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Abstract: Neighborhoods are vaguely defined, localized regions that share similar characteristics.1

They are most often defined, delineated, and named by the citizens that inhabit them rather than2

municipal government or commercial agencies. The names of these neighborhoods play an important3

role as a basis for community and sociodemographic identity, geographic communication, and4

historical context. In this work we take a data-driven approach to identifying neighborhood names5

based on the geospatial properties of user-contributed rental listings. Through a random forest6

ensemble learning model applied to a set of spatial statistics for all n-grams in listing descriptions,7

we show that neighborhood names can be uniquely identified within urban settings. We train a8

model based on data from Washington, DC and test it on listings in Seattle, WA and Montréal, QC.9

The results indicate that a model trained on housing data from one city can successfully identify10

neighborhood names in another. In addition, our approach identifies less common neighborhood11

names and suggestions alternative or potentially new names in each city. These findings represent a12

first step in the process of urban neighborhood identification and delineation.13
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1. Introduction16

In 2014, Google published a neighborhood map of Brooklyn, the most populous borough in17

New York City, a seemingly harmless step in providing its users with useful geographic boundary18

information. The backlash was swift. Residents of Brooklyn responded angrily, many stating that a19

commercial company such as Google had no right to label and define boundaries within their city [1].20

This was not a lone incident [2], as many mapping agencies, both government and commercial, have21

come to realize that regional boundaries and names are a contentious issue. Google and others are22

frequently placed in the difficult situation of publishing hard boundaries and definitive names for23

regions that are in dispute or poorly defined [3,4], often applying names to parts of the city that few24

residents have even heard before [5]. This poses a problem as the names assigned to neighborhoods are25

important for understanding one’s identity and role within an urban setting. Names provide a bond26

between a citizen and a place [6]. In many cases neighborhood names are much more than just a set of27

characters, they have a history that is situated in religious beliefs [7], gender identity [8], and/or race [9].28

Neighborhood names evolve over time and are given meaning by the neighborhood’s inhabitants.29

Applying a top-down approach to naming neighborhoods, a practice often done by municipalities and30

commercial agencies, can produces unforeseen, even anger-inducing, results.31

Historically, neighborhood identification has also been predominantly driven through financial32

incentives. The term redlining, which describes the process of raising service prices or denying loans33
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in selective neighborhood and communities based on demographics such as race, was coined in the34

1960s [10] and is one of the foundational examples of neighborhood delineation driven by financial35

interests. In many ways, the neighborhood boundaries of many U.S. cities today are at least a partial36

result of these practices. Real estate companies still rely on neighborhood boundaries for comparable37

pricing [11] and being associated with a neighborhood name can significantly impact one’s social38

capital [12] as well as mortgage rate [13]. Today, web-based real estate platforms such as Zillow, Redfin,39

and Trulia each curates their own neighborhood dataset [14]. These companies realize the immense40

value of these boundaries and names [15] and actively invest in promoting their brand’s datasets.141

While commercial mapping companies and real estate platforms engage in the complex process42

of geographically splitting up a city into neighborhoods and labeling those regions, the inhabitants43

and citizens themselves often have their own understanding of the region in which they live. Their44

historically-rooted understanding of a neighborhood can sometimes be at odds with the neighborhood45

identification methods employed by these commercial entities. The urban historian, Lewis Mumford46

stated that “Neighborhoods...exist wherever human beings congregate, in permanent family dwellings;47

and many of the functions of the city tend to be distributed naturally—that is, without any theoretical48

preoccupation or political direction” [16]. That is to say that neighborhoods differ from other regional49

boundaries (e.g., city, census tract) in that they are constructed from the bottom-up by citizens, rather50

than top-down by governments or commercial entities. Any attempt to interfere with this bottom-up51

approach is met with resentment from residents of the neighborhoods, as evident by Google’s Brooklyn52

neighborhood map. In fact, one of the goals of public participatory GIS has been to enable citizens to53

construct, identify, and contribute to their communities and neighborhood [17,18], thus defining the54

regions themselves.55

Today, information is being generated and publicly disseminated online by everyday citizens at56

an alarming rate. While governments and industry partners have increased their involvement in public57

participatory GIS and engagement platforms,2 the vast majority of content is being contributed through58

social media applications, personal websites, and other sharing platforms, many of which include59

location information. Online classified advertisements are an excellent example of this recent increase60

in user-generated content. People post advertisements for everything from local services to previously61

used products, and most notably, rental properties. Craigslist is by far the most popular online website62

for listing and finding rental properties in the United States, Canada, and many other countries3
63

and is therefore a rich source of information for understanding regions within a city. As inhabitants,64

property owners, or local rental agencies post listings for rental properties on such a platform, they65

geotag the post (either through geographic coordinates or local address), and provide rich descriptive66

textual content related to the property. Much of this content includes standard information related67

to the property such as square footage, number of bedrooms, etc., but other information is related to68

the geographic location of the listing, namely nearby restaurants, public transit, grocery stores, etc.69

Neighborhood names are also frequently included in rental listing descriptions. Those posting the70

rental properties realize that by listing the neighborhood name(s) in which the property exists, they71

are effectively situating their property within a potential renter’s existing idea and understanding of72

the region. While the motivation and biases surrounding which neighborhoods are included in the73

textual descriptions of a listing are important (will be discussed in Section 6.2), these data offer a novel74

opportunity to understand how citizens, property owners, and local real estate companies view their75

urban setting, and label and differentiate the neighborhoods that comprise the city.76

Given our interest in both identifying and delineating neighborhoods, this work tackles the77

preliminary, but essential step of extracting and identifying neighborhood names. The specific78

1 Zillow for example freely offer access to their neighborhood boundaries and real estate APIs.
2 See ArcGIS Hub and Google Maps Contributions, for example.
3 Over 50 billion classified page views per month. Source:

http://web.archive.org/web/20161114220514/http://www.craigslist.org/about/factsheet
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contributions of this work are outlined in the five research questions (RQ) below. Each builds on the79

findings of the previous question and direct references to these RQs can be found in the manuscript.80

RQ1 Can neighborhood names be identified from natural language text within housing rental listings?81

Specifically, can spatially descriptive measures of geo-tagged n-grams be used to separate82

neighborhood names from other terms? A set of spatial statistical measures are calculated for all83

n-grams4 in a set of listings and used to identify neighborhoods names.84

RQ2 Does an ensemble learning approach based on spatial distribution measures more accurately85

identify neighborhood names than the spatial distribution measures alone? Given spatial86

statistics for each n-gram in a set of listings, we show that combining these in a random forest87

model, produces higher accuracy than individual measures alone.88

RQ3 Can an identification model trained on a known set of neighborhood names be used to identify89

uncommon neighborhood names or previously unidentified neighborhoods? Training a random90

forest model on spatial statistics of common neighborhood names within a city, we demonstrate91

that lesser known neighborhood names can be identified. In some cases, alternative names or92

other descriptive terms are proposed through the use of such a model.93

RQ4 Can a neighborhood name identification model trained on data from one city be used to identify94

neighborhood names in a different city? A random forest model constructed from neighborhood95

names in Washington, DC is used in the identification of neighborhood names in Seattle, WA96

and Montréal, QC.97

RQ5 What are the biases associated with neighborhood names mentioned in rental property listings?98

