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pages, and other data sources. The metadata of map images, such as spatial
extents and place names, are critical for their indexing and searching. How-
ever, many map images have either mismatched metadata or no metadata at
all. Recent developments in deep learning offer new possibilities for enriching
the metadata of map images via image-based information extraction. One ma-
jor challenge of using deep learning models is that they often require large
amounts of training data that have to be manually labeled. To address this
challenge, this paper presents a deep learning approach with GIS-based data
augmentation that can automatically generate labeled training map images
from shapefiles using GIS operations. We utilize such an approach to enrich the
metadata of map images by adding spatial extents and place names extracted
from map images. We evaluate this GIS-based data augmentation approach by
using it to train multiple deep learning models and testing them on two differ-
ent datasets: a Web Map Service image dataset at the continental scale and an
online map image dataset at the state scale. We then discuss the advantages
and limitations of the proposed approach.
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1. Introduction

A large number of map images are available in geoportals, historical archives, univer-
sity libraries, Web pages, and other data sources. Some of these images were created by
scanning paper-based maps. For example, the US Geological Survey (USGS) provides
high-resolution scanned images of more than 200,000 historical topographic maps be-
tween 1884 and 2006 (Uhl et al. 2018). Some of these map images were created directly
in digital format. For example, a GIS professional may use a mapping software, such
as ArcGIS or QGIS, to create a map image. A geospatial data provider, such as NASA
Socioeconomic Data and Applications Center (SEDAC), may render hosted geospatial
data as map images and share them through online map services, such as the OGC Web
Map Service (WMS) (Gui et al. 2013).

Given the large number of map images available, there exists a demand for indexing
and searching them efficiently. Such a demand can be seen in geoportals, such as the
U.S. GeoPlatform Portal and the INSPIRE geoportal in Europe, whose essential goal is
to facilitate the discovery and reuse of the managed geospatial resources (Bernard et al.
2005, Lutz and Klien 2006). Meanwhile, many university libraries are transitioning to
digital hubs, and also have the demand of enabling efficient search of their maintained
materials and collections including map images (Wallis et al. 2010). In addition, a general
Web search engine may want to return a set of relevant map images when a user types in
a place name. This can already be seen on Google Image Search: when typing in a place
name e.g., “California”, one can get many California maps among the returned results.
However, these map images are limited to those that have the keyword “California” in
its caption or in the content of the related Web page.

Metadata are of vital importance for efficiently searching and indexing map images
in various geoportals and geospatial data repositories. Among the many elements in
metadata, information about the geographic area covered by a map is essential for finding
relevant map images. According to the Federal Geographic Data Committee (FGDC),
metadata may contain Indirect Spatial Reference (ISR) and Direct Spatial Reference
(DSR). ISR refers to the use of place names or addresses, which are often found in the
textual descriptions of metadata (such as titles, keywords, and abstracts), to describe
geographic areas. DSR refers to the use of geographic coordinates and geometries, such
as point-based locations and bounding boxes, to specify the geographic areas covered
by maps. From the perspective of map image search, ISR is useful for keyword-based
matching, e.g., finding map images based on the keyword of “California”, while DSR is
suitable for coordinate-based matching, e.g., finding map images based on a rectangle
that a user draws on a map interface. Ideally, a map image should have both ISR and
DSR in its metadata, and they should be consistent with the actual geographic area
covered by the map.

In reality, however, the metadata of map images are often limited. First, some map
images simply do not have any ISR or DSR. Ureña-Cámara et al. (2019) evaluated 4,824
metadata records from a Spanish Spatial Data Infrastructure (SDI), and found that 14%
of the examined records lacked spatial reference. Second, for the map images that have
DSR or ISR, the provided spatial reference may not match the actual geographic area
covered by the map. Renteria-Agualimpia et al. (2015) pointed out that the bounding
box (BBox) information in DSR is often larger than the actual geographic area of a map.
A global-scale survey on WMS layers also confirmed this issue and noted that many
WMS layers use a global BBox by default while their map contents are about only part
of the world (Gui et al. 2016). Figure 1 provides an example in which the content of a
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WMS map image focuses on the state of Alaska while the spatial extent in its metadata
covers the entire United States.

Figure 1. A map image from a WMS whose content focuses on the state of Alaska while the
BBox in its metadata covers the entire United States.

One approach to addressing the issue of metadata missing or mismatching is to ex-
tract additional information from map images and enrich the existing metadata with
the extracted information. Specifically, a computational model can be developed to au-
tomatically recognize the main geographic area covered by a map (e.g., Alaska) and then
add relevant spatial extent and place name (in the form of a textual tag) to the meta-
data. Recent advancements in deep learning and computer vision offer new possibilities
for accurately recognizing objects from images (LeCun et al. 2015). However, training
a deep learning model often requires a large set of labeled data. For example, many
convolutional neural networks (CNN) were trained on the ImageNet dataset which has
over 14 million labeled images (Russakovsky et al. 2015). When it comes to recognizing
geographic areas of map images, a deep learning model may need to be trained on a large
number of labeled images for each geographic area to be recognized. In addition, since
maps can have different colors, hues, projections, and geometric elements (e.g., points,
lines, and polygons), the training dataset may need to include even more data records
to reflect these diverse cartographic properties. Creating a labeled training dataset with
thousands or more data records requires considerable human effort and resources.

