowledge about the POI datasets and some 

trial and error may be needed. Table 6 summarizes the discussed rule-based approaches 

and their methods. 

Table 6. Summary of rule-based classification approaches and methods. 

Category Methods Studies 

Rules defined for 

individual attribute 

similarity scores 

Rules with crisp threshold 

values  

Scheffler et al. (2012); Ennis et 

al. (2013); Xia et al. (2014); 

Lamprianidis et al. (2014); Yu et 

al. (2016) 

Rules based on fuzzy logic 

and fuzzy set theory 

De Tre and Bronselaer (2010); 

Psaila and Toccu (2019); Toccu 

et al., (2019) 

Rules defined for 

combining attribute 

similarity scores into a 

final score 

Weights assigned based on 

assumptions or domain 

knowledge 

Morana et al. (2014); McKenzie 

et al. (2014); Berjawi (2017); 

Barret et al. (2019) 

Weights assigned based on 

relations between the target 

attributes and other 

attributes 

Novack et al. (2018); Y. Deng et 

al. (2019); Zhao et al., (2022) 

Weights tuned based on a 

small labeled dataset 

L. Li et al. (2016); N. Wang et 

al. (2020) 

4.2.2. Machine learning-based approaches 

When sufficient training data are available, machine learning models can be trained to 

combine multiple attribute similarity scores and match POIs. The training data are 

typically in the form of POI pairs labeled as matching (positive samples) and non-

matching (negative samples). A machine learning model takes the similarity scores of 

different attributes as input features, and learns the weights and classification thresholds 

through the training process. Trained models can then be used for classifying unseen 

POI pairs.  

A variety of machine learning models have been used in existing studies. For 

example, McKenzie et al. (2014) trained a binomial probit regression model to combine 
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multiple similarity scores to determine POI matches. Zhou et al. (2021) used a similar 

approach but trained a logistic regression model. Zhang and Yao (2018) trained a 

particle swarm optimization (PSO) model for tuning attribute similarity weights by 

optimizing an objective function for POI matching. Almeida et al. (2018) leveraged the 

isolation forest model to achieve POI matching through outlier detection, in which the 

model was trained on matched POI pairs and then used to detect POIs representing 

different places (i.e., non-matching POI pairs) as outliers. Xing et al., (2022) built a 

binary classifier based on Light gradient-boosting machine (LightGBM) for POI 

matching with attribute similarity as input features. Cousseau and Barbosa (2021) 

developed a deep learning model for POI matching with encoders designed for POI 

name, type, geographic location, and address respectively. The generated embeddings 

were concatenated and then passed to a feed-forward network to determine whether two 

POIs were a match. Li et al., (2022) adopted an enhanced sequential inference model 

(ESIM) (Chen et al., 2016) to first perform local inference of POI pairs and then 

combine local inference information to realize the determination of POI pair 

classification. 

Some studies trained multiple machine learning models and compared their 

performances. Piech et al. (2020) used six supervised learning models in three different 

types, which are k-nearest neighbor from instance-based models, isolation forest, 

decision tree, and random forest from decision tree-based model, and perception and 

deep neural network from neural network models, to learn weights for attribute 

similarity scores. They tested their trained models for POI matching in five different 

cities throughout the world, and found that random forest performed the best in four out 

of the five cities. Low et al. (2021) compared the performance of three rule-based 

approaches and different machine learning-based approaches designed based on three 

machine learning models, which are random forest, gradient boosting (based on 

decision tree), and support vector machine. The authors found that machine learning-

based approaches overall achieved better performance than rule-based approaches, and 

the gradient boosting model outperformed other models. Aminy and Lissner (2021) 

compared the performances of a decision tree model and an artificial neural network 

model for POI matching, and found that their performances were overall similar.  

