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We performed a systematic exploration of the use of
structural information derived from small angle X-ray scat-
tering (SAXS) measurements to improve fold recognition.
SAXS data provide the Fourier transform of the histogram
of atomic pair distances (pair distribution function) for a
given protein and hence can serve as a structural constraint
onmethodsused todetermine thenative conformational fold
of the protein.Hereweused it to construct a similarity-based
fitness score with which to evaluate candidate structures
generated by a threading procedure. In order to combine
the SAXS scores with the standard energy scores and other
1D profile-based scores used in threading, wemade use both
of a linear regressionmethod and of a neural network-based
technique to obtain optimal combined fitness scores and
applied them to the ranking of candidate structures.
Our results show that the use of SAXS data with gapless
threading significantly improves the performance of fold
recognition.
Keywords: fold recognition/linear regression/neural
network/small angle X-ray scattering

Introduction

With the explosive increase in DNA and protein sequences
resulting from the fast progress of large-scale gene sequencing
projects (The Genome International Sequencing Consortium,
2001; Venter et al., 2001), the gap between known protein
sequences and known structures is widening dramatically.
This has led to the establishment of a number of large-scale
structural genomics projects (Burley, 2000) for the determina-
tion of protein structures with high throughput under the sup-
port of the Protein Structure Initiative (PSI; see Stevens et al.,
2001). The initiative is targeted at the determination of struc-
tures of a minimal set of proteins which could putatively
exhaust the universe of all protein folds. Once this goal is
achieved, it is believed that the task of protein structure pre-
diction given an unknown sequence would be reduced to the
selection of the correct fold from a complete fold library, where
a generalized fold recognition strategy which exploits maximal
information (both sequence-based and structure-based) might
be expected to provide an ultimate solution to the sequence–
structure mapping problem for soluble proteins.

Fold recognition (see review by Marchler-Bauer and Bryant,
1999) has been a reasonably effective method by which to
identify a probable fold from a fold library for an unknown

target protein sequence which has no sequence homologue with
a known structure. The standard procedure used is to thread the
given sequence on to each candidate fold and evaluate the
conformational potential energy which is expected to be min-
imal for the correct fold (potential based threading). Threading
may be done either in gapless mode, where all possible gapless
alignments of the target sequence with a given candidate fold
are examined, or by making use of multiple sequence align-
ment using gap penalties, to create an optimal alignment (or
alignments) for subsequent energy testing (Jones, 1999).
Recently, attempts have been made to incorporate more
sequence-based structural predictions into the fold recognition
protocol (David et al., 2000). As an example, a 1D profile
consisting of predicted secondary structural assignments and
solvent accessibility is employed to do ‘prediction based’
threading (Rost et al., 1997). Sequential information derived
from multiple sequence alignment is also helpful in improving
the performance of fold recognition (Rykunov et al., 2000;
Williams et al., 2001).

Besides using sequence-based predictions of structural
information to supplement potential-based threading, an altern-
ative approach by which to improve standard threading pro-
cedures is to exploit additional structural information derived
from experiments such as circular dichroism spectroscopy,
which are relatively easy to do in comparison with full-scale
structural determination (i.e. based on X-ray crystallography or
NMR). In this paper we report on the application of small angle
X-ray scattering (SAXS) data as a way to impose physical
constraints on threading-based protein structure prediction.

SAXS measures X-ray scattering from a protein in a relat-
ively dilute solution. Thus the measurement of SAXS profiles
avoids the need to crystallize the protein. SAXS yields physical
information about the internal pair distribution of a molecule in
its native state. Svergun et al. (2002) have shown that, given a
SAXS profile that extends to 5 Å resolution, it is possible to
reconstruct a map giving approximate 3D locations of all
the residues in the protein. Hence, despite limitations in
resolution resulting from the orientational averaging of the
molecules in solution and from practical signal to-noise
ratio limitations resulting from radiation damage effects, we
believe this physical information has the potential to reduce
false positives which naturally occur in fold identification pro-
cesses based purely on sequence-based information. Recently,
we have for the first time explored the application of SAXS-
based physical constraints in improving ab initio protein struc-
ture prediction (Zheng and Doniach, 2002) and have obtained
encouraging results. The present work was motivated by
the above preliminary work and was aimed at providing a
more comprehensive and in-depth study of this novel method
in the context of fold recognition. The following improvements
were made compared with the previous work (Zheng and
Doniach, 2002): first, instead of an empirical combination
of the SAXS-based fitness scores with the other scores, we
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attempted more systematic optimizations of the combined
scores; second, we tested this method on a significantly larger
set of proteins (see Materials and methods).

Following our previous study, we used SAXS-derived struc-
tural information to compute a fitness score which evaluates the
similarity in SAXS profile between that of the candidate fold
(derived computationally from the Ca representation of the
protein) and of the target protein (measured experimentally
or simulated computationally). Because SAXS measurements
are made on an intact protein (or protein fragment), gapped
sequence alignments would not be expected to lead to a strong
SAXS similarity (since extra or missing residues in the can-
didate structure would distort the SAXS profile). Therefore, in
this paper we use this score as a supplementary constraint for
fold identification that is based on a gapless version of the
standard potential energy-based threading procedure. We use
both a linear regression-based method (LR) and a neural
network-based method (NN) to find optimized combinations
of a set of fitness scores. Use of explicit optimization allows us
to quantify the performance of the fold identification proced-
ure. We find that the use of an optimized score which includes
SAXS information leads to results which are significantly bet-
ter than those obtained by using each individual fitness score
separately and are also significantly better than results obtained
by using an optimized combined score without including the
SAXS information.

Besides providing an improved fold identification method,
the present approach can also be used directly to identify
domains which are structurally similar to the target. This is
achieved by combining a fold library for fold recognition and a
domain library for structural similarity identification.
This approach potentially has the capability of recognizing

structural homologues or analogues for proteins which are
not related by significant sequence similarity.

Materials and methods

A flow chart is shown in Figure 1 to summarize the procedure
with each step discussed in this section.

Selection of training and test sets of sequences
The protein sequences studied were selected from the list in our
previous paper (Zheng and Doniach, 2002) and from the
Rosetta test set from Baker’s group at the University of
Washington (Simons et al., 1999a), after excluding those
irregular targets without well-defined secondary structures.
These lists cover a variety of fold classes (a, b, a/b) with
sequence lengths that vary between 31 and 172. In total we
use 11 proteins in our training set and 62 proteins in our test set,
which marks a significant extension to the set of sequences
studied in our previous work (Zheng and Doniach, 2002).

