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Abstract

Social media messages, such as tweets, are frequently used by people during natural disasters
to share real-time information and to report incidents. Within these messages, geographic
locations are often described. Accurate recognition and geolocation of these locations is crit-
ical for reaching those in need. This paper focuses on the first part of this process, namely
recognizing locations from social media messages. While general named entity recognition
(NER) tools are often used to recognize locations, their performance is limited due to the
various language irregularities associated with social media text, such as informal sentence
structures, inconsistent letter cases, name abbreviations, and misspellings. We present Neu-
roTPR, which is a Neuro-net ToPonym Recognition model designed specifically with these
linguistic irregularities in mind. Our approach extends a general bidirectional recurrent
neural network model with a number of features designed to address the task of location
recognition in social media messages. We also propose an automatic workflow for generating
annotated datasets from Wikipedia articles for training toponym recognition models. We
demonstrate NeuroTPR by applying it to three test datasets, including a Twitter dataset
from Hurricane Harvey, and comparing its performance with those of six baseline models.

Keywords: geoparsing, toponym recognition, spatial and textual analysis, geographic
information retrieval, GeoAI

1. Introduction

Social media messages, such as tweets, are frequently used by people during natural
disasters or other emergency situations (e.g., the Boston Marathon bombing) to share real-
time information and report incidents (Imran et al., 2015; Silverman, 2017; Yu et al., 2019).
Geographic locations are often described in these messages. Consider, for example, the fol-
lowing two tweets posted during Hurricane Harvey in 2017 (where the text of the tweets is
slightly revised for privacy protection, see (Ayers et al., 2018)): “Anyone with a boat in the
Meyerland area! A pregnant lady named Nisa is stranded near Airport blvd & station dr
#harvey”, and “Rescue: two kids are on the roof at 1010 Bohannon Rd. Please RT #Har-
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vey”. Accurately recognizing and geo-locating locations from these social media messages
are critical for reaching people in need, potentially helping to save human lives.

It is worth differentiating the geographic locations tagged to social media messages (i.e.,
geotagging) and those mentioned within the message content. Many social media platforms,
including Twitter, allow a message to be associated with the current location of the user.
However, the current location of the user is not necessarily the location of the incident,
e.g., a person may first run to a safe place before sending out a tweet. In discussing the
value of tweets for situation awareness, MacEachren et al. (2011) differentiated two types of
locations, namely tweet-from locations (i.e., geotagged locations) and tweet-about locations
(i.e., locations mentioned in tweet content). While tweet-from locations are usually in a
structured format, tweet-about locations are embedded in natural language text and can
be difficult to extract, due to the informal sentence structures of social media content, the
variations of a place’s name, noise in user-generated text, and other factors. Tweet-about
locations have become even more critical, as in June 2019, Twitter made an announcement to
remove its precise geotagging feature. Such a change is likely to lead to a further decrease in
the number of geotagged tweets (i.e. tweet-from locations), and makes the task of recognizing
and geolocating locations from the content of tweets even more important.

Geoparsing is the process of recognizing place names, or toponyms, from text and iden-
tifying their corresponding spatial footprints (Freire et al., 2011; Gelernter and Balaji, 2013;
Gritta et al., 2018c). As a research topic, geoparsing has been frequently studied in the
broader field of geographic information retrieval (GIR) (Jones and Purves, 2008; Purves
et al., 2018). A software tool developed for geoparsing is called a geoparser. There exist
many important applications of geoparsing, and one of them is extracting locations from
social media messages for disaster response (Gelernter and Mushegian, 2011; Zhang and
Gelernter, 2014; Gu et al., 2016; Inkpen et al., 2017; Wang et al., 2018).

A geoparser usually functions in two consecutive steps: toponym recognition and toponym
resolution. The first step recognizes toponyms from text without identifying their geographic
locations, and the second step resolves any possible place name ambiguity and assigns suit-
able geographic footprints. Figure 1 shows these two steps of geoparsing. This paper focuses
on the first step, namely toponym recognition.

Figure 1: The two steps of geoparsing in the context of disaster response and our focus on toponym recog-
nition.

Existing research typically uses a named entity recognition (NER) tool, such as the Stan-
ford NER (Manning et al., 2014), for toponym recognition. These off-the-shelf tools are
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designed to recognize locations, but also other kinds of named entities, like people and or-
ganizations. While in theory, these off-the-shelf NER tools thus solve the task of toponym
recognition, both the literature (Gelernter and Mushegian, 2011; Wang et al., 2018) and
our recent work (Hu et al., 2019) have shown the limited performance of the Stanford NER
on processing user-generated text that has various language irregularities such as informal
sentence structures, inconsistent upper and lower cases (e.g., “there is a HUGE fire near
camino and springbrook rd”), name abbreviations (e.g., “bsu” for “Boise State University”),
and misspellings.

In this work, we propose NeuroTPR, a Neuro-net ToPonym Recognition model for ex-
tracting locations from social media messages. NeuroTPR extends a general recurrent neural
network (RNN) model for toponym recognition with a number of enhancements to address
language irregularities in social media messages. The contributions of this paper are as
follows:

• We propose and develop NeuroTPR as a new toponym recognition model for extracting
locations from social media messages that outperforms existing approaches.

• We propose an automatic workflow for generating datasets with place name annotations
for training NeuroTPR and other toponym recognition models.

• We share the source code of NeuroTPR, the workflow for generating training data, and
the annotated test data at: https://github.com/geoai-lab/NeuroTPR.

The remainder of this paper is organized as follows. Section 2 reviews related work on
geoparsing and toponym recognition in the context of disaster response. Section 3 presents
the methodological details of NeuroTPR and an automatic workflow for generating training
data from Wikipedia articles. Section 4 presents the experiments for training and testing
NeuroTPR and discusses the experiment results. A real-world Twitter dataset from Hurri-
cane Harvey 2017 is used as one of the three test datasets for comparing NeuroTPR with
other baselines. Finally, Section 5 summarizes this work and discusses future directions.

