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Abstract: 

Urban road networks are fundamental transportation infrastructures in daily life and essential in 
digital maps to support vehicle routing and navigation. Traditional methods of map vector data 
generation based on surveyor’s field work and map digitalization are costly and have a long update 
period. In the Big Data age, large-scale GPS-enabled taxi trajectories and high-volume ride-
sharing datasets become increasingly available. These datasets provide high-resolution 
spatiotemporal information about urban traffic along road networks. In this study, we present a 
novel geospatial-big-data-driven framework that includes trajectory compression, clustering, and 
vectorization to automatically generate urban road geometric information. A case study is 
conducted using a large-scale DiDi ride-sharing GPS dataset in the city of Chengdu in China. We 
compare the results of our automatic extraction method with the road layer downloaded from 
OpenStreetMap. We measure the quality and demonstrate the effectiveness of our road extraction 
method regarding accuracy, spatial coverage and connectivity. The proposed framework shows a 
good potential to update fundamental road transportation information for smart-city development 
and intelligent transportation management using geospatial big data.    

 

1 Introduction 

Increasingly, mobile Internet, ubiquitous sensors (Hancke & Hancke Jr. 2013) and growing 
Volunteering Geographic Information (VGI) (Goodchild 2007) altogether boost the construction 
of transportation information infrastructures (Shaw 2010). Urban road networks, as the important 
carriers of transportation in cities, provide basic support for human & goods transportation and 
various Location-Based Services (LBS) such as vehicle route planning and navigation, which are 
the keys to smart transportation. However, how to build and update the road network in a rapid 
and cost-effective way still remains to be a challenging problem.  

Traditional methods such as field surveying and map digitalization are usually costly and 
cannot produce up-to-date urban road networks in time (Tao 2000). With the rapid development 
of information and communication technologies (ICTs) and positioning technologies such as the 
Global Positioning System (GPS), huge amounts of vehicle movement trajectory data have been 



 

accumulated (Liu et al. 2012). By leveraging these massive GPS trajectories, automatic 
construction and updates to road networks can be achieved in near real-time (Li et al. 2012). 
Although the idea for the extraction of urban road networks from GPS trajectory data is intuitive, 
there is still a considerable gap between the raw GPS traces and the road network structure. On the 
one hand, the GPS trajectories have non-negligible errors due to the inherent noise in GPS, which 
makes it difficult to distinguish two closely located road segments in some cases (Cao and Krumm 
2009). On the other hand, complex urban environment such as “urban canyon” often leads to the 
deterioration in the GPS precision, making the trajectories less accurate to represent the road 
segments. In addition, the diversity and complexity of the road network structure in some places 
(e.g., roundabouts, parking lots) also cause challenges for road network extraction from raw GPS 
trajectories. Besides the GPS precision and the complex road network structure, the preprocessing 
of trajectory data is another challenge. A large proportion of the GPS data on straight road 
segments are redundant since fewer points are already enough to reconstruct the linear road 
segments, whereas the curved roads required more points. Also, when there is traffic congestion, 
more redundant data (e.g., stay points) will be produced (Zheng 2015). These situations may cause 
high computational costs and limit the road network extraction efficiency. In addition, trajectory 
outliers (i.e., anomalies) will make it non-trivial to reconstruct the road network and need to be 
addressed during the preprocessing step (Zheng 2015; Wang et al. 2019). 

To this end, in this chapter, we focus on the trajectory sampling, compression, and clustering 
techniques to update road geometry information with regards to the spatial coverage and 
topological connectivity. We conduct a literature review in the following section and then propose 
a geospatial-big-data-driven framework to achieve an automatic road network extraction. 
Specifically, we first introduce a trajectory compression approach to reduce redundant trajectory 
data to avoid the unnecessary computational cost. Then we present an anisotropic density-based 
trajectory clustering with noise (ADCN) algorithm (Mai et al. 2018) for identifying the trajectory 
points on the road segments, and finally a kernel density estimation and vectorization approach is 
utilized for road network extraction. 

2 Literature Review 

Existing literature on road network extraction methods can be classified into two categories: 
density-based approaches and cluster-based approaches.  

