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A vast amount of location information exists in unstructured texts, such as social media posts, news stories, scientiic articles,
web pages, travel blogs, and historical archives. Geoparsing refers to recognizing location references from texts and identifying
their geospatial representations. While geoparsing can beneit many domains, a summary of the speciic applications is still
missing. Further, there lacks a comprehensive review and comparison of existing approaches for location reference recognition,
which is the irst and core step of geoparsing. To ill these research gaps, this review irst summarizes seven typical application
domains of geoparsing: geographic information retrieval, disaster management, disease surveillance, traic management,
spatial humanities, tourism management, and crime management. We then review existing approaches for location reference
recognition by categorizing these approaches into four groups based on their underlying functional principle: rule-based,
gazetteer matching-based, statistical learning-based, and hybrid approaches. Next, we thoroughly evaluate the correctness and
computational eiciency of the 27most widely used approaches for location reference recognition based on 26 public datasets
with diferent types of texts (e.g., social media posts and news stories) containing 39,736 location references worldwide.
Results from this thorough evaluation can help inform future methodological developments and can help guide the selection
of proper approaches based on application needs.
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1 INTRODUCTION

Location matters, and not just for real estate [179]. With the rapid development of the Global Navigation
Satellite System (GNSS), sensor-rich (e.g., inertial sensors, Wi-Fi module, and cameras) smart devices, and
ubiquitous communication infrastructure (e.g., cellular and 4G networks and Wi-Fi access points), our capability
of obtaining location information of moving objects and events in both indoor and outdoor spaces has been
dramatically improved [160]. This exponential growth in location-based capabilities has signiicantly enhanced
our understanding of geospatial processes [179] and fueled the development of location-based services (LBS)
with wide-ranging applications in various domains, such as business, entertainment, and crisis management [87].
Apart from sensor equipment, natural language texts, such as social media posts, web pages, and news stories,
serve as a signiicant source of geospatial information through location references. These location references
encompass both simple place names, also known as toponyms, as well as more complex location descriptions
that incorporate additional spatial modiiers like direction, distance, and spatial relationships [177]. Geoparsing,
an ongoing research problem studied extensively over the past two decades [9, 15, 82, 92, 163], refers to the
process of extracting location information from texts. It involves two crucial steps: (1) recognizing location
references from texts, also known as toponym recognition or location reference recognition, and (2) identifying
the geospatial representations of the recognized location references, commonly referred to as toponym resolution
or geocoding. Figure 1 illustrates the worklow of geoparsing.

Toponym
 Recognition

Toponym 
Resolution

Geoparsing
Geographic 
locations Texts

Fig. 1. The general workflow of geoparsing and its two steps.

Geoparsing has traditionally been used in formal texts for location extraction, such as web pages, news, scientiic
articles, travel blogs, and historical archives [15, 179]. However, the drastically increased importance of social
media data (SMD) in various domains such as social science, political science, policy-making, and humanitarian
relief [18, 22, 38, 76, 171] has facilitated eforts to extend geoparsing to informal texts [179]. According to Statista
1, the number of worldwide social network users will reach 4.4 billion by 2025. On average, 500 million tweets
2 and 4.75 billion Facebook items 3 are shared each day. Formal texts normally do not have location-related
metadata, while informal texts, such as tweets, can be geotagged, i.e., a Twitter user can select a location and
attach that location to the posted message. However, geotagged tweets are rare, and according to Cheng et al. [33],
Morstatter et al. [135], and Kumar et al. [101], only 0.42%, 3.17%, and 7.90% of the total number of tweets contain
geotags, respectively. In addition, Twitter removed the precise geotagging feature in 2019, showing only a rough
location, e.g., the bounding box of a tagged place, rather than a pair of latitude and longitude coordinates. This

1https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
2https://www.dsayce.com/social-media/tweets-day/
3https://blog.wishpond.com/post/115675435109/40-up-to-date-facebook-facts-and-stats
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change could further decrease the number of geotagged tweets [86]. In a nutshell, extracting location information
from unstructured texts is often necessary. Notably, informal texts, such as tweets, are short, have few or no
formatting or grammatical requirements, and can have uncommon abbreviations, slang, and misspellings, which
pose additional challenges for geoparsing [180].
While there exist quite some studies on geoparsing [68, 146], we identify two gaps in the literature that

motivate this current review paper. First, the many possible applications of geoparsing are scattered in individual
papers [1, 15, 58, 63] or are only partially reviewed [67, 83], and there lacks a systematic and more comprehensive
summary of these applications. Consequently, it is diicult for researchers who are new to geoparsing to
have a quick view of these many possible applications. Second, existing review papers on geoparsing, such as
[68, 125, 134, 181], focused on the entire worklow of geoparsing (i.e., both of the two steps) rather than location
reference recognition alone (i.e., the irst step only). While providing more comprehensive coverage on the topic
of geoparsing, existing eforts reviewed only some approaches for the step of location reference recognition. In
recent years, many new approaches for location reference recognition have been developed, such as Flair NER [4],
NeuroTPR [182], nLORE [53], and GazPNE2 [82]. Given the high importance of location reference recognition in
geoparsing (i.e., only those references that are correctly recognized can be geo-located), it is necessary to have a
review that speciically focuses on the possible and recent approaches for location reference recognition.

This work aims at illing the two research gaps discussed above. First, we summarize seven typical application
domains of geoparsing, which are geographical information retrieval (GIR) [57, 146], disaster management
[111, 162], disease surveillance [64, 159, 172], traic management [77, 115, 129], spatial humanities [63, 154],
tourism management [27, 36, 37], and crime management [17, 42, 178]. Second, we review existing approaches for
location reference recognition by categorizing the approaches into four groups: rule-based, gazetteer matching-
based, statistical learning-based, and hybrid approaches. Noticing that many existing approaches were not
cross-compared on the same datasets, we also conduct experiments to compare and evaluate the reviewed
27 existing approaches on 26 public datasets. We thoroughly analyze various aspects of the existing approaches,
encompassing their performance on both formal and informal texts, their efectiveness across diferent types of
places such as administrative units and traic ways, and their computational eiciency.
The remainder of this paper is structured as follows: In Section 2, we summarize seven typical application

domains of geoparsing. In Section 3, we review existing approaches for location reference recognition. We
evaluate existing approaches on the same public datasets in Section 4. Finally, we conclude the paper in Section 5
and discuss some potential future directions.

2 SEVEN APPLICATION DOMAINS OF GEOPARSING

Geoparsing ofers numerous potential applications. In this section, we provide a concise overview of seven
prominent application domains frequently explored in the literature. Figure 2 provides an illustration of these
domains.
GIR: One of the primary applications of geoparsing is geographic information retrieval. Historically, docu-

ments have been indexed by subject, author, title, and type. However, a diverse and large group of information
system users (e.g., readers, natural resources managers, scientists, historians, journalists, and tourists) desire
geographically-oriented access to document collections, such as by retrieving interesting contents about speciic
geographic locations [26, 57, 108, 130, 145, 173, 191]. For instance, resources in digital libraries can be indexed
by locations contained in descriptive metadata records associated with the resources, thereby improving users’
experience in searching for their needed resources [57]. People are looking for web pages containing useful
information about everyday tasks, such as local merchants, services, and news [26]. The public can consume
up-to-date information related to COVID-19 (e.g., disease prevention, disease transmission, and death reports) on
Twitter by locations [130].

ACM Comput. Surv.
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Geographic 
Information retrieval

Traffic management

Disaster management

Crime management Disease surveillance

Tourism management

Spatial humanities

Geoparsing

Fig. 2. Seven application domains of geoparsing.

Disaster management: News stories and SMD contain enormous historical and real-time disaster information.
Location-enabled SMD can be very helpful to timely map the situational information, such as rescue requests
[164, 198], resource (e.g., food, clothing, water, medical treatment, and shelter) needs and availability [21, 50],
and facility status (e.g., building collapse, road closure, pipe broken, and power outage) [23, 52, 121, 157] in
the aftermath of disasters. With a crisis map, irst responders can track the unfolding situation and identify
stricken locations that require prioritized intervention [19] and realize optimized real-time resource allocation
[164], government agencies can conduct the damage assessment of the disasters in a faster manner [192], and
the public can search for the locations where they can obtain needed resources. By extracting spatiotemporal,
environmental, and other information about disaster events from news stories, lood-prone areas can be identiied
[194], the responsibility of atmospheric phenomena for loods can be understood [20], the spatial and temporal
distributions of natural disasters during a long period can be analyzed [114], and the evolution of disasters (e.g.,
the phases of preparedness, impact, response, and recovery) can be tracked [88, 183, 184].

Disease surveillance: Scientiic articles, historical archives, news reports, and social media contain detailed
information about disease events, such as where the disease was irst reported and how it spread spatiotemporally.
Mining geographic locations and other related information of disease events can help track diseases [34, 64, 136,
140, 159, 172], perform early warning and quick response [97], and understand the mechanisms underlying the
emergence of diseases [12, 93]. For example, geoparsing historical archives (e.g., The annual US Patent Oice
Reports 1840-1850 and Registrar General’s Reports) can help track the spread of potato disease ‘late blight’ in
the 19th-century in the United States [172] and understand the relationship between cholera related disease

ACM Comput. Surv.
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and place names during Victorian times [136]. Scientiic articles were geoparsed to analyze the demographic,
environmental, and biological correlation of the occurrence of emerging infectious diseases at a global scale
[12, 93]. Social media can also relect the movement of the public and their feelings during pandemics through
geotags or mentioned locations in texts. Location-enabled tweets were applied to analyze the mental health
status of the public after the occurrence of COVID-19 [80, 197], to track and visualize the spread and difusion of
COVID-19 [16], and to reveal human mobility patterns [89, 91].
Traic management: Twitter users report near-real-time information about traic events (e.g., crashes

and congestion). Detecting traic events, their precise locations, and other related information from tweets is
important for an efective transportation management system [3, 13, 61, 71, 161, 168]. The detected traic events
can also support urban policy-making [40], such as helping drivers to avoid risk zones and choose the fastest and
safest routes [10], to help the transportation management sector reduce fatalities and restore traic low as quickly
as possible [10], to predict future traic jams [11], and to improve road safety by recognizing high-risk areas [129].
By doing so, Twitter users acting as social sensors can complement existing physical transport infrastructure
(e.g., video cameras and loop detectors) cost-efectively, which is especially important for developing countries
where resources are limited.