Generating candidate structures by threading to
the Dali domain library
In the Dali Domain Classification (Holm and Sander, 1998),
each domain is assigned a Domain Classification number
DC_lmnp representing the fold space attractor region (l), globu-
lar folding topology (m), functional family (n) and sequence
family (p). We used the ‘Dali Domain Definitions’ (v3.01) pub-
lished by Structural Genomics Group at EMBL-EBI in October
2000, which contains 3689 domains with different numbers of
DC_lmnp. Given a target protein, we first exclude all domain
entries that share the same DC_lmnp number with it because
these sequences bear a >25% sequence identity with the target.

Thread the target
sequence onto
domain library

106

candidates

Prescreen with FSS and FHPN

104 to 105

candidates

Rank by FLR or FNN
score

Output top 10

Learning
process for
LR or NN

 

Training set data 

Adjust
parameter

Fig. 1. Flow chart that shows the algorithm of SAXS-aided fold recognition. Each step is described in detail in the text.
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Then we continuously thread the target sequence on to each
domain which has longer sequence length and discard residues
which do not overlap the target. Thus for a domain with length
L1 and a target sequence with length L0 (L1 > L0), L1 – L0 + 1
structural candidates are obtained by threading. A continuous
(gapless) threading is not expected to give good residue-wise
alignment compared with the dynamic programming-based
gapped threading but is much more efficient and sufficient to
detect the globally correct folds for most targets we study.

Definition of native-like structures
In order to define a measure of the closeness of a candidate
structure to the native structure of a target protein, we define a
‘native-like’ structure as lying in one of three classes, depend-
ing on the overall quality of the set of all generated candidates:

(A) A structure with cRMS1 (cRMS of all Ca atoms with
respect to the experimental structure, same below) less
than 6 Å from the true structure if such structure exists.

(B) A structure with with cRMS0.8 (cRMS of 80% of Ca
atoms with respect to the experimental structure, same
below) less than 5 Å but which fails to satisfy the criterion
for (A), if no structure satisfying (A) exists.

(C) A structure with LGA_Q score >1.9 (LGA is a structural
comparison tool capable of detecting partial structural
similarity which simple cRMS fails to capture; see the
subsection Structural alignment for details), but fails to
satisfy the criteria for both (A) and (B), if no structure
satisfying (A) or (B) exists.

Prescreening
Before doing full-scale structural evaluation, we perform a
simple prescreening using the 1D profile consisting of second-
ary structural assignments (H for a-helix, E for b-strand and X
for loop) and HPN-3 letter translation of the sequence (H for
hydrophobic, P for polar, N for neutral), where the classifica-
tion of hydrophobicity follows Huang et al. (1995). The sec-
ondary structural assignment of both target and candidate
fold is obtained by the DSSP program (available at http://
www.sander.ebi.ac.uk/dssp/).

The alignment of 1D profile between profile A and profile B
is done as follows, where A and B are two sequences of either
H/E/X or H/P/N:

Given a residue position i, the score AlignAB(i, i) is 1 (a
match) if there exist j 2 [i – 1, i + 1] and k 2 [i – 1, i + 1] so that
Aj = Bk; otherwise AlignAB(i, i) is 0.

To define FSS and FHPN, we compute the fraction (F)
of matches for the whole alignment of 1D profile. We keep
structures which satisfy the following criteria: FSS > 0.6 and
FHPN > 0.8.

After prescreening, about 104–105 candidate structures are
kept for further evaluation.

Fitness scores evaluation
We use the following fitness scores to evaluate the candidate
structures:

1. Combined hydrophobicity and burial score Fhpb. First we
define Fhp (HP fitness score; see Huang et al., 1995) based on
the hydrophobic-polar (HP) model which counts pairs of
contacts between hydrophobic residues. We define two
residues to be in contact if the distance between their Ca
atoms is <7 Å and they are not sequential neighbors.

Then we define Fburial (burial score; see Huang et al., 1995),
which measures the extent to which hydrophobic residues are
buried inside the core. It is computed by summing the number of
residues within a 10 Å distance cutoff from every hydrophobic
residue.

Finally, we combine the above two scores as

Fhpb = Fhp � hFhpi
� �

· Fburial ð1Þ

where hFhpi is the HP fitness score averaged by sequence
permutation.

2. Statistical contact energy Fstat. We define the statistical
energy as the sum of statistical pairwise contact energy
between any two residues in contact based on the 20 · 20
matrix. The pairwise residue–residue interaction energy is cal-
culated based on the frequencies of tertiary contacts in a given
PDB structure database. We use the table given in Dima et al.
(2000), which we have found to work better than the table used
in our previous paper (Zheng et al., 2002).

3. Radius of gyration FRg. WedefineFRg as therootmeansquare
distance from the center of mass of all Ca atoms along the Ca
backbones. This is a useful fitness score for selecting compact
structures. Since Rg can be reliably derived from the SAXS data,
it is partially overlapping the SAXS score defined later.

4. SAXS fitness score FSAXS. This is defined in the next
subsection.

5. 1D profile alignment score: FSS, FHPN. This was defined in
the previous subsection.

We make further use of these parameters to construct a
combined fitness score in addition to the use in prescreening.

SAXS fitness score evaluation
We adopt the score function used by Walther et al. (2000). The
profile of scattering intensity associated with a bead model is
given as follows using the Debye equation in its pair-distance
histogram form:

I sð Þ = N + 2
Xnbins

i = 1

g rið Þ sin 2pjrijsð Þ
2pjrijs

ð2Þ

where N is the number of beads, s is the scattering vector with
s = k/2p, g(ri) is the pair-distance histogram of all singly coun-
ted pairwise distances and the number of bins is nbins. To
represent the I(s) profile, we discretize s with ds = 0.002 Å�1

and the maximal s is set to 0.12 Å�1. Profiles are normalized to
yield I(0) = 1. The score function or fitness was computed from

F = w 1:0 � rð Þ + RMS ð3Þ

with

RMS =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

si=smaxð Þm IM sið Þ � IE sið Þ½ �2
r

ð4Þ

where r is the cross-correlation coefficient between the two
scattering intensity curves (IM and IE are the two SAXS profiles
computed for the structural model and obtained experiment-
ally, respectively) and w is the weighting factor, chosen to be
10. The term (si/smax)m (m = 3) adds more weight to differ-
ences in the tail of the profile (at higher s values). Smaller value
of F corresponds to better fits between the experimental and
predicted profiles.
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Here we simulate IE with all-atom bead model whereas IM is
computed based on a Ca atoms only model without explicit
consideration of side chain coordinates, assuming side chain
atoms sitting at the same coordinate as the Caatom. Thisapprox-
imation in computing IM may reduce the performance of the
SAXS score; however, it also increases the robustness of our
approach, which may tolerate some extent of measurement
errors.