In this work, we propose a deep learning approach with GIS-based data augmentation
for enriching the metadata of map images. Compared with general data augmentation
techniques that rely on existing labeled images, our approach starts from commonly avail-
able shapefiles of different geographic areas and utilizes a GIS processing package, such
as GeoPandas (used in this work) or ArcPy, to generate labeled map images. Further, our
approach leverages the GIS operation of map projection to project the original shape-
files into map images with different shape distortions, and includes a number of other
data augmentation strategies, such as scaling, resizing, and rotating. Accordingly, our
approach can automatically generate a large number of labeled map images as the train-
ing data without requiring human effort to manually label images. We use this approach
to train deep learning models for enriching the metadata of map images with spatial ex-
tents and place names (in the form of textual tags). The enriched metadata can facilitate
the search and discovery of map images in geoportals and other data repositories. The
contributions of this paper are as follows:

• We present a deep learning approach with GIS-based data augmentation for enriching
the metadata of map images. Such an approach reduces the need for manually creating
a large set of labeled map images in order to train deep learning models.
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• We investigate the effectiveness of individual data augmentation strategies via ablation
studies, and systematically evaluate the proposed approach by using it to train multiple
deep learning models and testing them on two different map image datasets.

• We share the source code of our GIS-based data augmentation, the used deep learning
models, and the two test datasets of map images for supporting future research. These
resources are available at: https://doi.org/10.6084/m9.figshare.14308874.

The remainder of this paper is organized as follows. Section 2 reviews existing studies
on metadata enrichment and deep learning research related to map images. Section 3
presents the methodological details of our deep learning approach with GIS-based data
augmentation. In Section 4, we evaluate the proposed approach by applying it to two
different test datasets and discussing experiment results. Finally, Section 5 summarizes
this work and discusses future directions.

2. Related work

The importance of metadata for discovering and reusing geospatial resources has been
widely recognized by the GIScience community. Many studies have been conducted to
enrich the metadata of geospatial resources hosted in geoportals, digital libraries, or other
data repositories. Some studies looked into the existing metadata of a resource and pro-
posed methods for extracting additional and often more structured information. Freire
et al. (2011) developed a geoparsing system that can recognize place names mentioned
in metadata descriptions and enrich existing metadata with recognized and geo-located
place names. A similar idea of extracting place names from textual descriptions of meta-
data was discussed by Ureña-Cámara et al. (2019) in the context of examining the qual-
ity of metadata hosted in a Spanish SDI. Hu et al. (2015) developed a Labeled Latent
Dirichlet Allocation (LLDA) based approach that can enrich the metadata of geospatial
resources in a geoportal with topic categories, such as “transportation” and “health”,
identified from the existing textual descriptions. While these methods can extract useful
information, they rely on the availability of existing metadata. In situations when little
or no metadata is available, these methods cannot generate much new data.

Some other studies examined the images associated with geospatial resources. These
images may be geospatial resources themselves (such as digital maps), the output of Web
Map Services, thumbnails, or screenshots of geospatial datasets. One major advantage
of this image-based approach is that it can be applied to situations when little or no
metadata is available. In addition, this approach can help detect inconsistency between
provided metadata and actual map content (Hu et al. 2016). Dı́az et al. (2007) developed
a software tool called gvSIG that can semi-automatically extract metadata from imagery
and cartographic data. Their approach was based on the assumption that metadata exist
in these images (e.g., in the header of a GeoTIFF image) and did not attempt to extract
information from actual image content. Florczyk et al. (2012) proposed a method for
analyzing the color features of WMS images in order to identify orthoimages from other
types of WMS. Relevant textual tags, such as “orthoimage”, can then be added to the
metadata to facilitate the search and retrieval of these orthoimages. Evans et al. (2017)
developed LiveMaps, a system that can automatically identify the geographic extents
of map images from the Web by fine-tuning a ResNet model. However, their method
requires manual effort to construct a labeled training dataset. Zhou et al. (2018) adopted
a deep learning approach for classifying seven types of map images, such as “topographic
map”, “urban scene map”, and “3D map”. They manually constructed a labeled dataset
with 1,812 map images, and used it to train and compare the performances of five CNN
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models. Yang et al. (2019) developed a latent-feature-based multimodality fusion model
for classifying the themes of map images; however, their model was also trained on a
manually labeled dataset.

Labeled training data are indispensable for many deep learning models. Depending on
the complexity of the problem, the size of the training dataset can vary. For example, in
the previous study by Zhou et al. (2018), they manually labeled 1,812 map images for
classifying seven map types with the goal of including at least 200 labeled training images
for each map type. While it is still possible to manually label about two thousand map
images, it can be very difficult to label, e.g., 10,000 map images for the task of classifying
50 states in the U.S. (if we were to include at least 200 training maps for each state).
Crowdsourcing platforms, such as Amazon’s Mechanical Turk (AMT) (Paolacci et al.
2010), have been employed for collecting large amounts of labeled data (Russakovsky
et al. 2015). However, running an experiment on AMT usually requires designing a Web-
based user interface, validating and cleaning the collected data, and providing financial
incentives (Yan et al. 2017, Wallgrün et al. 2018, Hu et al. 2019). These requirements
increase the difficulty and cost of creating a large labeled dataset.

This work proposes a deep learning approach with GIS-based data augmentation for
enriching the metadata of map images. It can be distinguished from the previous studies
in the following aspects. First, we enrich the metadata of map images by examining ac-
tual map content rather than relying on existing metadata. This allows our approach to
be generalized to any map images with or without metadata. For those with metadata,
our approach can help detect metadata inconsistency or incompleteness. While for those
without metadata, our approach can be used for adding new metadata. Second, our ap-
proach does not rely on manually labeled training data but automatically generates a
large set of data from existing shapefiles. Since shapefile data are widely available nowa-
days, our approach can be generalized to various geographic areas and scales. Finally,
much deep learning research has been conducted based on remote sensing images (Tuia
et al. 2009, Maggiori et al. 2016, Zhu et al. 2017, Li and Hsu 2018, Marcos et al. 2018), and
a smaller number of studies have explored the use of deep learning for analyzing map im-
ages (Duan et al. 2018, Zhou et al. 2018, Kang et al. 2019). Different from remote sensing
images that capture real-world objects on the ground by their spectral information, map
images are based on symbolic representation of geographic features and are produced
using map projection, thematic rendering, and other cartographic techniques. Therefore,
our work also contributes to this relatively smaller size of literature on analyzing map
images using deep learning.