Spatial humanities: ‘Spatial turn’ was used to describe a general movement observed since the end of
the 1990s, emphasizing the reinsertion of place and space in the humanities [185]. Digitizing and geoparsing
large historical textual collections, such as books, reports, and novels, create new ways for research in the
humanities (e.g., Archaeology, History, and Literature) [49, 62, 63, 69, 78, 131, 136, 172], such as to understand the
historical geographies of nineteenth-century Britain and its relationships with the wider world [62], to identify
the signiicance of speciic commodities in relation to particular places and time [78], to analyze a correspondence
between eighteenth-century aesthetic theory and the use of the terms ‘beautiful’, ‘picturesque’, ‘sublime’, and
‘majestic’ in contemporaneous and later accounts of the Lakes region [49], and to reveal the spatial structure of a
narrative in ictional novels [131].
Tourism management: According to Statista, among all the active blogs, travel is rated as the top 5 topics

shared by bloggers 4. Travel blogs contain a wealth of information about visited places organized as bloggers’
experiences and insights as well as their perceptions of these places [75]. These narratives relect the blogger’s
behavior and interaction with places and also the relationships among the places. Geoparsing travel blogs is
helpful for understanding places [74], such as to ind their features and related activities, and can help describe a
place with tourism attributes to support tour planning [74, 75, 99, 196]. Applications include helping travelers
choose preferred places and visit them in an appropriate order at a proper time and supporting wayinding given
the spatial relation of places [75].
Crime management: Many countries do not make crime data available to their citizens [17] or provide

only coarse-grained details 5, such as the total number of thefts in a district or a province. According to the
Crime Information Need Survey [17], around 78.3% of respondents in Indonesia agreed that crime information
should be available to the public. The needed information includes crime type, perpetrator, victim, time, and,
very importantly, location. Meanwhile, crime-related information is often scattered across news and social media.
Mining and gathering crime-related information from these text-based sources can be useful for informing the
public and may even help predict and prevent some crimes [14, 41, 42, 150, 156, 166]. In particular, geoparsing can
help extract location information of crimes, which can help residents to choose places to live and help travelers
to avoid certain unsafe places [17].
Diferent applications have distinct requirements for the approaches for location reference recognition. For

example, emergency response applications primarily rely on analyzing informal texts like tweets, while scientiic

4https://www.statista.com/statistics/187267/number-of-bloggers-in-usa/
5http://liioindia.org/
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articles serve as the main source for understanding the mechanisms underlying disease emergence. GIR just needs
coarse-grained geospatial information, such as a city, while traic management requires the ine-grained location
(e.g., a street) of traic events; Geoparsing historical documents that contain billions of words requires a fast
processing worklow. Therefore, to guide the selection of proper approaches for location reference recognition
based on application needs, examining the characteristics of existing approaches is necessary, which will be
introduced in Section 4.

3 A SURVEY OF EXISTING APPROACHES

In this section, we review existing approaches for location reference recognition. In subsection 3.1, we review
individual approaches by categorizing them into four groups, and in subsection 3.2, we review existing comparative
studies and diferentiate our current review from the existing studies.

3.1 Approaches for location reference recognition

In the existing literature, Leidner and Lieberman [105], Monteiro et al. [134], Purves et al. [146] identiied three
types of approaches for location reference recognition, which are rule-based, gazetteer matching-based, and
statistical learning-based. However, many studies, such as [58, 81, 106, 124], used a combination of diferent
approaches to compensate for the shortcomings of each other. Therefore, in this review, we add a fourth type,
hybrid approaches, which combines two or all three types of approaches, and we use these four types to organize
our review on location reference recognition. We show this classiication schema in Figure 3.

Location reference 
recognition

Rule 
(3.1.1)

Statistical learning 
(3.1.3)

Gazetteer matching 
(3.1.2)

Hybrid 
(3.1.4)

Fig. 3. Classification of existing approaches for location reference recognition.

3.1.1 Rule-based approaches. Location references in texts often have certain lexical, syntactic, and orthographic
features. A set of rules, such as regular expressions (REs) and context-free grammars (CFGs), can be deined to
decide if an n-gram of texts is a location reference or not [105]. n-grams are linear sequences of�words in texts. For
example, given a text � = {�0�1�2 ...��}, its unigrams or n-grams of size � = 1 include {�0},{�1},{�2}...,{��}.
Its bigrams or n-grams of size � = 2 include {�0�1},{�1�2}...,{��−1��}.
Table 1 lists some RE and grammar rules used in previous studies [60, 61, 105, 124]. Each row in the table

indicates a rule. The former twelve rules are REs, using Part-of-speech (POS) tags and/or keywords. We use the
standard meta characters (i.e., ‘?’, ‘+’, and ‘∗’) of REs. The ‘?’ sign indicates the presence of a tag zero or one time,
the ‘+’ sign indicates the presence of a tag at least one time, and the ‘∗’ sign indicates the presence of a tag any
times (zero or more). Numbers indicate diferent types of words. 1 represents street indicators, such as ’street’,
’highway’, ’road’, ’sh’, and ’beltway’. 2 represents words that specify direction or a distance in measurable terms,
such as ‘10’, ‘away’, ‘from’, ‘miles’, ‘km’, ‘south’, and ‘northbound’. 3 represents place category words, such as
‘city’, ‘str’, ‘avenue’, ‘rd’, and ‘village’. Used POS tags include Nouns (NN), Proper Nouns (NNP), Determiners
(DT), Adjectives (JJ), Cardinal Numbers (CD), and Conjunctions (CC). The last two rules are grammar rules. �
denotes candidate n-grams. 4 represents place category words that are often used with ‘of’, such as ‘city’, ‘town’,

ACM Comput. Surv.
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‘gulf’, and ‘river’. 5 represents spatial prepositions that normally appear before a location, such as ‘in’, ‘around’,
‘on’, ‘near’, and ‘between’.

Table 1. Examples of RE and grammar rules for location reference recognition.

Rules Examples

<NN>+ tiburon blvd; san manteo
<NNP>+ Heidelberg; San Francisco

<DT>?<JJ>?<NN>+ the golden gate bridge; long island
<CD>?<DT>?<JJ>?<NN>+ third street; 11th avenue
<DT>?<JJ>?<NN>+<CD>? freeway 91; highway 12

<DT>?<JJ><NN>(1) the high cotton lane; high star drive
(1)<CD> beltway 10; sh 73

(2)+<NNP>+(3)* south Northumbria bridge road; northeast Munich

<NNP>+(3)*(2)+ Camanche Avenue east; Heidelberg North

(2)+(3)*(of)?<NNP>+ 25 miles sw of San Francisco; 25min away from New York State

(3)*(of)?<NNP>+(2)+ town of San Francisco; district of Columbia

<A-Z><a-z>*berg Heidelberg; Freiberg

(4) (of) X -><LOC> city of beaumont; Gulf of Mexico;

(5) X -><LOC> this overturned tanker in marin has created a huge jam on wb 580

Several studies used only rules to extract location references. For instance, Giridhar et al. [61] used road-

traic-related tweets to detect and locate point events, such as car accidents. Speciically, a set of REs were

deined according to the composition of nouns, determiners, adjectives, cardinal numbers, conjunctions, and

possessive endings. Furthermore, to decrease false positives, grammar-based rules were implemented based on

spatial prepositions, such as ‘in’, ‘at’, ‘between’, and ‘near’. Zou et al. [198] analyzed the rescue request on Twitter

during Hurricane Harvey. They assumed that the formal description of an address in the United States is in

the form of [Street Number, Street Name, Apartment Number (optional), City, State, Zip Code]. Since all rescue

request tweets in their study contain zip codes, the full address in each tweet can be extracted by locating the zip

code as the ending point and searching for the starting point based on several conditional criteria.

Althoughmany studies classify rule-based approaches as one category [6, 105, 134], pure rules-based approaches

are rare. All the rule-based approaches discussed in [134] are, in fact, hybrid approaches. This is likely because the

approaches that rely on linguistic patterns only are inefective [163]. Deining comprehensive and resilient rules

to account for all potential instances of location references in texts, particularly in microblogs characterized by

diverse writing styles and loose grammar [152], remains a challenging task. Nevertheless, rules can signiicantly

bolster gazetteer matching and statistical learning-based approaches, as elucidated in the subsequent sections.

3.1.2 Gazeteer matching-based approaches. A gazetteer is a dictionary of place names associated with geospatial

information (e.g., place types and geographic coordinates) and some additional information such as population

size, administrative level, and alternative names. Gazetteers play important roles in location reference recognition

in many studies. GeoNames 6 is a most widely used gazetteer, and OpenStreetMap (OSM) 7, in a broad sense,

can be considered as a gazetteer as well. There are 12,255,028 8 and 23,876,956 9 places in GeoNames and OSM,

respectively. Figure 4 illustrates the point density map of the places in OSM and GeoNames.

In gazetteer matching-based approaches, the n-grams of a text are irst matched against a gazetteer, which

are then iltered or disambiguated with a couple of heuristics. Gazetteer matching-based approaches are still

6http://www.geonames.org/
7https://www.openstreetmap.org/
8Retrieved from the oicial web of GeoNames on 2022.02.25
9Retrieved from OSMNames on 2022.02.25
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Fig. 4. Point density maps of the places contained in OpenStreetMap and GeoNames.

faced with two main challenges. The irst is that many location references appearing in texts are missing from
gazetteers due to various reasons, such as name variation (e.g., ‘South rd’ for ‘South road’ and ‘Frankfurt airport’
for ‘Frankfurt international airport’) and data incompleteness (e.g., the missing of ‘Hidden Valley Church of Christ’
from a gazetteer) [58]. Second, gazetteer matching-based approaches often run into ambiguity issues. For instance,
the names ‘Washington’, ‘MO’, ‘South Wind’, and ‘1 ft’ all exist in gazetteers, but can also refer to other types of
entities. This is called geo/non-geo ambiguities, while geo/geo ambiguities refer to the situation in that diferent
spatial locations use the same name, such as Manchester, NH, USA versus Manchester, UK. For simplicity, we use
ambiguities and ambiguous to refer to geo/non-geo ambiguities by default. We will use the full name geo/geo
ambiguities to refer to the second situation. The main focus of gazetteer-based approaches is often to overcome
the two mentioned challenges by using heuristics to perform disambiguation (to increase precision) and by
including place name variants to expand the used gazetteer (to increase recall).
Table 2 summarizes the commonly used heuristics for disambiguation. The irst four heuristics are used to

reduce the number of candidate place names matched in gazetteers, thereby decreasing the number of ambiguous
place names. The 5th heuristic uses common words. The 6th and 7th heuristics leverage the external and internal
cues of candidate n-grams. The 8th heuristic leverages the POS tags of candidate n-grams. The 9th heuristic
leverages the dictionary of other entity types (e.g., Person), such as to judge if a candidate n-gram (‘Houston’)

ACM Comput. Surv.