2. Related Work

Social media messages, such as tweets, are frequently used by people in emergency sit-
uations. Crooks et al. (2013) examined the tweets sent after a 5.8 magnitude earthquake
occurred on the East Coast of the US on August 23, 2011, and found that the first tweet
arrived only 54 seconds after the event. Many studies have leveraged the real-time charac-
teristics and rich content of tweets (e.g., texts, images, and geotagged locations) to support
situational awareness and disaster response. One of the earliest examples was the work
of Starbird and Stamberger (2010), who proposed a Twitter-based hashtag syntax to help
people format their disaster-related tweets in a way that could be quickly processed by emer-
gency response organizations. Other examples include studies on tweets from the flooding
in Pakistan (Murthy and Longwell, 2013), Hurricane Sandy (Huang and Xiao, 2015), the
Boston Marathon bombing (Buntain et al., 2016), and Hurricane Irma (Yu et al., 2019).
While people can also call 911 for help during disasters, the phone calls of the victims may
not get through due to the large volume of calls and failed emergency call centers (Seethara-
man and Wells, 2017). During Hurricane Harvey, for example, National Public Radio (NPR)
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published an article with the headline “Facebook, Twitter Replace 911 Calls For Stranded
In Houston” (Silverman, 2017), which described how these social media platforms were used
by Houston residents in the flooding areas to call for help. Similarly, dedicated websites
and efforts are also sometimes created and organized during disasters to help people share
information. For example, after the 2010 Haiti earthquake, the Ushahidi platform was es-
tablished which allowed people to send short text messages about their current locations
and urgent needs (Meier, 2010). However, such services rely on word-of-mouth knowledge
for usage, compared to the already wide-spread use of social media.

Given the large number of social media messages posted during an emergency event, it is
often necessary to perform automatic information extraction on them. Geoparsing is an ef-
fective approach for automatically extracting locations from text, and a number of geoparsers
have been developed. GeoTxt, initially developed by Karimzadeh et al. (2013) and further
enhanced in their recent work (Karimzadeh et al., 2019), is a Web-based geoparser that
leverages the Stanford NER and several other NER tools for toponym recognition and uses
the GeoNames gazetteer and a set of heuristic rules for toponym resolution. TopoCluster is
a geoparser developed by DeLozier et al. (2015) which uses the Stanford NER to recognize
toponyms from text and then resolves toponyms based on the geographic profiles of the
surrounding words (the geographic profile of a word quantifies how frequently this word is
used in different geographic areas). Cartographic Location And Vicinity INdexer (CLAVIN)
is an open-source geoparser that employs the Apache OpenNLP tool or the Stanford NER
for toponym recognition and utilizes a gazetteer, fuzzy search, and heuristics for toponym
resolution. The Edinburgh Geoparser was developed by the Language Technology Group at
Edinburgh University (Alex et al., 2015). It uses their in-house natural language processing
tool, called LT-TTT2, for toponym recognition, and the toponym resolution step is based
on a gazetteer (e.g., GeoNames) and pre-defined heuristics. CamCoder is a toponym resolu-
tion method developed by Gritta et al. (2018b), which uses an integration of convolutional
neural networks, word embeddings, and geographic vector representations of place names for
toponym resolution. Gritta et al. (2018b) further converted CamCoder into a geoparser by
connecting it with the spaCy NER tool for toponym recognition. There also exist studies
that focus on the step of toponym resolution only (Overell and Rüger, 2008; Buscaldi and
Rosso, 2008; Speriosu and Baldridge, 2013; Ju et al., 2016).

For the step of toponym recognition, existing geoparsing research has often used an
off-the-shelf NER tool. The rationale in doing so is that toponym recognition is often a
sub-task of named entity recognition. Thus, one can save time and effort by using an
existing NER tool and keeping only locations, instead of developing a new model from
scratch. However, it has been shown that off-the-shelf NER tools, such as the Stanford
NER, have limited performance on informal text written by general Web users (Gelernter
and Mushegian, 2011; Wang et al., 2018; Hu et al., 2019). Acknowledging these limitations,
scholars have begun to seek improvements over these off-the-shelf models. Most recently
(in June 2019), a geoparsing competition, Toponym Resolution in Scientific Papers, was
held as one of the SemEval 2019 tasks in conjunction with the Annual Conference of the
North American Chapter of the Association for Computational Linguistics (Weissenbacher
et al., 2019). The top three winning teams all leveraged deep neural network models, such
as the Bidirectional Long Short-Term Memory (BiLSTM) model, to design their geoparsers
(Wang et al., 2019; Li et al., 2019; Yadav et al., 2019). The model that won the first place
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is DM NLP, which was developed by Wang et al. (2019) and achieved over 0.9 F-score in
the competition. While this competition demonstrated the power of deep learning models
for geoparsing, a major limitation is that the models were tested on only a single dataset
with 45 research papers. The text in these 45 research papers is well-formatted and contains
relatively simple toponyms such as the names of major cities.

In our latest work (Wang and Hu, 2019a), we systematically tested these three win-
ning deep learning based geoparsers on our benchmarking platform EUPEG (Wang and Hu,
2019b), using eight different corpora with both well-formatted (e.g., news articles) and ill-
formatted texts (e.g., tweets and uncapitalized Web text). We compared the deep learning
geoparsers (Wang et al., 2019; Li et al., 2019; Yadav et al., 2019) with the existing off-the-
shelf geoparsers discussed previously on their performance on both toponym recognition and
toponym resolution. Our experiment result suggested that: (1) deep learning based models
(such as the BiLSTM model adopted by all three winning teams) usually outperform tradi-
tional machine learning models for toponym recognition across different types of texts; but
that (2) while showing high performance on well-formatted text, these deep learning geop-
arsers performed poorly on user-generated text, in particular on data without capitalization
(i.e., the dataset of Ju2016 (Ju et al., 2016)). Our NeuroTPR model aims to address these
limitations and improve toponym recognition from social media messages.

