Coarse-grained modeling of the structural states and transition underlying the powerstroke of dynein motor domain

Wenjun Zheng

Citation: J. Chem. Phys. 136, 155103 (2012); doi: 10.1063/1.4704661
View online: http://dx.doi.org/10.1063/1.4704661
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v136/i15
Published by the American Institute of Physics.

Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/
Journal Information: http://jcp.aip.org/about/about_the_journal
Top downloads: http://jcp.aip.org/features/most_downloaded
Information for Authors: http://jcp.aip.org/authors
Coarse-grained modeling of the structural states and transition underlying the powerstroke of dynein motor domain

Wenjun Zheng

Physics Department, University at Buffalo, Buffalo, New York 14260, USA

(Received 1 February 2012; accepted 3 April 2012; published online 19 April 2012)

This study aims to model a minimal dynein motor domain capable of motor function, which consists of the linker domain, six AAA+ modules (AAA1–AAA6), coiled coil stalk, and C-terminus domain. To this end, we have used the newly solved X-ray structures of dynein motor domain to perform a coarse-grained modeling of dynein’s post- and pre-powerstroke conformation and the conformational transition between them. First, we have used normal mode analysis to identify a single normal mode that captures the coupled motions of AAA1–AAA2 closing and linker domain rotation, which enables the ATP-driven recovery stroke of dynein. Second, based on the post-powerstroke conformation solved crystallographically, we have modeled dynein’s pre-powerstroke conformation by computationally inducing AAA1–AAA2 closing and sliding of coiled coil stalk, and the resulting model features a linker domain near the pre-powerstroke position and a slightly tilted stalk. Third, we have modeled the conformational transition from pre- to post-powerstroke conformation, which predicts a clear sequence of structural events that couple microtubule binding, powerstroke and product release, and supports a signaling path from stalk to AAA1 via AAA3 and AAA4. Finally, we have found that a closed AAA3–AAA4 interface (compatible with nucleotide binding) is essential to the mechanochemical coupling in dynein. Our modeling not only offers unprecedented structural insights to the motor function of dynein as described by past single-molecule, fluorescence resonance energy transfer, and electron microscopy studies, but also provides new predictions for future experiments to test.

© 2012 American Institute of Physics.

INTRODUCTION

Dyneins are giant cytoskeletal motors of 1–2 MDa that can utilize energy from ATP hydrolysis to move processively toward the minus ends of microtubules (MT). They are critically involved in a variety of functions in eukaryotic cells, including the beating of cilia and flagella, cell division, cell migration, and the intracellular trafficking of various vesicles and organelles along MT.

The primary kinetic cycle of dynein, which is highly similar to another superfamily of cytoskeletal motors – myosin, has been characterized by past studies:

\[
[D-ATP] \rightarrow [D-ADP-Pi] \rightarrow [M-D-ADP] \rightarrow [M-D] \rightarrow [D-ATP]
\]

(\(D\): dynein, \(M\): MT, \(Pi\): inorganic phosphate).

Starting from the \(D-ATP\) state, dynein is detached from MT and undergoes an isomerization, which is accompanied by a rotation of the tail domain to the pre-powerstroke position (recovery stroke). Then, ATP hydrolysis leads to \(D-ADP-Pi\) state (pre-powerstroke state). MT binding and Pi release lead to \(M-D-ADP\) state (or two ADP states linked by an isomerization, see Refs. 10–12), resulting in force generation (powerstroke) as the tail domain rotates to the post-powerstroke position. Subsequent release of ADP leads to \(M-D\) state. ATP binding dissociates dynein rapidly from MT, and returns it to \(D-ATP\) state for the next cycle. During the above kinetic cycle, ADP release is rate limiting and accelerated by MT binding.