2.1 Density-based approaches 

The first category mainly relies on density estimation and raster processing techniques. It 
converts trajectory data into raster data based on density and extracts the road network using 
morphological methods (Davies and Beresford 2006; Wu et al. 2007; Shi et al 2009; Zhao et al. 
2011; Biagioni and Eriksson 2012; Jiang et al. 2012; Wang et al. 2015; Kuntzsch et al. 2016; Tang 
et al. 2017). For example, Davies and Beresford (2006) first generated a 2D histogram based on 
the GPS trajectories, then applied a global density threshold on the cells to find potential road areas, 
and finally computed road centerlines based on the Voronoi graph. Shi et al. (2009) converted 
vehicle GPS trajectories into a road network bitmap, then compute the road network skeleton on 
the bitmap, and finally extract the vector road network map data from the skeleton. Biagioni and 



 

Eriksson (2012) generated road network skeleton based on a kernel-density method and use a map-
matching method to achieve topology reconstruction. Kuntzsch et al. (2016) formulated an explicit 
intersection model which integrated consistency measurements with the raw trajectory data to 
better perform geometry and topology reconstruction of the network; Tang et al. (2017) employed 
Delaunay triangulation with the trajectory stream fusion to improve the map generation accuracy. 
However, the difference in trajectory density has a great influence on the extraction effect, which 
could make these methods unreliable in cases with heterogenous trajectory density.  

2.2 Cluster-based approaches 

The second category adopted clustering methods to generate road networks (Edelkamp et al. 
2003; Lee et al. 2007; Worrall et al. 2007; Cao and Krumm 2009; Wang et al. 2015; Aronov et al. 
2016; Stanojevic et al. 2018). Trajectory clustering is usually used to find representative 
trajectories shared by different objects such as individuals or vehicles (Zheng 2015). For example, 
Gaffney and Smyth (1999) and Cadez et al. (2000) used a regression mixture model and an 
Expectation-Maximization (EM) model to cluster trajectories according to the overall distance 
between two trajectories. Lee et al. (2007) proposed TRACLUS, a modified density-based 
trajectory clustering algorithm for grouping close trajectory line segments into clusters, which is 
based on the original point-based DBSCAN algorithm. Li et al. (2010) further introduced an 
incremental clustering algorithm that reduces the computational and storage cost. In practice, 
trajectory clustering can be naturally used for road network extraction. Edelkamp et al. (2003) 
applied the K-means algorithm to cluster the trajectories and then fit the road centerline with the 
spline curve. This approach is suitable for data with small density difference, low noise, and high 
frequency sampling. Worrall et al. (2007) used clustering to extract the skeleton points of the road 
network and used the least squares regression method to connect the skeleton points to generate 
the road network. Cao and Krumm (2009) clarified the GPS traces using simulations of physical 
forces among the traces, and then merged the clarified traces into a graph representation of the 
road network structure. Wang et al. (2015) determined a proper circle boundary to cluster trajectory 
data into intersections and used the core points to build the road networks. Stanojevic et al. (2018) 
formulated the road network generation task as a network alignment optimization task and 
proposed an offline algorithm that clustered GPS points for graph construction as well as an online 
algorithm that can create and update the road network. However, the trajectory points on the road 
networks include linear features with a continuously changing density which makes current 
clustering methods tend to either create an increasing number of small clusters or add noise points 
into large clusters. Therefore, incorporating directional information into clustering methods has 
become an efficient way to cluster anisotropic distributed points and enhance extraction 
performance (Mai et al. 2018). 

3 Methodology 

In this section, we present the details of our road map generation method using GPS 
trajectories. As shown in Figure 1, the trajectory big data processing workflow can be divided into 
the following steps. First, we utilized a trajectory compression approach to simplify the trajectory 
data and reduce unnecessary computational cost. Second, we applied the Anisotropic Density-
based Clustering with Noise (ADCN) algorithm (Mai et al. 2018) to identify the trajectory points 



 

that were along the road networks with high confidence. Third, a kernel density estimation (KDE) 
approach was used to generate a continuous surface. Fourth, high-density areas were selected as 
candidates to further extract the road centerlines using thinning and vectorization operators. Finally, 
the extracted road network connectivity should be evaluated.  

 
Figure 1. The trajectory big data processing workflow in this study. 

3.1 Trajectory compression 

With the rapid development of ICT technologies and positioning devices, the spatiotemporal 
resolution of trajectory data has unprecedentedly increased. However, large amount of trajectory 
data lead to high computational costs and a large storage space is necessary to support the data 
processing and management. With regards to road network extraction, it is straightforward to 
reconstruct the road segments as long as the trajectory points at the intersections can be obtained 
and then connected. Thus, a trajectory compression method was applied to simplify the trajectory 
data points and improve extraction efficiency. 

