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ABSTRACT
Large pre-trained models, also known as foundation models (FMs),
are trained in a task-agnostic manner on large-scale data and can
be adapted to a wide range of downstream tasks by fine tuning,
few-shot, or even zero-shot learning. Despite their successes in
language and vision tasks, we have yet to see an attempt to develop
foundation models for geospatial artificial intelligence (GeoAI). In
this work, we explore the promises and challenges for developing
multimodal foundation models for GeoAI. We first show the ad-
vantages of this idea by testing the performance of existing Large
pre-trained LanguageModels (LLMs) (e.g. GPT-2 and GPT-3) on two
geospatial semantics tasks. Results indicate that these task-agnostic
LLMs can outperform task-specific fully-supervised models on both
tasks with 2-9% improvement in a few-shot learning setting. How-
ever, we also show the limitations of these existing foundation
models given the multimodality nature of GeoAI, especially when
dealing with geometries in conjunction with other modalities. So
we discuss the possibility of a multimodal foundation model which
can reason over various types of geospatial data through geospatial
alignments. We conclude this paper by discussing the unique risks
and challenges to develop such model for GeoAI.

CCS CONCEPTS
• Computing methodologies → Natural language process-
ing; Unsupervised learning; • Applied computing→ Earth and
atmospheric sciences.
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[Instruction] ...

Paragraph: Alabama State Troopers say a Greenville man has died of his injuries

↩→ after being hit by a pickup truck on Interstate 65 in Lowndes County.

Q: Which words in this paragraph represent named places?

A: Alabama; Greenville; Lowndes

...
--

Paragraph: The Town of Washington is to what Williamsburg is to Virginia.

Q: Which words in this paragraph represent named places?

A: Washington; Williamsburg; Virginia

Listing 1: Typonym recognitionwith LLMs, e.g., GPT-3. Yellow
block: the text snippet to be annotated. Orange box: GPT-3
outputs. 8 few-shot samples are used in this prompt. We only
show 1 here while skipping others with "..." to save space.
[Instruction] ...

Paragraph: Papa stranded in home. Water rising above waist. HELP 8111 Woodlyn Rd

↩→ , 77028 #houstonflood

Q: Which words in this paragraph represent location descriptions?

A: 8111 Woodlyn Rd, 77028

...
--

Paragraph: HurricaneHarvey Help Need AT 7506 Jackrabbit Rd, Houston, TX 77095.

Q: Which words in this paragraph represent location descriptions?

A: 7506 Jackrabbit Rd, Houston, TX 77095

Listing 2: Location description recognition with LLMs, e.g.,
GPT-3. Yellow block: the input text snippet. Orange box: GPT-
3 outputs. 11 few-shot samples are used while 1 is shown.

1 INTRODUCTION
Recent trends in machine learning (ML) and artificial intelligence
(AI) speak to the unbridled powers of data and compute – extremely
large models trained on Internet-scale datasets such as GPT-3[5],
CLIP [22], and DALL·E2 [23] have achieved state-of-the-art (SOTA)
performance on a diverse range of learning tasks. In particular, their
unprecedented success has spurred a paradigm shift in the way
that modern-day ML models are trained. Rather than learning task-
specific models from scratch [8, 13, 26], such pre-trained models (so-
called “foundation models (FMs)” [4]) are adapted via fine-tuning or
few-shot/zero-shot learning strategies and subsequently deployed
on a wide range of domains [5, 22]. Such FMs allow for the transfer
and sharing of knowledge across domains, and mitigate the need
for task-specific training data.

Despite their successes, there exists very little work exploring the
development of an analogous FM for geospatial artificial intelligence
(GeoAI). The key technical challenge here is the inherently multi-
modal nature of GeoAI. The core data modalities in GeoAI include
text, images (remote sensing or streetview images), knowledge
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graphs, and geospatial vector data, all of which contain important
geospatial information (e.g. geometries). Each modality exhibits
special structures that require its own unique representation – ef-
fectively combining all of these representations together with the
appropriate inductive biases within a single model requires careful
design. This limitation prevents a straightforward application of
existing pre-trained FMs across all GeoAI tasks.

In this paper, we lay the groundwork for developing FMs for
GeoAI. First, to showcase their potential for GeoAI, we demon-
strate the advantages of LLMs over existing baselines on several
well-defined geospatial semantics tasks (See Listing 1 and 2). Next,
we detail the challenges for developing FMs for GeoAI. Since creat-
ing one FM for all GeoAI data modalities can be very difficult, we
start this discussion by examining the possibility of developing FMs
for GeoAI tasks that share one data modality. Then, we propose
our vision for a novel, multimodal FM framework for GeoAI that
addresses the previous challenges. Finally, we point out some poten-
tial risks and challenges that must be considered when developing
such general-purpose models for GeoAI.