The structural architecture of dynein has been well characterized. The heavy chain of dynein consists of a tail, a head, and a stalk. The tail is responsible for dimerization of the heavy chain and binding of associated proteins and cargo, but it is dispensable for dynein’s processive motility. The N-terminus region of the head (~10 nm long, named the linker domain) is thought to be critically involved in the powerstroke of dynein motor. The rest of the head consists of six tandemly linked AAA+ modules (AAA1–AAA6) (Refs. 19 and 20) and C-terminus domain forming a ring with a diameter of ~13 nm (Ref. 21) (see Fig. 1). Each module is a member of the AAA+ (ATPase associated with diverse cellular activities) superfamily of mechanochemical enzymes. The hexameric ring is solely responsible for dynein’s core motor activities, such as ATP hydrolysis, ATP-dependent MT binding, and MT-based motility. Among the four AAA+ modules (AAA1–AAA4) that can bind ADP and/or ATP, AAA1 has the primary ATPase site, AAA3 has a secondary ATPase site which was shown to play an important role in dynein motility, while AAA2 and AAA4 can bind nucleotide and play certain regulatory role. A 12-nm-long coiled coil stalk ends in a globular MT-binding domain (MTBD) that binds MT in an ATP-dependent manner.

The molecular mechanism of dynein motility remains poorly understood, which is mainly due to the lack of high-resolution dynein structures until recently. In the past, low-resolution structural information of dynein from electron
microscopy (EM) has shed lights on the structural basis of dynein motility. In an early EM study, it was found that the tail is in two different positions when dynein is at nucleotide-free and ADP-vanadate(Vi)-bound state. The existence of two tail conformations during the kinetic cycle of dynein was confirmed by a fluorescence resonance energy transfer (FRET) study. Therefore, a large rotation of tail may be involved in the powerstroke that drives the robust MT sliding observed by an in vitro motility assay study. Furthermore, the tail rotation was shown to be coordinated with the cyclic MT association/dissociation at most intermediate states of the dynein kinetic cycle.

Recently, two X-ray structures of dynein motor domain have been solved—one from Dictostelium discoideum in the presence of ADP, and another from yeast in the absence of nucleotide, which offered a detailed view to the structural conformation and the transition from pre- to post-powerstroke state of dynein in vitro.34 This structural conformation remains unknown. The objective of this study is to computationally model the pre-powerstroke conformation and the transition between them. First, we have used NMA to identify a single normal mode that captures the coupled motions of AAA1–AAA2 closing and linker domain rotation in support of the ATP-driven recovery stroke. Second, we have constructed a new structural model for dynein’s pre-powerstroke conformation by computationally inducing AAA1–AAA2 closing and sliding of coiled coil stalk. Third, we have modeled the conformational transition from pre- to post-powerstroke conformation, which outlines a clear sequence of structural events in support of the allosteric couplings between MT binding, powerstroke, and product release. Finally, we have found that a closed AAA3–AAA4 interface is essential to the mechano-chemical coupling in dynein. Our modeling results offer structural insights to past experimental studies and provide new predictions for future experiments.

METHODS

Elastic network model and normal mode analysis

In an ENM, a protein structure is represented as a network of beads each corresponding to the C_{α} atom of an amino acid residue. A harmonic potential accounts for the elastic interaction between a pair of C_{α} atoms that are within a cutoff distance R_c, chosen to be 10 Å (following Ref. 59). The ENM potential energy is

$$E = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{i-1} k_{ij} \theta(R_c - d_{ij}^0)(d_{ij} - d_{ij}^0)^2,$$

where k_{ij} is the force constant, R_c is the cutoff distance, and d_{ij} and d_{ij}^0 are the current and equilibrium distances between atoms i and j, respectively.
where N is the number of C_w atoms, $\theta(x)$ is the Heaviside function, d_{ij} is the distance between the C_w atom i and j, and d_{ij}^0 is the value of d_{ij} as given by an equilibrium structure (usually a crystal structure). k_{ij} is the force constant, which is 1 for non-bonded interactions and 10 for bonded interactions between residues (the unit of k_{ij} can be arbitrarily chosen without changing the modeling results). The use of high/low force constant for bonded/non-bonded pairs of C_w atoms was previously found to improve the accuracy of ENM-based modeling.\(^6^0\)

We can expand the ENM potential energy to second order

$$E \approx \frac{1}{2} X^T H X,$$

where X is a $3N$-dimension vector representing the 3D displacement of N C_w atoms away from their equilibrium positions, H is the Hessian matrix which is obtained by calculating the second derivatives of ENM potential energy with respect to the $3D$ coordinates of C_w atoms.

Normal mode analysis solves $HW_m = \lambda_m W_m$, where λ_m and W_m represent the eigenvalue and eigenvector of mode m. After excluding 6 zero modes corresponding to 3 rotations and 3 translations, we keep $3N$-6 non-zero modes, which are numbered from 1 to $3N$-6 in order of ascending eigenvalue.