3. Methods

3.1. Model architecture

NeuroTPR is designed based on the basic BiLSTM-CRF model proposed by Lample et al.
(2016), which achieved state-of-the-art performance on a general NER benchmarking task.
With this basic model, we add a number of improvements to develop NeuroTPR. Figure 2
provides an overview of this model.

We present NeuroTPR from bottom to top, characterizing the layers of the neural net-
work. Layer 0 contains the individual words of a tweet, which are used as the input of the
model. The next four layers represent each word as vectors using four different approaches.
Layer 1 and Layer 2 use character embeddings to model each word as a sequence of charac-
ters. The case-sensitive character embeddings in Layer 1 use different vectors to represent
the upper and lower cases of the same character, while the caseless character embeddings
in Layer 2 use the same vector to represent a character regardless of its case. Both case-
sensitive and caseless character embeddings are modeled using the BiLSTM architecture in
Figure 3. Character embeddings capture the morphological features of words which can
be useful for toponym recognition, e.g., words with certain prefixes or suffixes may have
higher probabilities of representing locations. In addition, character embeddings are good at
handling misspellings in user-generated text, since the semantics of a word are still largely
captured when a user misspells or misses a character when typing a word (e.g., typing “t”
rather than “y”, or skipping this letter completely).

Layer 3 uses pre-trained word embeddings to represent the words in a tweet. These
embeddings are pre-trained on a large set of unlabeled text, and can capture the semantics
of a word based on the other words that typically co-occur with it. Compared with character
embeddings that focus on the morphological features of a word itself, word embeddings help
determine whether a word represents a location based on the typical context within which
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Figure 2: The overall architecture of NeuroTPR.

the word is used. These pre-trained word embeddings are fixed during the training process.
Layer 4 provides linguistic features derived from the words of a tweet to help recognize
toponyms. In particular, we include two types of linguistic features: part-of-speech (POS)
tags and a type of deep contextualized word embeddings, ELMo (Peters et al., 2018). POS
tags inform the model about the type of a word, such as noun, verb, adjective, preposition,
or others. These POS tags help NeuroTPR learn the usage patterns related to locations, e.g.,
a location phrase is often used after a preposition. ELMo captures the different semantics of
a word under varied contexts. Please note that the pre-trained word embeddings in Layer 3
capture the semantics of words based on their typical usage contexts and therefore provide
static representations of words; by contrast, ELMo provides a dynamic representation for a
word by modeling the particular sentence within which the word is used.

These four layers capture four different aspects of a word, and their representation vectors
are concatenated together into a large vector to represent each input word. These vectors are
then used as the input to Layer 5, which is a BiLSTM layer consisting of two layers of LSTM
cells: one forward layer capturing information before the target word and one backward layer
capturing information after the target word. Layer 6 combines the outputs of the two LSTM
layers and feeds the combined output into a fully connected layer. Layer 7 is a CRF layer
which takes the output from the fully connected layer and performs sequence labeling. The
CRF layer uses the standard IOB model from NER research to label each word but focuses
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Figure 3: The BiLSTM architecture that models a word as a sequence of characters.

on locations. Thus, a word is annotated as either “B-LOC” (the beginning of a location
phrase), “I-LOC” (inside a location phrase), or “O” (outside a location phrase).

NeuroTPR has several design features that enhance its performance on the task of to-
ponym recognition from social media messages. First, NeuroTPR integrates both case-
sensitive and caseless character embeddings. Previous research often used case-sensitive
character embeddings only. While using different representations for upper and lower case
characters helps the model make use of case information (which can be especially helpful for
processing well-formatted text, such as news articles), this design makes the model overly
sensitive to the irregular capitalization in some user-generated text. An alternative is to
use caseless character embeddings only. However, this alternative can miss the useful in-
formation passed by many correct use of letter cases. Thus, NeuroTPR integrates both
case-sensitive and caseless character embeddings to overcome this issue. Second, NeuroTPR
uses the pre-trained word embeddings that are specifically derived from tweets. We use the
GloVe word embeddings that were trained on 2 billion tweets with 27 billion tokens and 1.2
million vocabulary (Pennington et al., 2014). These word embeddings, specifically trained
on a large tweet corpus, include many vernacular words and abbreviations used by people
in tweets. Previous geoparsing and NER models typically use word embeddings trained on
well-formatted text, such as news articles, and many vernacular words are not be covered by
those embeddings. When that happens, an embedding for a generic unknown token is usually
used for representing this vernacular word and, as a result, the actual semantics of the word
is lost. Third, compared with the basic BiLSTM-CRF model from Lample et al. (2016),
NeuroTPR adds ELMo and POS to capture the dynamic and contextualized semantics of
words and their POS types. Compared with the DM NLP model by Wang et al. (2019) from
the SemEval 2019 competition, NeuroTPR removes chunking and NER tags which tend to
be erroneous when applied to text with informal sentence structures. Besides, NeuroTPR
adds an extra layer of caseless character embedding and integrates tweet-based GloVe word
embeddings, both of which were not used in the two previous models.