2 PRE-TRAINED LANGUAGE MODELS HOLD
PROMISE FOR GEOAI

As a starting point for our discussion, we demonstrate empirically
the promise of leveraging LLMs for solving geospatial semantics
tasks. Our result not only demonstrates the effectiveness of such
general-purpose, few-shot learners in the geospatial semantics do-
main, but also challenges the current paradigm of training task-
specific models as a common practice in GeoAI research.

We compare the performance of 4 pre-trained GPT-2 [21] models
of varying sizes as well as the most recent GPT-3 [5] model with
multiple supervised, task-specific baselines on two representative
geospatial semantics tasks: (1) toponym recognition [8, 25], and
(2) location description recognition [9]. As a subtask of named
entity recognition (NER), the goal of toponym recognition is to
recognize named places from a given text snippet. The location
description recognition task is slightly more challenging – given a
text snippet (e.g., tweets), the goal is to recognize more fine-grained
location descriptions such as home addresses, highways, roads, and
administration regions. We use the Hu2014 [10] and Ju2016 [11]
benchmark datasets for the first task and HaveyTweet2017 [9] for
the second task.We adapt 5 pre-trained GPTmodels to perform both
tasks by using appropriate prompts containing few-shot training
examples. Listing 1 and 2 shows the prompts used for both tasks.

Table 1 compares GPT-2/GPT-3 with 13 baselines on these three
datasets. With the exception of the smallest GPT-2 model, all other
LLMs consistently outperform the fully-supervised baselines on the
Hu2014 dataset, even though they only require a small set of natural
language instructions without any additional training. GPT-3 in par-
ticular demonstrated an 8.7% performance improvement over the
previous SOTA (TopoCluster [6]). On the Ju2016 dataset, we found
that GPT-2-XL outperforms the previous SOTA (NeuroTPR [26]) by
over 2.5% while using only 8 few-shot examples in the prompt. In con-
trast, a task-specific model, e.g., NeuroTPR, needs to be supervised
trained on 599 labelled tweets and labelled sentences generated
from 3000 Wikipedia articles. In accordance with existing empirical
findings [5, 21], we also found that the performance of these LLMs
tended to scale with the the number of learnable parameters. On

Table 1: Geospatial semantics result for various GPT models
and baselines. (A) General NER; (B) No Neural Network (NN)
based geoparsers; (C) Fully-supervised NN-based geoparsers;
(D) Few-show learning with LLMs. "(#Param)" indicates the
number of learnable parameters of LLMs. The results of all
baselines are obtained from [25] and [26] except "0.675†",
which is obtained by rerunning the official code of [26]. ∗We
evaluate GPT-3 on randomly sampled 544 Ju2016 examples
(10% of the dataset), because of the GPT-3 API limitation.

Typonym Recog. Location Desc. Recog.
Model (#Params) Hu2014[10] Ju2016[11] HaveyTweet2017[9]

Accuracy Accuracy Precision Recall F-Score

A

Stanford NER (nar. loc.) [26] 0.787 0.010 0.828 0.399 0.539
Stanford NER (bro. loc.) [26] - 0.012 0.729 0.440 0.548
Retrained Stanford NER [26] - 0.078 0.604 0.410 0.489
spaCy NER (nar. loc.) [26] 0.681 0.000 0.575 0.024 0.046
spaCy NER (bro. loc.) [26] - 0.006 0.461 0.304 0.366
DBpedia Spotlight [20] 0.688 0.447 - - -

B
Edinburgh [2] 0.656 0.000 - - -
CLAVIN [25] 0.650 0.000 - - -
TopoCluster [6] 0.794 0.158 - - -

C
CamCoder [8] 0.637 0.004 - - -
Basic BiLSTM+CRF [14] - 0.595 0.703 0.600 0.649
DM_NLP (top. rec.) [27] - 0.723 0.729 0.680 0.703
NeuroTPR [26] 0.675† 0.821 0.787 0.678 0.728

D

GPT-2 [21] (117M) 0.556 0.650 0.540 0.413 0.468
GPT-2-Medium [21] (345M) 0.806 0.802 0.529 0.503 0.515
GPT-2-Large [21] (774M) 0.813 0.779 0.598 0.458 0.518
GPT-2-XL [21] (1558M) 0.869 0.846 0.492 0.470 0.481
GPT-3 [5] (175B) 0.881 0.811∗ 0.603 0.724 0.658

the HaveyTweet2017 dataset, GPT-3 achieves the best recall score
across all methods. However, all LLMs have rather low precision
(and therefore low F1-scores). This is because LLMs implicitly con-
vert the location description recognition problem into a natural
language generation problem (see List 2), meaning that they are not
guaranteed to generate tokens that appear in the input text. This re-
sult clearly showcases the potential of LLMs to dramatically reduce
the need for customized architectures or large labelled datasets.