To validate ENM-based NMA, we compare each mode (mode m) with the observed structural changes between two crystal structures (represented by a $3N$-dimension vector X_{obs}) by calculating the following overlap:

$$I_m = \frac{|X_{obs}^T W_m|}{|X_{obs}| \cdot |W_m|},$$

where $X_{obs}^T W_m$ is the dot product between X_{obs} and W_m, $|X_{obs}|$ and $|W_m|$ represent their magnitudes.

In addition, the following cumulative overlap is calculated to assess how well the lowest M modes describe X_{obs}

$$C_M = \sqrt{\sum_{1 \leq m \leq M} I_m^2},$$

Because $\sum_{1 \leq m \leq 3N-6} I_m^2 = 1$, C_M gives the percentage of the observed structural changes captured by the lowest M modes.

Coarse-grained transition pathway modeling by iENM

In a recent study,\(^5^4\) we proposed a general algorithm to generate a transition pathway (i.e., a series of intermediate conformations) between two given protein conformations (named beginning and end conformations). We first construct two single-well potentials (E_1 and E_2) whose minima are located at the two given conformations, respectively. Then, we construct a double-well potential $F(E_1, E_2)$ with two minima located at the two given conformations. Then, we solve the saddle point (SP) of $F(E_1, E_2)$ as follows:

$$0 = \nabla F(E_1, E_2) = \frac{\partial F}{\partial E_1} \nabla E_1 + \frac{\partial F}{\partial E_2} \nabla E_2,$$

which is equivalent to solving the following equation (after setting $\lambda = \frac{\partial F}{\partial E_1}/(\frac{\partial F}{\partial E_1} + \frac{\partial F}{\partial E_2})$):

$$0 = \lambda \nabla E_1 + (1-\lambda) \nabla E_2,$$

where λ is a parameter of interpolation – as λ varies from 1 to 0, the saddle point traces a pathway that connects the beginning and end conformation. Because this pathway passes all possible SPs, it is independent of the mathematic form of $F(E_1, E_2)$.

Based on the above general formulation, we have developed an interpolated ENM (iENM) protocol\(^5^4\) which solves the saddle points of a double-well potential $F(E_{ENM1} + E_{col}, E_{ENM2} + E_{col})$, where E_{ENM1} and E_{ENM2} are two ENM potentials (see Eq. (1)) based at the beginning and end conformations, and E_{col} is a steric collision energy.\(^5^4\) Here, we will use iENM to generate a pathway from the pre- to post-powerstroke conformation of dynein.

The iENM cannot only predict a pathway between two given global conformations, but also model an unknown global conformation (at end state) from a known global conformation (at beginning state) together with a given “target” local structure (at end state). The idea is to computationally induce the local structural change toward the given target structure and let the rest of protein to relax to a minimal-energy conformation. We have recently used this method to construct a complete structural model for myosin motor domain from an incomplete crystal structure.\(^6^3\) For implementation, we construct a single-well potential E_1 based on the known global conformation at beginning state and E_2 based on the “target” local structure at end state. Then, we solve the saddle point equation (see Eq. (6)) with λ varying from 1 to 0, which generates a pathway whose last frame gives a global structural model for the unknown end state. Here, we will use iENM to generate the pre-powerstroke conformation of dynein.

Quantification of motional order of key protein parts during a transition

Following Ref. 62, a fractional progress parameter $f_{progress}(f_{progress} \in [0, 1])$ is defined for an intermediate conformation along a transition pathway: $f_{progress} = l/L$, where l is the length of the part of the pathway from the beginning conformation to the intermediate conformation, while L is the total length of the pathway from the beginning conformation to the end conformation. The length of a pathway is computed approximately by summing up RMSDs between consecutive conformations along the pathway (separated by 0.1 Å in RMSD).

We use the predicted pathway to determine the motional order of several protein parts. To this end, the following reaction coordinate is defined for a given part S,\(^5^1\)

$$RC_S = 0.5 \left(1 + \frac{RMSD_{S,1}^2 - RMSD_{S,2}^2}{RMSD_{S,obs}^2} \right),$$

where $RMSD_{S,1}(RMSD_{S,2})$ is the RMSD of C_w atoms of part S between a given intermediate conformation and the beginning (end) conformation, and $RMSD_{S,obs}$ is the corresponding RMSD between the beginning and end conformations. RC_S varies from 0 to 1 as the transition proceeds from the beginning to the end conformation. For two protein parts S and S', if $RC_S < RC_{S'}$, then $RC_{S'}$ ascends from...
0 to 1 faster than RC$_S$, we can infer that the motion of S' precedes that of S.