Structural alignment
CRMS1 and CRMS0.8. We use the standard coordinate RMSD
(cRMS) to do structural comparisons between our predicted
backbone and the corresponding native Ca backbone
(McLachlan, 1971). This is done by superimposing the above
two structures on to each other and minimizing the RMS devi-
ation between 100% or 80% of all the residues. We try both the
given Ca backbone and its mirror image in the computation of
cRMSD and keep the minimum value of cRMS.

LGA. The LGA program was developed by Zemla for struc-
tural comparative analysis of two protein structures (Zemla,
2003). We use LGA to search for the largest (not necessarily
continuous) set of equivalent residues between a candidate
structure and its native structure deviating by no more than
DIST = 5 Å. We use the quality score LGA_Q (Zemla, 2003)
to assess the structure comparison.

Linear regression
Given a set of N fitness scores Fi (i = 1, 2, . . . , N), we determine
a linearly weighted sum of them (FLR) by fitting the following
linear regression model of the form (Simons et al., 1999b):

g cRMSð Þ = w tð Þ +
XN
i = 1

wiFi ð5Þ

where wi are fitting constants independent of targets and w(t)
depends on target t.

g cRMSð Þ =
4 if cRMS <4

cRMS if 4 < cRMS < 8

8 if cRMS > 8

ð6Þ

8><
>:

We construct a training set of structures: {S(t, j) j 0 < t < T,
0 < j < N} for T targets and N structures per target, then we
minimize the following squared error:

X
t, i

g cRMS t, ið Þ½ � � w tð Þ �
XN
j ¼ 1

wjFj t, jð Þ
( )2

ð7Þ

Then wj is obtained by solving the following equation:X
n

Aknwn = Bk ð8Þ

where

Akn =
X
ij

Fk i, jð Þ
�
Fn i, jð Þ � 1

N

X
l

Fn i, lð Þ
�

ð9Þ

and

Bk =
X
ij

g cRMS i, jð Þ½ �
�
Fk i, jð Þ � 1

N

X
l

Fk i, lð Þ
�

ð10Þ

and w(t) is given by

w tð Þ = 1

N

�X
j

g cRMS t, jð Þ½ � �
X
jn

wnFn t, jð Þ
�

ð11Þ

The A matrix is properly regulated so that it is non-singular
and the above linear equation is uniquely solvable.

Multi-layer feed forward neural network
We use a typical three-layer feed-forward neural network
(Figure 2) to do fold recognition: the input layer consists of
six neurons corresponding to six fitness scores to be compiled
for evaluation. The scores are rescaled by a sigmoid function
f(x) = 1/(1 + e�x) to values between 0 and 1 at the input layer.
The hidden layer has five neurons which is sufficient for six
input variables and the output layers has two corresponding to
‘positive’ and ‘negative’, respectively. Then we compute the
ratio between them and rank the candidates with this ratio P/N:
the higher it is, the more favorable is the candidate.

The computation at each neuron is done as follows: first
compute the weighted sum of all input values from the

input layer  hidden layer output layer 

     F1

F2

F3

F6

     Positive

Negative

Ratio
P/N

Fig. 2. A three-layer feed-forward neural network used for fold recognition. There are six input variables: F1 = FRg, F2 = FSAXS, F3 = Fhpb, F4 = Fstat, F5 = FSS,
F6 = FHPN. The hidden layer has five neurons and the output layers has two nodes corresponding to ‘positive’ and ‘negative’, respectively.
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upstream layer (each link is associated with a weight), then
apply the sigmoid function and output the result to the down-
stream layer.

The training is performed using the standard back-
propagation algorithm and all link-associated weights are
adjusted as a result of the learning process. The training set
is composed of 11 proteins from Set (A). For each protein from
the training set, 5000 candidate structures are extracted from its
set of all candidates as ranked by their cRMS1, which includes
all the native-like candidates with cRMS1 < 6 Å. The choice of
5000 results from a tradeoff between computing efficiency and
the diversity of training data. The target values for both outputs
are functions of cRMS1: Positive output is set to 1 if cRMS1 <
4 Å, 0 if cRMS1 > 6 Å and linearly interpolated in between;
the negative output is set to 1 minus the positive output.

The learning process goes through the training set multiple
times until 90% of the training targets have at least one native-
like candidate ranking in top 10 by the ratio P/N. This choice of
learning termination criteria ensures sufficient training without
over-learning.

The validation of performance is done by running the neural
network on a test set of 32 proteins from Set (A).

Results and discussion

Overview
The method used in this paper consists of the definition of a
number of fitness scores with which to assess an alignment of a
target sequence with a set of 104–105 candidate structures
generated by gapless threading against the set of folds in the
Dali domain library. An optimized combination of these fitness
scores is then developed by use of two optimization methods,
linear regression and neural network based, on a training set of
11 target sequences.

Once these optimized combinations of fitness scores have
been generated, we apply them to a set of 62 test sequences for
which we generate 104–105 candidates per target sequence. We
then assess the performance of the fitness scores taken indi-
vidually and of their optimized combinations, by computing
their average Z-score for the native-like subset of candidate
structures (see Materials and methods for the definition of
‘native-like’) and by finding the best Z-score rank of the
native-like candidate structures.

As another measure of the effectiveness of the optimized
fitness scores, we also determine if at least one of the structures
with the top 10 Z-scores are structural neighbors to the target
structure, as measured by the Dali structure alignment tool.

Generating candidate structures via gapless threading
To generate a set of candidate structures for training and evalu-
ation of our fitness scores, we perform gapless threading of
each of the target sequences against the Dali domain library
(Holm and Sander, 1998), by a procedure which is described in
detail in Materials and methods. The results are collected in
Table I. This procedure generates sets of 104–105 candidates
for each sequence. For small proteins with sequence length <80
these candidate sets are found to contain native-like structures
of type (A) (cRMS1 < 6 Å; see Materials and methods). For
longer sequences (>90) the candidate sets contain structures
with partially good structural alignments of type (C) (detect-
able by the LGA structure alignment tool with LGA_Q > 1.9,

meaning significant structural similarity; see Materials and
methods).