3. Methods

3.1. Problem formalization

We start by formalizing the problem of enriching the metadata of map images addressed
in this work. The analysis target is a map image, which can be scanned from a paper
map or directly generated in a digital format. By analyzing this map image, we aim to
identify its major geographic area and enrich its metadata with two important elements:
a spatial extent (in the form of a BBox) and a place name (in the form of a textual tag).
Since there can be an infinite number of geographic areas at different geographic scales
and extents, we assume that there exists a set of candidate geographic areas to which
a map image is to be identified, e.g., one of the 50 U.S. states. Thus, we formalize the
problem as below:
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Given a map image m and a set of candidate geographic areas G, with G =

{g1, g2, ..., gn}, identify gs from G that best matches the geographic area covered by

m, and enrich the metadata of m with spatial extent e and place name t.

This problem formalization focuses on the actual content of the map image m, and does
not rely on the availability of existing metadata. Once the geographic area gs is identified,
its spatial extent e and place name t can be retrieved from a geographic knowledge base,
such as a gazetteer. Depending on the specific application, spatial extent e can include
not only a bounding box but also the actual geometric shape of gs; similarly, place name
t does not have to be limited to one single official place name but can include multiple
names, including vernacular place names, to facilitate the search of map images.

3.2. Methodology overview

We propose a deep learning approach with GIS-based data augmentation for enriching the
metadata of map images. Unlike general images studied in computer vision (e.g., cat and
dog photos), map images are about geographic areas which often have unique shapes. For
example, the shape of Australia is clearly different from the shape of the United States.
Given the wide availability of shapefiles for many geographic areas throughout the world,
it is possible to automatically generate map images for one area using a sequence of GIS
operations. These automatically generated map images can then be used as labeled data
for training machine learning models.

Real-world map images are often rendered in a variety of colors and styles. The choice
of color schemes or thematic styles can be application specific. However, humans with a
reasonable amount of geographic knowledge can recognize the geographic area covered
by a map in different colors and styles, without having to be “trained” first with these
map styles and colors. This can be attributed to the ability of humans to focus on the
geometric shape of the area covered by the map, rather than its particular color or style.
We incorporate such a focus into the design of our approach.

Figure 2 illustrates our methodological framework, which consists of six major steps. In

Figure 2. Overview of the methodological framework for enriching the metadata of map images.
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step (1), existing shapefiles about candidate geographic areasG go through the GIS-based
data augmentation process which automatically generates a training dataset containing
labeled map images. In step (2), these automatically generated training data are used
to train a CNN model. After the training process is finished, step (3) saves the trained
CNN model for next steps. In step (4), a test map image m, whose geographic area is
to be identified, goes through an image thresholding process that converts the original
map image into a black-and-white binary image. Such a conversion process removes the
color and style information of the map image and lets the model focus on the shape of
the covered geographic area. In step (5), the converted binary image is used as the input
of the trained CNN model. Finally, in step (6), the trained CNN model recognizes the
geographic area gs from the map image, and the spatial extent e and place name t are
retrieved from the used geographic knowledge base. In the following, we present details
of this methodological framework.

3.3. GIS-based data augmentation

The step of GIS-based data augmentation leverages existing shapefiles of different geo-
graphic areas and utilizes a GIS processing package to automatically generate a training
dataset. Unlike typical data augmentation approaches that modify existing labeled im-
ages (Géron 2019), our approach generates map images directly from shapefiles. Specifi-
cally, our GIS-based data augmentation involves the following major strategies:

(1) Map projection. Map projection is an essential component of any map. It
transforms geographic features from the surface of a 3D globe onto a 2D plane.
Different map projections can cause different shape distortions of the same geo-
graphic area. Figure 3 shows an example of the contiguous U.S. under the Plate
Carrée and Albers Equal Area projections respectively. Since there exist a large
number of map projections, one can select those that are often applied to a ge-
ographic area. Here, we recommend using the Projection Wizard tool developed
by Šavrič et al. (2016), which can suggest suitable map projections based on a
target geographic area. In addition, one can include some commonly used map
projections, such as Web Mercator, although they may not be considered as suit-
able for a target area (e.g., the entire world) from a cartographic perspective.

Figure 3. Different shapes of the contiguous U.S. under two map projections: (a) Plate Carrée
(WGS84); (b) Albers Equal Area.

(2) Scaling. Real-world maps may depict the same geographic area at different
scales. To simulate a similar visual effect, we scale one map image both inward



August 20, 2021 20:36 International Journal of Geographical Information Science output

International Journal of Geographical Information Science 7

and outward, which makes the covered geographic area look smaller or larger in
the map image. The images are scaled both inward and outward by 5%, 10%,
15%, and 20%. We limit the scaling extent within 20% to prevent excessive trans-
formations that can lead to a large loss of shape information.

(3) Resizing. Map images from the Web and other sources may be squeezed verti-
cally or horizontally. For example, a map image requested from a WMS can have
arbitrarily-defined width and height depending on the parameters used in the
request. Figure 4(a) shows a squeezed California map image from a WMS, and
Figure 4(b) shows a California map with a more proper width-to-height ratio. To
accommodate these varied ratios, we resize the map images with four different
width-to-height ratios which are 50%, 75%, 125%, and 150%.

Figure 4. An example of a squeezed map image: (a) California map requested from a WMS; (b)
California map with a more proper width-to-height ratio.

(4) Rotation. The geographic area shown on a map image may also be rotated. For
example, a paper map may be rotated slightly during the scanning process which
results in a rotated map image. Here, we rotate map images by angles from 0 to
30 degrees with an increment of 10 degrees. The rotation is performed around
the center of the image in both clockwise and counterclockwise directions.

(5) Noise addition. Map images from different sources on the Web or in libraries
may not be of the highest quality. Noise can be introduced when paper maps are
scanned or when a map image is further processed. Here, we add Gaussian noise
with a mean of 0 and a standard deviation of 0.1 (Krizhevsky et al. 2012, Shijie
et al. 2017) to the map images to simulate noise effect.