3.2. Training datasets

We train NeuroTPR using two datasets. The first one is an existing and human-annotated
Twitter dataset that we obtained from the WNUT 2017 Shared Task on Novel and Emerging
Entity Recognition (Derczynski et al., 2017). This is a real Twitter dataset which contains
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toponyms, along with other types of entities, annotated by human annotators. We select 599
tweets from this dataset which contain toponyms and we keep only toponyms in the anno-
tations. The WNUT dataset, however, is small and training a deep learning model usually
requires a large amount of annotated training data. Manually generating such training data
is a labor-intensive and time-consuming process.

Within this context, we propose a workflow to automatically generate annotated data
which will be used as the second dataset for training NeuroTPR. This automatic workflow
makes use of the first paragraphs of Wikipedia articles that often contain rich annotations of
the mentioned entities in the form of hyperlinks. We generate an annotated training dataset
by extracting these first paragraphs from a Wikipedia dump and retaining only the phrases
whose hyperlinks point to articles about geographic location. In our pilot experiments, we
determined whether a hyperlink pointed to a location or not by examining whether the cor-
responding Wikipedia article was tagged with a pair of latitude and longitude coordinates,
i.e., a geotagged Wikipedia article (Hecht and Moxley, 2009). However, we soon discovered
that Wikipedia articles tagged with coordinates were not necessarily about locations. For
example, the Wikipedia article about Normandy landings1 is tagged with a pair of coordi-
nates which indicates the location of this important military event; we would typically not
consider Normandy landings as a toponym. Eventually, we found that Infobox templates
from Wikipedia on Geography and Place2 are the ideal tool for determining whether or not
a hyperlink points to a location.

We therefore developed a method to check each hyperlink to determine whether or not it
was a location using this information. Specifically, if the Infobox of the pointed Wikipedia
article was consistent with one of the geography templates, the hyperlink was kept as a
toponym annotation; otherwise, the hyperlink was removed. Since the data are generated
for training NeuroTPR on the task of processing tweets, we make the data more similar to
tweets by splitting the Wikipedia paragraphs into sentences and keeping only those within
140 characters. 140 characters are used because one of the test datasets in the later experi-
ments contains tweets from Hurricane Harvey which were collected before Twitter expanded
its length limitation to 280 characters in November 2017. One can change this setting to 280
characters in the workflow depending on the application need. We also considered an addi-
tional strategy for creating training data of random flipping in order to make the generated
training data even more similar to tweets. We develop a program that goes into each word of
the generated training data and randomly changes or removes one character of the word with
a probability of 2%, thus simulating misspelling errors often contained in user-generated text.
As will be shown in the experiments below, this random flipping strategy failed to improve
model performance. However, we gained valuable insight into model performance through
the experiments of testing this strategy, and thus will discuss it further below.

In sum, we use two datasets to train NeuroTPR. The first one, WNUT2017, is a small but
real Twitter dataset annotated by humans, and the second is a larger dataset automatically
generated from Wikipedia articles using a proposed workflow. It is worth noting that the
second dataset can be of arbitrary size since it is automatically generated. In addition, the

1https://en.wikipedia.org/wiki/Normandy landings
2https://en.wikipedia.org/wiki/Wikipedia:List of infoboxes/Geography and place
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data generated from Wikipedia articles are only used for training and are not used for any
testing experiments. We share the source code of the developed automatic workflow at:
https://github.com/geoai-lab/NeuroTPR.

4. Experiments

4.1. Test datasets, evaluation metrics, and baseline models

In a previous work, we developed a benchmarking platform called EUPEG, which is an
Extensible and Unified Platform for Evaluating Geoparsers (Wang and Hu, 2019b). EUPEG
is developed for evaluating geoparsers as complete pipelines, i.e., for both toponym recogni-
tion and toponym resolution. In this work, we will leverage some resources from EUPEG but
will focus on the step of toponym recognition only. While EUPEG provides eight annotated
corpora collected from the literature, only one corpus, namely GeoCorpora developed by
Wallgrün et al. (2018), contains social media messages (tweets). Many toponyms in Geo-
Corpora refer to large-scale geographic features, such as continents (e.g., Africa), countries
(e.g., United States and Ukraine), states (e.g., California and Alabama), and major cities
(e.g., New York City and London). Fine-grained toponyms (e.g., street names) have only
limited coverage in GeoCorpora but are often seen in tweets sent out during a disaster. We
will still use GeoCorpora as one of our test datasets, but will create another test dataset,
called Harvey2017, with 1,000 human annotated tweets derived from a large Twitter dataset
collected during a major disaster, Hurricane Harvey. Finally, we also use Ju2016 (Ju et al.,
2016) as a test dataset. Ju2016 is not a social media message dataset; it contains sentences
automatically extracted from Web pages. One special feature of Ju2016, however, is that all
characters are in lower case, i.e., it has no capitalization. Our previous experiments showed
that many geoparsers completely failed on such a dataset without capitalization (Wang and
Hu, 2019a). Therefore, although Ju2016 is not a social media dataset, it is still interesting
to see the performance of different models on it. GeoCorpora can be downloaded from the
GitHub site of its authors3, and Ju2016 can be downloaded from our GitHub site4. In the
following, we describe the process of creating the Harvey2017 dataset.

The original Hurricane Harvey Twitter dataset is available from the library repository of
North Texas University5, which was collected between 2017-08-18 and 2017-09-22. It contains
7,041,866 tweets retrieved based on a set of hashtags and keywords, such as “#Hurricane-
Harvey”, “#Harvey2017”, and “#HoustonFlood”. A manual examination of this dataset
shows that many tweets contain disaster-related information (e.g., floods) and often describe
detailed locations such as street names, road intersections, and even door number addresses.
The content of these tweets and the fact that they were posted during a major disaster make
this dataset especially suitable for testing NeuroTPR.