The main purpose of trajectory compression in road network extraction is to maintain the 
shape of the trajectories. Several popular algorithms for line simplification include Douglas-
Peucker algorithm (Douglas & Peucker 1973), Reumann-Witkam algorithm (Reumann & Witkam 
1974), Lang simplification (Lang 1969), Opheim simplification (Opheim 1982), etc. The 
evaluation and comparison of these line simplification algorithms for vector generalization were 
conducted by Shi & Cheung (2006). McMaster (1989) proposed a conceptual model including a 
sequential set of five procedures for processing linear data with focuses on geometric 
simplification and smoothing. In our method, we applied the widely used DP algorithm for 
trajectory simplification. A graphic illustration of the DP algorithm is shown in Figure 2. To 
simplify the trajectory, we first mark the first point and the last point as endpoints and added them 
to the reserved point set. Then, the point that is furthest from the line segment with the endpoints 
is found, and the distance between the point and the line segment is calculated. If the distance is 
larger than a compression threshold α,  the point is marked as an endpoint and added to the reserved 
point set (e.g. P4 in in Figure 2(b) and P5 in Figure 2(c)). Otherwise, the points between the endpoints 
would be discarded (e.g. P2 and P3 in Figure 2(c)). The same process is iteratively performed until 
all the trajectory points are marked as an endpoint or discarded (Figure 2(d)). Finally, the points in 
the reserved point set are sorted according to the original trajectory sequence and linked to generate 
the compressed trajectory. 



 

 
Figure 2. Illustration of the Douglas-Peucker trajectory compression algorithm. 

3.2 Identification of the trajectory points along the road 

Density-based clustering algorithms such as DBSCAN have been widely used for spatial 
knowledge discovery such as the detection of urban areas of interest (Hu et al. 2015) and vague 
cognitive regions (Gao et al. 2017). The DBSCAN algorithm offers several key advantages 
compared with other clustering algorithms such as K-Means. DBSCAN can discover clusters with 
arbitrary shapes, are robust to noise, and do not require prior knowledge (Ester et al. 1996). 
However, the trajectory points demonstrate clear anisotropic spatial processes, which makes these 
methods tend to either create an increasing number of small clusters or add noise points into large 
clusters. Therefore, in this section, we apply a novel anisotropic density-based clustering algorithm 
with noise (ADCN) (Mai et al. 2018) to cluster anisotropic points for identifying the trajectory 
points along the roads1. 

3.2.1 Density-based spatial clustering of applications with noise (DBSCAN) 

The used ADCN algorithm was modified based on the DBSCAN algorithm. Thus, before we 
describe the ADCN algorithm in detail, we first introduce some fundamental concepts of the 
DBSCAN algorithm (Ester et al. 1996). The key idea of the DBSCAN algorithm is that: given a 
set of points, it groups nearby points (i.e., the points in high-density areas) together and marks the 
points in low-density areas as outliers. In order to group the points based on the density, the Eps-
neighborhood of a point is defined (see Definition 1). 

                                                             
1 The Python implementation of the ADCN algorithm can be found at: https://github.com/gissong/ADCN 
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Definition 1 (Eps-neighborhood of a point): The Eps-neighborhood 𝑁"#$(𝑝') of point 𝑝' in 
a dataset D is defined as all the points within the scan circle centered at 𝑝' with a radius Eps, which 
is expressed as follows: 

𝑁"#$(𝑝') = {𝑝+(𝑥+, 𝑦+) ∈ 𝐷|𝑑𝑖𝑠𝑡(𝑝', 𝑝+) ≤ 𝐸𝑝𝑠} 

where 𝑑𝑖𝑠𝑡(𝑝', 𝑝+) is the distance between point 𝑝' and point 𝑝+. 

There are two kinds of points in a cluster: core points (i.e., points inside of the cluster) and 
border points (i.e., points on the border of the cluster). One intuition is that for each point of a 
cluster, an Eps-neighborhood should contain at least a minimum number of points (MinPts). 
However, an Eps-neighborhood of a border point usually contains much fewer points than an Eps-
neighborhood of a core point, and it is hard to choose the representative MinPts for all points. Thus, 
DBSCAN introduces three basic concepts: directly density-reachable, density-reachable and 
density-connected (see Definition 2-4). 