We divide the targets into three sets according to the quality
of ‘native-like’ structures found in the sets generated by our
threading protocol, for which the criteria of native-like struc-
tures are defined by (A), (B) and (C) as given in Materials and
methods. Roughly, the (A) set is relatively easy for selecting
native-like structures satisfying cRMS1 < 6 Å which possess
complete structural similarity to the native conformation,
whereas the (C) set is more difficult as its structural similarity
to the native is at most partially good with LGA_Q > 1.9. The
(B) set is somewhere in between.

We select 11 proteins from the (A) set to serve as a training
set for both the linear regression and neural network proced-
ures. The rest of the targets are used as a test set for evaluating
the performance of our SAXS-aided fold recognition protocol.
Efforts are made to ensure that no protein in the test set is
sequence homologue (with >25% sequence identity) of any
protein in the training set.

Z-score evaluation of individual scores
In order to select native-like structures from the set of can-
didates, we need to define fitness scores (see Materials and
methods) that are capable of discriminating them against
non-native ones. It is then desirable to combine these scores
to optimize the overall performance.

Before exploring the combination of multiple score func-
tions we first study them individually. In total six fitness
scores (Fhpb, FRg, FSAXS, Fstat, FSS and FHPN) are used,
which are described in detail in Materials and methods.
They can be classified into three types: energy based (Fhpb

which essentially evaluates how good the hydrophobic
resides are buried inside a compact core and Fstat which is a
statistical pair-wise contact energy derived from a protein
structure database), 1D profile based (secondary structure
assignment profile score FSS and hydrophobic-polar profile
score FHPN) and SAXS based (FRg and FSAXS). The main
purpose of this study is to focus on the evaluation of the
SAXS-based scores and their ability, in combination with
the other scores, to improve the overall discrimination
power of fold recognition.

For a given fitness score F and a given native-like structure s,
we can define the following Z-score:

Z-score =
F � hFi

sF

ð12Þ

where hFi is the average of F over the whole set of candidate
structures and sF is its standard deviation. We use the Z-scores
averaged over the set of native-like structures to evaluate the
performance of a given score function: the more negative it is,
the better is its ability to discriminate native-like from
non-native structures.

In Table I of the Supplementary data (available at PEDS
Online), we list the average and the optimal Z-scores and the
best Z-score rank of the native-like structures for each indi-
vidual fitness score F. One can see that FSAXS (with average
Zavg = �0.776) and FRg (with average Zavg = �1.289) do
possess a good discrimination power to select native-like struc-
tures and that they are comparable to Fhpb (with average Zavg =
�0.906) and Fstat (with average Zavg = �0.739). Therefore,
SAXS-based scores indeed have the potential to help to
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Table I. Summary of the results of generating candidate structures with gapless threading

Proteina Sequence length Fold class All Number of structuresb Optimal value

cRMS1 < 6 Å cRMS0.8 < 5 Å LGA_Q > 1.9 cRMS1 (Å) cRMS0.8 (Å) LGA_Q

1ctf 68 a/b 36 589 11 8 44 5.331 4.507 2.452
1fwp 69 a/b 36 109 16 48 313 3.396 3.134 2.678
1nkl 78 a 39 592 9 22 115 5.353 4.107 3.241
1r69 63 a 56 548 31 49 28 3.306 2.153 4.346
2gb1 56 a/b 47 115 47 183 14 4.331 2.845 2.272
4icb 75 a 57 557 21 2 194 4.030 4.068 3.451
1csp 67 b 36 848 6 8 141 4.947 4.272 2.633
1leb 72 a 49 911 9 10 130 5.512 4.471 3.250
2ezh 65 a 74 561 54 134 87 4.319 3.749 2.131
2hp8 68 a 66 830 101 176 57 4.507 3.905 2.304
1ubi 76 b 62 277 3 12 116 3.718 1.548 6.043
1aa3 63 a 80 943 13 0 0 5.625 5.027 1.797
1apf 49 b 59 378 6 9 0 5.746 4.565 N/A
1c5a 65 a 82 817 7 11 0 5.448 4.577 1.870
1pou 71 a 51 259 39 9 35 5.077 4.667 2.061
1shg 57 b 37 376 13 12 69 0.825 0.729 6.452
1ag2 103 a 43 029 3 3 968 4.813 3.929 11.477
1aj3 98 a 42 883 41 32 4154 3.011 2.839 3.750
1svq 94 b 40 280 3 4 206 3.880 2.952 3.660
1wiu 93 b 47 165 16 11 1578 2.907 2.768 4.414
1erv 105 a/b 29 561 5 5 2730 2.869 2.589 15.186
1tit 89 b 62 090 4 17 1709 5.490 2.934 4.675
1afp 51 b 57 026 31 102 0 4.626 3.729 1.553
1orc 71 a/b 43 927 9 36 0 5.290 3.880 1.873
1ail 70 a 63 477 30 139 1532 4.900 3.513 3.166
1ajj 37 a/b 97 448 222 1240 0 4.561 3.303 N/A
1ayj 50 a/b 53 064 106 134 6 3.644 2.662 1.986
1bgk 37 a/b 30 276 2997 10 307 0 4.354 3.043 N/A
1cc5 83 a 49 479 10 5 133 4.381 4.034 3.160
1cmr 31 a/b 76 725 2998 9079 0 1.910 1.539 1.660
1dec 39 b 98 204 5 114 0 5.091 3.212 N/A
1erd 40 a 87 786 1181 6989 0 3.943 1.657 N/A
1gpt 47 a/b 43 054 130 418 5 3.916 2.838 2.300
1hev 43 a/b 62 569 10 51 2 3.064 1.564 3.615
1pft 50 b 1 30 518 1 32 0 5.824 4.357 N/A
1ptq 50 a/b 78 227 1 9 2 5.499 4.248 2.552
1qyp 57 b 95 499 2 16 0 5.637 3.938 1.813
1roo 35 a/b 49 836 2588 12 750 0 4.189 3.258 N/A
1utg 70 a 83 705 8 42 31 5.347 4.127 2.516
1vtx 42 a/b 84 850 50 246 0 3.519 2.427 1.565
2bds 43 b 53 775 29 159 0 4.593 3.678 1.402
2erl 40 a 72 604 4736 12 235 0 3.476 2.643 1.584
2fdn 55 a/b 66 785 29 86 76 2.503 1.337 3.861
1sro 76 b 53 992 0 2 190 7.253 4.763 2.507
2ncm 99 b 41 476 0 1 1489 6.526 4.463 5.185
1tig 94 a/b 27 554 0 71 2254 6.117 3.934 3.032
1aho 64 a/b 46 493 0 4 0 6.495 4.724 1.798
1bor 56 a/b 35 939 0 2 0 6.175 4.755 N/A
1lfb 77 a 78 466 0 1 15 6.433 4.974 2.218
2vgh 55 b 1 43 910 0 4 0 6.773 4.526 N/A
1bdo 80 b 58 711 0 0 53 6.467 5.754 3.201
1btb 89 a/b 34 539 0 0 235 7.069 5.676 2.401
1fbr 93 b 75 287 0 0 0 9.184 7.239 1.579
1ris 97 a/b 15 841 0 0 275 6.746 5.066 3.232
1who 94 b 42 635 0 0 1282 8.795 5.455 2.980
2ezk 93 a 58 793 0 0 140 7.738 5.223 2.240
1ksr 100 b 48 704 0 0 1445 6.996 5.636 3.182
1pal 107 a 48 228 0 0 235 8.249 6.421 20.054
1tul 102 b 41 072 0 0 1194 7.330 5.982 17.004
2acy 98 a/b 22 683 0 0 163 8.499 5.052 2.687
1gvp 87 b 68 709 0 0 101 7.307 5.968 2.413
1aca 86 a 47 329 0 0 75 6.930 5.917 2.641
1aba 87 a/b 57 105 0 0 246 7.213 6.214 3.323
2ptl 78 a/b 71 314 0 0 24 8.855 5.337 2.172
1ddf 127 a 45 443 0 0 372 11.20 7.180 2.547
1hlb 157 a 31 500 0 0 732 10.93 8.898 24.87
1jvr 136 a 40 763 0 0 59 16.066 10.174 18.295
1kte 105 a/b 43 626 0 0 802 7.491 6.778 9.002
1lis 131 a 35 177 0 0 1397 9.324 6.027 74.87
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improve the selection of native-like structures in combination
with the other more standard score functions.