3 A MULTIMODAL FM FOR GEOAI
Although LLMs exhibit strong performance on several geospatial
semantics tasks, they are unable to handle the wide range of data
modalities presented in GeoAI. In this section, we discuss the chal-
lenges unique to each data modality, then propose a potential frame-
work for future GeoAI which leverages a multimodal FM.
3.1 Text and Geospatial Semantics
Despite the promising results showed in Table 1, LLMs still struggle
with more complex geospatial semantics tasks such as toponym
resolution/geoparsing [2, 8, 25] and geographic question answering
(GeoQA) [17, 18], since LLMs are unable to perform (implicit) spatial
reasoning in a way that is grounded in the real world.

As a concrete example, we illustrate the shortcomings of GPT-3
on a geoparsing task. Using two examples from the Ju2016 dataset,
we ask GPT-3 to both: 1) recognize toponyms; and 2) predict their
geo-coordinates. The prompt is shown in List 3 while the geop-
arsing results are visualized in Figure 1. We see that in both cases,
GPT-3 can correctly recognize the toponyms but the predicted co-
ordinates are 500+ miles away from the ground truth. Moreover, we
notice that with a small spatial displacement of the generated geo-
coordinates, GPT-3’s log probability for this new coordinates de-
creases significantly. In other words, the probability of coordinates
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generated by the LLM does not follow the First Law of Geography.
GPT-3 also generates invalid latitudinal/longitudinal coordinates,
indicating that existing LLMs are still far from gracefully handling
complex numerical and spatial reasoning tasks.

(a) [TEXT]: Franklin is a city in and the

county seat of simpson county, ...

(b) [TEXT]: the city of Fairview had a pop-

ulation of 260 as of july 1, 2015. ...

Figure 1: Geoparsing examples of GPT-3 on the Ju2016 dataset
comparing the predicted coordinates (dropped pins) and the
ground truth coordinates (starting points). The recognized
toponyms are underlined in text.

[Instruction] ...

Paragraph: San Jose was founded in 1803 when allotments of land were made ...

Q: Which words in this paragraph represent named places?

A: San Jose; New Mexico

Q: What is the location of San Jose?

A: 35.39728 , -105.47501

...
--

Paragraph: the city of fairview had a population of 260 as of july 1, 2015. ...

Q: Which words in this paragraph represent named places?

A: Fairview

Q: What is the location of Fairview?

A: 41.85003, -87.65005

Listing 3: Geoparsing with LLMs, e.g., GPT-3. Yellow block:
the text snippet to be geoparsed. Orange box: GPT-3 outputs.

3.2 Remote Sensing
With the advancement of computer vision technology, deep vision
models have been successfully applied to different kinds of remote
sensing (RS) tasks including image classification/regression [3, 24],
land cover classification [3], and object detection[13]. Unlike the
usual vision tasks which usually work on RGB images, RS tasks are
based on multispectral/hyperspectral images from different sensors.
Most existing RS works focus on training one model for a specific
RS task and a specific sensor [13]. However, we see the trend of
FMs in the CV field such as CLIP [22] to be further developed to
meet the unique challenges of remote sensing tasks.

Aside from being task-agnostic, the desiderata for a remote
sensing FM include being: 1) sensor-agnostic: it can seamlessly
reason among RS images from different sensors with different spa-
tial or spectral resolutions; and 2) spatiotemporally-aware: it
can handle the spatiotemporal metadata of RS images and perform
geospatial reasoning for tasks such as image geolocalization and ob-
ject tracking. Recent developments here include geography-aware
RS models [3] or self-supervised/unsupervised RS models [3, 24],
all of which are task-agnostic. However, we have yet to develop a
FM for RS tasks which can satisfy all such properties.

3.3 Geospatial Vector Data
Another critical challenge in developing FMs for GeoAI is the com-
plexity of geospatial vector data. In contrast with NLP and CV
where text (1-D) or images (2-D) are well-structured and more suit-
able to common neural network architectures, GeoAI vector data
exhibits more complex data structures in the form of points, poly-
lines, polygons, and networks [19]. So it is particularly challenging
to develop a FM which can seamlessly encode or decode different
kinds of vector data.

Noticeably, each vector data format is constructed based on loca-
tions. So recently developed location encoding techniques [16, 19]
can be seen as a fundamental building block for such a model.
Moreover, since encoding (e.g., geo-aware image classification[16])
or decoding (e.g., geoparsing [25]) geospatial vector data, or con-
ducting spatial reasoning (e.g., GeoQA [18]) is an indispensable
component for most GeoAI tasks, developing FMs for vector data
is the key step towards a multimodal FM for GeoAI. This point also
differentiates GeoAI FMs from existing FMs in other domains.

