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Abstract

The neuronal network of the soil nematode Caenorhabditis elegans (C. elegans), which is a
good prototype for biological studies, is investigated. Here, the neuronal network is simpli4ed as
a graph. We use three indicators to characterize the graph; vertex degree, generalized eccentricity
(GE), and complete subgraphs. The graph has the central part and the strong clustering structure.
We present a simple model, which shows that the neuronal network has a high-dimensional
geometrical structure. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Complexity of nervous systems is re@ected in the complexity of their structural
makeup [1]. The purpose of this paper is to characterize the structure of the neuronal
networks. We deal with the soil nematode Caenorhabditis elegans (C. elegans), be-
cause all the connections of its neuronal network are well known (some data bases
are available [2–4]). C. elegans is a small worm with a relatively simple nervous sys-
tem. There are only 302 neurons in the adult hermaphrodites. The nervous system is
separated into two units as follows. First, the pharyngeal nervous system is composed
of 20 cells. The pharyngeal nervous system controls the rhythmical contraction of the
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Fig. 1. Visual illustration of the neuronal network and the model networks: (a) Gce, (b) random graph,
(c) Gd for d=4, (d) d=8 and (e) d=12. Every network contains 269 vertices (open circles) and 2268
edges (solid lines). The network visualization is done using the pajek program [21].
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pharynx to suck bacteria. The pharyngeal nervous system is nearly completely isolated
from the rest. The synaptic connections among the pharyngeal neurons are well docu-
mented by Albertson and Thomson [5]. Second, the somatic nervous system consists
of the rest neurons. The long processes from the somatic neurons construct bundles;
the nerve ring, the ventral cord, etc. The synaptic connections among the 282 somatic
neurons are studied by White et al. [6].
In this paper, the real neuronal network is simpli4ed as a graph, which is a set of

vertices connected to each other by edges. The internal structure of each cell is ignored.
Thus, a vertex stands for a neuron. There are two types of connections; chemical
synapse and gap junction. While the former is polarized, the latter is not. Furthermore,
each pair of neurons often has more than one connection. For simplicity, type, direction
and multiplicity of connection are not taken into account. This simpli4cation is eIectual
for study of topological feature in diverse networks [7,8]. Thus, if there exists at least
one synaptic connection between a pair of vertices, then they are linked by an edge. We
mainly focus on the somatic nervous system. There are 282 vertices and 2268 edges.
We use three indicators to characterize the graph; (1) vertex degree, (2) generalized
eccentricity (GE), and (3) complete subgraphs [see Fig. 1].
There were some mathematical studies of the neuronal network. Some researchers

have studied the neuronal network in terms of vertex degree [2,11,12]. However, only
considering vertex degree is not suJcient to study the global structure, as we will
show. Watts and Strogaz investigated three networks (C. elegans, collaboration of
4lm actors and power grid) with path length and clustering coeJcient [7]. The path
length corresponds to the total average of GE, and the clustering coeJcient relates
to complete subgraphs of degree three. However, taking into account the number of
complete subgraphs of high degree, we will show that their model is not appropriate
for the neuronal network of C. elegans. In this paper, a simple model with geometrical
structure is presented.

2. Characteristic of the neuronal network

First, we use the concept of vertex degree. The degree of a vertex v represents
the number of edges meeting at v. There are 13 vertices whose degrees are 0 [17].
The connection of the 13 neurons was not reported in the experimental data by White
et al. [6]. We deal with the graph Gce which is obtained by the removal of these 13
isolated vertices. There are 269 vertices and 2268 edges. The solid line in Fig. 2(a)
shows the degree sequence, which is the list of the degrees of the vertices which are
ordered in a non-increasing way, for Gce. To characterize Gce, for a start, we consider
the normal random (NR) graph with 269 vertices and 2268 edges [10]. Here, two ends
of the edge are selected randomly with the equal probability. We generate 100 samples.
The generated graphs are not always connected. We leave out disconnected ones. The
dotted line in Fig. 2(a) shows the degree sequence for the NR graph, which is given
by the Poisson distribution. The degrees of Gce are more dispersed than that of the
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Fig. 2. Three indicators to characterize the neuronal network of C. elegans: (a) the degree sequence,
(b) the GE sequence, and (c) the number of complete subgraphs. The solid, dotted and broken lines are for
C. elegans, the normal random (NR) graphs and the biased random (BR) graphs, respectively. The lines for
the two random graphs are obtained by the average over 100 samples. For the NR graph, the root-mean-
squares (RMS) are nearly equal to the line width. For the BR graph, RMS of the GE are smaller than 0.05
except a few vertices which have large GE, and RMS of the number of complete subgraphs are shown by
the error bars.
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Table 1
(a) The vertices whose degrees are larger than 40, (b) 12 vertices whose generalized eccentricity (GE) is the
smallest. The vertices are discriminated by names of the corresponding neurons. Almost C. elegans neurons
are designated by a three-alphabet code with additional letters added to denote positional diIerences, e.g.
L for left and R for right. The neurons in (a) and (b) almost coincide. They comprise inter-neurons which
is biologically important. Chal4e et al. [19] studied the role of the inter-neurons by using laser ablation.
The AVD∗ neurons are essential for backward movement to anterior touch stimuli; the PVC∗ neurons are
essential for forward movement to posterior touch stimuli; the AVA∗ and AVB∗ neurons are necessary for
normal coordinated movement. Moreover, AVE∗ neurons are like AVD∗, but their outputs are restricted to
anterior cord due to their shorter processes [3]