We use the following steps to create a manually annotated dataset with 1,000 tweets.
First, we create a regular expression with about 70 terms related to location descriptions,
such as “street”, “avenue”, “park”, “square”, “bridge”, “rd”, and “ave”. We run it against
the entire dataset and obtain a subset of 15,834 tweets that are more likely to contain

3https://github.com/geovista/GeoCorpora
4https://github.com/geoai-lab/EUPEG
5https://digital.library.unt.edu/ark:/67531/metadc993940/
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specific locations. We randomly select 1,000 tweets from this subset and manually annotate
the locations contained in them. Since some tweets from the first 1,000 batch do not contain
specific locations (e.g., a tweet may say: “My side street is now a rushing tributary.”), we
replace those tweets with others randomly selected from the rest of the subset during the
manual annotation process. Eventually, each of the 1,000 tweets in this dataset contains at
least one specific location. These location descriptions densely contained in the 1,000 tweets
provide abundant opportunities for testing the performance of a toponym recognition model.
It is worth noting, however, that a model needs to not only determine whether a location
exists in a tweet but also find out how many locations exist (many tweets contain two or
more locations) and the positions (i.e., character indices) of these locations. Nevertheless,
one could design a model that might achieve a fair performance on this particular dataset
by assuming that each tweet has at least one location. NeuroTPR does not make such an
assumption. Future work could add tweets that do not contain locations to expand this
dataset and test performance along these lines.

Annotating locations from text, however, is not a straightforward task. As discussed by
other researchers previously (Zhang and Gelernter, 2014; Wallgrün et al., 2018; Gritta et al.,
2018a), the concept of “location” can be elusive and the same phrase can be annotated as a
location or not depending on the definition adopted by a particular dataset. For example,
in the dataset of LGL, Lieberman et al. (2010) considered demonyms, such as “Canadian”
and “Australian”, as toponyms, and geo-located them to the centers of the corresponding
countries. While these demonyms have some geographic meaning broadly speaking, they
are unlikely to be considered as toponyms in some domains including geography. For this
dataset of Hurricane Harvey tweets, we annotate the following as locations:

• Administrative place names, such as neighborhoods, towns, cities, states, countries, ...

• Names of natural features, such as rivers, mountains, bayous, ...

• Names of facilities and landmarks, such as roads, bus stops, buildings, airports, ...

• Organizations that have fewer than three instances in the target region, such as “Her-
itage Park Baptist Church”, “Cypress Ridge High School”, ...

Here, the target region refers to the geographic area affected by the disaster. The following
are not considered as valid locations and therefore are not annotated:

• Demonyms, such as American, Texan, ...

• Metonymies, such as in “Washington made a decision that ...”

• General location references, such as “this building” and “that road”

• Organizations that have many instances in the target region, such as in “I’m stuck at
Walmart”

The last point is probably debatable since “Walmart” or other chain stores mentioned in
such a sentence could be considered as a location. From a disaster response perspective,
however, we argue that annotating “Walmart” in this case will probably add more noise
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than signal to the extracted locations, since all Walmarts in the target region may show
up on a map if this location is to be geo-located in a next step. This debatable issue
illustrates part of the difficulty in annotating locations from text. When using a corpus
for testing experiments, we need to consider its location definition which can directly affect
the annotated ground truth. With the above guideline for location annotation, we create
a dataset with 1,000 annotated tweets. We will primarily use this Harvey2017 dataset for
our evaluation experiments and discussion, since it better fits our interested application of
disaster response. However, GeoCorpora and Ju2016 are used as well to provide a more
comprehensive evaluation of NeuroTPR on multiple datasets.

The evaluation metrics used in the experiments are precision, recall, and F-score (Equa-
tion 1-3).

Precision “
tp

tp` fp
(1)

Recall “
tp

tp` fn
(2)

F -score “ 2 ¨
PrecisionˆRecall

Precision`Recall
(3)

Precision measures the percentage of correctly identified toponyms (true positives or tp)
among all the toponyms recognized by a model, which include both true positives and false
positives (or fp). Recall measures the percentage of correctly identified toponyms among
all the toponyms that are annotated as ground truth which include true positives and false
negatives (or fn). F-score is the harmonic mean of precision and recall. F-score is high when
both precision and recall are fairly high, and is low if either of the two is low. These metrics
have been widely used in previous studies, such as (Leidner, 2008; Lieberman et al., 2010;
Karimzadeh, 2016; Inkpen et al., 2017).

We compare NeuroTPR to three off-the-shelf tools and two deep learning based models.
For the off-the-shelf NER tools, we use the Stanford NER, the caseless Stanford NER, and
the spaCy NER, which are frequently used in geoparsing research for the step of toponym
recognition. Applying these off-the-shelf NER tools to a dataset also involves some design
choices. With the typically used 3-class Stanford NER and its caseless version, the output
contains three classes, i.e., PERSON, ORGANIZATION, LOCATION. One can choose to
keep only LOCATION in the output, or keep both LOCATION and ORGANIZATION for a
wider coverage to include schools, churches, and other similar entities in the output as well.
At first glance, it seems to be a wise decision to include ORGANIZATION in the output, since
organizations such as schools and churches are also annotated as locations in the Harvey2017
dataset. However, including ORGANIZATION does not necessarily increase the performance
of the model compared with using LOCATION alone, since there are also organizations
that should not be annotated as locations. For example, in the sentence “Donations to
the Red Cross have provided help for people impacted by Hurricane Harvey”, “Red Cross”
will be mistakenly included in the model output. A similar situation happens to the spaCy
NER whose output contains multiple classes related to geography including FACILITY (e.g.,
buildings, airports, and highways), ORG (e.g., companies, agencies, and institutions), GPE
(e.g., countries, cities, and states), and LOC (e.g., non-GPE locations, mountain ranges,
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and bodies of water). Keeping only LOC in the output will exclude other valid location
mentions (e.g., cities), while keeping all related classes will include more phrases that should
not be considered as locations. This difficult design choice highlights another problem in
directly using a general NER tool for toponym recognition. In our experiments, we test two
versions for each of the three off-the-shelf NER tools: one version has a narrow definition of
location using LOCATION or LOC only, while the other version has a broad definition of
location by including multiple classes that can be related to locations. Since the Stanford
NER offers the option to be retrained, we also test a retrained version of the Stanford NER
using the same training data as used by NeuroTPR. In addition, we test two deep learning
based toponym recognition models: the basic BiLSTM-CRF model by Lample et al. (2016)
based on which our NeuroTPR is developed, and the DM NLP model (using its toponym
recognition part only) by Wang et al. (2019) which achieved the best performance in the
2019 SemEval geoparsing competition. These two models are trained using the same training
data as used by NeuroTPR.