Location reference recognition from texts: A survey and comparison • 9

with its preceding or succeeding word (‘Alexander’) in texts appears in the dictionary of person names. The 10th
heuristic leverages other related place names to judge if an n-gram is valid or not. For example, ‘IN’ is ambiguous.
However, when it precedes ‘Chennai’ in texts (e.g., ‘Chennai, IN’), which is likely to be a location and related to
‘IN’, then ‘IN’ is treated as a valid location. If an n-gram can be determined as a valid location by some heuristics,
the other n-grams with the same name in the text are also treated as a valid location, such as ‘stay safe Houston,
lood in Houston is serious’, where both ‘Houston’ are judged as valid locations since the preceding word (‘in’) of
the second ‘Houston’ is a spatial indicator.

Table 2. Common heuristics used for disambiguation in gazeteer matching-based approaches

ID Heuristics Examples

1 Limit the length of place names in gazetteers Keep only 1- and 2-grams
2 Limit the type of places in gazetteers Keep only continent, country, state, and city
3 Limit the scale of places in gazetteers Keep only places with a population over 1000
4 Limit the spatial range of gazetteers Use the gazetteers in the area of Florence
5 Filter place names of common (stop) words ‘today’, ’long’, ‘that building’ and ‘the street’
6 Use spatial indicators in texts ‘in’, ‘near’, and ‘at’ that appear before a place
7 Use orthographic cues Capitalization of words, such as ‘Houston’ and ‘Germany’
8 Filter candidates by POS tags Keep only noun phrases in texts
9 Use a dictionary of other entity types Person names, such as‘Washington Irving’ and ‘Houston Alexander’
10 Use other related place names ‘Chennai, IN’ and ‘stay safe Houston, lood in Houston is serious’

Many studies used gazetteer matching-based approaches to recognize location references from texts [3, 6, 12,
15, 35, 43, 54, 127, 129, 141, 141, 143, 163, 169, 170, 191]. One of the earliest geoparsing approaches was proposed
by Woodruf and Plaunt [191] to support georeferenced document indexing and retrieval. A gazetteer containing
around 120,000 places in California was irst built on the US Geological Survey’s Geographic Names Information
System (USGS 1985) and the land use data from the US Geological Survey’s Geographic Information Retrieval
and Analysis System (GIRAS). The place names in a document were identiied by matching texts’ n-grams
containing non-stop words against the gazetteer. If a token had no matches in the gazetteer, it was depluralized
(e.g., ‘valleys’ to ‘valley’) and rematched with the gazetteer. Amitay et al. [15] developed Web-a-Where for
recognizing and geocoding continents, countries, states, and cities as well as their abbreviations in web pages.
A gazetteer was created by collecting about 75,000 place names across the world from diferent data sources:
USGS, World-gazetteer.com 10, UNSD 11, and ISO 3166-1 12. The system irst extracted candidate place names in
a given page by matching against the gazetteer. Then, four heuristics were sequentially used to disambiguate
and geocode the candidate place name, such as the vicinity of two candidate places (e.g., ‘Chicago, IL’) and the
population of places. Clough [35] proposed identifying candidate place names by matching against gazetteers,
which were then iltered using stop words and context cues, such as to ilter person names with simple heuristic
< ����� >< ��� > (e.g., ‘Mr. Sheield’), where < ��� > is a candidate place name and also in the dictionary of
person names. Used gazetteers include the Ordnance Survey 1:50,000 Scale Gazetteer for the UK (OS 13), Seamless
Administrative Boundaries of Europe dataset (SABE 14), and Getty Thesaurus of Geographic Names (TGN 15).
Pouliquen et al. [143] proposed geoparsing approaches for multilingual texts. Candidate place names were irst
identiied by matching with a multilingual gazetteer, which were then disambiguated through a dictionary of

10http://www.world-gazetteer.com
11http://unstats.un.org/unsd
12https://www.iso.org/iso-3166-country-codes.html
13http://www.ordnancesurvey.co.uk/oswebsite/products/50kgazetteer/
14http://www.eurogeographics.org/eng/03_projects_sabe.asp
15http://www.getty.edu/research/conducting_research/vocabularies/tgn/
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person names (e.g., ‘George Bush’ and ‘Tony Blair’) and stop words (e.g., ‘And’, ‘Du’, ‘Auch’) in a multilingual
context. The multilingual gazetteer was created from three sources: Global Discovery database of place names
(Global Discovery 2006), the multilingual KNAB database (KNAB 2006), and a European Commission internal
document.

Gazetteer matching-based approaches were also used to extract locations from tweets. For instance, Paradesi
[141] proposed a Twitter geoparser, TwitterTagger. It matched the noun phrases of a tweet text with the entries
in gazetteers (i.e., USGS database), which was followed by disambiguating the matched entry with two heuristics.
The irst was to check if spatial indicators (e.g., ‘in’ and ‘near’) were used before a noun phrase. The second was
to check whether other users used a spatial indicator before the same noun phrase in their tweets. Middleton et al.
[127] proposed a multilingual geoparser for tweets named Geoparserpy. To overcome the place name variation
issues, a set of heuristics were applied to expand OSM place names. To deal with abbreviations, a multilingual
corpus of the street and building types from OSM was used to compute obvious variants for common location
types (e.g., ‘Southampton Uni’ for ‘Southampton University’). To overcome the ambiguity issue, uni-gram location
names that are non-nouns were iltered using a multilingual WordNet corpus lookup, such as ‘ok’ and ‘us’, which
can refer to locations or other types depending on their POS tag. Location phrases were then iltered using a
multilingual stop-word corpus. de Bruijn et al. [43] introduced TAGGS, a method that leveraged metadata and
contextual spatial information from groups of related tweets. TAGGS matched uni- and bi-grams from tweet
texts with GeoNames and then iltered the candidates using various heuristics, such as excluding candidates
associated with the 1000 most frequently occurring words.

Studies, such as [3, 6, 23, 129, 168, 193, 194], focused only on local events whose geographical scope is known,
such as loods or traic accidents happened in a certain city. Therefore, they would normally use a local gazetteer
that contains only the places in a certain region, which can dramatically mitigate the issues of geo/non-geo
ambiguities and geo/geo ambiguities. Although the proposed geoparsing approaches are not globally applicable,
they are efective in dealing with local events. For instance, Al-Olimat et al. [6] proposed a Location Name
Extraction tool (LNEx), which used n-gram statistics and location-related dictionaries to handle the abbreviations
and automatically ilter and augment the place names in the OSM gazetteer (handling name contractions and
auxiliary contents). Ahmed et al. [3] utilized tweets to monitor real-time traic congestion. They extracted
location references from the tweets by matching n-grams with a list of road names in Chennai. To handle place
name variants, they employed the Jaro-Winkler metric to calculate the similarity between the n-grams and the
road names in gazetteers. Milusheva et al. [129] used traic-related tweets to derive the locations of road traic
crashes in Nairobi, Kenya. Speciically, they developed a gazetteer matching-based geoparsing method to identify
the location of car crashes. A gazetteer of landmarks (e.g., roads, schools, and bus stops) for ive counties that
constitute the Nairobi metro area was created from OSM, GeoNames, and Google Places. The location of car
crashes was then determined by matching the n-grams of the tweets with the entries in the gazetteer. Gazetteer
matching-based approaches are straightforward to implement and can readily adapt to multilingual contexts.
They prove particularly efective in speciic applications, such as those with a limited geographic scope (e.g., a
city) or those that primarily require coarse-grained location information, such as countries. However, proposing
a generally applicable approach for location reference recognition using gazetteer matching and simple heuristics
remains challenging due to the prevalence of name variants and geo/non-geo ambiguity in natural language
texts. To address this challenge, numerous studies have sought to combine gazetteer matching with rules and/or
statistical learning methods to overcome the limitations of each approach. These combined approaches will be
discussed in the subsequent sections.

3.1.3 Statistical learning-based approaches. Statistical learning-based approaches are built on annotated training
corpora containing texts associated with the expected location references. The annotated corpora are used to
train a model via manually deined features, such as infrequent strings, length, capitalization, contextual features,
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and/or features automatically learned by deep learning methods. The trained model is then applied to unlabeled
texts, and the same features are computed to decide on the association of texts and location references. The
basic architecture of statistical learning-based approaches is illustrated in Figure 5, which use either traditional
machine learning techniques, such as Random Forest (RF) [57], or deep learning techniques, such as Long
Short-Term Memory (LSTM) [182]. Statistical learning-based approaches can be further divided into two groups:
learning-based named entity recognition (NER) and learning-based place name extraction (PNE). In the following,
we discuss these two groups of approaches respectively.

  O        O       O  B-LOC  I-LOC  O  O  B-LOC 

bad accident on Waiyaki Way next to Kianda

Classifier

predict

Fig. 5. Basic architecture of statistical learning-based approaches. O denotes non-type. B-LOC and I-LOC denote the
beginning and inner part of a location reference, respectively.

Learning-based NER: Location reference recognition can be considered as a subtask of NER, which has been
extensively studied. Therefore, many studies [59, 71, 73, 95, 111, 121, 175] used existing statistical learning-based
NER models or retrain them to extract location references from texts. For instance, Lingad et al. [111] used
OpenNLP 16, TwitterNLP [152], Yahoo!Placemaker, and Stanford NER to extract place names from 2878 disaster-
related tweets. Stanford NER and OpenNLP were also retrained and evaluated by using 10-fold cross-validation
in their study. The results show that retrained models achieved a much higher F1 score than pretrained models.
Karimzadeh et al. [96] proposed a geoparsing system for tweets, named GeoTxt. It integrated six publicly available
NERs for location reference recognition, which are Stanford NER, Illinois CogComp [151], GATE ANNIE [25],
MIT IE 17, Apache OpenNLP, and LingPipe 18. Belcastro et al. [23] utilized tweets to discover sub-events after
a disaster, such as collapsed buildings, broken gas pipes, and looded roads. CoreNLP [120] was adopted to
recognize street and district names, which were then geocoded by matching with a local gazetteer that covers the
disaster area. Fan et al. [52] proposed uncovering the unfolding of disaster events based on tweets. Place names
were extracted using Stanford NER, which was then iltered and geocoded by keeping only the matched places in
Google Geocoding API and excluding the places outside afected areas. Tateosian et al. [172] used CLAVIN 19 to
geoparse two historical collections: US Patent Oice Reports 1841-1850 and Google Books Corpus. CLAVIN is an
open-sourced geoparser that utilizes Apache OpenNLP for place name extraction. Mircea [130] implemented a
prototype dashboard for real-time classiication, geolocation, and interactive visualization of COVID-19 tweets.
spaCy 20 was used to extract city and country names from tweet texts and user proiles. Mao et al. [121] proposed
mapping near-real-time power outages from tweets using a retrained NeuroNER model [46]. Suat-Rojas et al.
[168] retrained spaCy NER for the detection of location references from Spanish tweets pertaining to traic
accidents in a Colombian city.