Linear regression: performance evaluation of FLR
To find an optimal linear combination of the individual scores
that we have just evaluated, we use the linear regression (LR)
method (Simons et al., 1999b), which is a simple and effective
way of optimizing linear decision making. The motivation is to
minimize the overall square deviation between a linear
combination of all scores and a prediction quality function
(see Materials and methods).

The coefficients for the optimal linear combination are
evaluated for the training set of 11 target proteins by minim-
izing this function when averaged over those 5000 candidate
structures closest in cRMS to each of the targets in the training
set as explained in Materials and methods.

To evaluate the significance of SAXS scores in addition to
other standard score functions, we run an LR for all the score
functions excluding SAXS scores (FSAXS and FRg) and then
compare it with the LR results obtained when all score
functions are included. Here is a summary of the results.

On average, the addition of the SAXS scores improves the
Z-scores of FLR from �2.066 to �2.319. Assuming that FLR

follows a Gaussian distribution approximately, then this
improvement corresponds to a reduction of the p-value from
0.019 to 0.01 (or roughly by a factor of 2), which is fairly
significant.

Out of 11 targets in the training set, 11 (100%) show better
FLR performance than any individual score F and 10 (90.9%)
show better performance for FLR with SAXS information than
without it.

Out of 32 targets in the test set [also from Set (A)], 19
(59.4%) show better FLR performance than any individual
F and 24 (75%) show better performance for FLR with
SAXS information than without it. Therefore, LR provides a
reasonably optimal way of combining multiple fitness
scores into one score and manages to get the ‘best of all’
performance in most cases. Furthermore the incorporation of
SAXS information improves LR’s performance further with
high probability (75%). Notably, in most of the cases where
FSAXS fails to improve the performance further, FLR has
already achieved a good Z-score without SAXS data.

In the light of the significantly better performance of FLR, it
is natural to ask how much each individual score contributes to
this improvement. To shed some light on this issue, we also
show the linear correlation coefficient between each individual
score F and FLR which measures the relevance of each F to FLR

(Table II). It is evident that FSAXS [average correlation
coefficient (c.c.) = 0.367] and FRg (average c.c. = 0.584)
correlate better with FLR than the other energy-based scores
such as Fhpb (average c.c. = 0.104) and Fstat (average c.c. =
0.100). This suggests that FLR’s significant improvement in
discrimination of native-like structures is to a substantial extent
due to the contribution of SAXS information.

We comment that the particularly large contribution of Rg to
FLR is largely a consequence of the gapless-threading-based
protocol of candidate structures generation, which can easily
produce many non-compact structures. We expect Rg to be less
discriminating if applied to a set of more compact structures.
Meanwhile, the weak contribution of Fhpb and Fstat is probably
due to the prescreening which requires a significant matching
of the HPN profile between the target sequence and the
template sequence.

Neural network: performance evaluation of FNN
Neural networks (NNs) have found extensive application in
bioinformatics for their well-known capability of learning
complicated patterns of relationships among multiple variables
characteristic of biological knowledge of gene sequences and
structures. There has been some application of NNs in fold
recognition (Jones, 1999; Ding and Dubchak, 2001). Here we
use a typical three-layer feed-forward NN to explore an optimal
exploitation of the same six fitness scores used in LR (including
SAXS scores). In comparison with LR, which is a typical linear
decision procedure, non-linearity is introduced in NNs with the
use of the sigma function (see Materials and methods), there-
fore it is not limited simply to producing a weighted linear
combination of the original variables and is thus potentially
more flexible in capturing complex patterns. The NN in use has
six input variables corresponding to six scores: Fhpb, FRg,
FSAXS, Fstat, FSS and FHPN; each is normalized by subtracting
the statistical average and then dividing by the standard devi-
ation. There are two outputs, one corresponding to ‘positive’
and the other ‘negative’. To make comparisons with LR’s
combined score function FLR, we introduce a new score func-
tion which is the ratio between the ‘positive’ output and the
‘negative’ one and rank structure candidates with this ratio
FNN. Similarly to the evaluation procedure used in FLR, we
run the NN training and test with and without SAXS scores for
comparison. In Table 1 of the Supplementary data, we list the
Z-scores of FNN. The training set for NN is the same as that
used for LR. Here is a summary of the results.