4.2. Experimental procedure and results

As we have two datasets to train NeuroTPR, we begin our experiments by evaluating the
effectiveness of different training strategies. Specifically, we experiment with eight different
strategies to train NeuroTPR, and their performances based on the Harvey2017 dataset are
reported in Table 1.

Table 1: The performances of NeuroTPR on Harvey2017 using different training strategies.

Training Strategy Precision Recall F-score

S1 : WNUT2017 Only 0.687 0.633 0.656

S2 : 1000 Wikipedia articles 0.551 0.392 0.458

S3 : 3000 Wikipedia articles 0.573 0.468 0.516

S4 : 5000 Wikipedia articles 0.547 0.481 0.512
S5 : 1000 Wikipedia articles +

random flipping
0.558 0.324 0.410

S6 : 3000 Wikipedia articles +
random flipping

0.566 0.359 0.439

S7 : 5000 Wikipedia articles +
random flipping

0.520 0.410 0.459

S8 : 3000 Wikipedia articles +
WNUT2017

0.787 0.678 0.728

The first strategy (S1 ) uses the WNUT2017 dataset only to train NeuroTPR. While this
is a small dataset, it can already help NeuroTPR achieve a fair performance, reaching a
F-score of 0.656. The effectiveness of WNUT2017 can be attributed to its ability to help
NeuroTPR learn the informal language structure used in tweets. From strategy S2 to S4, we
test the performance of NeuroTPR when it is trained on automatically generated Wikipedia
datasets. While our proposed workflow can generate a training dataset with an arbitrary
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size, generating a larger dataset and training the model on such a dataset cost more time. We
test the performance of NeuroTPR when it is trained on the datasets generated from 1000,
3000, and 5000 Wikipedia articles randomly selected from a Wikipedia dump. Strategies S5
to S7 use a similar idea but add random flipping to the training dataset, i.e., a character of
a word is randomly changed or removed with a probability of 2%.

Two observations are obtained from these six experiments. First, the performance of the
model does not necessarily increase with more training data. In fact, the result of S4 is worse
than that of S3 which uses fewer Wikipedia articles. The automatically generated training
data are not perfect, since some Wikipedia articles do not annotate all the toponyms men-
tioned in the text. As a result, using more Wikipedia articles may also introduce more noise
into the training data. Second, adding random flipping does not improve the performance
of the model. This result is surprising, as we expected that adding random flipping would
make the training data more similar to user-generated text and therefore to increase the
performance of the trained model.

To understand why random flipping fails, we carefully examined the training process.
We find that when simulated misspellings are present in the training data, they will all be
represented with the embedding for the unknown token, since such misspelled words do not
exist in the vocabulary of the pre-trained word embeddings. Consequently, those randomly
flipped words confuse, rather than help, the model during the training process. Meanwhile,
when misspellings do exist in the test data, they can be partially handled by the character
embeddings included in our model design. Thus, a misspelled word, such as “Californa”
in the sentence of “Leaving Texas and heading to Californa”, can still be recognized by
NeuroTPR even when it is not trained on a dataset with simulated misspellings. In the last
strategy, we use a combination of 3000 Wikipedia articles without random flipping and the
WNUT2017 dataset for training, and obtain the best precision, recall, and F-score among
all the tested strategies.

With the most effective training strategy identified, we continue our experiments by
comparing NeuroTPR with the three off-the-shelf NER tools (each has two versions), the
retrained Stanford NER, and two deep learning based models. The performances of these
models on the Harvey2017 dataset are reported in Table 2. Note that narrow location
means we only keep LOCATION or LOC in the output of the model, whereas broad location
means we keep all the entity types that are likely to contain locations (i.e., LOCATION
and ORGANIZATION for the Stanford NER, both default and caseless, and LOC, ORG,
FACILITY, and GPE for the spaCy NER).

As can be seen, the performances of the four off-the-shelf Stanford NER models and
the retrained Stanford NER dominate spaCy NER. Particularly, the default Stanford NER
with LOCATION only (i.e., narrow location) achieves the highest precision among all the
models. This performance is impressive and demonstrates the effectiveness of this classic
NER tool. However, this Stanford NER also has a low recall of 0.399 which suggests many
correct locations are not recognized. If we put this low recall in the context of disaster
response, this result suggests that applying an off-the-shelf Stanford NER to the posted
tweets will miss over 60% of valid location mentions. A closer examination of the results
of this Stanford NER shows that most of the correctly recognized toponyms are city and
state names, such as Houston and Texas, while many fine-grained toponyms, such as street
names, school names, and church names are missed. However, these fine-grained toponyms
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Table 2: The performances of different tools and models on the Harvey2017 dataset.