16https://opennlp.apache.org/
17https://github.com/mit-nip/MITIE
18http://alias-i.com/lingpipe/demos/tutorial/ne/read-me.html
19https://github.com/Novetta/CLAVIN
20https://spacy.io/
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Recently, many deep learning-based NERs have also been proposed. For example, Limsopatham and Collier
[110] proposed recognizing name entities from tweets by enabling BiLSTM to automatically learn orthographic
features using both character embedding and word embedding. Akbik et al. [5] proposed Flair, an NLP tool that
used contextual string embeddings for sequence labeling tasks, such as part-of-speech (POS) tagging and NER.
Qi et al. [148] proposed a deep learning-based NLP toolkit, named Stanza, which adopted a contextualized string
representation-based tagger. Recently, the fully-connected self-attention architecture (a.k.a. Transformer) attracts
a lot of attention due to its parallelism and advantage in modeling long-range contexts. For instance, Ushio and
Camacho-Collados [176] presented a Python library for NER model ine-tuning, named T-NER. It facilities the
training and testing of a Transformer-based NER model. Nine public NER datasets from diferent domains are
compiled as part of the T-NER library, such as CoNLL 2003, OntoNoted 5.0, and WNUT 2017 datasets.
Learning-based PNE: In addition to utilizing or retraining existing NER models, numerous studies have

developed their ownmodels for location reference recognition employing various machine learning [138, 155, 165]
and deep learning techniques [9, 24, 30, 32, 100, 117, 123, 176, 193]. For instance, Nissim et al. [138] trained the
Curran and Clark (C&C) maximum entropy tagger [39] for recognizing location references from Scottish historical
documents, using the built-in C&C features, including morphological and orthographical features, information
about the word itself, POS tags, named entity tag history, and contextual features. The model was evaluated on
648 Scottish historical documents containing 10,868 sentences and 5,682 places. Kumar and Singh [100] adopted
a multi-channel convolutional neural network (CNN) architecture to extract location references from tweets. The
model was evaluated on 5,107 earthquake-related tweets with 6,690 place names using 10-fold cross-validation.
Xu et al. [193] proposed DLocRL, a deep-learning pipeline for ine-grained location recognition and linking in
tweets. Speciically, they irst used BiLSTM-CRF to train a POI recognizer. Then, given an input pair ❁POI, Proile❃,
a linking module was trained to judge whether the location proile corresponds to the POI. The proile is an entry
in a POI dictionary. The approach was evaluated on the Singaporean national Twitter dataset that was irst used
in [106], containing 3,611 tweets and 1,542 POIs. Cadorel et al. [30] proposed to extract a property’s location
and neighborhood from French housing advertisements by recognizing place names and retrieving relationships
between them. Speciically, a BiLSTM-CRF network with a concatenation of several text representations, including
CamenBERT [122], Flair, and Word2Vec [128] was used to extract place names.

To mitigate the efort of manually annotating a large training dataset, semi-supervised approaches have been
developed. For instance, Wang et al. [182] proposed generating training data from Wikipedia articles, which
was then used to train a BiLSTM model called NeuroTPR. Their model contains several layers to account for the
linguistic irregularities in Twitter texts, such as using character embeddings to capture the morphological features
of words, and contextual embeddings to capture the semantics of tokens in tweets. The approach was evaluated
on 1,000 tweets related to the 2017 Hurricane in Texas and Louisiana. Qiu et al. [149] proposed ChineseTR, a
weakly supervised Chinese toponym recognizer. It irst generated training examples based on word collections
and associated word frequencies from various texts. Based on the training examples, a BiLSTM-CRF network
built on the BERT word embedding was explored to train a toponym recognizer. The approach was evaluated
on three Chinese NLP datasets, WeiboNER, Boson, and MSRA 21. Khanal and Caragea [98] used a multi-task
learning setting to augment the learning of ine-grained location identiication. The three tasks related to crisis
events are key-phrase identiication, eyewitness-account classiication, and humanitarian category classiication.
The learning was conducted on one of the three popular transformer-based models: BERT [47], Albert [104], and
RoBERTa [116]. Several public datasets for the training of the three tasks were utilized in multi-task learning.
The proposed approach was evaluated on two disaster-related Twitter datasets that were used in Middleton et al.
[127].

21https://github.com/InsaneLife/ChineseNLPCorpus
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Given abundant annotated data, statistical learning-based approaches can automatically recognize location
references according to the contextual cues and the intrinsic features of location references without requiring
additional expert knowledge and gazetteers. However, a large number of labeled training sentences are often not
available, making it diicult to use these approaches in many situations [70]. Furthermore, deep learning-based
models normally take muchmore time to recognize place names from texts than rule and gazetteer matching-based
approaches.

3.1.4 Hybrid approaches. Every single technique has its own drawbacks. Thus, researchers have proposed
fusing diferent techniques to achieve the best of all [25, 51, 79, 106, 119, 188, 195]. Hybrid approaches can be
further divided into four types based on the way they combine the previous three approaches: fusing rule and
gazetteer, fusing rule and statistical learning, fusing gazetteer and statistical learning, and fusing rule, gazetteer,
and statistical learning.
Fusing rule and gazetteer: Many studies [119, 123, 132, 133, 144, 184, 188] fused rules and gazetteers to

overcome the shortcomings of each other. Manually deined rules are fragile and the detected location references
can be thus further veriied by gazetteers. Inversely, rules can help remove the ambiguities of the location
references detected by gazetteer matching and by recognizing those references that are not included in gazetteers.
For instance, Pouliquen et al. [144] proposed identifying cities and countries from newspapers in multiple
languages. Location references were recognized by matching texts’ n-grams written in upper case with a multi-
language gazetteer, named Global Discovery gazetteer. The matches were then iltered by stop words and person
names. To recognize the morphological variants of places, regular expressions were used to list all possible suixes
and suix combinations of location references. By doing so, some unseen places in gazetteers can be recognized,
such as ‘Lontoolaisen’, because it consists of ‘Lontoo’ that is in the gazetteer and the suix ‘laisen’. The approach
was evaluated on 28 texts with 1,650 places in 8 languages, such as English, Spanish, and Russian. Weissenbacher
et al. [188] presented a geoparsing system for scientiic articles related to phylogeography. GeoNames was irst
searched to detect location references in articles, and then a black-list (e.g., ‘How’, ‘Although’, ‘Gene’, and ‘Body’)
and a set of rules were created to remove noisy entities found in GeoNames. Malmasi and Dras [119] irst used a
POS rule-based tree-splitting method to extract noun phrases from tweets, and then matched the n-grams of
the noun phrases with the entries of GeoNames. Dutt et al. [51] presented SAVITR, a system that geo-visualizes
tweets during emergencies. They used a POS tagger to ind proper nouns and then used REs to mitigate the
ambiguity of proper nouns with the preix and suix words (e.g., ‘road’, ‘south’, and ‘city’) of place names. Last,
the phrases extracted by the above methods are veriied and geocoded using a gazetteer (i.e., GeoNames or OSM)
in India. Martínez and Pascual [123] presented LORE, a knowledge-based model that captures location references
from English and Spanish tweets. First, bi-grams and uni-grams in the tweets were matched with entries in the
GeoNames gazetteer and then iltered by heuristics. Second, linguistic patterns involving location-indicative
words (e.g., ‘city’ and ‘street’), location markers (e.g., ‘north’ and ‘10km’), and POS tags were derived to recognize
location expressions, such as ‘25 miles NW of London City’. They derived the linguistic patterns from 500 English
tweets and 100 Spanish tweets and then used 900 English tweets and 500 Spanish tweets to test LORE.
Fusing rule and statistical learning: Statistical learning models might not generalize well due to limited

training samples, and manually deined rules can be added to boost the performance of the trained models, e.g., by
correcting evident errors. For instance, Acheson and Purves [2] introduced a geoparsing approach for scientiic
articles in PDF format. They initially employed Stanford NER to recognize potential location references and
subsequently applied rules to ilter these candidates, such as to include candidates with terms like ‘University’ or
‘Institute’ while excluding candidates with terms like ‘Inc’ and ‘GmbH’. Google Geocoding API was then used to
determine the spatial representation of the detected location references. The approach was evaluated on two
article corpora in the domain of Orchards and Cancer, containing 150 and 200 articles, respectively. Das and Purves
[40] proposed detecting traic events (e.g., traic accidents and congestion) in India using tweets. Speciically,

ACM Comput. Surv.



14 • Hu, et al.

they combined the detected location references by Stanford NER, retrained OpenNLP, and a rule-based system
involving spatial indicators (e.g., ‘in’, ‘at’, and ‘near’), POS tags, and 85 words representing place categories (e.g.,
‘hospital’, ‘road’, and ‘clinic’).

Fusing gazetteer and statistical learning: Gazetteers are utilized in two primary ways: (1) combining the
detection outcomes of statistical learning models with gazetteer matching, and (2) incorporating the gazetteer
matching results (e.g., presence or absence of an n-gram in the gazetteers) as input features for statistical learning
models. Examples of the irst way are [57, 72, 79, 106]. For instance, Freire et al. [57] proposed geoparsing
descriptive metadata records associated with digital resources. Initial location references were recognized by
matching tokens of records with candidate entries in GeoNames. A Random Forest classiier was then trained
to disambiguate and link the initial location references. Li and Sun [106] proposed recognizing POIs in tweets.
Candidate POIs in tweets were irst extracted by matching with a POI inventory, which was constructed from
check-in data in Foursquare. A trained time-aware POI tagger based on CRF was then utilized to remove the
ambiguity of the candidates based on the context cues in the text. Hoang and Mothe [79] combined the detection
results of multiple publicly available approaches, such as Ritter’s tool [152], Gate NLP framework [25], and
Stanford NER, and then iltered the results using DBPedia. Diferent conigurations of the NER approaches
and DBPedia were tested on the Ritter’s dataset [152] and MSM2013 dataset [31]. Examples of the second way
include [53, 90, 118, 142, 187]. For instance, Inkpen et al. [90] trained three CRF models for recognizing city,
province/state, and country mentions based on manually deined features, including gazetteer features. The
models were intended to detect location references in tweets and categorize them into three types. The models
were evaluated using 10-fold cross-validation on 6,000 tweets with 1,270 country mentions, 772 state/province
mentions, and 2,327 city mentions. Weissenbacher et al. [187] introduced a novel approach for recognizing
location references within research articles. The method used a CRF model, incorporating various features, such
as lexical (i.e., POS tags), semantic, and gazetteer features. Fernández-Martínez and Periñán Pascual [53] proposed
nLORE, a BiLSTM-CRF architecture for location reference recognition, exploiting linguistic and gazetteer features
from LORE [124]. The model was trained on 7,000 tweets and tested on 1,063 tweets.