(6) Blurring. Similar to noise addition, this strategy aims to reduce the acuity of
map images to make them similar to those real-world map images with lower
resolutions. Particularly, we apply a convolution function with the widely used
Gaussian kernel (Hussain et al. 2017, Casado-Garćıa et al. 2019) to process map
images. The Gaussian kernel is defined by a random variance σ chosen from 0 to
3.0, and the kernel radius r is generated by r = 4× σ (Hussain et al. 2017).

Figure 5 illustrates the results after applying each of the six strategies to a map of
North America. Note that some of these data augmentation strategies (e.g., scaling and
resizing) can generate map images with different width and height, whereas many existing
CNN models require the input image to have a square shape with a fixed size. Therefore,
we also apply image processing operations such as padding and cropping to ensure that
the generated map images have the same width and height. The actual sizes of the
generated training images vary depending on the target geographic area and the applied
augmentation strategies, but their width and height are always the same. When these
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Figure 5. Results of individual data augmentation strategies applied to the same map.

generated map images are used to train a CNN model, they are dynamically resized to
the input size required by the model (e.g., 224 by 224).

Figure 6 shows our GIS-based data augmentation step by step. Let n represent the

Figure 6. GIS-based data augmentation for generating labeled training map images.

number of input shapefiles (one shapefile per geographic area), and p represent the num-
ber of selected projections for each shapefile. The n input shapefiles are first projected
using the p selected map projections. The projected shapefiles (vector data) are then
converted to map images (raster data). In the following steps, one input image is first
scaled to 9 new images, then resized into 45 images, and rotated to 315 images. Next,
each of the 315 images will be used for generating two additional new images: one for
blurring and one with noise addition. For the final step, we convert each of the generated
images into two binary images: one with black foreground and white background, and
the other with white foreground and black background. We generate these black-and-
white binary images to help the trained model focus on the shapes of target geographic
areas. We generate two binary images instead of one, because the image thresholding
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step, which will be applied to a test map (see Section 3.5), can produce both types of
binary images depending on the color scheme of the map. In total, our GIS-based data
augmentation will generate (p×1, 890) labeled training images per shapefile. If we choose
5 map projections (i.e., p = 5), this approach can automatically generate 9,450 labeled
map images for one geographic area. A GIS processing package, such as GeoPandas or
ArcPy, along with an image processing package, such as OpenCV, can be utilized to
implement this GIS-based data augmentation.

3.4. CNN models

With automatically generated map images, a CNN model can be trained to recognize the
geographic area from a real-world map. Many CNN models have been proposed in the
literature, and three are selected and used in this work, which are AlexNet, Inception-v3,
and ResNet. These three models were all champions in previous ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) competitions, and using three different models
allows us to test the generalizability of the proposed GIS-based data augmentation, rather
than relying on the performance of one particular model.

• AlexNet. As one of the early deep CNNs, AlexNet was the winning model of ILSVRC
2012 (Krizhevsky et al. 2012). It is still widely used in many applications nowadays
as a baseline for image classification and object detection. The model consists of 5
convolutional layers, 3 maxpooling layers, and 3 fully connected layers.

• Inception-v3. Inception-v3 is an improved version of GoogLeNet (Szegedy et al. 2015)
which won ILSVRC 2014. GoogLeNet introduced an innovative inception module in
which some layers run in parallel. Inception-v3 improves the original GoogLeNet by
replacing the 5x5 convolutional layer with three 3x1 layers and adding factorized con-
volutions. This improvement leads to much lower error rate. The Inception-v3 model
used in this work has a depth of 42 layers.

• ResNet. The ResNet model developed by He et al. (2016) was the winning model of
ILSVRC 2015. ResNet reduces the errors associated with very deep neural networks
by introducing a building block called residual block. ResNet can capture more high-
level compositional features and detect fine-grained objects from images. In this work,
we use the version of ResNet with 50 layers (ResNet-50), which requires the smallest
floating point operations.

For all three models, we replace their final output layer with a fully connected layer
consisting of n neurons, where n is the number of candidate geographic areas. While
our experiments focus on these three CNNs, other models can also be trained on the
generated map images.

3.5. Image thresholding

A map image can be rendered in many possible colors and cartographic styles, depending
on the specific application and the design choices made by the cartographer. To help a
model focus on the shape of a geographic area rather than map colors or textures, we
use the technique of thresholding to convert an original map image whose metadata need
to be enriched into a black-and-white binary image. This is shown as step (4) in the
methodological framework in Figure 2.

Thresholding is a simple but effective way to segment the boundary of a target object
from its background (Sezgin and Sankur 2004). Existing thresholding algorithms can be
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classified into two categories: (1) histogram-based thresholding (Zack et al. 1977, Jiao
et al. 2006), in which a histogram of pixel intensity is created and used for deciding the
threshold; (2) local thresholding (Yen et al. 1995, Ridler et al. 1978, Li and Lee 1993),
in which the characteristics of neighboring pixels are analyzed to process each pixel. To
identify a suitable thresholding method, we tested seven different algorithms on a set of
WMS map images and manually examined their results. An example is shown in Figure 7.
We eventually chose the Triangle thresholding method since it best separates the covered

Figure 7. Results of seven different thresholding methods applied to the same map image.

geographic area from its background. We also tested the possibility of converting maps
to grey-scale images rather than black-and-white ones. We found that grey-scale images
cannot clearly show the boundaries of some geographic areas when they have colors
similar to their background, although grey-scale images can also reduce the distraction
of colors on the model.

In many cases, the Triangle thresholding method will render the main geographic area
covered by a map as black and the background as white. This happens when the main
geographic area is rendered with rich colors while the background has bland colors. In
some other cases, however, it can also produce maps with the main geographic area as
white and the background as black. This happens when the background of a map has
rich colors. For example, an ocean temperature map of Australia may use a bland color
for the continent and rich colors to represent the temperature variation in the ocean. Our
GIS-based data augmentation handles this by generating both types of binary images
for one geographic area.