Structural alignment

To obtain the conformational change between two X-ray structures of dynein (PDB codes 3ay1 and 3qmz), we structurally align them using the Dali server (ekhidna.biocenter.helsinki.fi/dali_lite/). No sequence information is used during the alignment because the amino acid residue names of 3ay1 are unassigned. The alignment result is shown in Table S1 of the supplementary material.76

We also use Dali to structurally align different AAA modules within the yeast dynein structure (PDB code: 3qmz). In particular, we align AAA1–AAA2 with AAA3–AAA4 to model the open-to-close conformational change between them. The alignment result is shown in Table S2 of the supplementary material.76 Of the six AAA modules, AAA1 and AAA3 are structurally most similar.34

RESULTS

We aim to model a minimal dynein motor domain capable of motor function, which comprises the N-terminus linker domain (shown to be necessary for dynein motility in Ref. 2), six AAA+ modules (AAA1–AAA6), coiled coil stalk, and C-terminus domain. Our modeling is based on two recently solved X-ray structures of dynein motor domain (PDB codes: 3qmz and 3ay1). We mainly use the former structure (PDB code: 3qmz) to perform NMA, model pre-powerstroke conformation, and simulate the transition from pre- to post-powerstroke conformation; the latter (PDB code: 3ay1) is only used to extract crystallographically observed conformational changes in dynein.

NMA of dynein structure predicts key functional motions

To deduce collective motions encoded in the X-ray structure of yeast dynein (PDB code: 3qmz), we have constructed a C$_\alpha$-only ENM from the X-ray structure (without adding missing residues or optimizing atomic coordinates). Then, we have performed NMA based on the ENM potential (see Methods section). The yeast dynein structure is chosen over the other one (PDB code: 3ay1) for NMA because the latter has more missing residues (all β-strand residues are absent), which result in an insufficiently connected ENM and therefore many zero modes.

We have visually examined the collective motions captured by the lowest three modes (see Figs. 1(a)–1(c)). Mode 2 is of most interest. Dynamic domain partition65 suggests that the collective motion of mode 2 can be described in terms of rigid-body rotations among the following three dynamic domains (see Fig. 1(b)):

1. Domain 1 consists of subdomains 1 and 2 of the linker domain (hinged at the subdomains 2–3 interface, see Fig. 4 in Ref. 34);

2. Domain 2 consists of subdomains 3 and 4 of the linker domain, the large domain of AAA1, the small domain of AAA5 (excluding buttress), AAA6, and C-terminus domain;

3. Domain 3 consists of the rest of the hexameric AAA+ ring (including stalk and buttress).

The rotation of domain 1 relative to domain 3 (around an axis roughly perpendicular to the hexameric ring plane, see Fig. 1(b)) captures the swing of linker domain underlying the powerstroke and recovery stroke of dynein.16,34 The rotation of domain 2 relative to domain 3 (around an axis lying within the hexameric ring plane, see Fig. 1(b)) captures the following two functional motions: first, the closing of AAA1–AAA2 gap, which may couple to ATP binding and isomerization16 at the primary ATPase site;34 second, the tilting of stalk/buttress relative to the small domain of AAA5, which may couple to further structural changes (such as sliding, see below) in stalk leading to changing MT-binding affinity of MTBD.33,34 We note that the sliding motion within the coiled coil stalk is not predicted by NMA, because it is energetically unfavorable in ENM.

Similar partition of dynamic domains is obtained for modes 1 and 3, although the directions of inter-domain rotations are different (see Figs. 1(a) and 1(c)). In mode 1, the rotation of domain 1 relative to domain 3 is around an axis roughly parallel to the hexameric ring plane (see Fig. 1(a)); in mode 3, the rotation of domain 1 relative to domain 3 is around an axis roughly parallel to the linker domain (see Fig. 1(c)). A similar rotation of domain 2 relative to domain 3 is found for all three modes (see Figs. 1(a)–1(c)).