Model Precision Recall F-score

Stanford NER (narrow location) 0.828 0.399 0.539

Stanford NER (broad location) 0.729 0.440 0.548

Retrained Stanford NER 0.604 0.410 0.489
Caseless Stanford NER

(narrow location)
0.803 0.320 0.458

Caseless Stanford NER
(broad location)

0.721 0.336 0.460

spaCy NER (narrow location) 0.575 0.024 0.046

spaCy NER (broad location) 0.461 0.304 0.366
Basic BiLSTM+CRF
(Lample et al., 2016)

0.703 0.600 0.649

DM NLP (toponym recognition)
(Wang et al., 2019)

0.729 0.680 0.703

NeuroTPR 0.787 0.678 0.728

are critical for locating the people who may need help during and after disasters. Including
both LOCATION and ORGANIZATION in the output of the Stanford NER (i.e., broad
location) increases the recall score but decreases the precision. Interestingly, the retrained
Stanford NER has a worse performance compared toa the default Stanford NER (note that
the retrained Stanford NER is still case sensitive). The default Stanford NER was trained
on a variety of annotated corpora including CoNLL 2003 training set, MUC 6 and MUC 7
training data sets, ACE 2002, and their in-house data. This training data difference may
have contributed to the better performance of the default Stanford NER. The two versions
of the caseless Stanford NER achieve lower performance than the default versions as well.
While there exist some irregular capitalization in tweets, many of them do use standard
upper and lower cases. Since the caseless Stanford NER models do not use letter case as an
input feature, they miss the useful information contained in many correct capitalization.

The two deep learning models are more challenging baselines, and DM NLP achieves the
best score for recall. However, NeuroTPR shows the best performance overall as demon-
strated by its highest F-score. Compared with the basic BiLSTM+CRF model, NeuroTPR
shows better performances in all three metrics which demonstrate the value of our improved
designs, including the double layers of character embeddings, tweet-based GloVe, and ELMo.
Compared with DM NLP, NeuroTPR shows a higher precision and F-score and a similar re-
call.

We further look into the output of NeuroTPR to understand the errors. We find three
major types of errors:

• First, NeuroTPR seems to often miss interstate highway names, such as “I-45” in a
tweet like “Traffic is fluid on I-45.” Interestingly, the Stanford NER seems to make the
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same mistakes as well. Meanwhile, interstate highway names are an important type of
place names in the United States, and are likely to be used by people in future disasters
to describe locations.

• Second, in many cases, NeuroTPR recognizes part of a complete street name. For
example, it can recognize “18th Rd” in “E 18th Rd” while missing the “E”. Such a
result is considered as both a false positive and a false negative in the scores reported
in Table 2, since we require exact matching between the extracted road names and the
annotation. If we allow inexact matching, this example could be considered as correct.

• Third, NeuroTPR fails to recognize some toponyms when they show up at positions
very different from their typical positions in a regular sentence. For example, some
tweets simply append one or multiple city names (e.g, “Port Arthur”) at the end of
the text body, probably for the purpose of textually tagging the affected geographic
regions. These toponyms are sometimes missed.

One simple way that can possibly address the first issue is to use an extra regular expres-
sion, such as “I-\d+”, to identify interstate highway names and include them in the model
output. A similar strategy could be applied to the second issue. For example, NeuroTPR
can be first used to identify street names, and then a regular expression is used to check
whether an indication of cardinal directions is used as a prefix or suffix of the street names.
However, those strategies could also introduce false positives or new errors, and need to be
empirically tested via experiments.

It is also worth noting that NeuroTPR is not trained using any of the Hurricane Harvey
tweets. While WNUT2017 is also a tweet-based dataset, its content is very different from
the Harvey2017 dataset that focuses on seeking help or sharing location-based disaster in-
formation. Training NeuroTPR using some tweets from the large Hurricane Harvey dataset
is likely to increase the performance of the model on the Harvey2017 dataset. We test the
possibility of further training NeuroTPR using 50 tweets from the Hurricane Harvey dataset
(in addition to the existing training data) but outside of the 1,000 test tweets, and obtain
a performance of 0.832 precision, 0.843 recall, and 0.837 F-score. Training the model using
the tweets from a specific event, however, could lead to overfitting. Besides, we do not al-
ways have the necessary data to retrain a model. Imran et al. (2016) discussed a strategy of
employing the Stand-By-Task-Force (SBTF) volunteers to annotate the purposes of social
media messages (e.g., donation needs and caution and advice) during a crisis event in real-
time and then using the annotated data to train machine learning models rapidly. A similar
idea could be adopted to obtain annotated data for training a toponym recognition model
for a particular disaster.

We also test the performances of the baseline models and NeuroTPR on GeoCorpora,
and the results are reported in Table 3. GeoCorpora considers administrative places, natural
features, facilities, and organizations (such as schools and churches) as locations, and does not
include demonyms or metonymies. We see a performance increase of most tested models. As
discussed previously, a majority of the toponyms in GeoCorpora are the names of countries,
states, and cities. Thus, GeoCorpora can be considered as an easier test dataset compared
with Harvey2017. However, a similar pattern of the model performances is observed, with
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Table 3: The performances of different tools and models on the GeoCorpora dataset.

Model Precision Recall F-score

Stanford NER (narrow location) 0.899 0.526 0.664

Stanford NER (broad location) 0.751 0.553 0.637

Retrained Stanford NER 0.590 0.364 0.450
Caseless Stanford NER

(narrow location)
0.898 0.487 0.631

Caseless Stanford NER
(broad location)

0.774 0.503 0.610

spaCy NER (narrow location) 0.503 0.037 0.069

spaCy NER (broad location) 0.579 0.453 0.508
Basic BiLSTM+CRF
(Lample et al., 2016)

0.631 0.527 0.574

DM NLP (toponym recognition)
(Wang et al., 2019)

0.797 0.650 0.715

NeuroTPR 0.800 0.761 0.780

the default Stanford NER achieving the top precision and NeuroTPR achieves the best
performance overall.