Fusing rule, gazetteer, and statistical learning: Some studies combined all the three techniques for location
reference recognition [50, 60, 81, 82, 107, 118]. For instance, Gelernter and Zhang [60] proposed a cross-lingual
location reference recognizer, combining the results of a named location parser based on gazetteer matching, a
rule-based building parser, a rule-based street parser, and a trained CRF-based named entity parser. The rules of
the street and building parsers were created based on POS tags and indicator words, such as adjective plus noun
and street and building indicators (e.g., ‘street’ and ‘highway’ in English and ‘calle’ and ‘carreterra’ in Spanish).
They used a dataset of 4,488 Spanish crisis-related tweets to evaluate the approach. Of these, 3,182 tweets were
used for training, and the remaining tweets served as the test set. Additionally, to evaluate the English extractor,
the Spanish dataset was translated into English using Google Translate.
Magge et al. [118] employed a deep feedforward neural network to determine whether a given phrase in

biomedical articles represents a toponym. They utilized rules to generate approximately 8 million training samples
from unannotated datasets. These generated samples, along with manually annotated training samples, were
used to train the deep learning model. The input vector for the model was constructed by concatenating various
features, including the context of the phrase represented by word embeddings, properties of the phrase (e.g.,
presence in GeoNames), and properties of the document (e.g., abstract, introduction, body, or table). Dutt et al.
[50] focused on understanding crucial aspects of need-tweets and availability-tweets during disasters. They
aimed to extract information about the required resources (e.g., water, food, shelter, medicines), the quantity
of the resources needed or available, the geographical location of the need or availability, and the individuals
or organizations involved in providing or needing them. Regarding geoparsing, the authors enhanced their
previously proposed system, Savitr [51], by combining the location references detected by spaCy and a rule-based
system. They further iltered the location references using a gazetteer to improve the accuracy of location
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extraction. More recently, a place name extractor named GazPNE was proposed by Hu et al. [81]. GazPNE utilized
a neural classiier trained on place names from OSM in the US and India, along with synthesized non-place names
generated by rules. However, due to its limited use of context information, GazPNE still faced ambiguity issues.
To address this, a more robust approach called GazPNE2 was developed [82]. GazPNE2 utilized two pretrained
transformer models, BERT and BERTweet [137], to disambiguate the detected location references.

3.2 Comparative studies

In addition to individual studies that focused on developing newmethods, researchers also conducted experiments
to compare existing methods based on the same datasets. Liu et al. [113] created a medium-scale corpus of locative
expressions from multiple social media sources which include the TellUsWhere corpus [189], two sets of micro-
blog posts from Twitter, comments from YouTube, forums, blog posts from tier one of the ICWSM-2011 Spinn3r
dataset 22, Wikipedia, and documents from the British National Corpus [29]. They then compared the performance
of a couple of location reference recognition models over these seven corpora, which include Locative Expression
Recogniser (LER) [112], retrained Stanford NER, pretrained Stanford NER, GeoLocator [58], UnLockText, and
Twitter NLP. Gritta et al. [68] evaluated the performance of ive geoparsers (GeoTxt, Edinburgh Geoparser [69],
Yahoo! PlaceSpotter, CLAVIN, and Topocluster [44]) on two datasets, Local-Global Lexicon (LGL) [109], and
WikToR that was programmatically created by the author. For location reference recognition, GeoTxt used
Stanford NER, Edinburgh Geoparser used LT-TTT2, TopoCluster used Stanford NER, and CLAVIN used Apache
OpenNLP. The evaluation results showed that Stanford NER performed the best in location reference recognition,
and Edinburgh Geoparser and CLAVIN performed the best in geocoding. Wang and Hu [181] developed an
extensible and uniied platform for evaluating geoparsers, named EUPEG, which enabled direct comparison of
nine geoparsers on eight public corpora, which are LGL, GeoVirus [65], TR-News [95], GeoWebNews [66], WikToR
[68], GeoCorpora [179], Hu2014 [84], and Ju2016 [94]. The compared geoparsers include GeoTxt, Edinburgh
Geoparser, TopoCluster, CLAVIN, Yahoo! PlaceSpotter, CamCoder [65] that used spaCy NER for location reference
recognition, DBpedia Spotlight [126], and two systems that used Stanford NER and spaCy NER for location
reference recognition, respectively. Won et al. [190] evaluated the performance of ive NERs and voting systems
that combined the NERs in extracting place names from two historical correspondence collections, Mary Hamilton
Papers and the Samuel Hartlib collection. The NERs include NER-Tagger [102], Stanford NER, spaCy, Edinburgh
Geoparser, and Polyglot-NER [7]. The results showed that although the individual performance of each NER
system was corpus dependent, the ensemble combination can achieve consistent measures of precision and recall,
outperforming the individual NER systems. At the International Workshop on Semantic Evaluation 2019 23, a
task for toponym resolution in scientiic articles was launched. The evaluation results were presented in [186].
Several systems were evaluated on a corpus of 150 full PubMed articles as 105 articles for training and 45 articles
for testing, containing in total 8,360 toponyms. In the subtask of toponym recognition, all systems except one
adopted Deep Recurrent Neural Networks. The system proposed by a team from Alibaba Group achieved the
highest F1 score by adopting BiLSTM-CRF and training it on various datasets, including OntoNote5.0, CoNLL13,
and weakly labeled training corpora.

There are two major diferences between this study and the aforementioned comparative studies. First, these
existing comparative studies focused on the entire worklow of geoparsing, while we focus on a narrower topic,
i.e., location reference recognition, and provide a deeper review and comparison of methods on this topic. Second,
our comparative experiments (presented in the following section) are more comprehensive than existing studies.
We used more datasets (26 datasets, containing 39,736 places worldwide) and compared 27 diferent approaches.
In the following, we present the results from the comparative experiments.

22https://www.icwsm.org/2011/data.php
23https://alt.qcri.org/semeval2019/
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Table 3. Main features of approaches evaluated in this study

Approach and Version Category
Recognized
Entity Type

Target Text
Development
Language

Publishing
Time

Stanford NER 4.3.1 statistical learning 4 classes formal texts Java 2021
spaCy 3.2.1 statistical learning 18 classes formal texts Python 2021
Stanza 1.2 statistical learning 18 classes formal texts Python 2021

OpenNLP 1.9.4 statistical learning 4 classes formal texts Java 2021
DBpedia Spotlight statistical learning N/A formal texts Python 2021

NER-Tagger statistical learning 4 classes tweets Python 2016
Polyglot 16.07.04 statistical learning 3 classes formal texts Python 2016

NeuroNER statistical learning 4 classes formal texts Python 2017
CogComp 4.0 statistical learning 4 classes formal texts Java 2018

OSU TwitterNLP hybrid 10 classes tweets Java 2011
TwitIE-Gate 9.0.1 hybrid 4 classes tweets Java 2013

TNER statistical learning 28 classes formal texts Python 2021
Flair NER statistical learning 4 classes formal texts Python 2021

Flair NER (Ont) statistical learning 18 classes formal texts Python 2021
BERT-base-NER statistical learning 4 classes formal texts Python 2020

CLIFF 2.6.1 statistical learning LOC formal texts Python 2020
Edinburgh 1.2 hybrid LOC formal texts c 2021
GazPNE2 hybrid LOC tweets Python 2022
LORE hybrid LOC tweets c++ 2020
nLORE hybrid LOC tweets c++ 2021
SPENS hybrid LOC formal texts N/A 2018
RSD hybrid LOC tweets N/A 2018
RGD hybrid LOC tweets N/A 2018
RS hybrid LOC tweets N/A 2018

BaseSemEval12 hybrid LOC formal texts Python 2018
NeuroTPR statistical learning LOC tweets Python 2020

Geoparserpy 2.1.4 gazetteer matching LOC tweets Python 2020

4 COMPARISON OF EXISTING APPROACHES

4.1 Methods

To inform future methodological developments for location reference recognition and help guide the selection
of proper approaches based on application needs, we examine numerous characteristics of existing approaches
for location reference recognition. We use or implement the 27most widely used approaches including both
general NERs and location-speciic approaches. Note that we do not include several approaches, such as LNEx
[6], GazPNE [81], and SAVITR [51], as they are limited to local regions and cannot be applied globally, whereas
our test datasets consist of place names from around the world.
Table 3 summarizes the features of the compared approaches. The version number is indicated alongside

each approach’s name. The second column represents the approach’s category based on its underlying principle.
NERs not only recognize locations but also other entity types, as denoted in the third column. The notation of 3
classes, 4 classes, 10 classes, and 18 classes corresponds to {LOC, PER, ORG}, {LOC, PER, ORG, MISC}, {PERSON,
GEO-LOCATION, COMPANY, PRODUCT, FACILITY, TV-SHOW, MOVIE, SPORTSTEAM, BAND, OTHER}, and
{LOC, PERSON, ORG, FAC, GPE, CARDINAL, DATE, EVENT, LANGUAGE, LAW, MONEY, NORP, ORDINAL,
PERCENT, PRODUCT, QUANTITY, TIME, WORK_OF_ART}, respectively. The 28 classes include entities from
the 18 classes mentioned earlier, as well as {CELL TYPE, CELL LINE, CHEMICAL, CORPORATION, DISEASE,
DNA, GROUP, PROTEIN, RNA, OTHER}. The fourth column indicates the type of texts on which each approach
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was developed, while the ifth column speciies the development language used. The last column denotes the
proposal or update date of a particular version of an approach.

• Stanford NER (4.3.1) [55] 24: It is a Java-based NER system that utilizes CRF, which was developed and
maintained by the Stanford Natural Language Processing Group. We keep the entities of LOC (location)
detected by Stanford NER as locations.

• spaCy (3.2.1): It is a general NLP tool. We use its retrained model (en_core_web_lg) and keep the entities
of LOC, FAC (facility), and GPE (geopolitical entity) detected by spaCy as locations.