To assess the relevance of lowest modes (particularly mode 2) to real conformational changes in dynein, we explore how well they can account for the observed differences between the two dynein X-ray structures (PDB codes: 3qmz and 3ay1). We structurally align the two X-ray structures using Dali (see Methods section). Although both X-ray structures (solved in the absence of nucleotide and in the presence of MgADP, respectively) correspond to the post-powerstroke state, they do exhibit significant differences (see Fig. 1(d)); the AAA1–AAA2 gap is more open in 3qmz, and the linker domain of 3qmz (3ay1) mainly contacts with AAA5 (AAA4) – resulting in a small counterclockwise rotation of linker from 3qmz to 3ay1. The above differences could represent conformational changes associated with ADP release.33 Then, we compare each mode with the observed structural changes from 3qmz to 3ay1. Encouragingly, the lowest ten modes (out of total 6408 modes) capture >50% of the observed changes, and mode 2 has the highest overlap (~0.45). Indeed, mode 2 nicely captures the observed structural differences in AAA1–AAA2 and linker domain (see Fig. 1(b)). Unlike mode 2, mode 1 (with overlap ~0.23) does not compare well with the observed structural changes because it describes a different rotation of linker perpendicular to the hexameric ring plane, although such rotation may account for the detachment of linker from the dynein ring which may enable the dynein dimer to separate its two heads further apart to achieve large step sizes. In sum, ENM-based NMA gives a good description of conformational changes in dynein motor domain.
FIG. 2. Structural modeling of pre-powerstroke conformation of dynein motor domain. Panel (a) shows the model of pre-powerstroke conformation aligned with the post-powerstroke conformation (PDB code: 3qmz); the post-powerstroke conformation is opaque, while the pre-powerstroke conformation is transparent (except for the linker and stalk which are shown as thick opaque tubes); three red arrows show stalk tilting, linker rotation, and displacement of linker tip. Panel (b) shows an enlarged view of AAA1–AAA2 interface, where the Arginine finger of AAA2 is shown as a yellow bead and the Walker A motif of AAA1 is colored red. The same color scheme as Fig. 1(d) is used for AAA1–AAA6 and linker.
2. As found by an early EM study, when emerging from the dynein ring, the stalk is slightly tilted and bent to the left in the ADP-Vi-bound state, and it is slightly tilted to the right in the apo state (see Fig. 4 of Ref. 16).

3. A recent EM study observed a small tilting of stalk (in right view by 16° and in top view by 2°) relative to the head from apo state to ADP-Vi-bound state. The EM-observed stalk tilting is also to the left if viewing from the same direction as in Fig. 1 (the viewing direction adopted in Fig. 5(c) of Ref. 18 is opposite to the one we use here).

4. Another EM study observed slightly different stalk angles (relative to MT) between ADP-Vi-bound state (∼58.6°) and apo state (∼54°), which may be coupled to a slight tilting of stalk relative to the head.

5. According to a previous EM study, the dynein ring lies within a plane parallel to the MT axis with AAA2 facing the plus end of MT (see Fig. 1(e)). Therefore, the leftward tilting of stalk is coupled to the movement of MT toward the plus end relative to dynein head (i.e., the movement of dynein toward the minus end of MT), which can be induced by a forward pulling force (toward the minus end of MT) acting on dynein head. Consequently, the tilting of stalk allows a decrease/increase in MT-binding affinity to be induced by a forward/backward pulling force, which was indeed found in a single-molecule study.

Taken together, a ∼42° rotation of linker and a ∼10° tilting of stalk result in a change of ∼32° to the angle between stalk and linker (see Fig. 2(a)), which is in reasonable agreement with the EM observation of a change of the angle between tail and stalk by 24° (from 160° to 136°) between apo and ADP-Vi-bound states.