Lastly, we test the performances of the models on the Ju2016 dataset. The text records
are from Web pages and do not have capitalization. Due to the data generation process,
Ju2016 does not annotate all toponyms contained in the text. Therefore, the performances
of the models can only be measured using the metric of accuracy which is calculated using
the equation below.

Accuracy “
|AnnotatedXRecognized|

|Annotated|
(4)

where Annotated represents the set of toponyms in the ground truth, and Recognized rep-
resents the set of toponyms recognized by a model from the text. Note that accuracy is a
typical metric for evaluating geoparsing models when the test corpus does not have complete
annotation of all the toponyms. It has been used in previous research, such as (Gelernter and
Mushegian, 2011; Karimzadeh, 2016; Gritta et al., 2018c). The performances of the models
on Ju2016 are reported in Table 4. As can be seen, some off-the-shelf NER tools that rely
on proper letter case, such as the default Stanford NER and the spaCy NER, fail on this
dataset without capitalization. This result is consistent with our previous research (Wang
and Hu, 2019a) and echos the point made by Gritta et al. (2018c), namely some geoparsers
do not work on text without capitalization. Interestingly, DM NLP, which almost failed on
Ju2016 in our previous study (Wang and Hu, 2019a), achieves a fair performance in this
experiment. To understand the reason, we examine the experimental design in this and
our previous studies. The DM NLP in our previous experiment was trained on the CoNLL
2003 dataset whose annotations contain only well-formatted texts with proper capitalization
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Table 4: The performances of different tools and models on the Ju2016 dataset.

Model Accuracy

Stanford NER (narrow location) 0.010

Stanford NER (broad location) 0.012

Retrained Stanford NER 0.078
Caseless Stanford NER

(narrow location)
0.460

Caseless Stanford NER
(broad location)

0.514

spaCy NER (narrow location) 0.000

spaCy NER (broad location) 0.006
Basic BiLSTM+CRF
(Lample et al., 2016)

0.595

DM NLP (toponym recognition)
(Wang et al., 2019)

0.723

NeuroTPR 0.821

from news articles. The DM NLP in this experiment is trained on WNUT2017+Wikipedia
3000, and WNUT2017 data contains some training instances without proper capitalization.
With components such as character embeddings and contextualized word embeddings, a deep
learning model like DM NLP seems to quickly adapt to the used training data. However,
the Stanford NER retrained using the same data is still case sensitive and largely fail on
Ju2016. This result suggests that deep learning models may have a better ability in adapting
to training data than traditional machine learning models with handcrafted input features.

5. Conclusions and Future Work

Social media messages, such as tweets, have been frequently used by people during dis-
asters to share information and seek help. The locations described in these messages are
critical for first responders to reach the people in need. This paper has presented Neu-
roTPR, a Neuro-net ToPonym Recognition model for extracting locations from social media
messages. A major advantage of NeuroTPR is its ability to recognize many (fine-grained)
toponyms that are otherwise missed by off-the-shelf NER tools commonly used for toponym
recognition. For example, compared with the default Stanford NER with only LOCATION in
the output, NeuroTPR can correctly recognized about 70% more toponyms according to our
experimental results. NeuroTPR is designed based on a general BiLSTM-CRF architecture,
and includes a number of improved designs, such as caseless and case-sensitive character em-
beddings, tweet-based word embeddings, and contextualized word embeddings, for enhancing
its performance on toponym recognition from social media messages. We train NeuroTPR
using an existing human-annotated Twitter dataset and a Wikipedia-based dataset automat-
ically generated using a developed workflow. We test different training strategies and find

17



that a combination of the human-annotated tweets and automatically generated data yields
the best performance. Evaluation experiments based on three test datasets, namely Har-
vey2017, GeoCorpora, and Ju2016, demonstrate the improved performance of NeuroTPR in
comparison with three off-the-shelf NER tools, one retrained NER tool, and two deep learn-
ing models. We share the source code of NeuroTPR, the automatic workflow for generating
training data, and the Harvey2017 dataset to support future research.

Several directions could be pursued to expand this research. First, toponym recognition
is only the first step of geoparsing, and we see great promise in integrating NeuroTPR
with a toponym resolution model to develop a complete geoparser. A number of toponym
resolution models already exist and are discussed in this paper, such as (Overell and Rüger,
2008; Ju et al., 2016; DeLozier et al., 2015; Gritta et al., 2018b). However, these toponym
resolution models mainly focus on cities, states, countries, or other large-scale toponyms
rather than fine-grained locations such as street names. Further, some street names are highly
ambiguous, e.g., there are thousands of “Main Street” in the US, and this high ambiguity can
make the problem of toponym resolution more complex. For applications to disaster response,
the complexity of this problem can be largely reduced by focusing on the disaster affected
area and using a local gazetteer. Thus, instead of performing place name disambiguation
on a street name with thousands of instances throughout the world, the model may only
need to differentiate among two or three streets for a name in the local area, and may even
not need to perform disambiguation at all. Second, we can further enhance the performance
of NeuroTPR by testing other similar model architectures. Given the flexibility of deep
neural networks, we can add more layers, change the number of neurons, try new activation
functions, and test other hyperparameter combinations. Evolutionary algorithms could be
employed in this area to help identify a better model architecture. Third, existing geoparsers
often geo-locate a toponym to a single point while more detailed spatial footprints, such as
lines and polygons, are needed for applications such as disaster response. For a sentence like
“major flooding along Clay Rd”, a line of the road is probably a better representation than a
point at the middle of the street. One factor causing this limited spatial representation is the
use of the GeoNames gazetteer in most geoparsers, which contains only point-based locations.
Other geographic datasets and methods could be explored to provide more detailed spatial
footprints for the toponyms recognized from social media messages.
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