The main advantage of machine learning-based approaches is that they can 

automatically learn weights and thresholds for POI matching and therefore do not 

require manually defined rules. These learned weights and thresholds usually fit the 

POI datasets well, and therefore machine learning-based approaches often outperform 

rule-based approaches when training data are available (Low et al., 2021). A main 

disadvantage is that they require a fairly large size of labeled training data. Based on 

the literature, there exist three approaches for obtaining labeled training data: (1) 

manual labeling (L. Li et al., 2016; Low et al., 2021; McKenzie et al., 2014; Psaila & 

Toccu, 2019); (2) semi-automatic labeling, e.g., automatically obtaining some matching 

pairs with high confidence and then checking manually (Cousseau & Barbosa, 2021); 

and (3) automatic data creation via third-party APIs, such as Factual Crosswalk API 
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(Almeida et al., 2018; Piech et al., 2020). However, even for the automatic approach, 

some manual effort is needed to verify and ensure that the obtained training data is of 

good quality. Table 7 summarizes these machine learning models and their related 

studies. 

 

 

Table 7. Summary of machine learning-based approaches and methods. 

Category Methods Studies 

Regression models Binomial probit regression  McKenzie et al. (2014) 

Logistic regression Zhou et al. (2021)  

Optimization model Particle swarm optimization Zhang and Yao (2018)  

Instance-based 

models 

K-nearest neighbor Piech et al. (2020)  

Support vector machine Low et al. (2021)  

Decision tree based 

models 

Isolation forest Almeida et al. (2018); Piech et 

al. (2020) 

Decision tree Piech et al. (2020); Aminy and 

Lissner (2021) 

Random forest Piech et al. (2020); Low et al. 

(2021)  

Gradient boosting  Low et al. (2021); Xing et al., 

(2022) 

Neural network 

models  

Perceptron Piech et al. (2020) 

Deep neural network with fully 

connected layers 

Piech et al. (2020) 

Deep neural network with fully 

connected layers and encoders 

Cousseau and Barbosa (2021); 

Li et al., (2022)  

4.3. Generating candidate POI pairs 

Both similarity measurement and matching classification are done based on candidate 

POI pairs. If one POI dataset has 𝑛 POIs and the other POI dataset has 𝑚 POIs, there 
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exist 𝑛 × 𝑚 possible POI pairs which can be an extremely large number (e.g., when 

both datasets have about 100,000 POIs). From a computational perspective, the 

computational complexity of examining all possible POI pairs is 𝑂(𝑛2). Consequently, 

it can take weeks or even months to complete a POI matching task. While we can 

certainly use high-performance computing frameworks, such as MapReduce and 

Apache Spark (Dean & Ghemawat, 2008; J. Yu et al., 2015; Salloum et al., 2016), to 

speed up the matching process, a more commonly used approach is to reduce the 

number of candidate POI pairs by limiting them to only those that are located within a 

certain spatial distance. This process is called blocking (Cousseau & Barbosa, 2021; 

Morana et al., 2014), and is also called cutoff or thresholding in the geospatial data 

conflation literature (Hastings, 2009; Li & Goodchild, 2011; Lei, 2020; Lei, 2021). 

Using this approach, Scheffler et al. (2012) generated candidate POI pairs only for those 

POIs located within a distance of 0.01 degree (about 1000 meters). Morana et al. (2014) 

used different distance thresholds to generate candidate POI pairs based on the place 

type of the target POI, e.g., 50 meters for restaurants and 500 meters for parks. Berjawi 

(2017) also considered different blocking distances to select candidate POI pairs in 

terms of different POI types, e.g., 100 meters for restaurants or hotels, and 1000 meters 

for parks. Piech et al. (2020) used a distance threshold of 300 meters for generating 

candidate POI pairs, while Low et al. (2021) used a distance threshold of 100 meters. 

Cousseau and Barbosa (2021) used a Geohash-based approach and only generated 

candidate POI pairs for those located in the same Geohash keys (about 610 meters). 

Other distance thresholds were also used by researchers (F. Yu et al., 2016; Zhou et al., 

2021). Xing et al., (2022) adopted the k-nearest neighbors algorithm to look for the 10 

closest candidate POI pairs based on their spatial locations. Overall, there does not seem 

to be one standard distance threshold for generating candidate POI pairs, and 

researchers typically set the distance thresholds based on their own POI datasets. 