On average, the addition of the SAXS scores improves the
Z-scores of FNN from �1.550 to �2.033. Again assuming that

Table I Continued

Proteina Sequence length Fold class All Number of structuresb Optimal value

cRMS1 < 6 Å cRMS0.8 < 5 Å LGA_Q > 1.9 cRMS1 (Å) cRMS0.8 (Å) LGA_Q

1pdo 129 a/b 27 622 0 0 9493 9.074 6.336 44.10
1vls 146 a 25 205 0 0 3405 8.106 5.607 24.69
2fha 172 a 18 781 0 0 2445 10.22 7.378 43.56
2gdm 153 a 24 621 0 0 1466 9.990 8.331 20.27

This table summarizes the target proteins and for each of them candidate structures generated by our threading protocol for three sets of targets, (A), (B) and (C),
which are separated by spaces. The top 11 proteins of Set (A) are used as training set for both LR and NN procedures while the rest are in the test set.
aProtein Data Bank (PDB) ID (Bernstein et al., 1977).
bNumbers of all and native-like structures for each target; here we use three ways to define native-like: cRMS1 < 6 Å or cRMS0.8 < 5 Å or LGA_Q > 1.9, which
emphasize different extents of structural similarity to the native conformation from complete to partial.
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FNN follows a Gaussian distribution approximately, then this
improvement corresponds to a reduction of the p-value from
0.0606 to 0.0212 (or roughly by a factor of 3), which is fairly
significant.

Out of 11 targets in the training set, 11 (100%) show better
FNN performance than any individual score F and 10 (90.9%)
show better performance with SAXS information than
without it.

Out of 32 targets in the test set [also from Set (A)], 21
(65.6%) show better FNN performance than any individual
F and 24 (75%) shows better performance with SAXS
information than without it. Therefore, NN shows a similar
improvement to that found for LR and again SAXS is
shown to be valuable in helping to improve the performance
of the NN.

Testing FLR and FNN in native-like structure selection
After obtaining the optimal compilation of our fitness scores,
we tested their performance in discriminating native-like struc-
tures from the candidate sets generated by our threading pro-
tocol. We list the best Z-score rank of native-like structures in
Table III.

The results show that we have achieved reasonable success
with the selection of native-like structures (cRMS1 < 6 Å): in
8 (8) out of all 11 targets from the training set, at least one
native-like structure is ranked in the top 10 by FLR (FNN). In 15
(14) out of all 32 targets from the test set [the rest of set (A)], at
least one native-like structure is ranked in the top 10 by FLR

(FNN). This suggests a success rate of good prediction to be
between 40 and 50% for this protocol. We believe there is still
ample room for improvement by using more accurate models
that include side chains and other backbone atoms.

Testing FLR and FNN in structural neighbor identification
As an alternative test of the effectiveness of the performance of
FLR and FNN, we measured which of the candidate structures in
the top 10 of the Z-score ranked structures is also a structural
neighbor (SN) of the actual protein as measured by the Dali
structure alignment tool (alignment Z-score >2). This is a more
challenging task than finding structures with low cRMS
because the SNs are more remotely related to the target struc-
ture and the simple cRMS1 does not detect the partial structural
similarities that are detected by the Dali structural alignment.
Since our scores are based mostly on the structure as a whole
and are sensitive to possible fragmentation of the structure,
their ability to discriminate native-like partial structural fea-
tures is expected to be weaker.

In spite of this, the results in Table III still show that we have
achieved a moderate success with the identification of correct
SN’s in the top 10 Z-sore candidates: in seven (six) out of all 11
targets from the training set, at least one candidate from a
correct SN is ranked in top 10 by FLR (FNN). In 11 (11) out
of all the 16 targets for which there exist correct SNs in the set
of all candidates from the test set (the rest of set A), at least one
native-like structure is ranked in top 10 by FLR (FNN). In 10
(11) out of all 26 targets from the harder test set [Sets (B) and
(C)], at least one native-like structure is ranked in the top 10
by FLR (FNN). This suggests a success rate of SN identifica-
tion to be between 60 and 70% for relatively easy targets,
whereas for harder targets it drops to �40%, which is still
reasonably good.

We also give the p-values for the successful cases in Table III
to assess the statistical significance of selecting an SN in the top
10. For some of the target proteins, the p-value is relatively
high because of the large number of SNs for those proteins; for
most others, the p-value is fairly low and suggests high stat-
istical significance.

Compared with the previous test on native-like structure
selection, this test is more relevant in the context of functional
genomics based on structural homology relations. As is well
known, a specific biological function of proteins is in general
executed by a limited number of specific structural features
(such as an enzyme’s binding site) which are only part of the
native structure as a whole. Therefore, the conservation of such
partial structural features rather than the whole structure is
more relevant to the conservation of function. In this context
the present SN selection protocol seems to be fairly promising.

Table II. Linear correlation coefficient of Fhpb, Fstat, FSAXS and FRg with FLR

Protein Correlation coefficient

Fhpb Fstat FSAXS FRg

1ctf 0.091 0.066 0.494 0.653
1fwp 0.229 0.161 0.444 0.584
1nkl 0.217 0.277 0.368 0.534
1r69 0.172 0.088 0.410 0.527
2gb1 �0.019 0.023 0.386 0.549
4icb 0.292 0.116 0.474 0.599
1csp 0.208 0.211 0.474 0.554
1leb 0.103 0.068 0.534 0.665
2ezh 0.159 0.078 0.408 0.691
2hp8 0.097 0.070 0.416 0.680
1ubi 0.187 0.168 0.583 0.710
1aa3 0.129 0.099 0.434 0.604
1apf 0.131 0.089 0.268 0.412
1c5a �0.013 0.021 0.399 0.560
1pou 0.176 0.084 0.429 0.604
1shg 0.261 0.061 0.356 0.423
1ag2 0.146 �0.023 0.655 0.789
1aj3 �0.015 �0.065 0.234 0.808
1svq 0.212 0.118 0.592 0.733
1wiu 0.125 0.102 0.554 0.737
1erv 0.277 0.183 0.611 0.715
1tit 0.182 0.119 0.516 0.697
1afp 0.130 0.157 0.227 0.404
1orc 0.070 0.146 0.449 0.611
1ail 0.118 0.130 0.307 0.683
1ajj 0.054 0.043 0.294 0.447
1ayj 0.050 0.182 0.328 0.502
1bgk �0.128 0.145 0.119 0.295
1cc5 0.084 0.054 0.477 0.579
1cmr 0.027 0.085 0.121 0.384
1dec 0.130 0.064 0.183 0.418
1erd 0.146 0.210 0.322 0.491
1gpt 0.010 0.094 0.287 0.489
1hev �0.060 �0.066 0.236 0.428
1pft �0.107 0.032 �0.156 0.785
1ptq 0.043 0.126 0.356 0.504
1qyp 0.056 0.007 0.339 0.750
1roo �0.029 �0.056 0.136 0.298
1utg �0.031 0.054 0.217 0.697
1vtx 0.041 0.131 0.003 0.629
2bds 0.170 0.137 0.293 0.418
2erl 0.032 0.228 0.282 0.487
2fdn 0.096 0.081 0.336 0.450
Average 0.104 0.100 0.367 0.584