Definition 2 (directly density-reachable): A point 𝑝 is directly density-reachable from a point 
𝑞 wrt. Eps and MinPts if: 

1. p ∈ 𝑁"#$(q) and 

2. |𝑁"#$(q)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 (core point condition). 

Definition 3 (density-reachable): A point 𝑝 is density-reachable from a point 𝑞 wrt. Eps and 
MinPts if there is a chain of points 𝑝@, … , 𝑝B, 𝑝@ = 𝑞, 𝑝B = 𝑝 such that 𝑝'C@ is directly density-
reachable from 𝑝'. 

Definition 4 (density-connected): A point 𝑝 is density-connected to a point 𝑞 wrt. Eps and 
MinPts if there is a point 𝑂 such that 𝑝 and 𝑞 are density-reachable from 𝑂 wrt. Eps and MinPts. 

Figure 2 illustrates core points, border points, density-reachability and density-connectivity 
in DBSCAN. These definitions can be used to further define the density-based notion of a cluster 
or a noise in DBSCAN. Specifically, the core points and border points are grouped into clustered 
points while the points that don’t belong to any cluster are the noise points (as shown in Figure 3). 

 



 

 
Figure 3. Illustration of core points, border points, density-reachability and density-connectivity in the 

DBSCAN algorithm. 

 
Figure 4. Illustration of core points, border points, and noise points in the DBSCAN algorithm. 

3.2.2 Anisotropic perspective on local point density 

One key consideration in the ADCN algorithm is the anisotropic perspective on local point 
density in different directions. Without predefined direction information from spatial point datasets, 
one has to compute the local major direction for each point based on the spatial distribution of 



 

neighboring points. The standard deviation ellipse (SDE) (Yuill, 1971) is a suitable method to get 
the major direction of a point set. Given n points, the SDE constructs an ellipse to represent the 
orientation and arrangement of these points. The center of this ellipse is defined as the geometric 
center of these n points and is calculated as: 

𝑋F = ∑ 𝑥'B
'H@ 𝑛I ,					𝑌F = ∑ 𝑦'B

'H@ 𝑛I  

The coordinates (𝑥',𝑦') of each point are normalized to the deviation from the mean center point: 

𝑥LM = 𝑥' − 𝑋F, 𝑦LM = 𝑦' − 𝑌F 

Thus, the semi-major axes  𝜎P  and the semi-minor axes 𝜎Q of SDE are calculated as: 

𝜎P = R∑ (B
'H@ 𝑥LM cos 𝜃 + 𝑦LM sin 𝜃)Z 𝑛I , 𝜎Q = R∑ (B

'H@ 𝑦LM cos 𝜃 − 𝑥LM sin 𝜃)Z 𝑛I  

where 𝜃 is the rotation angle and the SDE will be further used as the search polygon for clustering 
neighboring points (Mai et al. 2018). 

3.2.3 Anisotropic density-based clusters with noise (ADCN) algorithm 

In order to introduce an anisotropic perspective to density-based clustering algorithms, we 
have to revise some definitions. First, the original Eps-neighborhood of a point in a dataset D is 
defined by DBSCAN, as given in Definition 1. Such a scan circle results in an isotropic perspective 
on clustering. However, an anisotropic assumption will be more appropriate for trajectory points 
along the roads. Intuitively, in order to introduce the anisotropic perspective into DBSCAN, we 
can employ a scan ellipse instead of a circle to define the Eps-neighborhood of each point. Before 
that, we defined a set of points around a point to derive the scan ellipse; 

Definition 5 (Search-neighborhood of a point): The kth nearest neighbor 𝐾𝑁𝑁(𝑝') of point 
𝑝'. Here 𝑘 = 𝑀𝑖𝑛𝑃𝑡𝑠 and 𝐾𝑁𝑁(𝑝') does not include 𝑝' itself. 

After determining the search-neighborhood of a point, it is possible to define the Eps-ellipse-
neighborhood region (see Definition 6) and the Eps-ellipse-neighborhood (see Definition 7) of 
each point. 

Definition 6 (Eps-ellipse-neighborhood region of a point): An ellipse 𝐸𝑅' is called an Eps-
ellipse-neighborhood region of a point 𝑝' if: 

1. Ellipse 𝐸𝑅' is centered at point 𝑝'. 

2. Ellipse 𝐸𝑅' is scaled from the standard deviation ellipse 𝑆𝐷𝐸' computed from the search-
neighborhood 𝑆(𝑝)' of point 𝑝'. 