While the above methods have been specifically used in POI conflation, there also 

exist other methods in the general geospatial data conflation literature for generating 

candidate pairs. One method is one-sided nearest-neighbor join, which generates 

candidate pairs based on the nearest neighbors of point geographic features (Beeri et al. 

2004). Such a method, however, could be limited when many POIs are co-located close 

to each other (e.g., different stores in the same shopping plaza). Beeri et al., (2004) 

further proposed three more advanced methods, namely a mutually-nearest method, a 

probabilistic method, and a normalized-weights method. These methods can generate 

candidate pairs for point geographic features by assigning confidence values to 

geographic features based on their distances and then selecting those pairs whose 

confidence values are higher than a defined threshold. In addition to point geographic 

features, methods were also developed for generating candidate pairs for linear and 

polygon geographic features, such as cutoff distance (Li & Goodchild 2011; Lei 2020) 

and overlapping area (Butenuth et al., 2007; Hastings 2008). 

4.4. Evaluating POI matching results 

Existing studies typically leveraged a subset of the reviewed similarity measures and 
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classification methods to match their POI datasets. Four metrics have been commonly 

used for evaluating POI matching results, which are precision, recall, F-score, and 

accuracy. Their calculations are shown in Equations (2-5): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝 +  𝑓𝑝
 , (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 +  𝑓𝑛
 , (3) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  2 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
   , (4) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝 +  𝑡𝑛

𝑡𝑝 +  𝑓𝑝 +  𝑡𝑛 +  𝑓𝑛
 , (5) 

where 𝑡𝑝 represents true positive, 𝑓𝑝 represents false positive, 𝑡𝑛 represents true 

negative, and 𝑓𝑛 represents false negative. The evaluation is generally done based on 

individual POI pairs with ground-truth labels, and 𝑡𝑝 happens when a POI pair is 

labeled as a match and the model also considers it to be a match. 𝑓𝑝 happens when a 

POI pair is labeled as not a match but the model mistakenly considers it to be a match. 

𝑡𝑛 and 𝑓𝑛 can be interpreted similarly. Thus, precision measures the percentage of 

correctly matched POI pairs among all the POI pairs that a model considers to be 

matches. Recall measures the percentage of correctly matched POI pairs among all the 

POI pairs that should be matched (based on the ground-truth labels). F-score is the 

harmonic mean of precision and recall, and F-score will be high if both precision and 

recall are high and F-score will be low if one of the two is low. Accuracy measures the 

percentage of correctly identified POI pairs (containing both 𝑡𝑝 and 𝑡𝑛) among all 

POI pairs. In addition to the four commonly used metrics, we also see the use of area 

under the curve (AUC) when the output of a model can be adjusted by different 

threshold values (Piech et al., 2020), normalized Gini coefficient when the model output 

is a probability distribution (Cousseau & Barbosa, 2021), and Matthew’s Correlation 

Coefficient for describing the confusion matrix (Albinsson & Sölve, 2022). 

Table 8 summarizes the POI matching results of 10 recent studies, which include 

their used datasets and evaluation metrics. As can be seen, most studies reported POI 

matches with very high quality. For example, Albinsson & Sölve (2022), Li et al., 

(2022), C. Li et al. (2020), and Zhou et al. (2021) reported over 0.95 precision, recall, 

and F-score. Xing et al. (2022), Low et al. (2021), and Melo et al. (2022) all reported 

over 0.95 accuracy. Relatively lower scores were reported by Cousseau and Barbosa 

(2021), but an F-score of over 0.8 is still fairly high. One challenge to interpret these 

results is that these studies were done based on different evaluation datasets with very 

different sizes. For example, Cousseau and Barbosa (2021) had the largest data size 

with over 3 million POI pairs, while some other studies used only several hundred POI 

pairs. Given these largely different datasets, the evaluation scores from different studies 

cannot be directly compared. A commonly shared POI matching dataset might help 

compare results across different studies. 

Table 8. Summary of 10 recent studies with their datasets and evaluation scores. 
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Study Dataset* Precision Recall F-score Accuracy AUC Gini 

Zhao et al., 

(2022) 

387 0.984 0.969 - - - - 

Xing et al., 

(2022) 

- - - - 0.994 - - 

Albinsson & 

Sölve (2022) 

5,567 0.990 0.981 0.986 - - - 

Li et al., (2022) 439,780 0.981 0.993 0.987 - - - 

Melo et al. 