• Stanza (1.2) [148] 25: It is a general NLP toolkit and includes a NER tool, which was built on BiLSTM and
CRF. We keep the entities of LOC, FAC, and GPE as locations.

• OpenNLP (1.9.4) [126]: The Apache OpenNLP library is an open-sourced and machine learning-based
toolkit for processing natural language text. We keep the entities of LOCATION detected by OpenNLP as
locations.

• DBpedia Spotlight [126] 26: It is for recognizing and linking entities to DBpedia. We treat the place
mentions detected by this approach as locations.

• NER-Tagger [102] 27: It is a NER tool for tweets, built on BiLSTM and CRF. We treat the entities tagged
with B-LOC and I-LOC as locations.

• Polyglot (16.07.04) [7] 28: It is a natural language pipeline and includes a multi-language NER tool. The
entities tagged with I-LOC are regarded as locations.

• NeuroNER [46] 29: It is a BiLSTM-CRF-based NER system developed by MIT. We use the pretrained model
and keep the entities of LOC, FAC, and GPE detected by NeuroNER as locations.

• CogComp (4.0) [151] 30: It is a NER tagger, developed by the University of Illinois. The entities tagged
with LOC are taken as locations.

• OSU Twitter NLP [152] 31: It is a NER tool for tweets. The entities tagged with GEO-LOCATION and
FACILITY are treated as locations.

• TwitIE-Gate (9.0.1) [25] 32: It is a Twitter-speciic NER tool, providing an executable pipeline on an
open-source software toolkit GATE 33 (General Architecture for Text Engineering). The entities tagged
with LOCATION by this approach are treated as locations.

• TNER [176] 34: It is an All-Round Python Library for Transformer-based NER. We keep the entities of
LOC, FAC, and GPE as locations.

• Flair NER [4] 35: Flair is an NLP framework designed to facilitate training and distribution of sequence
labeling and text classiication. Flair-NER is the standard 4-class NER model trained on CoNLL-03. We keep
the entities of LOC as locations.

24https://nlp.stanford.edu/software/CRF-NER.html
25https://stanfordnlp.github.io/stanza/
26https://www.dbpedia-spotlight.org/
27https://github.com/glample/tagger
28https://polyglot.readthedocs.io/en/latest/index.html
29https://github.com/Franck-Dernoncourt/NeuroNER
30https://github.com/CogComp/cogcomp-nlp/tree/master/ner
31https://github.com/aritter/twitter_nlp
32https://gate.ac.uk/wiki/twitie.html
33https://gate.ac.uk/
34https://github.com/asahi417/tner
35https://huggingface.co/lair/ner-english
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• Flair NER (Ontonotes) [158] 36: This is the large 18-class NER model trained on Ontonotes that ships
with Flair. It is named Flair NER (Ont) for short in this review. We include entities tagged with LOC, GPE,
and FAC as locations.

• BERT-base-NER 37: It is a ine-tuned BERT model that is ready to use for NER. We include entities tagged
with B-LOC and I-LOC as locations.

• GazPNE2 [82] 38: It fuses global gazetteers and two pretrained transformer models. The latest version
utilizes Stanza to enhance GazPNE2.

• CLIFF (2.6.1) [48] 39: It integrates the results of Stanford NER and a modiied CLAVIN (Cartographic
Location and Vicinity Indexer) geoparser.

• LORE [124]: It is a rule-based location extractor for tweets.
• nLORE [123]: It is a deep learning model, an advanced version of LORE. We use the trained model provided
by the author to extract locations.

• Edinburgh Geoparser (1.2) [69] 40: It is a geoparsing approach developed by Edinburgh University, which
combines rules and gazetteers to extract place names from texts.

• BaseSemEval12 [118] 41: It is a baseline system for SemEval-2019 Task 12 (i.e., Toponym Resolution in
Scientiic Papers) that uses a 2-layer feedforward neural network.

• NeuroTPR [182] 42: It is a neuro-net toponym recognition approach trained on recurrent neural networks.
We use their trained model and implementation to detect location mentions in texts.

• Geoparserpy (2.1.4) [127]: It is a gazetteer matching-based geoparser. We use its implementation and
deploy the required OSM gazetteer to extract place names from texts.

• SPENS [190]: This approach combines the result of ive diferent systems in a voting mechanism, including
Stanford NER, Polyglot NER, Edinburgh Geoparser, NER-Tagger, and spaCy. It is thus named SPENS for
short. We reimplement the approach using the code or API of the ive modules.

• Ritter+Stanford NER+DBpedia [79]: It uses DBpedia to ilter the merged detection by Ritter’s tool (also
named OSU Twitter NLP) and Stanford NER. We name this approach RSD for short and reimplement the
approach using the code or API of the three modules.

• Ritter+GATE+DBpedia [79]: It uses DBpedia to ilter the merged detection by Ritter’s tool and GATE.
We name this approach RGD for short and reimplement the approach using the code or API of the three
modules.

• Ritter+Stanford NER [79]: It merges detection by Ritter’s tool and Stanford NER. We name this approach
RS for short and reimplement the approach using the code or API of the two modules.

All methods are conigured based on thorough experimental results to ensure the selection of optimal parameter
settings. For example, we consider not only Location and GPE but also Facility detected by Stanza as locations
since this can achieve the best F1 score on the entire datasets.

4.2 Test data

We collect 26 commonly used datasets, which serve as our test data. The datasets comprise 3 formal datasets
(i.e., news) and 23 informal datasets (i.e., tweets), containing 39,736 place names in total, as shown in Table 4.
They can be categorized into two groups based on the purpose of the datasets: Location Extraction (LE) and

36https://huggingface.co/lair/ner-english-ontonotes-large
37https://huggingface.co/dslim/bert-base-NER
38https://github.com/uhuohuy/GazPNE2
39https://clif.mediacloud.org/
40http://www.ltg.ed.ac.uk/software/geoparser/
41https://github.com/amagge/semeval-fnn-baseline
42https://github.com/geoai-lab/NeuroTPR
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NER. The former only annotates Location while the latter annotates not only Location, but also the other types,
such as Person, Organization, and Facility. Note that we do not use some available geoparsing datasets that were
used to evaluate the geoparsing approaches by Wang and Hu [181], such as WikToR [68] due to their limited
coverage of toponyms. For instance, in the WikToR dataset, each text or article corresponds to a Wikipedia
page titled with a speciic toponym, along with speciied coordinates. However, only that particular toponym
was automatically annotated, while other toponyms mentioned in the text were disregarded. Although suitable
for evaluating toponym resolution approaches, this dataset does not adequately address toponym recognition
approaches. The description of the used datasets is as follows:

• LaFlood2016, HouFlood2015, CheFlood2015 43: They are three lood-related datasets, which were
created by Al-Olimat et al. [6]. The locations in the three datasets were annotated as one of the three types:
inLOC, outLOC, and ambLOC, denoting the locations inside the area (e.g., ‘Houston’) of interest, outside
the area, and ambiguous locations (e.g., ‘my house’), respectively. We only evaluate the approaches on the
inLOC and outLOC locations, ignoring the ambLOC locations. ‘Louisiana’, ‘Houston’, ‘Texas’, and ‘Chennai’,
as well as their abbreviations, such as ‘La’, ‘Hou’, and ‘Tx’ appear frequently in the datasets. Moreover,
many location mentions appear in hashtags, such as ‘#lalood’, ‘#txwx’, and ‘#ChennaiRain’.

• Harvey2017 44: The dataset is related to 2017 Hurricane Harvey and was created by Wang et al. [182]. The
dataset contains many ine-grained locations, such as ‘398 Garden Oaks Blvd’ and ‘26206 longenbaugh rd’.
No places appear in hashtags since they have been removed from the dataset.

• NzEq2013, NyHurcn2012 45: The two Twitter datasets correspond to the New Zealand earthquake in
2013 and New York Hurricane in 2012, respectively. They were created by Middleton et al. [127]. We found
several missing place names (e.g., ‘Christchurch’) which, however, appear frequently in the two datasets.
To mitigate this issue, we manually create two missing place name lists (i.e. [(‘new’,‘zealand’), (‘nz’), (‘uk’),
(‘christchurch’), (‘chch’), (‘lyttleton’), (‘southland’), (‘wellington’), (‘south’, ‘island’)] and [(‘new’,‘york’), (‘nyc’),
(‘new’,‘york’,‘city’), (‘ny’)] ) for the two datasets, respectively. We deine that the detection of an entity
which is not annotated in the dataset but in the corresponding missing list is a true positive. Moreover,
sub-place names exist in dataset NzEq2013. For example, in the text ‘Christchurch hospital is now back in
operation’, both ‘Christchurch hospital’ and ‘Christchurch’ were annotated as Location. To tackle this issue,
we remove sub-place names from the dataset.

• Martinez_I, Martinez_II, Martinez_III: The three Twitter datasets correspond to multiple crises and
emergency events (e.g., earthquakes, loods, car accidents, bombings, shootings, terrorists, and incidents)
that happened across the world. They were initially utilized in Fernández-Martínez and Periñán Pascual
[53], Martínez and Periñán-Pascual [124]. One of the features of the datasets is that many ine-grained
locations, such as ‘13219 S penrose Ave’ and ‘Exit 34’ as well as complex location expressions, such as ‘50
miles SW of Liverpool’ and ‘25mins away from Northumbria Street’ were annotated.

• GeoCorpora 46: It was created by Wallgrün et al. [179]. In the dataset, location references in tweets were
not only annotated but also linked to GeoNames. The dataset corresponds to multiple worldwide events
(e.g., earthquake, ebola, ire, lood, protest, and rebel) in 2014 and 2015. Most annotated places are admin
units, such as continent, country, state, and city.

• CrisisBench-1000, HumAID-1000, COVID19-1000 47: These three datasets, developed by [82], consist
of 1000 randomly selected tweets from CrisisBench [8], HumAID [56], and a COVID19 dataset [103],

43The datasets can be obtained by illing out the Dataset Registration form https://docs.google.com/forms/d/e/1FAIpQLScf6-
DNwkgJXPS5e28Mj18hIW3Ap_Ym7Kna-SO7oSmiC72qGw/viewform
44https://github.com/geoai-lab/NeuroTPR/tree/master/Data/TestData/HarveyTweet2017
45https://revealproject.eu/geoparse-benchmark-open-dataset/
46https://github.com/geovista/GeoCorpora
47https://github.com/uhuohuy/GazPNE2/tree/main/data/test_data
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respectively. For each dataset, place names were manually annotated, encompassing various types such as
admin units (e.g., countries and villages), traic ways (e.g., streets and highways), natural features (e.g.,
hills and rivers), and POIs (e.g., parks and schools).