Lastly, we report on the spatial distribution biases associated with Craigslist rental listings in99

Washington, DC.100

The remainder of this manuscript is organized as follows. Previous research related to this topic101

is discussed in Section 2 and an overview of the data is provided in Section 3. The spatial statistics and102

random forest methods are introduced in Section 4 including measures of accuracy. Section 5 presents103

the results of this work which are then discussed in Section 6. Finally, conclusions, limitations, and104

future work are the subjects of Section 7.105

2. Related Work106

Defining neighborhoods has been the subject of numerous research projects spanning many107

different domains. Understanding how neighborhoods are defined as well as identifying characteristics108

that distinguish one neighborhood from another has a long history within geography, regional109

science, sociology and social psychology (see [19–21] for an overview). Many previous studies in the110

social sciences have contrasted citizen-defined neighborhoods to regions defined by government or111

commercial entities. Coulton et al. [22] provide an example of this type of research, having asked112

residents of a city to draw boundaries on a map, defining their version of neighborhoods within a city.113

This process inevitably results in some overlap between neighborhood names and boundaries, but also114

quite a few significant differences. These citizen-defined boundaries are then often compared to census115

or other government designated areas [23,24]. An outcome of these works is a clear need to better116

understand what a neighborhood is and how it can be identified based on the people that inhabit it.117

From a geographic perspective, a substantial amount of work has aimed at defining geographic118

areas of interest. While many researchers steer clear of the term ‘neighborhood,’ many of the methods119

employed, focus on delinated a sub-urban region for its surrounding components based on some120

characteristic or spatial property. Many of these rely on analyzing user-contributed point data121

accompanied by a names, categories, or descriptive tags. For instance, Schockaert and De Cock [25]122

4 An n-gram is a sequence of n items (often words) identified in text. For example ’kitchen’ is a uni-gram, ’small kitchen’ is a
bi-gram, etc.
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identified the spatial footprints of neighborhoods from geotagged content while a number of123

studies [26,27] identified areas of interest based on user-contributed photograph tags. Tags have124

been used in the identification of vaguely defined regions as well. For instance social media tags and125

text were use to differentiate Southern California from Northern California [28].126

Recent work has focused on extracting functional regions based on human activities and127

category-labeled places of interest [29] while other work has identified thematic regions such as the bar128

district or shopping regions of the city based on the popularity of social media check-ins [30]. Though129

not explicitly labeled as neighborhoods, the characteristics and activities afforded by these regions130

often result in them being referred to colloquially as neighborhoods. The livehoods project [31] aimed131

to identify regions based on the similarities of geosocial check-in patterns in various cities around the132

United States. This project, however, did not involve naming the small livehood regions.133

From a data source perspective, existing work has used housing posts to better understand,134

explore, and in some cases, define neighborhoods [32,33]. Chisholm and Cohen [34] developed The135

Neighborhood Project, a web map based on combining geocoded craigslist posts with neighborhood136

names extracted from text in the posts. The neighborhood names themselves, however, were137

determined by experts and user-contributed knowledge of the region. Hu et al. [35] used housing138

advertisements as training data for a natural language processing (NLP) and geospatial clustering139

framework that harvests local and colloquial place names in order to enrich existing gazetteers. Our140

work further enhances this approach, combining measures from a range of statistical techniques to141

specifically extract sub-urban regional names. Zhu et al. [36] explored the use of spatial statistics to142

differentiate geographic feature types and disambiguate place names [37]. In these works they showed143

that different feature types and place names exhibit different spatial patterns and it is through these144

individual patterns that geographic features can be compared (e.g., mountain tops to beaches).145

While a considerable amount of previous work has focused on neighborhood boundary146

identification and delineation, far less work has focused on the extraction of neighborhood names.147

Brindley et al. [38,39] took a data-driven approach to mapping urban neighborhoods, using postal148

addresses to extract neighborhood names and boundaries. Specifically, the authors extracted commonly149

found sub-district names from within postal addresses, and used a kernel density function to estimate150

the geographic boundary. While similar to our work in their usage of publicly available geo-tagged151

content, their approach did not combine various spatial statistics with natural language text for the152

extraction of neighborhood names, nor did it produce a prediction model that could be learned from153

one city and applied to another.154

Place name extraction has been an important topic within geographic information retrieval155

community for some time. Jones et al. [40] focused on the extraction of place names and vague156

regions from natural language on websites while others were able to extract spatial relations from157

natural language in web documents [41]. In that same thread, additional research has looked at the158

identification of place names based on their context within descriptive documents [42]. Further work159

has focused on disambiguation of terms within a geographic context. For example, Buscaldi and160

Rosso [43] used term similarity and context to disambiguate place names from one another. The rise161

of social media content has lead to new sources of geotagged content that has been used for named162

geographic entity extraction [44,45]. Co-occurrence of place names and other geographic locations163

within natural language text has been shown to correspond with close spatial proximity [46]. Still164

other research has proposed machine learning approaches to identify and disambiguate places within165

a document based on contextual terms [47,48]. The work presented in this manuscript continues with166

this leitmotif, proposing a novel approach to identifying neighborhood names based on the spatial167

distribution and content of rental property listings.168
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3. Data169

Two sources of data are used in this work, namely rental property listings and curated lists of170

neighborhood names. Both sets of data were collected for three cities in North America. Further details171

on these data are described below.172

3.1. Rental Property Listings173

Rental property listings were accessed from the online classified advertisements platform174

Craigslist.5 Specifically, postings in the apts/housing for rent section of the subdomains for three175

cities, Washington, DC; Seattle, WA; and Montréal, QC were accessed over a 6-month period starting in176

September of 2017. These three cities were chosen based on the availability of content and geographic177

locations (two different coasts of the United States and one bilingual city in Canada). The content178

collected for each city consists of rental housing property listings such as the one shown in Figure 1.179

At a minimum each listing contains geographic coordinates, a title and unstructured textual content180

describing the rental property.181

Figure 1. An example Craigslist rental listing in Washington, DC.