This table shows the linear correlation coefficients between four individual
fitness scores and FLR, which measure its relevance to the improved
performance of FLR. The results show that SAXS scores correlate more with
FLR than the energy scores, suggesting the importance of SAXS scores in FLR.
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Applications of structural neighbor identification
The identification of correct SNs can provide clues to the
functional study of a target protein. To illustrate this, we
now discuss several such examples for targets we have studied
for which correct SNs are selected and where we see interesting
functional connections:

1. In a number of cases, the selected SN is in precisely the
same family by sequence homology, for example:
(a) 1r69 (a 434 repressor) and its SN 1b0nA (sinr protein)

both belong to helix–turn–helix motif and fulfil DNA
binding function;

(b) 1shg (a-spectrin) and its SN 1griA (growth factor-
bound protein) both belong to SH3 domain and are
involved in signal transduction;

(c) 1svq (severin) and its SN 1d0znA (horse plasma gel-
solin) both belong to gelsolin and are involved in actin
binding.

In all of the above cases, the sequence identity
is around 20–30% and so falls into the ‘twilight
zone’ where sequence alignment does not give clear
results.

2. In several cases, the selected SN is functionally related to
the target:
(a) 1csp (cold shock protein) is involved in DNA binding,

whereas its SN 1ah9 (initiation factor) has RNA
binding property; this suggests that they may both be
derived from an ancient nucleic acid-binding protein;

(b) 1leb (lexa repressor DNA binding domain) is involved
in the DNA binding function of DNA repair regulation
and transcription regulation process, whereas its SN
1ecl (Escherichia coli topoisomerase) participates in
the process of DNA topological change and DNA
unwinding, so they both share the function of DNA
binding;

(c) 1pou (pou-specific domain) is involved in binding to
specific DNA sequences to cause temporal and spatial
regulation of the expression of genes, whereas its SN
1knyA (kanamycin nucleotidyltransferase) binds to
some RNA primer and has a significant homology
to the family X of polymerases, so they both share
the function of DNA binding.

3. In a few cases, there is no obvious functional relation
between the target and the selected SN but there may

Table III.

Protein Native-like prediction Correct SN p-Value

Best rank
with FLR

Best rank
with FNN

Best rank
with FLR

Best rank
with FNN

1ctf 3 3 6 3 0.001
1fwp 0 1 0 0 0.132
1nkl 942 457 83 45 –
1r69 0 2 0 2 0.006
2gb1 4 0 4 0 0.026
4icb 27 8 22 91 –
1csp 0 0 0 0 0.137
1leb 1 28 1 27 0.035
2ezh 8 23 25 708 –
2hp8 39 4 2347 1165 –
1ubi 0 0 0 0 0.024
1aa3 3282 2161 – – –
1apf 196 72 – – –
1c5a 301 164 – – –
1pou 286 24 7 194 0.001
1shg 0 0 0 0 0.043
1ag2 0 31 0 8 0.009
1aj3 1095 129 25 1 0.211
1svq 0 0 0 0 0.005
1wiu 0 2 0 2 0.568
1erv 0 0 0 0 0.059
1tit 10 1 10 1 0.511
1afp 692 20 – – –
1orc 1 2 – – –
1ail 844 269 47 269 –
1ajj 27 0 – – –
1ayj 0 0 0 0 0.002
1bgk 1 0 – – –
1cc5 0 3 0 1 0.048
1cmr 1 2 – – –
1dec 10 8029 – – –
1erd 19 20 – – –
1gpt 0 2 0 2 0.004
1hev 0 67 0 365 0.001
1pft 65 823 67 582 – – –
1ptq 103 9766 85 1615 –

Protein Native-like prediction Correct SN p-Value

Best rank
with FLR

Best rank
with FNN

Best rank
with FLR

Best rank
with FNN

1qyp 8988 2962 – – –
1roo 0 6 – – –
1utg 1924 126 1965 9622 –
1vtx 18 679 – – –
2bds 152 243 – – –
2erl 0 3 – – –
2fdn 0 6 0 6 0.060
1sro 831 175 9 21 0.098
2ncm 15 685 36 644 6 0 0.542
1tig 92 14 1 2 0.021
1aho 929 12 724 – – –
1bor 5417 2342 – – –
1lfb 1610 8854 1706 2791 –
2vgh 18 183 3495 – – –
1bdo 154 366 –
1btb 593 394 –
1ris 34 55 –
1who 35 1 0.557
2ezk 103 34 –
1ksr 55 3 0.430
1pal 2268 2171 –
1tul 112 55 –
2acy 0 0 0.068
1gvp 40 119 –
1aca 121 48 –
1aba 186 60 –
2ptl 101 1286 –
1ddf 109 32 –
1hlb 7 6 0.007
1jvr 3306 868 –
1kte 2 0 0.045
1lis 63 64 –
1pdo 0 1 1.870
1vls 1 0 0.110
2fha 9 0 0.480
2gdm 3 7 0.012

Table III. Performance evaluation of FLR and FNN in selecting native-like structures and correct structural neighbors (SNs)

This table summarizes the performance ofFLR andFNN in selecting native-like structures and correct structural neighbors. For the latter we show thep-value, which is
the probability of selecting a correct structural neighbor in the top 10 by chance. Structural neighbors are defined by the Dali structural alignment tool with a cutoff
score Z > 2.
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exist some undiscovered evolutionary relationship
suggesting that it could be worth more effort to clarify
such relationships:
(a) 1ctf (ribosomal protein) is involved in protein biosyn-

thesis and its SN 1mla (an acyl carrier protein trans-
acylase) functions as a multifunctional enzyme which
participates in fatty acid biosynthesis, but it is not clear
how they are related to each other;

(b) 1sro (pnpase fragment) is involved in RNA binding
whereas its SN 1a62 (ATPase) is involved in ATP
binding; it is noted that 1a62 contains a nucleotide-
binding site for ATP and ADP which may be the
common sub-structure for both of them;

(c) 2ncm (neural cell adhesion molecule fragment)
belongs to immunoglobulin superfamily and may be
involved in protein–protein and protein–ligand inter-
actions, whereas its SN 1aac (amicyanin) is involved in
copper binding and electron transport; this suggests the
possibility of 2ncm binding metallic ions.

