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INTRODUCTION

Dynamic transitions between different conformations are essential for the

function of many proteins. Examples include allosteric transitions in

enzymes,1 force generations in motor proteins,2 the opening and closing of

ion channels, and the conformational changes induced by ligand binding to

enzymes and receptors. A detailed molecular description of the structural

changes during those transitions should facilitate our understanding of the

underlying mechanisms and may aid in the design of ligands that modulate

transition equilibria and rates. Direct experimental investigations of the

dynamic transitions are practically limited to observations of sufficiently

populated states, including the beginning and end states, and high-popula-

tion intermediates. As a consequence, transition states with their low popula-

tion are largely inaccessible to experiments, with the possible exception of

perturbative approaches such as F-value analysis in protein folding.3 Even

single-molecule techniques, while able to detect molecular transitions,4 do

not yet have the spatial and temporal resolution to fully capture the structure

and dynamics during transition events.

Faced with these experimental challenges, it appears highly desirable to de-

velop general computational techniques that allow us to explore in atomic

detail the structural changes occurring during molecular transitions. Molecu-

lar simulations appear ideally suited to study protein conformational dynam-

ics. However, most transition processes of interest occur on time and length

scales inaccessible to standard all-atom molecular dynamics simulations.5

Among several alternatives,6–8 one promising approach to overcome the

time scales limitations of simulations is to use coarse-grained models with

simplified representations and energy functions.9 Structure-based elastic net-

work models (ENMs)10 have been successfully applied to describe protein

conformational changes.11–21 In ENMs, amino acids are represented as

beads connected by harmonic springs. Low-frequency normal modes then

yield directions of collective large-amplitude motions.

By construction, the ENM potential function has only a single minimum

corresponding to a known protein structure. To explore conformational
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ABSTRACT

We develop a mixed elastic network model

(MENM) to study large-scale conforma-

tional transitions of proteins between two

(or more) known structures. Elastic net-

work potentials for the beginning and end

states of a transition are combined, in

effect, by adding their respective partition

functions. The resulting effective MENM

energy function smoothly interpolates

between the original surfaces, and retains

the beginning and end structures as local

minima. Saddle points, transition paths,

potentials of mean force, and partition

functions can be found efficiently by

largely analytic methods. To characterize

the protein motions during a conforma-

tional transition, we follow ‘‘transition

paths’’ on the MENM surface that connect

the beginning and end structures and are

invariant to parameterizations of the

model and the mathematical form of the

mixing scheme. As illustrations of the gen-

eral formalism, we study large-scale con-

formation changes of the motor proteins

KIF1A kinesin and myosin II. We generate

possible transition paths for these two pro-

teins that reveal details of their conforma-

tional motions. The MENM formalism is

computationally efficient and generally ap-

plicable even for large protein systems that

undergo highly collective structural

changes.
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transitions, information about the modes connecting

the beginning and end structure can be extracted by

projecting the more compact state onto the normal

modes of the more open state. Going beyond this pre-

scription, Kim et al.22,23 have used a distance-matrix

based interpolation to generate intermediate structures

between two end structures. Another study by Miyashita

et al.24 used an ENM-based iterative search to generate

plausible transition paths with minimal structural distor-

tions and energy cost.

Recently, Maragakis and Karplus25 and Best et al.26

independently proposed two closely related formalisms to

interpolate between two structure-based potentials. In

both formalisms, the structure-based potentials of the be-

ginning and end states of a molecular transition are com-

bined to obtain effective energy surfaces that retain the

initial and final structures of the transition as dominant

and smoothly connected local minima. In the ‘‘plastic

network model’’ (PNM) of Maragakis and Karplus,25

two ENM potentials E1(x) and E2(x), are combined fol-

lowing the valence bond formulation of quantum chem-

istry, EðxÞ ¼ ½E1ðxÞ þ E2ðxÞ þ e1 þ e2 � E1ðxÞ � E2ðxÞ½f
þ e1 � e2�2 þ b�2g1=2�=2. Best et al.26 mixed two