4. Experiments and results

In this section, we evaluate the performance of our approach in two sets of experiments
using map images from different data sources and at different geographic scales. In both
experiment sets, the CNN models are trained or fine-tuned using the map images gener-
ated by our GIS-based data augmentation and are then tested on real-world map images.
Thus, no map image in the test dataset is used in the training process. This also means
we cannot use some validation methods, such as k-fold cross-validation, which assume
that the training and validation data are from the same or similar datasets. Here, the
training data and test data are different, since the former are generated map images
while the latter are real-world maps.
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4.1. Experiment set I: WMS map images at the continental scale

In the first set of experiments, we evaluate our approach on a test dataset of map images
collected from a global WMS quality survey (Gui et al. 2016). This test dataset contains
800 map images in total, with 100 maps for each of the seven continents and 100 maps
for the entire world. Thus, the classification task based on this dataset has 8 categories.
A sample of these map images is shown in Figure 8.

Figure 8. A sample of map images in the continent dataset.

We use our GIS-based data augmentation to generate labeled map images as the train-
ing data. Shapefiles of the seven continents and the entire world are obtained from Esri
Data & Maps (shapefiles from other sources, such as Natural Earth, can be used as
well). For each continent, we select five map projections using the Projection Wizard tool
(Šavrič et al. 2016). Whenever possible, we try to include one projection from each of the
three types: equal-area, conformal, and equidistant, and we also include Web Mercator
and Plate Carrée (WGS84) projections. For the entire world, we select six commonly
used world map projections. Table 1 summarizes these map projections. In total, 77,490
labeled map images are generated through the GIS-based data augmentation, with 9,450
map images (1, 890 × 5 projections) for each continent and 11,340 images (1, 890 × 6
projections) for the world.

Next, we use the generated map images to train CNN models. We leverage the pre-
trained AlexNet, Inception-v3, and ResNet models based on the ImageNet dataset, and
fine-tune them using the map images generated from our GIS-based data augmenta-
tion. Pre-trained models have already learned patterns typically from a large benchmark
dataset (e.g., 14 million images in the ImageNet dataset), and fine-tuning them avoids
learning everything from scratch. Such a transfer learning process reduces the train-
ing time, and can often achieve very good performances on similar tasks (Géron 2019).
Meanwhile, considering that our task of classifying black-and-white map images is also
different from a task on natural RGB images, we train an AlexNet model completely from
scratch using the generated map images. Table 2 shows the classification accuracy of the
tested models, which is calculated as the number of correctly classified maps divided by
the total number of test maps. We also train and test the same models without using
the GIS-based data augmentation to evaluate the effectiveness of our approach.

As shown in Table 2, the models trained on the map images generated by our GIS-
based data augmentation all substantially outperform the models without data augmen-
tation. This result demonstrates that our approach is overall effective and that it can
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Table 1.: Map projections used for the seven continents and the world (note that Web
Mercator and Plate Carrée are added to each category).

Map Projections

Africa
Lambert azimuthal equal-area, Equatorial Stereographic,
Equidistant cylindrical

Antarctica
Lambert azimuthal equal-area, Azimuthal equidistant,
Polar stereographic

Asia
Albers equal-area conic, Lambert conformal conic,
Equidistant conic

Europe
Albers equal-area conic, Lambert conformal conic,
Equidistant conic

North America
Albers equal-area conic, Lambert conformal conic,
Equidistant conic

Oceania
Albers equal-area conic, Lambert conformal conic,
Equidistant conic

South America
Oblique Lambert azimuthal equal-area, Oblique Stereographic,
Equidistant conic

World Robinson, Natural Earth, Mollweide, Wagner IV

Table 2.: Classification accuracy of the tested models on the WMS continent dataset.

AlexNet
(trained)

AlexNet
(fine-tuned)

Inception-v3
(fine-tuned)

ResNet
(fine-tuned)

GIS-based data
augmentation

0.247 0.501 0.580 0.532

No data
augmentation

0.040 0.014 0.013 0.011

be generalized to different CNN model architectures. The models trained without data
augmentation have very low classification accuracy. This can be attributed to the insuffi-
cient number of training data, i.e., there is only one training map image for each category
generated from the default shapefile. This result further highlights the challenge of using
deep learning models when small or no labeled data is available, and our work is an effort
toward addressing this challenge. By comparing the AlexNet model trained from scratch
with the other three models, we can see that the pre-trained and fine-tuned models have
better performances. Although those three models were pre-trained on RGB images, it
is possible that they have learned to detect some patterns, such as lines and shapes, that
can still be applied to this task. The highest accuracy 0.580 is obtained by Inception-v3.
While this is not a very high score, it is achieved using only the map images automatically
generated from shapefiles.

While our GIS-based data augmentation is shown to be effective overall, which strate-
gies work better or are they equally effective? To answer this question, we conduct an
ablation study by removing one data augmentation strategy at a time and keeping the
rest strategies unchanged. We focus on the three fine-tuned models shown to be more
effective in the previous experiment. Table 3 presents the result of this ablation study.

Two observations are obtained. First, when either projection, scaling, or resizing is
removed from the data augmentation process, the accuracy of the three models all de-
creases. This result shows the effectiveness of these three data augmentation strategies.
Particularly, we see a decrease of about 0.2 in accuracy (or a relative decrease of about
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Table 3.: Classification accuracy of the tested models on the WMS continent dataset
when different augmentation strategies are removed.