Table 1 presents an overview of the data collected for each of the cities. The first column, Listings,182

reflects the total number of rental housing listings collected in and around each city over the course of183

6 months. The Unique Locations column lists the number of unique rental housing listings for each city184

after data cleaning. Cleaning involved removing duplicate entries and restricting posts to only those185

listed with a unique pair of geographic coordinates. This had to be done due to the fact that many186

posts were repeated for the exact same listing location but with slightly different titles and content187

(presumably an advertising tactic to saturate the market). Those listings with no textual content were188

removed.189

5 http://craigslist.org

http://craigslist.org
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Table 1. Number of craigslist housing listings, unique housing locations, unique number of n-grams
across all city listings, and cleaned unique n-grams.

City Listings Unique Locations Unique n-grams Cleaned n-grams
Washington, DC 60,167 13,307 1,294,747 3,612
Seattle, WA 68,058 17,795 1,053,297 5,554
Montréal, QC 10,425 4,836 571,223 2,914

3.1.1. N-grams190

All the textual content, including titles, for each listing in a city were combined into a corpus191

and the Natural Language Toolkit [49] was employed to tokenize words in the corpus and extract192

all possible n-grams (to a maximum of 3 words). The total number of unique n-grams per city are193

shown in Table 1. The frequency of occurrence within the corpus was calculated for each n-gram194

and those with frequency values above 4 standard deviations from the mean were removed as well195

as all n-grams that occurred less than 50 times within each city. Furthermore, all n-grams consisting196

of less than 3 characters were removed. The removal of the exceptionally high frequency n-grams197

was done to reduce computation given that it is highly unlikely that the most frequent words are198

neighborhood names. For example, the top five most frequent, greater than 2 character words in each199

of the cities are and, the, with. Similarly, the removal of n-grams occurring less than 50 times was done200

to ensure robustness in our neighborhood identification model and elicit legitimized neighborhood201

names. Given the long tail distribution of n-gram frequencies, this latter step removed most of the202

n-grams including single occurrence phrases such as included and storage, throughout painted, and for203

rent around.204

3.1.2. Geotagged N-grams205

Provided the reduced set of n-grams for each city, the original geo-tagged listings were revisited206

and any n-grams found in the textual content of the listings were extracted and assigned the geographic207

coordinates of the listing. This resulted in a large set of <latitude, longitude, n-gram> triples208

for each city. These geo-tagged n-grams were intersected with the 1km buffered boundaries for each209

city to remove all listings that were made outside of the city. The buffers were added to account for210

listings that described neighborhoods on city borders (e.g., Takoma Park on the District of Columbia –211

Maryland border). Figure 2 shows two maps of geo-tagged n-grams in Washington, DC, (2a) depicts212

the clustering behavior of neighborhood names (three examples shown in this case) and (2b) shows a213

sample of three generic housing-related terms.214

3.2. Neighborhood Names & Boundaries215

Since neighborhoods in the United States and Canada are neither federally nor216

state/province-designated geographical units, there is no standard, agreed upon set of neighborhood217

names and boundaries for each city. In many cases, neighborhood boundaries are arbitrarily defined218

and there is little agreement between neighborhood data sources. Zillow, for example, provides a freely219

available neighborhood boundaries dataset6 for large urban areas in the United States that is heavily220

based on property values. Platforms such as Google Maps also contain neighborhood boundaries for221

most cities in the United States. However, Google considers this data proprietary and does not make it222

available for use in third-party applications. There are numerous other sources of neighborhood or223

functional region boundaries available for specific cities but few of these sources offer boundaries for224

more than a single urban location. Table 2 lists four sources of neighborhood names and boundaries225

along with the number of neighborhood polygons available for each city. Notably, the number of226

6 https://www.zillow.com/howto/api/neighborhood-boundaries.htm

https://www.zillow.com/howto/api/neighborhood-boundaries.htm
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(a) N-grams of three neighborhood names (b) N-grams of three non-neighborhood names

Figure 2. N-grams mapped from rental property listings in Washington DC. (a) shows the clustering
behavior of three neighborhood names while (b) visually depicts the lack of clustering for a sample of
generic housing terms.

neighborhood names and polygons range substantially between data sources. Washington, DC, for227

example, consists of 182 neighborhood boundaries according to Zetashapes compared to 46 listed on228

DC.gov.229

Table 2. Neighborhood names and boundary sources including polygon counts for each city. The *
indicates that this source assigns many neighborhood names (comma delimited) to larger than average
neighborhood regions. Note that Zillow and Zetashapes do not provide neighborhood names outside
of the United States.

Source Washington, DC Seattle, WA Montréal, QC
Wikipedia 129 134 73
Zillow 137 115 N/A
Zetashapes / Who’s On First 182 124 N/A
City Government / AirBnB 46* 106 23
Common Neighborhoods 95 79 23

To build a training set for our machine learning model, we attempted to match each of the230

neighborhood names in each of the sources and exported those names that occurred in the majority of231

the sources. We label these our Common Neighborhoods and use them as the foundation on which to232

build the identification model.233

4. Methodology234

In this section we first give an overview of the various spatial statistics used to spatially describe235

the n-grams. This is followed by assessing the prediction power of each spatial statistic predictor in236

identifying neighborhood names and finally describing how the predictors are combined in a random237

forest ensemble learning model. Figure 3 depicts a flow chart of the process, with example data, from238

data-cleaning to random forest model.239
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Figure 3. A flow chart showing the process and example data for the methodology in this work. Note
that the data is simplified/rounded for example purposes.

4.1. Spatial Statistics240

The fundamental assumption in this work is that different categories of words can be described241

by an array of statistics associated with the locations of their use. We hypothesize that neighborhood242

names exhibit unique spatial statistical patterns which can be used to specifically identify and extract243

these neighborhood names from other terms. With this goal in mind, we identified a few foundational244

spatial statistics that can be applied to representing point data in space. In total, 24 different spatial245

statistics measures, roughly grouped in to three categories, are used in describing each of the n-grams246

in our dataset. To be clear, we do not claim that this list of spatial statistics is exhaustive, but rather247

intend to show what is possible with a select set of measures.248

4.1.1. Spatial Dispersion249

Nine measures of spatial dispersion were calculated for each n-gram in our datasets. Standard250

Distance, a single measure representing the dispersion of points around a mean centroid, was calculated251

along with average nearest neighbor and pairwise distance. We hypothesize that neighborhood names252

will be identified by this measure as neighborhood n-grams are likely to display a unique spatial253

dispersion pattern, different from most other non-geographic terms. Standard distance is shown in254

Equation 1 where x and y are individual point coordinates, X̄ and Ȳ are the mean centroid coordinates255

and n is the total number of geographic coordinates associated with the n-gram.256

StandardDistance =

√
∑n

i=1 (xi − X̄)2

n
+

∑n
i=1 (yi − Ȳ)2

n
(1)