3. _`ab
c

_`de
c = _`ab

_`de
 where 𝜎fgPh , 𝜎f'Bh , 𝜎fgP, 𝜎f'Bare the length of the semi-long and semi-short 

axes of ellipse 𝐸𝑅' and ellipse 𝑆𝐷𝐸'. 

4. 𝐴𝑟𝑒𝑎(𝐸𝑅') = π𝐸𝑝𝑠Z. 



 

According to Definition 6, the Eps-ellipse-neighborhood region of a point is computed based 
on the search-neighborhood of a point. Each point should have a unique MinPts, as long as the 
search-neighborhood of the current point has at least two points for the computation of the standard 
deviation ellipse. 

Definition 7 (Eps-ellipse-neighborhood of a point): An Eps-ellipse-neighborhood 𝐸𝑁"#$(𝑝') 
of point 𝑝' is defined as all the points inside the ellipse 𝐸𝑅', which can be expressed as: 

𝐸𝑁"#$(𝑝') = {𝑝+(𝑥+, 𝑦+) ∈ 𝐷|
no𝑦+ − 𝑦'p sin𝜃fgP + o𝑥+ − 𝑥'pcos𝜃fgPq

Z

𝑎Z +
no𝑦+ − 𝑦'pcos𝜃fgP − o𝑥+ − 𝑥'p sin 𝜃fgPq

Z

𝑏Z ≤ 1} 

 

Equipped with Definition 1 and Definitions 5-7, we can introduce the anisotropic perspective 
to density-based clustering algorithms. The definitions of directly density reachable, density 
reachable, cluster and noise in ADCN are similar to DBSCAN, which will not be repeated here. 
Figure 5 illustrates the related definitions for ADCN. The red point in the figure represents current 
center point. The blue points indicate the search-neighborhood of the corresponding center point 
according to Definition 5. The green ellipse and the green cross stand for the standard deviation 
ellipse constructed from the corresponding search-neighborhood and the center point. The red 
ellipse is the scale-transformed Eps-ellipse-neighborhood region according to Definition 6, 
whereas the dashed-line circle indicates a traditional scan circle in DBSCAN. As can be seen in 
Figure 5, ADCN could exclude the point to the left of the linear bridge pattern in the clustering 
process, whereas DBSCAN still includes it. 

 
Figure 5. Illustration of the ADCN algorithm (Mai et al. 2018). 



 

3.2.4 ADCN algorithm in road network extraction 

The abovementioned ADCN algorithm takes the same parameters (MinPts and Eps) as the 
DBSCAN algorithm which must be decided before clustering. This is for good reasons, as the 
proper selection of DBSCAN parameters has been well studied, and ADCN can easily replace 
DBSCAN without any changes to established workflows.  

The ADCN method starts with an arbitrary point 𝑝' in a point dataset D and discovers all the 
core points which are density reachable from point 𝑝' along the major direction. The result of the 
points in the clusters will be regarded as the trajectory points on the road. In order to take care of 
situations where all points of the search-neighborhood 𝑆(𝑝') of point 𝑝' are strictly on the same 
line, the short axis of the Eps-ellipse-neighborhood region 𝐸𝑅' becomes zero, and its long axis 
becomes infinity. This means that 𝐸𝑁"#$(𝑝')  is reduced to a straight line. The process of 
constructing the Eps-ellipse-neighborhood 𝐸𝑁"#$(𝑝') of point 𝑝' becomes a point-on-line query. 
Furthermore, the ADCN method uses a kth nearest neighborhood of point 𝑝'  as the search-
neighborhood. Here, the center point 𝑝' will not be included in its kth nearest neighborhood. The 
runtimes of ADCN are heavily dominated by the search-neighborhood query which is executed on 
each point. Hence, the time complexities of ADCN, DBSCAN, and OPTICS are	𝑂(𝑛Z) without a 
spatial index and 𝑂(𝑛	𝑙𝑜𝑔	𝑛)otherwise (Kolatch 2001; Mai et al. 2018). 