AlexNet
(fine-tuned)

Inception-v3
(fine-tuned)

ResNet
(fine-tuned)

All strategies 0.501 0.580 0.532

No projection 0.321 0.371 0.352

No scaling 0.462 0.523 0.368

No resizing 0.427 0.572 0.457

No rotation 0.628 0.689 0.775

No noise 0.586 0.533 0.610

No blurring 0.584 0.547 0.600

40%) when projection is removed. This result demonstrates the critical role of map pro-
jection in helping a CNN recognize the geographic area covered by a map. Second, re-
moving one of the other three strategies, namely rotation, noise, and blurring, increases
the performance of the models in many cases. This result is surprising and suggests that
the other three strategies might not be effective. With curiosity, we test the performance
of the models by removing these three strategies all together. The classification accu-
racy scores, however, are 0.513, 0.547, and 0.596 for AlexNet, Inception-v3, and ResNet
respectively, suggesting that removing all three strategies does not achieve the highest
accuracy either. This might be attributed to the largely reduced number of training data
records when all three strategies are removed. Based on Table 3, the highest accuracy is
0.775, which is achieved by ResNet when the strategy of rotation is removed.

Lastly, we compare our approach with LiveMaps, a system similar to our work that
can identify the geographic viewpoint (similar to spatial extent) of a given map image
(Evans et al. 2017). LiveMaps also uses a pre-trained ResNet model. The major difference
between their approach and ours is that they fine-tune the ResNet model using real map
images crawled from the Web rather than map images automatically generated from
shapefiles. However, their approach of crawling training map images from the Web is not
completely automatic, as manual effort is required to examine the crawled images and
remove noise. In addition, their approach assumes the availability of relevant map images
on the Web for a particular geographic area, and cannot be applied to those areas that
do not have many map images online. To implement LiveMaps, we use Google Images
Download (a Python-based Web crawler) to crawl map images about the world and the
seven continents from Google Image Search, and manually clean the crawled map images
which are then used to train the LiveMaps model. The trained model is applied to the
same test dataset of WMS continent map images. It achieves a classification accuracy of
0.740, which is higher than our initial score 0.580 when all data augmentation strategies
are used but lower than our best score 0.775 achieved by ResNet.

4.2. Experiment set II: Web map images at the state scale

In the second set of experiments, we evaluate our approach on a test dataset of map
images about the 50 U.S. states. These map images were collected from the Web using
the Google Images Download crawler with keywords in the format of “<StateName>
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map” (e.g., “California map”). The first 200 search results were downloaded for each
state, and we manually examined the result to remove noise images with the goal of
keeping 50 images for each of the 50 states. In total, this dataset has 2,500 map images.
The classification task based on this dataset has 50 categories. A sample of these state-
level map images is provided in Figure 9.

Figure 9. A sample of map images in the U.S. state dataset.

We generate training map images using the shapefiles of the U.S. states from Esri
Data & Maps. For each state, we adopt five map projections, which are Albers equal-
area conic, Lambert conformal conic, oblique azimuthal equidistant, UTM (based on the
zone of each state), and Plate Carrée (since some maps directly visualize states based on
their WGS84 coordinates). In total, our GIS-based data augmentation generates 472,500
map images, with 9,450 images (1,890 images × 5 projections) for each of the 50 states.

The generated map images are then used to fine-tune the three pre-trained CNN mod-
els. Similar to the previous set of experiments, we also train an AlexNet model from
scratch using the generated map images. Table 4 shows the classification accuracy of the
tested models.

Table 4.: Classification accuracy of the tested models on the US state dataset.

AlexNet
(trained)

AlexNet
(fine-tuned)

Inception-v3
(fine-tuned)

ResNet
(fine-tuned)

GIS-based data
augmentation

0.299 0.436 0.431 0.330

No data
augmentation

0.023 0.008 0.013 0.030

Similar to the results of previous experiments, using the GIS-based data augmentation
substantially improves the accuracy of all tested models. The highest accuracy 0.436 is
achieved by AlexNet. While it is only a fair score, classifying these state map images is
highly difficult. This difficulty can be seen in two aspects. First, there are 50 classes in
this task and a random classification on this dataset should achieve an average accuracy
of only 0.020. Second, the map images in this dataset have highly complex visual ele-
ments, colors, cartographic styles, and even distortions. For example, some map images



August 20, 2021 20:36 International Journal of Geographical Information Science output

International Journal of Geographical Information Science 15

in Figure 9 contain multiple types of map symbols, customized legends, and various text
annotations, which make it difficult to generate map images with similar visual features.
It is also difficult for the image thresholding method to derive accurate boundaries of the
target geographic areas.

We further conduct an ablation study based on the three pre-trained models to exam-
ine the effectiveness of different data augmentation strategies. The results are shown in
Table 5. Different from the result of experiment set I, the best performance is achieved

Table 5.: Classification accuracy of the tested models on the U.S. state dataset when
different augmentation strategies are removed.

AlexNet
(fine-tuned)

Inception-v3
(fine-tuned)

ResNet
(fine-tuned)

All strategies 0.436 0.431 0.330

No projection 0.206 0.203 0.214

No scaling 0.322 0.206 0.181

No resizing 0.250 0.219 0.205

No rotation 0.365 0.297 0.274

No noise 0.329 0.310 0.283

No blurring 0.335 0.322 0.232

by using all data augmentation strategies, and removing any strategy reduces the per-
formance of the models. This performance difference suggests that the effectiveness of a
data augmentation strategy may depend on the characteristics of the target map images.
Most maps from the WMS continent dataset have little rotation, noise, or blurring effect,
since they are images retrieved from WMS services. As a result, the corresponding data
augmentation strategies become less effective and may even reduce the performance of
the trained model. By contrast, the US state maps crawled from the Web have diverse
characteristics in terms of their rotations, noise, and image quality. Thus, the data aug-
mentation strategies of rotation, noise, and blurring may become more effective as shown
in the experiment results. Finally, in this set of experiments, we are unable to compare
our approach with LiveMaps, because it is highly labor-intensive to construct a training
dataset by crawling and manually examining map images for 50 states. In addition, most
state map images available from the Web (at least in the first 200 search results) are
already used in the test dataset and therefore should not be used as training data.