Within the category of average nearest neighbor (ANN), we calculated the mean and median for257

each point’s closest n-gram neighbor (NN1), second nearest (NN2), and third nearest (NN3) resulting258

in six unique measures. Finally we computed the mean and median pairwise distance, or distance259

between all pairs of points assigned to a single n-gram. ANN and Pairwise calculations were done260

using the spatstat package in R [50]. Similarly to Standard Distance, we hypothesize that the average261

spatial distance between the closest (2nd closest, and 3rd closest) n-grams that describe the same262

neighborhood will be unique for neighborhoods, thus allowing us to include this measure in our263

approach to neighborhood name identification.264

4.1.2. Spatial Homogeneity265

The spatial homogeneity of each geo-tagged n-gram was calculated through a binned approach to266

Ripley’s L, or variance stabilized Ripley’s K [51,52]. Ripley’s L measures the degree of clustering across267

different spatial scales. Specifically, our approach split the resulting Ripley’s L clustering function268

into ten 500m segments and averaged the range of clustering values for each n-gram within each269

segment. Figure 4 shows the binned Ripley’s L approach for two n-grams in Washington, D.C., one270
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a neighborhood name (Columbia Heights) and the other what should be an a-spatial term (Wood271

Flooring). From a conceptual perspective, one might expect that most neighborhood names will show272

a higher than expected degree of clustering around a certain distance mark. Higher than expected273

clustering at a small distance might identify landmarks, while clustering at a large distance might be274

useful for the identification of metro stations. Ripley’s L allows us to assess clustering vs expected275

clustering across these different distances. This approach of binning spatial homogeneity functions has276

been employed successfully in differentiating point of interest types (e.g., Bars vs. Police Stations) [53].277
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Figure 4. Ripley’s L function over 5 km for two n-grams, Columbia Heights (a neighborhood name) and
Wood Flooring. The points show the averaged ’binned’ values over 500 m.

In addition to the ten binned relative clustering values, the kurtosis and skewness measures for278

each Ripley’s L function over 5km was recorded for each n-gram. The kurtosis and skewness provide279

overall measures of the Ripley’s L function instead of a single measure based on binned distance.280

4.1.3. Convex Hull281

The convex hull [54] is the smallest convex set (of listings in this case) that contain all listings.282

Using the chull R package7, we computed the area of the convex hull for all geo-tagged n-grams in283

our dataset as well as the density of the convex hull based on the number of listings in the set divided by284

the area. These two measures offer a very different description of the property listings as they represent285

the maximum area covered by all listings. Convex hull area simply assigns a numerical value for the286

region covered by all listings. This measure is heavily impacted by outliers (e.g., random mention287

of a neighborhood across town) as one occurrence can drastically alter the area of the convex hull.288

Conceptually, density of points within the convex hull is useful for comparing n-grams as we would289

expect to find a higher than average density of points within a region identified as a neighborhood,290

compared to an a-spatial term such as wood flooring.291

4.1.4. Spatial Autocorrelation292

As part of our initial exploratory analysis for this project, spatial autocorrelation was investigated293

as a meaningful spatial feature due to its potential relatedness to neighborhood names. This form of294

measurement, however, is substantially different from many of the other measures mentioned here as295

7 https://stat.ethz.ch/R-manual/R-devel/library/grDevices/html/chull.html

https://stat.ethz.ch/R-manual/R-devel/library/grDevices/html/chull.html
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there is really no way to report spatial autocorrelation through a single value per n-gram. As with296

other measures of correlation, this inference statistic involves interpreting the results through a number297

of values, not least of which are P-values and Z-scores. Running Moran’s I across our set of geo-tagged298

n-grams we found the results inconclusive overall. At least half of the values for global Moran’s I were299

not of a high enough significance including what many would consider ’prototypical’ neighborhood300

names in Washington, DC, such as Georgetown and Capital Hill. For these reasons, we elected to leave301

Moran’s I after the exploratory phase of analysis and not use it in the final random forest models.302

4.2. Data Setup303

In setting up the data for input to a prediction and identification model, we calculated the above304

statistics for each n-gram in our dataset. These values were then combined into a single data table, one305

for each city with rows as n-grams and columns as statistical measures. From this point on we will306

refer to the spatial statistic values as predictor variables. The n-grams in the common neighborhood names307

dataset (see Section 3.2) were programmatically compared against all n-grams in the merged dataset308

and matches were recorded. While in an ideal world this would have resulted in clean matches, a309

number of matches were not made due to slight misspellings, abbreviations (e.g., Columbia Hts. for310

Columbia Heights), and variations of n-grams that include the neighborhood names (e.g., to Dupont or311

Logan Circle from). These neighborhoods were identified and matched manually by two researchers312

and disagreements were resolved by a third person. Again, manual matching was only based on313

the common neighborhood names, not all potential neighborhood names. As a result of this process, all314

n-grams were given a binary value, either identified as neighborhood matches or not.315

4.3. Individual Predictors316

Having calculated spatial statistics values for each of our n-grams based on the methods described317

in the previous sections, we now turn to RQ1, examining how well each individual statistic performs318

at identifying a neighborhood from within the set of descriptive n-grams. All predictor variables were319

normalized to between 0 and 1 based on their minimum and maximum values to allow for simpler320

comparison. The Pearson’s correlation matrix of all predictors and neighborhood matches is shown in321

Appendix A1. A single star (*) indicates p < 0.1, three stars (***) indicates no significance, and all other322

values are significant to p < 0.01. Notably there tends to be a negative correlation between the mean323

and median nearest neighbor values and Neighborhood Match and a positive correlation to all binned324

Ripley’s L variables.325

Each of the individual variables was then used to predict which of the n-grams was a326

neighborhood name and the accuracy of each prediction was recorded. The Fscore (Equation 2),327

harmonic mean of precision and recall, was used to assess prediction power. Accuracy measures328

were recorded at 0.05 threshold increments, meaning the first time the model was run, any predictor329

variable value above (and including) 0.05 was considered a match and everything below was not. The330

threshold value that produced the best Fscore for each predictor variable was identified. The best scores331

are reported in Section 5.1.332

Fscore = 2 · precision · recall
precision + recall

(2)

4.4. Random Forest Ensemble Learning333

In addressing RQ2, we now combine our predictor variables and take a machine learning334

approach using a Random Forest [55,56] ensemble learning method to identify neighborhood names335

within our n-gram dataset. Random forest models have proven quite successful in numerous other336

classification and regression tasks involving geographic components [57–59]. Random forest models337

are touted as being better suited to lower dimensional problems (as opposed to support vector338

machines for example) and correct for over-fitting which tends to happen when training decision339
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trees. Random forest is a supervised learning algorithm that approaches the problem of learning340

through a combination of decision trees. Multiple decision trees are built and merged together to get a341

more accurate and stable prediction. This follows the idea that en masse, these individual learners will342

combine to form a learner better than its individual parts. In this work we used the R randomForest343

package ported from the Breiman et al.’s original Fortran code.8344

4.4.1. Training & Testing345

The first random forest model was trained with a randomly selected 50% of the n-grams in the346