3.3 Road network generation 

3.3.1 Road density surface generation 

After identifying the compressed and clustered GPS trajectory points on the roads, the kernel 
density estimation (KDE) is introduced to fit a smooth surface. To fit the surface, we used 
30m*30m square grid cells to divide the space and calculated the trajectory point density of each 
cell. Let 𝑑@, 𝑑Z, . . . , 𝑑B be a given set of trajectory point densities. The kernel density estimator is 
defined as: 

𝑓y(z) =
1
𝑛ℎz|𝐾(

𝑑 − 𝑑'
ℎ )

B

'H@

 

where 𝑛  is the number of density sets, ℎ  denotes the bandwidth parameter, and 𝐾  is a kernel 
function. The kernel surface value is highest at the location of the center and decreases with 
increasing distance from the center until reaching zero at the search radius. The density at each 
grid cell is calculated by adding the weighted values under the kernel surface where it overlays the 
raster cell center. The kernel function used in this work is based on the quartic kernel function 
(Silverman 1986) described as follows: 

𝐾(z) = }3𝜋
�@(1 − 𝑑�𝑑)Z			𝑖𝑓	𝑑�𝑑 < 1

0																															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 



 

 
Figure 6. A 3D Visualization of the selected quartic kernel function. The vertical axis represents the 

derived K function value.  

Figure 6 shows a 3D plot of the selected quartic kernel function. Note that there are two 
reasons we choose the quartic kernel function. First, the quartic kernel function’s resulted density 
estimates have higher differentiability properties. Second, it can be calculated more quickly than 
the gaussian kernel, which is suitable for massive-scale trajectory points with fine spatial 
resolution. 

3.3.2 Collapse surface to centerline 

After the previous steps, the areas whose density is above a threshold β are selected as the 
candidates. In this step, the main purpose is to extract the centerline of the candidate areas while 
keeping the road network topology. The thinning operator proposed by Yuan et al. (2012) was 
performed to remove certain grid cells from the candidate areas. For a given grid cell in the 
candidate area, whether it should be removed depends on its 8-neighboring cells. This method first 
divided the binary image (i.e., is a road pixel or not) into two disjointed subfields in a checkerboard 
pattern. Then, iterations were performed to remove redundant neighboring cells. The algorithm 
ensured that the connectivity of the cells was preserved when a cell was deleted. A combination 
of the thinning operator and the raster-to-vector operation converted the KDE surface of 
compressed trajectories into road centerlines. The quality measures of the extracted road networks 
including accuracy (correctness), coverage completeness, redundancy, and connectivity will be 
discussed with case study experiments in section 4.2. 

 

4 Case Study 

4.1 Data 

We applied the above introduced trajectory compression and clustering workflow in the DiDi 
research open data “November 2016, Chengdu City Second Ring Road Regional Trajectory Data 



 

Set”2 to extract the road information. Figure 7 shows the KDE visualization of over 1 million e-
hailing trip origins and destinations and part of the extracted road geometry density map from 
181,172 trip trajectories in one day. The date range of this dataset is from November 1 to 
November 30, 2016 and the temporal sampling resolution is about 2~5 seconds. The original data 
is about 50GB, and about 10GB after compression.   

  

(a) 

  

(b) 

                                                             
2 https://gaia.didichuxing.com 



 

Figure 7. A map visualization of the case-study DiDi GPS data: (a) over 1 million trip origins and 
destinations per day; (b) part of the extracted road geometry density from 181,172 trip trajectories. 

4.2 Experiment 

4.2.1 Evaluation Metrics  

 In order to determine the effectiveness of our algorithm that generates big-data-driven road 
networks, we performed vector-based quality measures (Wiedemann et al. 1998). These quality 
measures were done by comparing a reference road network data layer to our extracted road 
network data layers (in Figure 8). To begin, the road networks were divided into small pieces of 
the same length. Next, a buffer was created as a zone with a consistent width that encircles each 
line segment for a given analysis. To determine if the extracted network roads match the reference 
roads, we constructed a buffer around the reference road data and determined if the portion of 
extracted roads inside of the buffer met our requirements. This is the correctness. Similarly, we 
constructed a buffer around the extracted road data and evaluated the portion of reference roads 
inside the buffer to further analyze the results. This is called the completeness. Together, 
correctness and completeness constitute a comprehensive metric known as quality. Another 
evaluation metric known as metric known as redundancy determines the degree of overlap in the 
road extraction methods.  

 
Figure 8. The matching principle between extracted roads and reference roads using buffers.  