4.3. Discussion

The two sets of experiments based on different datasets and different CNN models en-
hance our understanding of the proposed deep learning approach with GIS-based data
augmentation. Overall, the experiment results suggest that our approach can substan-
tially boost the performance of CNN models in their capability of recognizing the covered
geographic areas of map images. Meanwhile, the effectiveness of individual data augmen-
tation strategies seems to be associated with the characteristics of map images to which
the trained models will be applied. Three strategies, namely projection, scaling, and re-
sizing, have consistently increased the performance of the trained models on the two
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datasets, while the strategies of rotation, noise, and blurring are effective when the test
map images share similar characteristics simulated by these strategies.

Without requiring manual effort for data labeling, the proposed approach can be used
for enriching the metadata of map images, particularly spatial extents and place names,
when there are limited human or financial resources for creating a labeled training dataset
manually. In addition, even when we have the necessary resources to do so, the ability
to automatically generate map images from shapefiles reduces the time needed to create
a large labeled dataset. With the wide availability of shapefiles, our approach can be
generalized to many geographic areas at different scales throughout the world.

The experiments also show that our approach so far has only fair classification accuracy.
It is worth noting that all training data are generated from shapefiles through the GIS-
based data augmentation, and the trained models have never seen any real-world map
image. This is different from typical machine learning tasks in which the training and
test data are largely similar (or the training and test data can be considered as sampled
from the same distribution). The two classification tasks in our experiments are thus very
difficult for the trained models, due to the inevitable difference between the generated
training map images and the test real-world maps. This is illustrated in Figure 10, which
shows (a) a real-world map of New York State, (b) its black-and-white version after
image thresholding, and (c) a map image generated from shapefile. While our generated

Figure 10. Difference between a real-world map of New York State and a generated map: (a)
the real-world map; (b) the black-and-white map after image thresholding; (c) a map generated
from shapefile.

map image well captures the shape of New York State, it nevertheless does not have
the legend, text annotations, and county boundaries in the real-world map. To further
increase the similarity between generated map images and real-world maps, we could
consider automatically creating and adding those map elements to a generated map
image, or alternatively, removing them from the real-world map.

5. Conclusions and future work

In this paper, we presented a deep learning approach with GIS-based data augmentation
for enriching the metadata of map images. Compared with general data augmentation
techniques, our approach can automatically generate labeled training map images directly
from shapefiles leveraging a GIS processing package, such as GeoPandas. Our approach
integrates six data augmentation strategies, including map projection, scaling, resizing,
rotation, noise addition, and blurring. We used our GIS-based data augmentation to
automatically generate labeled map images for training and fine-tuning multiple CNN
models, and tested them on two datasets: a set of WMS images containing world and
continent maps and a set of U.S. state map images crawled from the Web. Experiment
results suggest that the proposed approach can substantially increase the performance
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of CNN models on recognizing geographic areas from maps, and can help enrich the
metadata of map images, particularly spatial extents and place names, without requiring
manual data labeling. This work is a step toward addressing the challenge of obtaining
a large set of labeled data often needed for training deep learning models.

Our proposed approach also has potential for helping a geographic information system
become more intelligent. For example, one task that a GIS user encounters from time
to time is to assign a spatial reference system to a geospatial dataset whose spatial
reference is missing (e.g., a shapefile that lacks the *.prj file). To complete such a task,
one needs to select a suitable coordinate system for the target geographic area often from
hundreds of possible coordinate systems. Our approach offers the possibility of enabling
a GIS to automatically recognize the geographic area of the data based on its shape and
recommend a small number of suitable coordinate systems to the GIS user.

This work could be extended in several directions. First, we can improve the proposed
methodological framework by enhancing its existing steps or adding new steps. For ex-
ample, image thresholding is an important step that directly affects the extracted shape
of the covered geographic area. While we have experimented with seven different thresh-
olding methods, other techniques could be explored as well. We could also add new steps
to remove certain map elements from visually complex maps to help the trained models
focus on the shape of the geographic area. Second, a map image collection may contain
noise images that do not belong to any of the classification categories, and ideally, a
trained model would identify those noise images. This is a non-trivial research problem
called open set recognition (Scheirer et al. 2012), and we made a preliminary exploration
on this problem in Appendix A. We found a trade-off between noise image identification
and classification accuracy, but further investigation is needed on this topic. Finally, while
this work has largely focused on shapes in order to identify the main geographic area of a
map, future work could explore the possibility of generating map images with colors and
textures similar to those of real-world maps. For example, graduated color maps could
be generated based on selected attributes of a shapefile and pre-defined cartographic
principles. Those generated map images can then be used to train deep learning models
for recognizing thematic map types based on, e.g., varied colors in different regions. By
exploring these and other directions, we can build more intelligent AI models to facilitate
the extraction and use of information from large numbers of maps.
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Géron, A., 2019. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media.

Gui, Z., et al., 2016. Global-scale resource survey and performance monitoring of public
OGC web map services. ISPRS International Journal of Geo-Information, 5 (6), 88.

Gui, Z., et al., 2013. A performance, semantic and service quality-enhanced distributed
search engine for improving geospatial resource discovery. International Journal of
Geographical Information Science, 27 (6), 1109–1132.

He, K., et al., 2016. Deep residual learning for image recognition. In: Proceedings of the
IEEE conference on computer vision and pattern recognition IEEE, 770–778.

Hu, K., et al., 2016. Content-based discovery for web map service using support vector
machine and user relevance feedback. PloS one, 11 (11), e0166098.

Hu, Y., Deng, C., and Zhou, Z., 2019. A Semantic and Sentiment Analysis on Online
Neighborhood Reviews for Understanding the Perceptions of People toward Their
Living Environments. Annals of the American Association of Geographers, 109 (4),
1052–1073.

Hu, Y., et al., 2015. Metadata topic harmonization and semantic search for linked-data-
driven geoportals: A case study using ArcGIS Online. Transactions in GIS, 19 (3),
398–416.