Washington, DC dataset (both neighborhood matches and non-neighborhood matches) and tested for347

accuracy against the remaining 50% of the data. This combination of training and testing was done348

100 times in order to produce robust measures for results, each time training on a different randomly349

selected 50% of the Washington, DC data. When each model was trained, it was applied to the testing350

data in order to predict which n-grams were neighborhoods and which were not. This was done using351

a probability method of prediction with the resulting probability for each n-gram bounded between 0352

(not a neighborhood) and 1 (definitely a neighborhood). The F-scores (Equation 2), were recorded at353

0.05 probability increments every time the prediction model was run and the probability threshold354

that produced the best mean F-score was identified. By way of comparison, we also randomly selected355

n-grams as neighborhood matches in our dataset and trained a separate random forest model on these356

data. The purpose of this was to provide a baseline on which our true neighborhood matching model357

could be compared. The same number of n-grams were chosen, at random, so as to provide comparable358

results.359

The purpose of this research is not only to show that spatial features can be used to identify360

existing neighborhoods, but also can be used in the identification of less common and previously361

unidentified neighborhoods (RQ3). To this end, the model probability threshold should be adjusted362

to alter the precision as we want to identify those false positives that may actually be neighborhood363

names but may either not have been found in our dataset, were not matched to a common neighborhood364

name, or are more colloquial, or unofficial, neighborhood names. After computing the optimal threshold365

value (based on F-score), we manually examined the false positives, those that the model identified as366

neighborhoods, but were not considered matches to our common neighborhood list. Through manual367

inspection we discovered a number of interesting false positives. Many were neighborhood names368

that appeared in one or more of the curated neighborhood lists, but did not appear in enough sources369

to be considered part of the common neighborhood set. Provided these new neighborhood matches, we370

build a subsequent random forest model this time with the addition of those newly identified false371

positive n-grams that are in fact neighborhood names. The resulting accuracy of both of these models372

are reported in Section 5.373

4.4.2. Variable Importance374

The random forest models described in the previous section were constructed with 500 tries375

and 4 variables tried at each split. As a result of these splits, the model produced a ranking of the376

predictor variables based on their contribution to the overall accuracy of the model. Figure 5 shows377

the importance of these variables by way of the mean decrease in Gini index of node purity. What this378

demonstrates is that some variables are more useful than others at splitting mixed label nodes in to379

pure single class nodes. The higher the value, in this case, the more important the predictor variable380

is to the model’s accuracy. We see here that larger bin distances of Ripley’s L are substantially more381

important to the success of the model than the mean nearest neighbor measures, for example. To some382

extent, this mirrors the ranking of individual predictor accuracy that is reported in Section 5.1.383

8 https://cran.r-project.org/package=randomForest

https://cran.r-project.org/package=randomForest
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Figure 5. Mean decrease in Gini Index of node purity due to shuffling of values within predictive
variable.

4.5. Evaluation384

Having trained two random forest models based on housing rental n-grams from Washington,385

DC, we next turn our attention to RQ4, namely evaluating the accuracy of such a model using data386

from two other North American cities, Seattle, WA and Montréal, QC. As described in Section 4.2,387

the predictor variables for each n-gram were merged into city-specific datasets and matched against388

existing common neighborhood lists for their respective cities. Manual inspection and matching was389

done as before, and those n-grams that matched neighborhood names were marked as matches while390

all others were not. The random forest model trained on the Washington, DC data was then tested391

against the geo-tagged Seattle and Montréal n-grams independently using the highest performing392

probability threshold value from the Washington DC testing results.393

5. Results394

In this section we present the results of the methods presented in the previous section. Specifically395

we focus on the accuracy values of the individual predictors as well as the combined random forest396

model.397

5.1. Individual Predictors398

The maximum Fscore accuracy values for the individual predictor variables are shown in Table 3.399

On average, the accuracy of each predictor variable independently is not high. However, the binned400

Ripley’s L variables produced the best predictive results with the 4500m bin (Ripley 9) producing the401

best Fscore of 0.633 with a recall and precision of 0.724 and 0.562 respectively. These results demonstrate402
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that even without employing a more complex ensemble learning technique, a single spatial statistics403

measure can perform reasonably well at differentiating neighborhoods from non-neighborhoods.404

Notably however, not all spatial statistics are useful for this endeavor independently. Next, we explore405

combining these individual predictor variables with the purpose of improving neighborhood name406

identification.407

Table 3. Max F-scores for individual predictor variables trained and tested on data from Washington,
DC.

Measure Max F-Score
Standard Distance 0.047
Count 0.083
Mean NN1 0.047
Mean NN2 0.047
Mean NN3 0.047
Med. NN1 0.050
Med. NN2 0.050
Med. NN3 0.050
Mean Pair 0.047
Med. Pair 0.047
Ripley 1 0.099
Ripley 2 0.279
Ripley 3 0.405
Ripley 4 0.500
Ripley 5 0.548
Ripley 6 0.570
Ripley 7 0.587
Ripley 8 0.624
Ripley 9 0.633
Ripley 10 0.624
Kurtosis 0.101
Skewness 0.047
Convex Area 0.047
Convex Density 0.144

5.2. Ensemble Learning408

The first step in matching common neighborhoods to n-grams (both programmatically and409

manually) resulted in 59 neighborhood names, out of 95, being identified in the 3,612 unique n-grams410

in Washington, D.C. Of these, 30 were direct matches, with 29 indirect, manually identified matches.411

There are a number of reasons why not all common neighborhood names were found in our dataset412

which will be discussed in Section 6.413

The first random forest model was trained on the predictor variables of n-grams tagged as either414

common neighborhoods or not. The resulting averaged Fscore is shown in Table 4. This value is based on a415

prediction probability threshold of 0.35. This is a high F-score given the noisiness of the user-generated416

content on which the model was constructed. The recall value indicates how well the model did at417

identifying known neighborhoods whereas the precision tells us how well the model did at identifying418

neighborhoods n-grams as neighborhoods and non-neighborhood n-grams as such. As mentioned in419

Section 4, these results allowed us to re-examine our dataset and uncover neighborhood names that420

were not previously identified, i.e., those that did not appear in our common set but rather one of the421

individual neighborhood sources such as Wikipedia. Through manual inspection, we increased the422

number of neighborhood / n-gram matches in our dataset and trained a new random forest model on423

the data. The results of this second random forest model are shown in the second row of Table 4. The424

Fscore has improved as have both the precision and the recall with the largest increase occurring in the425

recall value.426
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Table 4. F-score, precision, and recall values for two random forest models trained and tested on
listings from Washington, D.C. Accuracy values for a model built on random assignments is also shown
for comparison.