Gō potentials using Boltzmann weights of statistical

mechanics to describe the a-to-b transition of an arc

repressor mutant: exp½�bEðxÞ� ¼ exp �b½E1ðxÞ þ e1�f g
þ exp �b½E2ðxÞ þ e2�f g, with energy offsets e1 and e2,
and a mixing parameter b. The PNM mixing scheme25

was recently explored in combination with a Gō model

by Okazaki et al.27

In this work we extend the formalism of Best et al.26

to mixing of ENMs for known structures of two protein

conformational states. The resulting mixed-ENM

(MENM) energy function has two minima connected

by a saddle point (SP). For the harmonic ENM poten-

tials, the Boltzmann-weighted mixing allows us to eval-

uate free energies, potentials of mean force (PMF), and

even transition paths using largely analytic methods

because the partition functions retain their Gaussian

character.

We will demonstrate the use of the MENM method by

examining two biologically important conformational

transitions in two motor proteins (myosin II and KIF1A

kinesin), which were analyzed by conventional ENM

methods previously.13,28,29 First, we will study the

power-stroke transition of myosin II from the prepower-

stroke state (PDB code: 1VOM30) to the postpowerstroke

rigor-like state (PDB code: 1Q5G31). This transition

takes place after ATP hydrolysis in response to actin

binding, resulting in the converter/lever arm undergoing

a large-scale rotation that is accompanied by the closure

of the actin-binding cleft within the 50 kDa domain.31

Second, we study a related force-generating transition in

KIF1A kinesin from the ADP-bound state (PDB code:

1I5S32) to the ATP-like state (PDB code: 1I6I32). In this

transition, the neck linker (analogous to the lever arm in

myosin) undergoes a disorder-to-order transition to dock

against the motor domain in response to the ATP-bind-

ing at the nucleotide-binding site.32

The general procedure is summarized as follows. First,

we construct the MENM potential based on the two

ENM potentials built from the known beginning and end

structures of the transition. We then determine the SP

and three alternative ‘‘transition paths:’’ the steepest-

descent (SD) path; the path traced by the SP as the mix-

ing parameter b is continuously varied; and a minimum

free energy path defined in terms of 1D and 2D PMFs.

As it turns out, the SP transition path is independent of

the parameters b and "i of MENM surface and the spe-

cific model used for mixing. From the parameter-inde-

pendent SP path, we extract information about the time-

ordering of the forming and breaking of residue contacts

during the transitions. Even though the main focus of

the paper is on illustrating the MENM method, we

briefly discuss the biological implications of the results.

METHODS

Potential function of ENM

In ENMs, proteins are represented as elastic bodies.

The ENM potentials are constructed by using the Ca

coordinates of a protein in its native structure. A har-

monic potential with a uniform force constant C

accounts for pair-wise interactions between all Ca atoms

that are within a cutoff distance RC. The potential energy

in the elastic network representation of a protein is

Eð~x �~x0Þ ¼ 1

2

X
d0
ij
<RC

Cðdij � d0ijÞ2; ð1Þ

where ~x is a 3N-dimensional vector representing the Car-

tesian coordinates of the N Ca atoms, ~x0 is the corre-

sponding vector of the Ca positions in the native (crystal

or NMR) structure, dij is the Euclidian distance between

the Ca atoms i and j, and d0ij is the corresponding dis-

tance in the native structure.

We expand the potential function in Eq. (1) to second

order about the minimum by computing its Hessian matrix

H:

Eðd~xÞ � 1

2
d~xT � H � d~x; ð2Þ

where d~x ¼~x �~x0. Despite the drastic simplification of

representing the complex protein structure by an effective

harmonic potential, the resulting model has led to useful

descriptions of large-amplitude protein motions in terms

of low-frequency normal modes of the Hessian H.11–21,33
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Fitting B factors to calibrate the
force constant C

In its simplest form, the ENM has two parameters: the

cutoff distance RC and the force constant C of the har-

monic springs. We calibrate C (in units of kBT) by fitting

the isotropic crystallographic B factor Bi of residue i in a

given crystal structure as follows:

Bi

8�2
¼ hu2i iisotropic ¼

kBTcrystal

3

X
m

~�m;i
2

�m

; ð3Þ

where kB is Boltzmann constant, ~vm;i is the 3D compo-

nent of the eigenvector of mode m for residue i, �m is

the eigenvalue of mode m, and Tcrystal is the temperature

at which the structure was determined (here Tcrystal ¼
100 K). Therefore, a conversion is needed from Tcrystal to

T ¼ 300 K in the fitting procedure.