Hussain, Z., et al., 2017. Differential data augmentation techniques for medical imaging
classification tasks. In: AMIA Annual Symposium Proceedings, Vol. 2017 American
Medical Informatics Association, p. 979.

Jiao, S., Li, X., and Lu, X., 2006. An improved Ostu method for image segmentation.
In: 2006 8th international Conference on Signal Processing, Vol. 2 IEEE.

Kang, Y., Gao, S., and Roth, R.E., 2019. Transferring multiscale map styles using gen-
erative adversarial networks. International Journal of Cartography, 1–27.

Krizhevsky, A., Sutskever, I., and Hinton, G.E., 2012. Imagenet classification with deep
convolutional neural networks. In: Advances in neural information processing sys-
tems Neural Information Processing Systems Foundation Inc., 1097–1105.

LeCun, Y., Bengio, Y., and Hinton, G., 2015. Deep learning. nature, 521 (7553), 436.



August 20, 2021 20:36 International Journal of Geographical Information Science output

REFERENCES 19

Li, C.H. and Lee, C., 1993. Minimum cross entropy thresholding. Pattern recognition, 26
(4), 617–625.

Li, W. and Hsu, C.Y., 2018. Automated terrain feature identification from remote sensing
imagery: a deep learning approach. International Journal of Geographical Informa-
tion Science, 1–24.

Lutz, M. and Klien, E., 2006. Ontology-based retrieval of geographic information. Inter-
national Journal of Geographical Information Science, 20 (3), 233–260.

Maggiori, E., et al., 2016. Convolutional neural networks for large-scale remote-sensing
image classification. IEEE Transactions on Geoscience and Remote Sensing, 55 (2),
645–657.

Marcos, D., et al., 2018. Land cover mapping at very high resolution with rotation equiv-
ariant CNNs: Towards small yet accurate models. ISPRS journal of photogrammetry
and remote sensing, 145, 96–107.

Paolacci, G., Chandler, J., and Ipeirotis, P.G., 2010. Running experiments on amazon
mechanical turk. Judgment and Decision making, 5 (5), 411–419.

Renteria-Agualimpia, W., et al., 2015. Identifying geospatial inconsistency of web services
metadata using spatial ranking. Earth Science Informatics, 8 (2), 427–437.

Ridler, T., Calvard, S., et al., 1978. Picture thresholding using an iterative selection
method. IEEE trans syst Man Cybern, 8 (8), 630–632.

Russakovsky, O., et al., 2015. Imagenet large scale visual recognition challenge. Interna-
tional journal of computer vision, 115 (3), 211–252.
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Appendix A. Exploring the practicality of identifying noise images

A dataset may contain noise images that do not belong to any of the pre-defined cat-
egories. Existing CNN models typically use a softmax layer for the final output, and
a noise image will always be classified into one of the pre-defined categories. Here, we
explore the practicality of automatically identifying noise images. This is a non-trivial
research problem called open set recognition (Scheirer et al. 2012), and we only make a
preliminary exploration here.

The experiments are based on the first dataset of WMS continent map images, which
is an easier dataset than the second one. With the existing 800 maps in this dataset,
we add 100 WMS map images as noise maps, which do not belong to any of the eight
categories. Examples of these maps are shown in Figure A1.

Figure A1. Some examples of the noise map images added to the test dataset.

For the CNN model, we focus on ResNet which has achieved the best performance on
this dataset based on our previous experiments. To help the model detect noise images,
one straightforward approach is to add training images that do not belong to any of
the eight categories, and then train the model using these noise images along with the
existing training data. In other words, this approach does not change the major structure
of the model, but adds a noise category in the training data. However, it is difficult, if
not impossible, to obtain training images that can represent all noise images, since any
image that is not a continent map is a noise image. Thus, the trained model will become
biased toward the particular set of noise images used for training.

Here, we use a method proposed by Bendale and Boult (2016), in which the final
softmax layer is replaced by an openmax layer that transforms the original output from
n categories to n+ 1 categories using a fitted Weibull distribution. In other words, this
approach does not change the existing training data but alters the structure of the CNN
model, thereby sidestepping the bias introduced by a particular set of noise images. We
compare the result of this openmax approach with that of the original ResNet model.
The comparison result is shown in Table A1.

We examine the result based on two questions. First, to what degree can we successfully
detect noise map images using the openmax layer? Second, how does the classification
accuracy on the existing eight categories change? For the first question, the original
ResNet model with softmax layer fails to detect any noise map images in the test dataset,
as shown in the last row of Table A1. As discussed previously, this result is expected due
to the use of a softmax layer as the output. By contrast, the ResNet model with an
openmax layer correctly detects 65% of the noise images. For the second question, the
classification accuracy of the ResNet model with the openmax layer decreases in most
categories. This result suggests that while the openmax layer helps the model to detect
noise images, it also sacrifices the performance of the model in classifying the map images
in existing categories, with some map images being incorrectly classified as noise. We also
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Table A1.: Classification accuracy of ResNet using softmax and openmax as the final
output layer respectively.

Softmax Openmax

Correct Incorrect Correct Incorrect Noise

Africa 0.730 0.270 0.350 0.000 0.650

Antarctica 0.960 0.040 0.960 0.000 0.040

Asia 0.910 0.090 0.800 0.020 0.180

Europe 1.000 0.000 1.000 0.000 0.000

Global 0.980 0.020 0.880 0.000 0.120

North America 0.460 0.540 0.400 0.050 0.550

Oceania 0.150 0.750 0.100 0.050 0.850

South America 0.930 0.070 0.520 0.020 0.460

Noise 0.000 1.000 0.650 0.350 —

experimented with AlexNet and Inception-v3 by replacing their softmax layer with an
openmax layer and obtained similar results. In sum, replacing the softmax layer with an
openmax layer enables a CNN model to detect noise images that do not belong to any
existing category. However, this new capability comes with a cost of decreased accuracy
in correctly classifying the map images in existing categories.