3.4 A Multimodal FM for GeoAI
Except for those three data types, there are also other datasets
frequently studied in GeoAI such as streetview images, geo-tagged
videos, and geospatial knowledge graphs. Given all these diverse
data modalities, the question is how to develop a multimodal FM
for GeoAI that best integrates all of them.

When we take a look at the existing multimodal FMs such as
CLIP [22], DALL·E2 [23], MDETR [12] and VATT [1] we can see the
following general architecture: 1) starting with separate embed-
ding modules to encode different modalities of data (e.g., a
Transformer for texts and ResNet50 for images [22]); 2) (optionally)
mixing the representations of different modalities by concatena-
tion; 3) (optionally)more Transformer layers for across modality
reasoning, which can achieve certain degree of alignment based
on semantics, e.g., the word “hospital” attending to a picture of
hospital; 4) generative or discriminative prediction modules
for different modalities to achieve self-supervised training.

One weak point of these architectures is the lack of integration
with vector data, which is the backbone of spatial reasoning and
helps alignment among multi-modalities in GeoAI. This is consid-
ered central and critical for GeoAI tasks. Therefore, we propose
to replace step 2 with aligning the representations of different
modalities (e.g., geo-tagged texts and RS images) by augmenting
their represenationswith location encoding[16] beforemixing them.
Figure 2 illustrates this idea. Geo-tagged text data and remote sens-
ing (or streetview) images can be easily aligned via their geographic
footprints (vector data). The key advantages of such model are to
enable spatial reasoning and knowledge transfer across modalities.

4 RISKS AND CHALLENGES
Geographic Bias. It is well known that foundation models have

the potential to amplify existing societal inequalities and biases
present in the data [4]. A key consideration for GeoAI in particular
is geographic bias [15], which is often overlooked by AI research. For
example, Zilong et al. [15] showed that all current geoparsers are
highly geographically biased towards data-rich regions. Compared
to task-specific models, FMs suffer more from geographic bias since:
1) the training data is collected in large-scale which is likely to be
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Geospatial Vector Data Remote Sensing Images

StreetView Images

Pier 39

Coit Tower

Geo-tagged Text

Pier 39 is a shopping center and
popular tourist attraction built on
a pier in San Francisco,
California.  ...

Coit Tower is a 210-foot tower in
the Telegraph Hill neighborhood of
San Francisco, California, offering
panoramic views over the city and
the bay...

Multimodal
Foundation Model 

based on  
Geospatial Alignment  

Geospatial Knowledge Graphs; Audio; Geo-tagged Video; ...

Figure 2: A multimodal FMwhich achieves alignment among
different data sources via their geospatial relationships.

dominated by overrepresented communities or regions; 2) the huge
number of learnable parameters and complex model structures
make model interpretation and debiasing much more difficult; 3)
the geographic bias of the FMs can be easily inherited by all the
adapted models downstream [4], and thus bring much more harm
to the society. This indicates a pressing need for designing proper
(geographic) debiasing frameworks.

Spatial Scale. Geographic information can be represented in dif-
ferent spatial scales, which means that the same geographic phe-
nomenon/object can have completely different spatial representa-
tions (points vs. polygons) across GeoAI tasks. For example, an
urban traffic forecasting model must represent San Francisco (SF)
as a complex polygon, while a geoparser usually represents SF as
a single point. Since FMs are developed for a diverse set of down-
stream tasks, they need to be able to handle geospatial information
with different spatial scales, and infer the right spatial scale to use
given a downstream task. Developing such a module is a critical
component for an effective GeoAI FM.

Generalizability v.s. Spatial Heterogeneity. An open problem for
GeoAI is how to achieve model generalizability (“replicability” [7])
across space while still allowing the model to capture spatial het-
erogeneity. Given geospatial data with different spatial scales, we
desire a FM that can learn general spatial trends while still memo-
rizing location-specific details. Will this generalizability introduce
unavoidable intrinsic model bias in downstream GeoAI tasks? Will
this memorized localized information lead to an overly complicated
prediction surface for a global prediction problem?With large-scale
training data, this problem can be amplified and requires care .

5 CONCLUSION
In this paper, we discuss the promises and challenges for developing
multimodal foundation models (FMs) for GeoAI. The superiority

of FMs is demonstrated by comparing the performance of existing
LLMs as few-shot learners with fully-supervised task-specific SOTA
models on two geospatial semantics tasks. We then propose our
vision for a novel multimodal FM for GeoAI. We conclude this work
by discussing some unique challenges and risks for such model.
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