(a) “Hub” neurons

Name AVAL AVAR AVBR AVBL AVER AVEL
Degree 90 87 73 72 64 63
Name AVDR PVCL AVDL PVCR DVA
Degree 60 56 55 54 49

(b) “Center” neurons

Name AVAL AVAR AVBR AVER AVEL AVBL
GE 1.74 1.76 1.78 1.79 1.80 1.81
Name DVA AVDR AVDL RIBL PVCL PVCR
Degree 1.92 1.93 1.93 1.94 1.96 1.98

NR graph. Especially, Gce has some vertices with extremely large degrees. Table 1(a)
shows the neuron names and degrees of the vertices whose degrees are larger than 40.
More than 70% of the rest vertices in Gce are linked directly to these vertices. Thus,
this group is “hub”.
Achacoso and Yamamoto also indicated that the connections of the neuronal network

of C. elegans is not uniformly weighted and some neurons seem to be more important
than others [2]. Amaral et al. [11] reported that the tail of the distribution of the degrees
is approximated by exponential decay, i.e., there is a single scale for connectivity
Amaral et al. [11] took into account only chemical synapse and separated incoming
and outgoing degrees. In contrast, here, we use the total degree including three types
of connections. In this case, the exponential decay is not seen. It is because there
is a correlation among the three connections. Albert et al. [12–15] reported that the
distribution of the degrees decays as a power-law in the network of world-wide web.
The power-law decay is also seen in the network of citations of scienti4c papers [16].
However, for the degree of Gce, a clear power-law is not seen.
Second, we consider distance on the graph. The distance refers to the minimum

path length between a pair of vertices. Note that this distance is not the real distance
between a pair of neurons in the body. Every pair of vertices in Gce are joined by a
path, i.e., Gce is connected. The maximum distance is 4ve and the average distance is
2.40. All vertices are connected with short length to one another, as was reported as
small world in Refs. [7–9]. To study the feature of the distance in detail, we de4ne
the generalized eccentricity (GE) as follows. The GE of a vertex v is the average of
the distances from v to other vertices. In graph theory, the eccentricity of a vertex v in
a graph is de4ned as the distance from v to a vertex farthest from v [18]. While the
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eccentricity is a natural number, the GE is a real number. The solid line in Fig. 2(b)
shows the GE sequence, which is the list of the GE of the vertices in non-decreasing
way, for Gce. The dotted line in Fig. 2(b) is for the NR graph. The GE of Gce is more
dispersed than that of the NR graph. In Gce, there are some vertices with relatively
small GE. These vertices seem to be located at the center of the graph. Table 1(b)
shows the neuron names and the GE of 12 vertices whose GE is the smallest. The
“center” group almost coincides with the “hub” group. This result indicates that these
neurons play an important role. Indeed, they are the inter-neurons which are essential
for locomotion [19].
To study the cause of the result for GE, we introduce the biased random (BR) graph,

which preserves the property of the degree sequence of Gce. Here, two ends of the edge
are chosen randomly with the probability which is given by the ratio of the empirical
degrees. We generate 100 samples, where we leave out disconnected ones, again. For
the BR graph (the broken line in Fig. 2(b)), the distribution of GE is similar to that
for Gce. Moreover, we study the relation between 10 vertices whose degrees are the
largest and 10 vertices whose GE is smallest in the case of the BR graph. The number
of the vertices which they share, averages 9.55. Therefore, the result for the GE of
Gce is mainly due to the large variety of the vertex degrees of it.
Third, we use the concept of complete subgraph. A complete graph is a graph