In summary, the above examples demonstrate that conser-
vation in protein structures may imply evolutionary relation-
ships and that structurally similar proteins may possibly share
similar or related functions. Therefore, by identifying SNs
which are structurally similar to a given target, we may gain
some insight regarding the biochemical function of the target.
Work in this direction is expected to be very fruitful.

Conclusion
We have carried out a systematic study of the use of structural
information derived from SAXS measurements to improve fold
recognition. The SAXS data for a target protein can serve as a
structural fingerprint of its native conformation and can there-
fore be used to construct a similarity-based fitness score to
evaluate candidate structures generated by threading. To com-
bine the SAXS scores with the standard energy scores and other
1D profile-based scores, we have used both a linear regression
method and a neural network approach from which we obtain
optimal combined fitness scores and apply them to the ranking
of candidate structures. Our results show that the use of SAXS
scores combined with gapless threading significantly improves
the performance of fold recognition. We also demonstrate the
effectiveness of this protocol in selecting structural neighbors
of target proteins, which can potentially aid the study of their
biochemical functions.

The above results support the idea that SAXS-based fitness
scores should contain newer structural information than the
energy-based scores since the energy scores only take into
account of spatially ‘short range’ native contacts (with inter-
residue distance <7 Å) whereas the SAXS profile contains
distance distribution information up to the size of the protein
(although residue identities are not resolved). Indeed, at the
angle cutoff of Smax = 0.12 Å�1, the SAXS measurement is
able to resolve the shape information (but not the detailed
secondary structures). Therefore, besides the compactness
information from Rg, the additional filtering capacity of
FSAXS is mostly due to the shape information encoded in
the SAXS data. Therefore, the performance of FSAXS for a
given target protein may depend on the uniqueness of its shape.

To improve the SAXS-aided fold recognition further, it is
desirable to replace gapless threading with more sophisticated
gapped threading algorithms with inputs from the multiple

sequence alignments (e.g. by PsiBlast; see Altschul et al.,
1997). This will significantly enrich the native-like structures
in the generated set of candidate structures compared with
those obtained by gapless threading. We note that the
threading-derived sequence–structure alignments must be fur-
ther used to build a set of complete structural models before the
SAXS scores can be assessed. This is not a straightforward task
and may need ab initio modeling for those parts of the target
protein for which no significant alignment with known struc-
tures is found.

In addition to the obvious application of this approach in the
post-structural genomics age to help in the identification of the
structures of specific genome sequences, it also has potential
applications in the implementation of structural genomics pro-
jects. Given a set of proteins which have been shown by
sequence alignment search to lack sequence homology to pro-
teins of known structure, the use of SAXS data as an input,
together with a fold recognition protocol, may be applied to
identify a significant number of targets with structural simil-
arity to known proteins even though they lack sequence homo-
logy. This approach will then help in target prioritization, either
by confirming the putative structural homologues or analogues
identified by the SAXS-based threading procedure or by sug-
gesting target sequences with hitherto unknown folds. The
SAXS-based technique may therefore help in reducing bottle-
necks in high-throughput genomics projects by focusing atten-
tion on targets of specific biological or structural interest.

For future work, we plan to improve the SAXS-based pro-
tocol by using more accurate models which include side chains
and other backbone atoms, in combination with experimentally
obtained SAXS data, which may be complicated by measure-
ment errors and the effects of hydration.

Acknowledgements

We thank D.Walther for his seminal contributions to the use of the SAXS fitness
score. We are grateful to D.Hinds for providing valuable information about the
simulation software that he had developed, to A.Zemla for providing the LGA
software and to David Baker’s group at the University of Washington for
providing the Rosetta decoy set. This work is supported by NSF-PHY98. A
hardware gift from INTEL is gratefully acknowledged.

References
Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. and

Lipman,D.J. (1997) Nucleic Acids Res., 25, 3389–3402.
Bernstein,F.C., Koetzle,T.F., Williams,G.J.B., Meyer,E.F.,Jr, Brice,M.D.,

Rogers,J.R., Kennard,O., Shimanouchi,T. and Tasumi,M. (1977)
J. Mol. Biol., 112, 535–542.

Burley,S.K. (2000) Nat. Struct. Biol., 7, Suppl., 932–934.
David,R., Korenberg,M.J. and Hunter,I.W. (2000) Pharmacogenomics, 1,

445–455.
Dima,R., Settanni,G., Micheletti,C., Banavar,J. and Maritan,A. (2000) J. Chem.

Phys., 112, 9151–9166.
Ding,C.H. and Dubchak,I. (2001) Bioinformatics, 17, 349–358.
Holm,L. and Sander,C. (1998) Proteins, 33, 88–96.
Huang,E.S., Subbiah,S. and Levitt,M. (1995) J. Mol. Biol., 252, 709–720.
Jones,D.T. (1999) J. Mol. Biol., 287, 797–815.
Marchler-Bauer,A. and Bryant,S.H. (1999) Proteins, 37, 218–225.
McLachlan,A.D. (1971) J. Mol. Biol., 61, 409–424.
Rost,B., Schneider,R. and Sander,C. (1997) J. Mol. Biol., 270, 471–480.
Rykunov,D.S., Lobanov,M.Y. and Finkelstein,A.V. (2000) Proteins, 40,

494–501.
Simons,K.T., Bonneau,R., Ruczinski,I. and Baker,D. (1999a) Proteins, 3,

171–176.
Simons,K.T., Ruczinski,I., Kooperberg,C., Fox,B.A., Bystroff,C. and Baker D.

(1999b) Proteins, 34, 82–95.
Stevens,R.C., Yokoyama,S. and Wilson,I.A. (2001) Science, 294, 89–92.

W.Zheng and S.Doniach

218



Svergun,D.I., Petoukhov,M.V. and Koch,M.H. (2001) Biophys. J., 80,
2946–2953.

The Genome International Sequencing Consortium (2001) Nat. Biotechnol.,
409, 860–921.

Venter,J.C. et al. (2001) Science, 29, 1304–1351.
Walther,D., Cohen,F.E. and Doniach,S. (2000) J. Appl. Crystallogr., 33,

350–363.
Williams,M.G. et al. (2001) Proteins, 45, Suppl. 5, 92–97.
Zemla,A. (2003) Nucleic Acids Res., 31, 3370–3374.
Zheng,W.J. and Doniach,S. (2002) J. Mol. Biol., 316, 173–187.

Received November 10, 2004; revised March 7, 2005;
accepted March 25, 2005

Edited by Fred Cohen

Fold recognition aided by SAXS

219