Model F-Score Precision Recall
Common matched neighborhoods 0.807 0.845 0.777
Common + secondary matches 0.872 0.863 0.882
Randomly assigned matches 0.047 0.063 0.037

As a base-line we also included the Fscore results of a random forest trained on randomly assigned427

matches (not necessarily neighborhood names). As expected, the results are considerably lower than428

the previous two models with an accuracy of roughly 0.05.429

5.3. Identifying Neighborhoods in Other Cities430

Equipped with the best performing random forest model trained and tested on the Washington,431

DC n-grams, we then tested it against our two other North American cities, as outlined in RQ4.432

5.3.1. Predicting Seattle Neighborhoods433

The first row of Table 5 shows the results of the random forest model trained on Washington, DC434

n-grams. This first model used the common Seattle neighborhoods as matches. As was reported in the435

previous section, the results of the first RF model prediction lead to an investigation of the precision436

of the model resulting in the identification of a number of neighborhoods that were not previously437

identified as such. This was rectified and the model was run again producing the values show in the438

second row of table.439

Table 5. F-score, precision, and recall values for two random forest models trained on listings from
Washington, DC and tested on listings from Seattle, WA (the first two rows). The last row shows the
results of a model trained and tested on listings from Seattle, WA.

F-Score Precision Recall
Common matched neighborhoods 0.671 0.625 0.724
Common + secondary matches 0.733 0.702 0.767
Trained on Seattle (common) 0.786 0.782 0.791

The third row of Table 5 presents the results of a random forest model trained on half of the440

Seattle data rather than the Washington, DC n-grams, and tested on the other half of the Seattle data.441

These results indicate that while the DC-trained RF models do perform well at predicting Seattle442

neighborhoods, a model trained on local data, still performs better.443

5.3.2. Predicting Montréal Neighborhoods444

In many ways, Seattle, WA is very similar to Washington, DC. Both are major metropolitan,445

predominantly English speaking cities. Both host populations of roughly 700,000 and have similar446

population densities, median age, and median income. To test the robustness of the DC-based random447

forest model, we chose to test it against a very different city, namely Montréal, Quebec in Canada.448

Montréal is a bilingual French/English speaking island city, boasting French as it’s official language.449

Montréal has a population of roughly 2 million (on island) residents. Craigslist rental housing listings450

in Montréal are written in either French or English and often both. In addition to all of this, the city451

has a historically unique rental market with the majority of leases beginning and ending on July 1 [60].452

Given the data collection dates, far fewer rental postings were accessed for the city compared to both453

Washington, DC and Seattle, WA. These factors combined, this city offers a unique dataset on which to454

test our model.455
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Table 6. F-score, precision, and recall values for two random forest models trained on listings from
Washington, DC and tested on listings from Montréal, QC. The last row shows the results of a model
trained and tested on listings from Montréal, QC.

F-Score Precision Recall
Common matched neighborhoods 0.397 0.353 0.453
Common + secondary matches 0.483 0.412 0.583
Trained on Montréal (common) 0.655 0.559 0.792

As shown in Table 6, the first random forest model built from the DC n-grams produces an Fscore456

of roughly 0.4. Upon examining the results of this model, additional non-common neighborhoods457

were identified and a second model was run resulting in a slightly higher F-score. While clearly not as458

high as the Seattle results, these values are still substantially higher than a model built on randomly459

matched n-grams. As was the case with Seattle, a model built on local Montréal data produced the460

best results with an F-score of 0.655 and notably a recall inline with that of Seattle’s. A set of n-grams461

identified as neighborhoods by this model is presented in Appendix A2.462

6. Discussion463

The results presented in this work offer evidence as to how neighborhoods can be identified by the464

spatial distribution of rental housing advertisements. These findings demonstrate that identification of465

a sample of common neighborhood names with spatial distribution patterns can be used to accurately466

predict additional, less common neighborhood names within a given city. Furthermore, we find that an467

array of spatial distribution measures from neighborhoods identified in one part of North America can468

be used to train a machine learning model that can then be used to accurately identify neighborhoods469

on another part of the continent. While rental housing data from local listings produces a more accurate470

model, we find that this model can also span linguistic barriers, admittedly producing less accurate,471

but quite significant, results. In this section we further delve into the nuanced results of using such a472

machine learning approach and identify unique aspects and biases within the dataset.473

6.1. False Positives474

The F-score values presented in the Tables 4-6 depict an overall view of the accuracy of the model,475

but omit the nuances of the actual on-the-ground data and neighborhoods. Specifically some regions of476

the city are better represented by the dataset than others and this is reflected in the analysis results. The477

size, dominance, and popularity of a neighborhood all impact the probability of a neighborhood being478

identified in the n-gram datasets. For example, many of the historic neighborhoods in Washington,479

D.C. (e.g., Georgetown, Capital Hill, Brightwood) were clearly represented in the original data thus480

resulting in high accuracy results. These prevalent neighborhoods then had a much larger impact481

in contributing to the construction of the neighborhood identification model. This often meant that482

smaller and less dominant neighborhoods, e.g., Tenleytown, were less likely to be identified through483

the machine learning process and other, non-neighborhood regions were more likely to be identified.484

Table 7. Examples of n-grams falsely identified as neighborhood names split by city (columns) and
category (rows).

Category Washington, DC Seattle, WA Montréal, QC
Landmarks Capitol Building Space Needle Place Jacques-Cartier
Academic Inst. Catholic University University of Washington McGill University
Streets Wisconsin Ave. Summit Ave. Cavendish Blvd.
Broader Regions National Mall Waterfront Saint-Laurent River
Transit Stations Union Train Station King Street Station Jolicoeur Station
Companies Yes, Organic Amazon Atwater Market
Misc. blvd concierge du vieux
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While the model performed well provided training data from within the city, there were an485

expected set of false positives (see Table 7 for examples). Further examination of these false positives486

allow us to categorize them into 6 relatively distinct groupings. Landmarks such as the Capitol487

Building or the White House were falsely identified as neighborhoods given the importance of these488

landmarks within Washington, DC. Many housing rental listing specifically mentioned a proximity489

to these landmarks thus resulting in spatial distribution measures similar to those of neighborhoods.490

Similarity, some important streets, academic institutions and popular transit stations were labeled as491

neighborhoods given their dominance within a region of the city. This reiterates the argument from492

the introduction of this paper that neighborhoods are simply regions with distinct characteristics that493

are given a descriptive name by inhabitants and visitors. It therefore follows that many neighborhood494

names come from important streets (e.g., George Ave), Transit stations (Union Station) and Universities495