• BTC-A, BTC-B, BTC-E, BTC-F, BTC-G, BTC-H 48: The Board Twitter Corpus (BTC) was created by
Derczynski et al. [45]. The datasets were sampled across diferent regions, temporal periods, and types
of Twitter users. Apart from Location, Organization and Person were also annotated. Several annotated
place names are in mentions (e.g., ‘@HoustonFlood’). However, they are usually ignored by existing location
extractors. Thus, we remove the place name in the mentions from the six datasets.

• NEEL2016 49: It is the gold dataset of 2016 Named Entity rEcognition and Linking (NEEL) Challenge. The
dataset includes tweets covering multiple noteworthy events from 2011 to 2013, such as the death of Amy
Winehouse, the London Riots, the Oslo bombing, and the Westgate Shopping Mall shootout. Entities of
diferent types, such as Location, Person, Organization, Event, and Product were annotated and linked to
DBPedia. We use its training set, which contains 2,135 tweets and 602 places.

• Ritte’s dataset 50: It was initially used by Ritter et al. [152]. Location, Facility, Person, and Organization
were annotated in the dataset. We use its training set, which contains 2,394 tweets and 276 places.

• MSM2013 51: It is the gold dataset of Concept Extraction Challenge held at the Making Sense of Microposts
Workshop in 2013 ( #MSM2013). Entities of Person, Organization, Location, and MISC were annotated. We
use its training set, which contains 2,815 tweets and 619 places.

• WNUT2016 52: It is the gold data of the shared task on named entity recognition in Twitter. The task is part
of the 2nd Workshop on Noisy User-generated Text (W-NUT 2016). Ten types of entities were annotated,
such as Location, Facility, Person, and Movie. We use its training set, which contains 3,850 tweets and 791
places.

• LGL 53: Local-Global Lexicon (LGL) corpus was created by Lieberman et al. [109]. Toponyms were manually
annotated and geocoded from 588 human-annotated news articles published by 78 local newspapers.

• GeoVirus 54: The GeoVirus dataset, introduced by Gritta et al. [65], serves as an evaluation resource
for geoparsing methodologies within the context of news articles pertaining to disease outbreaks and
epidemics, such as Ebola, Bird Flu, and Swine Flu. Only admit units were annotated in the dataset. Buildings,
POIs, streets, and rivers were disregarded.

• TR-News 55: TR-News was created by Kamalloo and Raiei [95]. Toponyms were manually annotated and
geocoded from 118 news articles from various news sources.

We adopted the standard comparison metrics: precision, recall, and F1-score. In the case of overlapping or
partial matches, we penalize an approach by adding 1/2 FP (False Positive) and 1/2 FN (False Negative) (e.g., if the
approach marks ‘The Houston’ instead of ‘Houston’), following Al-Olimat et al. [6].
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48https://github.com/GateNLP/broad_twitter_corpus
49http://microposts2016.seas.upenn.edu/challenge.html
50https://github.com/aritter/twitter_nlp/blob/master/data/annotated/ner.txt
51https://www.researchgate.net/proile/Andrea-Varga-4/publication/256682215_MSM2013_Concept_Extraction_Challenge_dataset
52https://metatext.io/datasets/wnut-2016
53https://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/blob/master/data/Corpora/lgl.xml
54https://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/blob/master/data/Corpora/GeoVirus.xml
55https://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/blob/master/data/Corpora/TR-News.xml
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Table 4. Summary of 26 datasets. There are in total 39,736 places.

Name Source Type
Tweet
(Article)
Count

Place
Count

Resolved Description

LaFlood2016 [6] tweet LE 1,500 2,295 No Louisiana lood in 2016
HouFlood2015 [6] tweet LE 1,500 3,060 No Houston lood in 2015
CheFlood2015 [6] tweet LE 1,500 3,671 No Chennai lood in 2015
Harvey2017 [182] tweet LE 1,000 2,107 No 2017 Hurricane Harvey in Texas and Louisiana
NzEq2013 [127] tweet LE 1,994 1,252 No New York hurricane in 2012

NyHurcn2012 [127] tweet LE 1,997 764 No New Zealand earthquake in 2013
Martinez_I [124] tweet LE 800 539 No Multiple emergency events across the world
Martinez_II [124] tweet LE 1,371 642 No Multiple emergency events across the world
Martinez_III [53] tweet LE 8,063 5,122 No Multiple emergency events across the world

CrisisBench-1000 [82] tweet LE 1,000 861 No 1,000 tweets from CrisisBench [8]
HumAID-1000 [82] tweet LE 1,000 1,422 No 1,000 tweets from HumAid [56]
COVID19-1000 [82] tweet LE 1,000 1,245 No 1,000 tweets from COVID-19 [103]
GeoCorpora [179] tweet LE 6,634 3,083 Yes Multiple events across the world

BTC-A [45] tweet NER 2,000 229 No Section A of Broad Twitter Corpus
BTC-B [45] tweet NER 200 148 No Section B of Broad Twitter Corpus
BTC-E [45] tweet NER 2,000 572 No Section E of Broad Twitter Corpus
BTC-F [45] tweet NER 2,113 1,330 No Section F of Broad Twitter Corpus
BTC-G [45] tweet NER 1,999 287 No Section G of Broad Twitter Corpus
BTC-H [45] tweet NER 1,000 119 No Section H of Broad Twitter Corpus

NEEL2016 [153] tweet NER 2,135 602 Yes
Dataset of Named Entity rEcognition and Linking

Challenge in 2016
Ritte’s dataset [152] tweet NER 2,394 276 No A general-purpose NER dataset

MSM2013 [31] tweet NER 2,815 619 No
Dataset of Concept Extraction Challenge at the
Making Sense of Microposts Workshop in 2013

WNUT2016 [167] tweet NER 3,850 791 No
Dataset of shared task on NER in Twitter at the
Workshop on Noisy User-generated Text in 2016

LGL [109] news LE 588 5,057 Yes Local-Global Lexicon corpus
GeoVirus [65] news LE 229 2,167 Yes WikiNews related to global disease and epidemics
TR-News [95] news LE 118 1,300 Yes Annotated news articles from various news sources

�1 = 2 ·
��������� · ������

��������� + ������
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4.3 Results of location reference recognition

We execute the 27 approaches on the complete set of test datasets, and their overall precision, recall, and F1 scores
are presented in Figure 6. To obtain these scores, we compute the sums of FP, FN, and TP across all datasets,
instead of calculating precision, recall, and F1 scores individually for each dataset and subsequently averaging
them across the entire dataset. This approach was adopted due to the imbalanced distribution of place name
counts (ranging from 119 to 5122) across diferent datasets. Detailed results of these approaches on each dataset
can be accessed from the provided online ile 56.

Most of the employed approaches demonstrate high precision, with 21 out of the total 27 achieving a precision
exceeding 0.7. In contrast, most of these approaches exhibit signiicantly low recall, with only two approaches,
GazPNE2 and LORE, achieving a recall surpassing 0.7. This indicates that most approaches missed a considerable

56https://docs.google.com/spreadsheets/d/16cyuyDhty04hQE1gBfP4zq23Lr3OWJ5EY_bsVMoYxfQ/edit#gid=1536784545
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number of location references. To further investigate the underlying reasons for this, we conduct a detailed
analysis in Section 4.4, where we examine the detection accuracy of the approaches across various types of texts
and location references. Furthermore, it is noteworthy that the top ive best-performing approaches, namely
GazPNE2, Flair NER (Ont), nLORE, Flair NER, and Stanza, are all based on deep learning and have been introduced
within the last four years. This observation underscores the superior performance and notable progress achieved
by deep learning in addressing this task. Moreover, two voting-based systems, namely SPENS and RS, achieve
remarkable results by combining the detection outcomes of multiple classic approaches, thereby enhancing
the performance of each individual approach. These two voting systems demonstrate comparable performance
to Stanza and Flair NER, suggesting a great potential for leveraging voting mechanisms in location reference
recognition. Such potential holds signiicant promise, considering the availability of numerous place name
extractors.
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Fig. 6. Overall precision, recall, and F1 score of the 27 approaches on the entire set of datasets with 39,736 location references.

4.4 Error analysis

We conducted an error analysis to gain insight into these approaches’ mistakes. The analysis focused on their
performance regarding formal and informal texts and detecting location references across various categories and
forms.

4.4.1 Text type. Among the test datasets, three comprise formal texts, while twenty-three consist of informal
texts, encompassing 8,517 and 31,219 places, respectively. Figure 7 and Figure 8 depict the performance of the
approaches on the formal and informal text datasets, respectively. Notably, Flair NER (Ont), Flair NER, SPENS,
Stanford NER, and Stanza exhibit superior performance on formal texts, whereas GazPNE2 and nLORE outperform
others on informal texts. This discrepancy arises primarily because the former ive approaches were trained using
formal texts, while the latter two approaches were speciically designed to handle tweets. The dissimilarity in
place deinitions across these datasets also contributes to the observed variations. Formal datasets predominantly
focus on coarse-grained toponyms such as countries and cities, including adjectival forms (e.g., ‘American’,
‘British’, ‘Chinese’) but disregard ine-grained places like highways, POIs, streets, and buildings. For instance, the
LGL dataset contains 337 adjectival toponyms, the GeoVirus dataset has 14, and the TR-News dataset contains 124.
Conversely, informal datasets such as Martinez_III and HouFlood2015 encompass ine-grained places and places
mentioned in hashtags while omitting adjectival toponyms. Furthermore, diferent approaches adopt distinct place
deinitions. For instance, some NER approaches, like Stanford NER, disregard ine-grained places, whereas others,
like GazPNE2 and nLORE, include ine-grained places. Owing to these disparities in place deinitions, accurately
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evaluating the performance of these approaches on formal and informal texts poses challenges. Therefore, we
conduct more comprehensive evaluations to assess their performance with regard to diferent types and forms of
places in the subsequent sections.
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Fig. 7. Precision, recall, and F1 score of the tested approaches on the datasets of formal texts, containing 8,517 places.
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Fig. 8. Precision, recall, and F1 score of the tested approaches on the datasets of informal texts, containing 31,219 places.