(2022) 

1,942 0.973 0.860 0.913 0.953 - - 

Cousseau and 

Barbosa (2021) 

3,606,880 0.837 0.712 0.809 - 0.857 0.959 

Low et al. 

(2021) 

8,698 - - - 0.992 - - 

Zhou et al. 

(2021)  

300 0.962 0.968 0.965 - - - 

C. Li et al. 

(2020) 

1,162 0.964 0.975 0.969 - - - 

Piech et al. 

(2020) 

100,000 - - - - 0.995 0.994 

* Numbers indicate dataset sizes represented as the numbers of POI pairs contained. 

4.5. Summary 

In this section, we have systematically reviewed, discussed, and categorized methods 

for measuring POI similarity and classifying POI matches. We have also discussed the 

common evaluation metrics and summarized matching results achieved by recent 

studies. As mentioned previously, this review focuses on the first main step of POI 

conflation, i.e., POI matching, and the second step, POI merging, can be completed by 

developing merging rules suitable for a particular study. For example, one can use the 

attributes of one dataset to update those of the other, or can combine their attributes in 

a complementary manner. In the next section, we discuss the limitations that we have 

identified based on this systematic review and some of the future directions that may 

be pursued to address those limitations. 

5. Limitations and future directions 

We identify six limitations and corresponding directions that may be pursued in the 

near future. 
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First, there is a lack of common test datasets for POI matching evaluation. All of 

the reviewed POI matching studies are based on their own POI datasets. This is different 

from some other research topics on computational methods, such as image 

classification, in which common large datasets, e.g., ImageNet (J. Deng et al., 2009), 

were created and many different methods were tested and compared on the same 

datasets. To some extent, the creation of such common test datasets played key roles in 

advancing related computational methods, such as deep neural networks for image 

classification (Krizhevsky et al., 2012). The lack of such common datasets for POI 

matching is probably due to the high cost of labeling POI pairs. Meanwhile, we can 

start by sharing smaller datasets, e.g., 200 labeled POI pairs. Since these test datasets 

will be used for evaluation rather than for training models, they do not have to be very 

large to begin with.  

Second, a benchmarking platform may need to be built for POI matching evaluation. 

When developing a new POI matching method, it is often necessary to compare the 

new method to previous methods. In reality, it is often time consuming to reimplement 

previous methods. A benchmarking platform that integrates existing POI matching 

methods and common test datasets (when available) may help reduce the time that 

researchers have to spend in reimplementing previous methods. In addition, such a 

benchmarking platform can support the submission of new POI matching methods 

developed by researchers, return a performance evaluation result automatically, and 

even maintain a performance dashboard for matching methods. Similar benchmarking 

platforms already exist for other computational tasks, such as the General Language 

Understanding Evaluation (GLUE) benchmark (A. Wang et al., 2019) and the 

Extensible and Unified Platform for Evaluating Geoparsers (EUPEG) benchmark (J. 

Wang & Hu, 2019). A similar benchmarking platform may also benefit POI conflation 

research.  

Third, there is a need for ready-to-use POI matching software tools. Currently, 

there does not exist an open-source software tool that researchers can directly use to 

match their POI datasets. Consequently, researchers who simply want to conflate two 

POI datasets for their research have to implement matching methods themselves. 

Although some matching methods can be implemented using existing packages 

relatively easily (such as using the FuzzyWuzzy Python package for Levenshtein 

distance), a ready-to-use POI matching software tool is likely to facilitate POI 

conflation for many researchers. One challenge in developing such a software is that 

different POI datasets may have different attributes. However, as we have shown in this 

review, most POI datasets contain at least names, types, and spatial footprints, which 

can be built in a POI matching tool as common attributes. In addition, similarity 

measures based on different data types, such as strings and numeric values, can be 

added to such a matching tool, so that researchers can use these measures when 

additional POI attributes (e.g., phone numbers and reviews) are available.   