• Completeness  
The completeness constitutes the percentage of reference roads delineated by the extracted 
road network. That is, the percentage of the reference road data located within the buffer 
encircling the extracted roads. The closer completeness is to 1, the better the performance 
of the algorithm is. Let Lmr be the length of matched reference roads and Lr be the length of 
all reference roads. 
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• Correctness 

The correctness signifies the percentage of extracted road data that actually corresponds to 
the reference road. In other words, it is the percentage of the extracted road network that 
falls within the buffer surrounding the reference roads. The closer correctness is to 1, the 
better. Let Lme be the length of matched extraction roads and Le be the length of all extracted 
roads. 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠	 =
𝐿f�
𝐿�

 

 
 

• Quality 
The quality summarizes the road extraction method by factoring both completeness and 
correctness into one value. The closer quality is to 1, the better.  Let Lur be the length of 
unmatched reference roads. 
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• Redundancy 

The redundancy measures the percentage of the matched extraction road network which 
overlaps itself. The closer redundancy is to 0, the better.  

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦	 =
𝐿f� − 𝐿f�

𝐿f�
 

 4.2.2 Results 

In order to evaluate the extracted road network quality, we downloaded the OpenStreetMap 
(OSM) data as the reference road network layer. Moreover, we also compared our approach to the 
baseline approach that is directly based on the KDE surface of raw trajectory GPS points and the 
vectorization operation. The outcomes of the correctness, completeness, quality, and redundancy 
using our proposed method are shown in Table 1 and the results using the baseline approach are 
shown in Table 2.  One can conclude that both methods achieved good performance in extracting 
roads which fall within the vicinity of the reference roads. Still, the methods scored poorly in 
completeness as an inadequate amount of the reference roads were situated close to the extracted 
roads. As seen in Figure 9, many of the reference roads were simply not extracted at all which made 
these unsuccessfully extracted reference roads isolated from the extracted network. With no 
extracted roads close by, the completeness value falls. As a whole, the quality metric scored poorly 
due to the shortcoming of many reference road segments not being extracted at all. We would 



 

expect the completeness score could increase with larger spatial coverage of the datasets especially 
in those (non-major) tributary roads. The redundancy value scored the worst since the length of 
the matched extraction was much larger than the length of matched reference. Again, the failure 
to extract many reference road segments resulted in a low evaluation metric. However, Table 1 
and Table 2 showed that our approach scored best in completeness, correctness and quality 
whereas the baseline approach scored best in redundancy only. Our approach outperformed the 
baseline approach with a small margin as it compressed clusters and could limit noise points 
outside the road network.  

Table 1: The extracted road quality evaluation results using our proposed approach. 

Buffer Distance Completeness Correctness Quality Redundancy 
40m 0.603534 0.995467 0.430439 1.00737 
20m 0.502849 0.983940 0.371855 0.692080 
10m 0.330325 0.854347 0.265552 0.280146 

 

Table 2: The extracted road quality evaluation results using the baseline approach. 

Buffer Distance Completeness Correctness Quality Redundancy 
40m 0.597233 0.986477 0.429040 0.952992 
20m 0.469571 0.925763 0.341474 0.636230 
10m 0.302925 0.768156 0.236453 0.272123 

 



 

 
Figure 9. A visual comparison of the extracted road network and the OSM road reference layer. 

 

In addition, in order to determine the connectivity of the extracted road network, we applied 
the shortest-path based approach using the average path length similarity (APLS) metric to 
evaluate the extracted road network quality. The average path length was calculated for both the 
proposal layer (the extracted roads) and the ground-truth reference layer (the downloaded OSM 
road data) using the Dijkstra’s shortest path algorithm (Dijkstra 1959). Then, we examined the 
similarity between the average path lengths to formulate an overall score.  The code to run such 
an analysis was made available by the CosmiQ Works3.  This measurement was performed on both 
approaches.  

To perform the measurement, the road layers were converted to graphs, on which nodes are 
placed at intersections, endpoints, and midpoints.  The shortest path was then calculated from each 
node to each other node for each graph. The differences in path length were used to calculate a 
metric. In order to quantify these differences in distance between the proposal and ground truth 
graphs, the APLS metric was computed, which sums the differences in optimal path lengths 

                                                             
3 https://github.com/CosmiQ/apls 



 

between nodes in the ground truth graph and the proposal graph.  Missing paths are given the 
maximum proportional distance of 1.0.   