4.4.2 Place category. The location references within the datasets are classiied into four distinct categories: admin
units (e.g., country, state, town, and suburb), traic ways (e.g., street, road, highway, and bridge), natural features
(e.g., river, creek, beach, and hill), and POIs (e.g., park, church, school, and library). For this particular experiment,
we select four datasets, namely Harvey2017, GeoCorpora, LGL, and TR-News, as they provide information
regarding the category of the places mentioned. In the Harvey2017 dataset, the places are categorized into ten
diferent types [85]. To ensure consistency in our classiication, we assign the types of house number addresses,
street names, highways, exits of highways, and intersections of roads as traic ways, the type of natural features
as natural features, the types of other human-made features and local organizations as POIs, and the types of
admin units and multiple areas as admin units. In the remaining three datasets, place names are linked to the
entries in GeoNames. Our classiication approach is based on the feature codes provided by GeoNames57. Places

57http://www.geonames.org/export/codes.html
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with feature codes A (e.g., country, state, and region) and P (e.g., city and village) are classiied as admin units.
Places with feature codes R (e.g., road and railroad) are categorized as traic ways. Natural features include
places with feature codes H (e.g., stream and lake), T (e.g., mountain, hill, and rock), U (e.g., undersea and valley),
and V (e.g., forest and grove). POIs consist of places with feature codes L (e.g., park and port) and S (e.g., sport,
building, and farm). Across the four datasets, there are 9,790 admin units, 773 traic ways, 263 natural features,
and 754 POIs.
The detection rate, deined as the proportion of correctly detected places out of the total places within a

speciic category, serves as a measure of performance. In this study, we consider only exact matches as correct
detections. Figure 9 presents the detection rates of the approaches in the four categories. We can observe that
many approaches show superior performance in recognizing coarse-grained places, with 13 of 27 achieving a
detection rate of over 60% for admin units. However, most approaches struggle to recognize ine-grained places.
Only 2 of 27 successfully identify over 60% of traic ways, while 6 of 27 and 4 of 27 achieve the same for natural
features and POIs, respectively. These three categories represent geographical scopes that are signiicantly more
precise than admin units and hold great value in various critical applications, such as emergency rescue and
traic event detection. It is worth mentioning that GazPNE2 stands out by achieving a recognition rate of over
70% in all four categories.
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Fig. 9. Detection rate of approaches on the four categories with 9,790 admin units, 773 trafic ways, 263 natural features, and
754 POIs.

4.4.3 Form of location references. We consider three forms of location references: the place names with numbers
(e.g., ‘500 Neches Ave’ and ‘Highway 25’ ), abbreviation of place names (e.g., ‘us’ and ‘tx’ ), and place names in
hashtags (e.g., ‘#HoustonFlood’ and ‘#Chennai’ ). Place names with numbers typically refer to ine-grained
locations, such as highways, roads, and home addresses. For the abbreviation of place names, we deine it as a
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single word with a character length of no more than 3. There are a total of 1,621 place names in the number form,
3,697 place names in the abbreviation form, and 6,560 place names in the hashtag form. The detection rate of
the approaches for each form of place names is presented in Figure 10. We can observe that recognizing place
names with numbers poses a challenge, as only 4 of the 27 approaches achieve a detection rate of over 0.3. On the
other hand, recognizing abbreviations is comparatively more straightforward, with more than half (16 of the
approaches) achieving a recognition rate of over 30% for abbreviations. However, it is worth noting that none of
the approaches achieve a detection rate exceeding 0.6 for either of these two forms. Recognizing place names in
hashtags also presents a challenge, with only 5 approaches achieving a detection rate of over 0.3. Nonetheless, it
is encouraging to see that GazPNE2 and LORE can recognize over 70% of the place names in hashtags.
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Fig. 10. Detection rate of approaches on location references in three forms: place names with numbers (1,621), abbreviations
(3,697), and place names in hashtags (6,560).

4.5 Computational eficiency

In this section, we delve into the computational eiciency, speciically the speed, of diferent approaches. Many
applications involve processing large volumes of text, such as major historical books and reports (e.g., the Old
Bailey Online) consisting of millions or even billions of words [63], as well as millions of crisis-related tweets [147].
Therefore, a rapid geoparsing procedure is crucial, making speed a critical factor. To assess the computational
eiciency, we execute each approach on the entire dataset and measure the time consumed by each approach. We
exclude Edinburgh Geoparser and DBpedia Spotlight from the comparison since they are online services, and it
is not possible to measure their processing time directly on the server. Most of the approaches are executed on a
MacBook Pro laptop equipped with an Intel Core i7 (2.2 GHz 6-Core) processor and 16 GB of RAM. However,
three approaches, namely OSU TwitterNLP, LORE, and nLORE, are executed on a Lenovo laptop with an Intel
Core i5 (2.5 GHz 4-Core) processor and 3.8 GB of RAM, as they require a Linux or Windows environment. Figure
11 provides an overview of the speed of the approaches.

We can observe a signiicant variation in the processing speed among the diferent approaches. The time
required for these approaches to process the entire datasets, which contain 1,092,093 words, ranges from 6 minutes
to 33 hours. Interestingly, OSU Twitter NLP exhibits an unexpectedly long processing time of nearly 9.6 hours. As
a result, the approaches RSD, RGD, and RS, which rely on OSU Twitter NLP, also take approximately 10 hours. The
other approaches that take over 5 hours are all deep learning-based. On the other hand, approaches such as spaCy,
Clif, LORE, Polyglot, and OpenNLP are approximately 20 times faster compared to these deep learning-based
approaches. However, it is worth noting that the deep learning-based approaches achieve signiicantly higher
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Fig. 11. Time consumption of the approaches running on the entire datasets.

Table 5. Summary of best-performing approaches in various contexts.

Top 1 Top 2 Top 3 Top 4 Top 5

Informal GazPNE2 nLORE Flair NER (Ont) TNER LORE
Formal Flair NER (Ont) Flair NER SPENS Stanford NER Stanza

Admin Unit (R) GazPNE2 Flair NER (Ont) NeuroTPR Flair NER Geoparserpy
Traic Way (R) GazPNE2 Flair NER (Ont) BERT-base-NER nLORE NeuroTPR

Natural Feature (R) GazPNE2 NeuroTPR Flair NER RS LORE
POI (R) GazPNE2 NeuroTPR LORE nLORE Flair NER (Ont)

Number (R) nLORE LORE Flair NER (Ont) GazPNE2 Stanza
Abbreviation (R) nLORE Flair NER (Ont) GazPNE2 TNER Stanza

Hashtag (R) GazPNE2 LORE nLORE Flair NER (Ont) TNER

F1 scores than the other approaches. Therefore, there exists a trade-of between correctness and computational
eiciency.

4.6 Summary

This section summarizes the top-performing approaches in various contexts, including formal and informal texts
and diferent types and forms of place names, presented in Table 5. Additionally, we analyze the weaknesses of
these approaches, which are documented in Table 6. An approach is deemed weak (indicated by a cross mark)
within a given context if it ranks within the lower 50%. In the tables, R denotes the recall or detection rate of the
approaches concerning speciic place categories and forms.

5 CONCLUSIONS AND OUTLOOK

This paper summarizes seven typical applications of geoparsing and surveys existing approaches for location
reference recognition, categorizing them as rule-based, gazetteer matching-based, statistical learning-based, and
hybrid approaches. We then thoroughly evaluate 27 approaches across 26 datasets, considering overall accuracy,
performance on formal and informal texts and various place categories and forms, and computational eiciency.
From the results, we can conclude that: (1) deep learning is so far the most promising technique in location
reference recognition; (2) the integration of existing approaches through a voting mechanism surpasses individual
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Table 6. Summary of best-performing approaches’ weakness (indicated by cross marks). ‘Abb’ denotes ‘Abbreviation’.

Speed Formal Informal
Admin

Unit (R)

Traic

Way (R)

Natural

Feature (R)
POI (R) Number (R) Hashtag (R) Abb (R)

GazPNE2 ✗

Flair NER (Ont) ✗

nLORE ✗ ✗ ✗

TNER ✗ ✗ ✗

BERT-base-NER ✗

LORE ✗

Flair NER ✗

SPENS ✗ ✗ ✗ ✗ ✗ ✗

Stanford NER ✗ ✗ ✗ ✗

Stanza ✗ ✗ ✗

NeuroTPR ✗ ✗ ✗

RS ✗ ✗ ✗

Geoparserpy ✗ ✗ ✗ ✗ ✗ ✗

limitations and ofers enhanced robustness; (3) the performance of diferent approaches varies on the type of
texts and location references, and their computational eiciency also varies drastically. Users should select the
most suitable approach based on speciic application demands.

Several research directions can be further explored in the future.

• Location reference recognition: The emergence of Large Language Models (LLMs) like GPT3 (175B) [28]
and LLaMA (65B) [174] has garnered signiicant attention in recent years due to their exceptional language
generation and processing capabilities. Notably, models like ChatGPT have further propelled advancements
in various ields, including translation, sentiment analysis, text summarization, and information retrieval.
Location reference recognition is no exception to the impact of these models. However, one signiicant
challenge is the large size and high computational requirements of these LLMs, making them impractical for
local deployment on personal computers. Therefore, a crucial future research direction is developing robust
location reference recognizers that balance accurate performance, manageable memory, and computing
costs.

• Geocoding: Existing geocoding or toponym resolution approaches primarily focus on formal texts, leaving
a gap in handling informal texts like tweets. While some studies have proposed geocoding approaches for
tweets, their applicability is often limited to speciic known geographic regions, such as a city afected by a
lood [3, 6]. In such cases, simply searching for a local gazetteer suice for geocoding. Only a few studies
attempted to tackle the challenge of geocoding tweets at a global scale [96, 139]. This task presents two
main challenges: geo/geo ambiguities caused by limited contexts in short texts of tweets and unseen place
names caused by place name variants and the informal features of tweets that often contain abbreviations,
slang, and misspellings. Three main ways might be explored to overcome the challenges: (1) to leverage
clustering techniques [43] that can group tweets of the same topic to expand the context of tweets; (2) to
combine multiple state-of-the-art geocoders in a voting mechanism; (3) to integrate small or middle-scaled
LLMs with global gazetteers to enhance geocoding capabilities.

• Datasets for geoparsing research: Current datasets for geoparsing research primarily consists of formal
text, with limited availability of Twitter datasets designed for geoparsing. Existing Twitter datasets for
general NER research often lack geographic coordinates for labeled entities, rendering them insuicient for
comprehensive geoparsing research. Additional datasets comprising informal texts with labeled location
references and corresponding geographic coordinates are necessary. Furthermore, most location references
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in the existing datasets are admin units, such as countries and cities, while iner-grained location references,
such as traic ways and POIs, are scarce. However, they are essential in many applications, such as
determining the precise locations where rescue is needed during disasters. A comprehensive Twitter dataset
encompassing diverse ine-grained locations worldwide would signiicantly contribute to the progress of
methods for recognizing and geocoding ine-grained location references in texts.
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