The open-to-closed conformational change of AAA1–AAA2 interface (see Fig. 2(b)) involves motions within AAA1 (for example, movements of the Walker A and Walker B motifs of AAA1) and motions of AAA2 relative to AAA1 (for example, movement of the Arginine finger of AAA2). What is the relative importance of intra- vs. inter-AAA motions in triggering large conformational changes in dynein ring? To answer this question, we have used iENM to induce the intra-AAA motions within the large domain of AAA1 (see 3qmz conformation of 3qmz). As a result, only a small (∼5°) swing of linker domain is induced (see Fig. S1a of the supplementary material). Therefore, the inter-AAA motions between the large domains of AAA1 and AAA2 are essential to drive a large swing of linker domain, which may require the alignment of ATP-binding motifs from AAA2 (such as Arginine finger) with ATP at the primary ATPase site. Indeed, a mutational study supported the importance of Arginine finger to ATP hydrolysis. Another mutational study found that the recovery stroke is abolished in a Walker A mutant (K197ST) but not in a Walker B mutant (E2022Q), suggesting that the recovery stroke requires ATP binding but not hydrolysis. Additionally, a FRET study showed that the tail domain remains in a post-powerstroke position in the presence of non-hydrolyzable ATP analog. Therefore, the recovery stroke of dynein is coupled to an isomerization between two ATP states rather than ATP binding or hydrolysis. This isomerization requires the presence of ATP and participation of ATP-binding motifs from both AAA1 (such as Walker A motif) and AAA2 (such as Arginine finger).

Transition pathway modeling reveals a sequence of structural events that couple MT binding, powerstroke, and product release

To dissect the structural basis of dynein’s force generation, it is critical to probe the conformational transition from the pre-powerstroke (APP-Pi-bound) state to the post-powerstroke (apo) state. To this end, we have employed the iENM protocol (see Methods) to generate a transition pathway (consisting of a series of intermediate conformations, see Movie S1 in the supplementary material) from the pre-powerstroke conformation to the post-powerstroke conformation. By analyzing the transition pathway using the reaction coordinates (see Methods section), we aim to determine the motional order of the following key parts of dynein motor domain (see Fig. 1(e)):

1. Linker domain: its large swing is directly responsible for force generation (powerstroke).
2. Coiled coil stalk: the sliding between helix CC1 and CC2 is coupled to a change from weak to strong MT-binding affinity.
3. AAA1–AAA2: the opening of AAA1–AAA2 interface is associated with product (ADP) release from the primary ATPase site;
4. AAA3–AAA4, AAA4–AAA5, and AAA5–AAA6: these relative motions between adjacent AAA+ modules may be involved in the allosteric communication from stalk to the primary ATPase site, which enables MT binding to trigger product release. For example, the AAA3–AAA4 motion may be involved in a possible signaling path: stalk → AAA4 → AAA3 → AAA2 → AAA1, while the AAA5–AAA6 motion may be involved in another possible signaling path: stalk → AAA4 → AAA5 → AAA6 → AAA1.

Many alternative pathway modeling methods have been developed to generate an energetically feasible pathway between two given protein structures based on the interpolation of certain structural properties (such as atomic coordinates, residue–residue distances etc). The use of interpolation tends to produce highly synchronized motions involving all protein residues. Instead of using structure-based interpolation, our iENM method searches for saddle points of a double-well potential function (see Methods section), and it is able to predict sequential motions of various protein parts that may shed lights on the dynamic mechanism of signaling.

Indeed, our transition pathway modeling has uncovered a clear sequence of structural events in the following order (see Fig. 3 and Fig. S2 of the supplementary material): stalk → AAA4–AAA5 → AAA3–AAA4 and linker → AAA1–AAA2 → AAA5–AAA6. This sequence suggests that the signaling from stalk to the primary ATPase site is mediated by the AAA3–AAA4 motion rather than the AAA5–AAA6 motion. Therefore, our finding is consistent with the
FIG. 3. Modeling of the transition from the pre-powerstroke to the post-powerstroke conformation of dynein motor domain: Panel (a) shows an intermediate conformation of the predicted transition pathway aligned with the pre-powerstroke and post-powerstroke conformations; the intermediate conformation is colored gray, the post-powerstroke conformation is opaque, and the pre-powerstroke conformation is transparent; the linker domain is removed for clarity; one can see that the intermediate conformation and pre-powerstroke conformation are similar in AAA1, AAA2, AAA5, and AAA6, while the intermediate conformation and post-powerstroke conformation are similar in stalk and buttress. Panel (b) shows the linker domain in the intermediate conformation (gray), post-powerstroke conformation (opaque), and pre-powerstroke conformation (transparent). Panel (c) shows the AAA1–AAA2 interface in the intermediate conformation (gray), post-powerstroke conformation (opaque), and pre-powerstroke conformation (transparent). The same color scheme as Fig. 1(d) is used for AAA1–AAA6 and linker.

following signaling path: stalk → AAA4 → AAA3 → AAA2 → AAA1,16,74,75 instead of an alternative path: stalk → AAA4 → AAA5 → AAA6 → AAA1.