Due to the nature of this metric, any missing nodes with high centrality will be penalized 
much more heavily than those with low centrality as high betweenness centrality roads account for 
larger traffic flow (Gao et al. 2013). It is important to consider how the nodes are generated and 
which nodes are important to the results when considering larger graphs. Accordingly, it may be 
necessary to exclude or alter the generation of nodes if calculating every possible path becomes 
infeasible—which was the case for our road extraction result. 

Figure 10 shows the proposal graph for our road centerline extraction with nodes for 
intersections in sky-blue, as well as a buffer for the visible ground truth graph in yellow. 

 
Figure 10. The extracted road graph with ground-truth reference graph (yellow). 

The graph was then run through multiple iterations of the APLS measurement code in order 
to determine a semi-optimal distance between the generated midpoints in order to approximate the 
best result.  As shown in Table 3, it was determined that a midpoint distance of 300 meters gave 
the best suitable result with the highest APLS score.  

 



 

Table 3: Connectivity evaluation results with different distance settings using our proposed approach. 

Distance between 
Midpoints (in meters) 

Ground truth nodes 
snapped to proposal graph 

Proposal nodes snapped 
onto ground truth graph 

Total score 

100 0.03231549167 0.2753124851 0.05784167 
150 0.03251687195 0.2712293888 0.05807170 
200 0.03378795578 0.2879258804 0.06047875 
250 0.0345725053 0.2801397176 0.06154913 
300 0.03618914215 0.2814585314 0.06413233 
400 0.03455432375 0.2761312377 0.06142241 
450 0.03394610475 0.2779877724 0.06050386 
500 0.03480865654 0.2715622517 0.06170766 
550 0.03443451154 0.2651631034 0.06095350 
600 0.03433385035 0.2690768934 0.06089728 
700 0.0344705758 0.2590514352 0.06084485 
1000 0.02963361071 0.2431845006 0.05282959 
 

A histogram (in Figure 11) of the results was also created for the path differences when 
comparing the ground truth graph to the proposal graph, as well as when comparing the path 
differences from the proposal graph to the ground truth graph. The connectivity results were not 
good given the aforementioned low coverage completeness of the extracted road networks.  

 
Figure 11. A histogram showing the path differences from proposal (our approach) to ground truth road 
network.  

The same process was repeated to calculate the APLS metric for the baseline approach. Also, 
a distance of 300 meters between midpoints gave the best result for the total score (as shown in 
Table 4). However, the total APLS score for the baseline approach was lower than that of our 
proposed centerline road extraction approach, concluding that our approach provided slightly 
better connectivity in its resulting road network. 



 

 

Table 4: Connectivity evaluation results with different distances settings using the baseline approach. 

Distance between 
Midpoints (in meters) 

Ground truth nodes snapped 
onto proposal graph 

Proposal nodes snapped 
onto ground truth graph 

Total score 

250 0.03069289558 0.2867498315 0.05545052 
300 0.03206354837 0.2892501382 0.05772792 
328 0.03151483406 0.2834187264 0.05672240 
350 0.03110235526 0.2937080329 0.05624827 
400 0.03144400797 0.2841326909 0.05662186 
450 0.0309466863 0.28561796 0.05584280 
500 0.03135845985 0.2761479113 0.05632126 
1000 0.02949659611 0.2424995997 0.05259568 
2000 0.02970992589 0.2389636115 0.05284920 

 

5 Conclusion and future work 

In this chapter, we present a data-driven approach to extracting road centerline geometry 
information using large-scale GPS trajectory data. The introduced road extraction framework 
utilizes trajectory compression algorithm (DP), an anisotropic density-based trajectory clustering 
algorithm (ADCN), and a kernel density estimation and vectorization approach. Compared with 
remote sensing-based approach, the ride-hailing service GPS trajectory data has a higher 
spatiotemporal resolution but a smaller geographical coverage. A case study using the DiDi open 
trajectory dataset in Chengdu, China demonstrates the effectiveness of our proposed approach for 
extracting road networks. It performed well with regards to the correctness of extracted road 
networks. However, the connectivity quality is bad due to the large incomplete coverage of the 
tributary roads. Future work needs to further improve the completeness. In addition, road network 
includes not only geometry information but also attributes (e.g., number of lanes, one-way 
restriction, speed limit). Such information may also be extracted from large-scale trajectory 
datasets with additional attributes (e.g., direction, speed), which require more attention in the road 
data generation pipeline.  
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