Fourth, there is a lack of annotation tools to generate training datasets for POI 

matching. Through our systematic review, it has become clear that machine learning 



27 
 

 

 

approaches generally outperform rule-based approaches, when a fairly large set of 

training data is available. Creating a labeled training dataset, however, requires 

considerable manual effort. To obtain training data more efficiently, one possible 

direction is to develop annotation tools that can assist the work of human annotators. 

Such a tool may contain functions such as automatically generating POI pairs from a 

POI database, presenting the POI pairs and their attributes to the human annotator, and 

saving the annotated POI pairs. Such a tool may also provide multilingual support to 

help create multilingual POI training datasets. Such multilingual datasets can be 

especially useful for training machine learning models to match POI datasets in 

different languages, such as those generated by communities speaking both English and 

Spanish.  

Fifth, POI similarity measurement may be extended to also include spatial context 

similarity of POIs. Current research for measuring POI similarity has been mostly 

focusing on the inherent attributes of POIs (e.g., POI names, types, and spatial 

footprints), rather than the spatial contexts of POIs, i.e., how one POI is related to other 

POIs spatially. It has been shown that POIs in similar types often share similar spatial 

contexts (Yan et al., 2017; Zhai et al., 2019). For example, restaurants tend to co-locate 

closely with other restaurants, while hospitals or fire stations are unlikely to co-locate 

with another hospital or fire station since they need to be distributed more evenly in 

order to better serve a wider geographic area. By analyzing and quantifying the spatial 

contexts of POIs, we may be able to add one more dimension of similarity to enhance 

POI matching. Further research, however, is needed to identify the best approaches for 

quantifying spatial contexts of POIs, including the spatial distances used for defining 

contexts and how POIs within the spatial context should be counted toward the 

similarity measurement.   

Sixth, human-place interactions may also be utilized for enhancing POI similarity 

measurement. Another potential direction that goes beyond the typical POI attributes 

used for matching is to measure POI similarity from a human-place interaction 

perspective. This type of similarity would require the POI datasets to also have human-

place interaction information, such as POI visits in anonymized mobile phone location 

datasets or POI check-ins in social media data. McKenzie et al. (2015), Janowicz et al. 

(2019) and Sparks et al. (2020) have shown that different POI types tend to have distinct 

temporal patterns related to the activities supported at these POIs. For example, 

restaurants tend to have peak visits during lunch and dinner time, while airports tend to 

have a more evenly distributed visitation pattern over a day. By analyzing and 

comparing the human-place interaction patterns of two POIs, we may be able to obtain 

one additional similarity measurement to improve POI matching. Meanwhile, cautions 

should be taken in this approach, since the human-place interaction patterns of two POI 

datasets may be derived from two different population groups (e.g., users of two social 

media platforms) with different behavior patterns. 

The above six directions are by no means an exhaustive list, and many other 

directions could also be pursued as well. For example, we could further improve 



28 
 

 

 

semantic similarity measurement between POI types by integrating top-down 

vocabularies and location patterns derived from bottom-up data-driven approaches 

(Zhu et al., 2016). Similarly, new machine learning models and location encoding 

techniques (Mai et al., 2022) could be explored for improving POI matching. We hope 

that these identified future directions can serve as a starting point to help stimulate new 

ideas for POI matching and conflation research. 

6. Conclusions 

POIs provide digital representations of places in the real world. POI datasets have been 

increasingly used to understand human-place interactions, support urban management, 

and build smart cities. Through POI conflation, we can make effective use of multiple 

POI datasets and obtain a better representation of the places in our study areas. This 

paper presented a systematic review of POI conflation with a focus on POI matching 

methods. Following the PRISMA protocol, we searched through three bibliography 

databases using reproducible syntax, and a core set of 41 articles were identified out of 

an initial set of 1298 papers and follow-up searches. We then systematically discussed 

and categorized the POI similarity measures and matching methods developed so far. 

Evaluation scores achieved by previous studies were discussed afterwards. Based on 

this systematic review, we also identified current limitations and potential future 

directions to address these limitations. We hope that this review could serve as a 

reference of existing methods for researchers interested in conflating POI datasets to 

answer research questions. 
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