(Howard). While many of these n-grams identified as neighborhoods by our model were labeled as496

false positives, there is an argument to be made that the n-grams do exist as neighborhood names.497

Though many of these false positives can be explained given knowledge of the region, spatial498

dominance of a certain term, or prevalence of the geographic feature, a small portion of the false499

positives appeared to be non-spatially related. For example, terms such as concierge and du vieux appear500

to not be related to any geographic feature or place within a city and rather are n-grams within the501

data that happen to demonstrate spatial distribution patterns similar to neighborhoods. In addition to502

these, a number of real-estate company names were falsely identified as neighborhoods in our initial503

models given that many real estate companies are focused specifically on one region of a city. These504

real estate company related n-grams were removed early in the data cleaning process.505

6.1.1. Washington, DC506

Washington, DC is a particularly interesting city, arguably representative of many east coast507

U.S. cities, namely in the way that many populated regions run into one another. Washington, DC508

itself is part of the larger Metro DC area which includes cities in the neighboring states of Virginia509

and Maryland. Since rental housing listings were clipped to the buffered boundary of Washington,510

DC, this meant that some neighborhoods were identified by the model that do not appear in the511

common DC neighborhood set as they technically exist outside the district boundary. Examples of512

such neighborhoods identified by our model are Alexandria and Arlington in Virginia and Silver Spring513

and College Park in Maryland.514

Within the district boundaries a number of neighborhoods were identified through the machine515

learning model that did not originally exist in the common neighborhoods set for the district such516

as Cleveland Park and University Heights, both labeled as neighborhoods on Wikipedia. Moreover,517

alternative or secondary names for neighborhoods were identified in the results, such as Georgia Ave,518

a secondary name for Petworth, and Howard, the name of a University that has taken on a colloquial519

reference to a sub-region within or overlapping the Shaw neighborhood. While many of the false520

positives were smaller than a typical neighborhood area (e.g., Capitol Building), the ensemble learning521

model also identified a number of larger regions, such as the National Mall, an important tourist522

attraction within Washington, DC, and the broader Northeast region of the district. Notably, Washington523

addresses are divided into quadrants based on intercardinal directions. As stated previously, a few524

major streets were identified, namely Wisconsin Ave., Connecticut Ave., and Rhode Island Ave., all525

major thoroughfares leading from outside of the district to the city center. As demonstrated with526

Georgia Avenue, many street names have taken on neighborhood-like statuses being used to describe527

regions of similar socioeconomic status, demographics, or other characteristics.528

6.1.2. Seattle, WA529

Further qualitative discussion of the n-gram neighborhood identification results in Seattle expose530

some unique aspects of the city. As was the case in Washington, DC, investigation of false positives531

exposed a number of neighborhood names that did exist as neighborhoods in one of the neighborhood532
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datasets (e.g., Wikipedia) but not in the common neighborhood set. Examples of these are Columbia533

City, Lake Union, and Wallingford. Neighborhoods outside the Seattle city boundary such as Bothell534

or Mercer Island were also identified as were neighborhoods such as Lincoln Park, a large park535

which has given rise to a new neighborhood name, and Alki Beach, a sub-neighborhood within West536

Seattle along the waterfront. While popular streets, e.g., Summit and Anderson, were labeled as537

neighborhoods, the biggest difference in false positives compared to Washington, DC, is an increase in538

company/foundation names identified as neighborhoods. Amazon.com Inc, The Bill and Melinda539

Gates Foundation, and Microsoft (outside of Seattle) were each clearly identified as neighborhoods540

and the first Starbucks location (in Pike Place Market) was initially identified as a neighborhood when541

the model was built on local training data.542

6.1.3. Montréal, QC543

Examination of the n-gram results in Montréal produced some interesting insight into how a544

machine learning model such as this is actually quite language-independent, at least as it relates to545

English and French rental listings. Importantly, though a single rental listing may contain both French546

text and English translation, the neighborhood names in Montréal are either in French or in English,547

not both, at least according to the reference datasets we employed. This means that each neighborhood548

does not have two names (one in each language) and implies that a model does not have to be adjusted549

for sparsity in the labels, but rather can be run as is.550

As in the previous two cities, non-common neighborhoods were identified through the model551

such as Mile End and Quartier Latin as well as academic institutions such as Loyola college/high552

school. Colloquial references to existing neighborhoods such as NDG for Notre-Dame-de-Grâce were553

also identified as were many important street names in Montréal such as Crescent or Ste.-Catherine.554

Interestingly since these street names were referenced either in French or English, the n-gram which555

includes the generic type, e.g., Street or Rue (in French), is often not identified as a neighborhood, only556

the specific name. This is notably different than the other two English-language-dominant cities.557

6.2. Listing Regional Bias & False Negatives558

In the previous section we discuss a number of the false positives and examine some possible559

explanations. Here we investigate instances where our model did not correctly identify common560

neighborhoods as well as some of the potential reasons for this. Data from Washington, DC in particular561

is the subject of further examination and Figure 6 presents a good starting point for this discussion.562

The regions represented in purple in this figure are neighborhoods in our common neighborhood563

set that were correctly identified in the initial RF model. The regions shown in orange are those564

neighborhoods that did not appear in the common neighborhood set but did appear in at least one of the565

source-specific neighborhood datasets (Government defined neighborhoods in this case). These are the566

neighborhoods that were successfully identified by the first iteration of the RF model that were then567

properly tagged as neighborhoods for input into the second RF model (for use in training a model568

for other cities). Green regions of the map depict those neighborhoods that were never identified569

(false negatives), or did not exist, in the n-grams from the Craigslist data. Dark gray regions can be570

ignored as they represent uninhabitable space such as the Potomac and Anacostia rivers, Rock Creek571

Park, Observatory Circle, and Joint Base Anacostia-Bolling (military controlled). In observing Figure 6,572

there is a clear geographic bias between the true positives (blue and orange) and unmentioned or false573

negatives (green). The green regions are predominantly in the east-southeast region of Washington,574

DC, east of the Anacostia river in what is municipally defined as Wards 7 and 8.9 In referencing the575

2015 American Community Survey data, we find that Wards 7 and 8 contain the largest number of576

residence in the district living below the federal poverty line. In addition, the neighborhoods in Wards577

9 Washington, DC’s planning department splits the District into 8 Wards.
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Figure 6. Identified and unidentified neighborhoods in Washington, DC.