As shown by the predicted transition pathway, the linker domain swings in the clockwise direction over the dynein ring, forming transient contacts with residues from AAA2 to AAA5 (see Movie S2 in the supplementary material76). Interestingly, the truncation of linker residues 1390–1416, which form transient contacts with dynein ring during the powerstroke, was found to abolish dynein motility. Therefore, these linker–ring interactions may be important in modulating the transition from pre- to post-powerstroke conformation by stabilizing or destabilizing transition intermediates. Future mutational studies will help to further probe these key interactions.

Our modeling predicts the existence of a structural intermediate with the α-registry of coiled coil stalk (corresponding to strong MT-binding affinity), closed AAA1–AAA2 interface (compatible with ADP binding, see Fig. 3(c)) and an intermediate linker orientation (between pre- and post-powerstroke position) (see Fig. 3(b)). This is akin to an ADP state in myosin V with high affinity for both F-actin and ADP (see Ref. 61).

AAA3–AAA4 closing is critical to mechano-chemical coupling of dynein

Our transition pathway modeling supports a signaling path from stalk to AAA1 via AAA3 and AAA4. Indeed, previous studies also supported the importance of nucleotide bind-

ing at AAA3–AAA4 interface to dynein function (27–29). To probe the functional role of AAA3 and AAA4, we have modeled how the absence of nucleotide binding at AAA3–AAA4 interface affects the recovery stroke. To this end, we start from the yeast dynein structure (PDB code: 3qmz), and computationally induce the opening of AAA3–AAA4 (toward the AAA1–AAA2 conformation of 3qmz) by using iENM. Then, we have repeated the modeling of pre-powerstroke conformation starting from the post-powerstroke model with open AAA3–AAA4 (by inducing the closing of AAA1–AAA2 interface, see above). The new pre-powerstroke model shows a small (~3°) swing relative to the post-powerstroke conformation (see Fig. S1b of the supplementary material76), suggesting that the coupling between AAA1–AAA2 closing and linker swing is greatly reduced. Therefore, the closing of AAA3–AAA4 interface by nucleotide binding is required to facilitate the ATP-driven recovery stroke of dynein.

Our finding is in good agreement with a previous FRET study,10 which found that a Walker A mutation (K2675T) in AAA3 caused large changes in FRET efficiencies, indicating a much reduced displacement of tail domain during the kinetic cycle.

CONCLUSION

In conclusion, we have used the newly solved X-ray structures of dynein motor domain33,34 to perform a coarse-grained modeling of dynein’s post- and pre-powerstroke conformation and the conformational transition between them. Our findings are summarized as follows: First, we have used NMA to identify a single normal mode that captures the coupled motions of AAA1–AAA2 closing and linker domain rotation, which allows dynein’s recovery stroke to be triggered by ATP binding and isomerization.10 Second, based on the post-powerstroke conformation solved crystallographically,34 we have modeled dynein’s pre-powerstroke conformation (with ATP or ADP-Pi bound and low MT-binding affinity) by computationally inducing AAA1–AAA2 closing and sliding of coiled coil stalk,67–69 and the resulting model features a linker domain near the pre-powerstroke position and a slightly tilted stalk. Third, we have modeled the conformational transition from pre- to post-powerstroke conformation, which predicts a clear sequence of structural events that couple MT binding, powerstroke, and product release, and supports a signaling path from stalk to AAA1 via AAA3 and AAA4. Finally, we have found that a closed AAA3–AAA4 interface (compatible with nucleotide binding) is essential to the mechano-chemical coupling in dynein.

Our modeling offers unprecedented structural insights to the motor function of dynein as described by past single-molecule,2,73 FRET (Ref. 10) and EM (Refs. 16, 18, and 71) studies. Our modeling also provides new predictions for future experiments, including a predicted structural intermediate with strong MT-binding affinity, closed primary ATPase site, and an intermediate linker orientation (between pre- and post-powerstroke position), and the prediction of key interactions between linker and ring that modulates the powerstroke transition.
I thank funding support from American Heart Association (Grant No. 0835292N) and the National Science Foundation (Grant No. 0952736).

50. See supplementary material at http://dx.doi.org/10.1063/1.4704661 for two supplemental tables, two supplemental figures, two movies, and two Ca coordinate files in PDB format.