in which every two vertices are connected directly. Although Gce is not a complete
graph, it includes a number of complete graphs as subgraphs. We count the number
of complete subgraphs Kn with n vertices (shown by the solid line in Fig. 2(c)). For
example, the numbers of K2 and K3 are the numbers of the edges and the triangles,
respectively. The dotted line in Fig. 2(c) is for the NR graph. It is clear that Gce has
a lot of complete subgraphs Kn of high degrees n. This result indicates that Gce has a
clustering structure, i.e., there is a strong positive correlation among the connections.
Some readers may think that this structure is also just a result of the large variety
of the vertex degree as reported above. To test this, we use the BR graph again.
The number of complete subgraphs of the BR graph is shown by the broken line in
Fig. 2(c). The BR graph does not show so strong clustering as Gce has. Therefore,
this clustering structure is not due to the large variety of the vertex degree.

3. Simple model

So far, we have seen that the nervous system of C. elegans has the central group
of the neurons and the strong clustering structure. Watts and Strogatz [7] proposed a
small world model for biological and social networks with the clustering structure. The
Watts and Strogatz (WS) model is made by random rewiring from a low-dimensional
regular lattice. Thus, the WS model is the mixture of the low-dimensional lattice and
the NR graph. Consequently, it is obvious that the WS model has smaller number of
complete subgraphs of high degrees than the low-dimensional lattice. Thus, the WS
small world model is not appropriate for the neuronal network of C. elegans.
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We generate another model as follows: We consider the system with 269 ver-
tices. Let us suppose that each vertex v has d characteristic indices, i.e., ai(v) for
i=1; 2; : : : ; d. The values of the indices are given by the uniform distribution in [0; 1].
Then, we connect a pair of vertices (v; v′), if the diIerence of all pairs of the indices
are smaller than a threshold value, i.e., |ai(v) − ai(v′)|¡ac for all i. The threshold
value ac is chosen so that the number of connections equals the empirical value 2268.
This graph Gd has a geometrical structure, which changes with the index number
d. Put simply, d is the dimension of the characteristic space. Note that the bound-
ary condition is not periodic. Thus, the characteristic space has a solid boundary.
As a consequence, the vertices near the center of the characteristic space form the
central group. The numerical results are shown for three values of d in Fig. 3. For
each d, we generate 100 diIerent samples, where we leave out disconnected cases.
Figs. 3(a) and (b) show that for larger value of d, the sequences of degrees and
GE for Gd agree well with those for Gce. On the other hand, Fig. 3(c) shows that
too large value of d destroys the agreement for the clustering structure. It is because
the limit d → ∞ corresponds to the random connection. Thus, we obtain the best
agreement for the middle value d ∼ 8. This result suggests that Gce has the geo-
metrical structure, where the dimension of the characteristic space is approximately
eight.

4. Discussions

We have investigated the somatic nervous system of C. elegans, which has the
central part and the clustering structure. We proposed the model with the geometrical
structure and anticipated its dimension. We can modify the de4nition of the distance
or the distribution in the characteristic space. Such modi4cations yield quantitative
changes, serious qualitative change is hardly seen. It is essential that the characteristic
space has a solid boundary. Thus, we conclude that the somatic nervous system has
the high-dimensional geometrical structure which is not seen in the NR or WS model.
According to the study of cellular automata and coupled map lattices, high dimension
is one of the crucial ingredients in the subtle build-up of correlations giving rise of
the collective motion [20].
Whereas, we ignored the direction, multiplicity and type of connections, they are

important for the neural information transmission. Future models will require to in-
corporate these attributions into the graph. The present approach is available for the
neuronal network of the pharyngeal nervous system. However, the geometrical structure
is not so clear, because there are too less number of vertices (only 20 neurons). It is an
interesting question whether the neuronal networks of other animals have the similar
topology. Since no data of the connections in the nervous systems of other animals
is available now, the answer cannot be given here. A higher animal, which has more
neurons than C. elegans, appears to have more complicated structure. Remembering
the fact that even C. elegans has two separated subunits in the nervous system, the
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Fig. 3. The comparison between Gce and Gd: (a) the degree sequence, (b) the GE sequence, and (c) the
number of complete subgraphs. The solid lines are for Gce. The dotted, broken and dotted-broken lines are
for Gd of d=4, d=8 and d=12, respectively. The lines for Gd are obtained by the average over 100
samples. Whereas, RMS of the degrees are relatively large (the maximum is about 12 for d=8; 12) for
vertices which have large degrees, they are smaller than 1 for the vertices whose degrees are small and
medium values. RMS of the GE are smaller than 0.07 except a few vertices which have large GE. RMS of
the number of complete subgraphs are shown by the error bars.
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present approach may be expected to be valid for subunits rather than the whole of
the nervous system.
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