7 and 8 contain a mean of 232.3 (median 290) public housing units.10 By comparison, neighborhoods578

in all other Wards list a mean of 173.2 (median 13) public housing units.579

Further investigation into the neighborhood names in Wards 7 and 8 show that none of the names580

or reasonable partial matches of the names occur in the rental listing-based craigslist dataset. Either581

listings did not occur in those neighborhoods, were too few and thus removed from the dataset during582

cleaning, or the neighborhood names themselves were not stated in the listings. The mean number583

of listings per square kilometer or neighborhoods in Wards 7 and 8 is 0.0063 (median 0.0054, SD584

0.0035) whereas for the rest of the neighborhoods showed a mean of 0.0526 (median 0.0352, SD 0.0539)585

suggesting that the lack of n-gram neighborhood identification was due to the lack of listings, not586

necessarily missing names in the text or false negatives. This bias in rental listings related to poverty587

supports existing research in this area [61].588

7. Conclusions & Future Work589

Neighborhoods are an odd concept related to human mobility and habitation. They are difficult590

to quantify, and within the domain of geographical sciences, have been historically ill defined.591

Neighborhoods are given meaning by the people that inhabit a region based on a set of common or592

shared characteristics. Part of the problem, is that a top-down approach to defining a neighborhood is593

10 Housing provided for residents with low incomes and subsidized though public funds.
Data: http://opendata.dc.gov/datasets/public-housing-areas

http://opendata.dc.gov/datasets/public-housing-areas


Version September 22, 2018 submitted to ISPRS Int. J. Geo-Inf. 19 of 24

fraught with problems and the resulting names and boundaries are often at odds with the citizens that594

live and work within them. In this work, we take a bottom-up and data-driven approach to identifying595

neighborhood names within urban settings. Using geotagged rental property listings from the popular596

classifieds platform, Craigslist, we demonstrate that neighborhood names can be identified from597

natural language text within housing rental listings (RQ1). Using an ensemble learning approach based598

on spatial descriptive statistics we demonstrate that it is possible to differentiate neighborhood names599

from other descriptive natural language terms and phrases (RQ2). Three unique cities within North600

America are used as focal study sites with listings from one (Washington, DC) being used to train a601

model that is tested on the other two (Seattle, WA and Montréal, QC). The results of this approach602

demonstrate that neighborhood names can successfully be identified within the trained city and across603

different cities (RQ4). In some cases, new, alternative, or previously unidentified neighborhood names604

are proposed based on this approach (RQ3). Finally, the biases associated with these data are further605

exposed through this method (RQ5) and are discussed in further detail.606

As mentioned when discussing the biases associated with this approach, these data really607

represent the property listers’ views of the city. In most cases, the people listing these properties608

represent a small subset of the city’s population, either property owners or real estate agents, both of609

which tend to exist within a narrow socio-economic group. The neighborhood names identified in the610

results are therefore heavily influenced by this group. While the methods presented are agnostic to the611

underlying source of the data, it is important to understand that the neighborhood results depicted in612

this work are reliant on data contributed to a single online platform.613

Similarly, the three example cities used in this research are all within North America. Future work614

should examine how the results and accuracy values are affected by a change in location. European615

Cities such as Berlin, for example, could be vastly different given the unique historical context through616

which the city is understood. Additional work will focus on increasing the diversity of the data617

sources, languages of the rental property listings, and inclusion of additional structured content (e.g.,618

number of bedrooms, price, etc.). From a statistical perspective, further research will attempt to reduce619

the dimensionality of this approach by further investigating the correlations between the various620

spatial statistical measures. Furthermore, a deeper investigation into the role of spatial-autocorrelation,621

specifically the lack of significance in the results of the Moran’s I analysis, will be conducted as this622

lack of significance is quite interesting and surprising to the researchers. Finally, this work presents the623

first step of identifying neighborhood names. Our next step is to identify the boundaries associated624

with these neighborhood names with the goal of developing local listing-based neighborhood datasets.625
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Appendix 2753

Neighborhood names (both true and false positives) as identified by the random forest ensemble754

learning model.755

756

Washington, DC757

adams, adams morgan, alexandria va, american, and downtown, apartments in alexandria, arlington,758

arlington va, bloomingdale, branch, brookland, capitol, capitol hill, cathedral, chase, chevy, chevy759

chase, chinatown, circle, circle and, cleveland, cleveland park, columbia, columbia heights, crystal,760

crystal city, downtown, downtown bethesda, downtown silver, downtown silver spring, dupont,761

dupont circle, foggy, foggy bottom, forest, fort, friendship, friendship heights, from downtown, george,762

georgetown, georgetown and, georgetown university, georgia, glover, glover park, green, heights,763

howard, in alexandria, in arlington, kalorama, logan, logan circle, morgan, navy, navy yard, noma, of764

old town, old town, old town alexandria, petworth, pleasant, potomac, shaw, silver spring, silver765

spring md, spring, spring md, stadium, takoma, takoma park, to downtown, to dupont, to dupont766

circle, to georgetown, to silver, to union, to union station, town alexandria, triangle, u corridor, union,767

union station, university, vernon768

769

770

Seattle, WA771

admiral, alki, alki beach, and redmond, anne, ballard, ballard and, beacon, beacon hill, belltown,772

bothell, bothell wa, broadway, by windermere, capitol hill, columbia, columbia city, corridor, eastlake,773

first hill, fremont, green lake, greenlake, greenwood, heart of capitol, heart of downtown, interbay,774

international district, junction, lake city, lake union and, lincoln, lower queen, lower queen anne,775

madison, magnolia, mercer, ne seattle, ne seattle wa, north seattle, northgate, northgate mall, of776

ballard, of capitol, of capitol hill, of lake union, of queen, of queen anne, phinney, phinney ridge, pike,777

pike pine, pike place, pike place market, pine, pine corridor, pioneer, pioneer square, queen anne,778

ravenna, roosevelt, seattle center, seattle central, seattle downtown, seattle university, shoreline, south779

lake, south lake union, stevens, the junction, the university district, to green, to green lake, u district,780

union and, university district, university village, uptown, uw campus, wallingford, west seattle,781

westlake, windermere, woodland, woodland park782

783

784

Montréal, QC785

and downtown, canal lachine, cote des, cote des neiges, dame, dame de, des neiges, downtown,786

downtown and, downtown montreal, du mont royal, du plateau, from downtown, griffintown, heart787

of downtown, henri, in downtown, in ndg, lachine, lasalle, laurent, le plateau, loyola, marie, mile end,788

minutes to downtown, monk, monkland, monkland village, mont royal, mont royal et, mount, mount789

royal, neiges, nord, notre, notre dame de, of downtown, of downtown montreal, of the plateau, old790

montreal, old port, outremont, plateau, plateau mont, plateau mont royal, rosemont, royal, saint, saint791

laurent, snowdon, st henri, te des neiges, the lachine, the plateau, to downtown, tro mont, tro mont792

royal, verdun, villa maria, village, ville, ville marie, villeray, westmount793

794

795
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