A fit of the ENM spring constant C produces C ¼
1.7 kBT for the kinesin PDB structures 1I5S and 1I6I

(with the fitting crosscorrelation coefficient ¼ 0.5), and

2.8 kBT for the myosin PDB structures 1VOM and 1Q5G

(crosscorrelation coefficient ¼ 0.6). In the following, all

energies will be expressed in units of kBT, where T ¼ 300 K.

Mixed potential function constructed
from two ENMs

Given two protein structures ~x1 and ~x2 corresponding

to the beginning and end states of a conformational tran-

sition, respectively, we construct two ENMs E1ð~x �~x1Þ
and E2ð~x �~x2Þ with Hessians H1 and H2 according to

Eqs. (1) and (2). Following Best et al.,26 we then define

the MENM potential function:

Eð~xÞ ¼ �b�1 ln½e�bðE1ð~x�~x1Þþe1Þ þ e�bðE2ð~x�~x2Þþe2Þ�; ð4Þ

where e1; e2 are energy offsets and b ¼ 1=kBTm is the

inverse of the mixing temperature Tm that determines the

extent of mixing between the two ENMs. In the limit

Tm ! þ0, the MENM potential Eð~xÞ is the minimum

minfE1 þ e1; E2 þ e2g of E1 þ e1 and E2 þ e2; for

Tm ! 1, the mixed potential approaches the sum

Eð~xÞ ! E1ð~xÞ þ E2ð~xÞ þ e1 þ e2. For small but finite Tm,

Eð~xÞ is approximately E1ð~xÞ þ e1 near ~x1 and E2ð~xÞ þ e2
near ~x2, with a smooth interpolation between E1 and E2
elsewhere in configuration space. The MENM energy sur-

face Eð~xÞ has two dominant local minima corresponding

to the beginning and end structures of the transition, and

connects them with a SP, whose height can be tuned by the

mixing temperature Tm. Eð~xÞ thus seems well suited to

explore the transition between two protein conformations

that represent different functional states. Equation (4) can

be easily generalized to mixing of more than two ENMs.

The mixing scheme of Eq. (4) was first applied to Gō

potentials.26 A related method, based on a quantum-

mechanical mixing of two ENM energy surfaces, was pro-

posed by Maragakis and Karplus as discussed in the Intro-

duction.25 Here, with the statistical–mechanical mixing of

two free energy surfaces, we can take advantage of the largely

retained Gaussian character of the MENM theory and find

analytical expressions for free energies, PMFs, SPs, and tran-

sition paths. In particular, the partition function of the

MENM system at temperature T ¼ 300 K is given by

Z ¼
Z

e�bTEð~xÞ d~x

¼
Z

e�bðE1ð~x�~x1Þþe1Þ þ e�bðE2ð~x�~x2Þþe2Þ
h iNT

d~x; ð5Þ

where

bT ¼ 1

kBT
; NT ¼ bT

b
ð6Þ

are the inverse sampling temperature, and the ratio of mix-

ing and sampling temperatures, respectively. In general,

NT 6¼ 1 because the mixing temperature can be much

higher than T ¼ 300 K to achieve a reasonably low energy

barrier (see Results). Nevertheless, for integer temperature

ratios NT this partition function can be computed analyti-

cally from Gaussian integrals obtained after a binomial

expansion. We note that, in principle, thermodynamic

quantities such as entropies at integer NT could be calcu-

lated by using the binomial theorem and breaking up the

configuration-space integral into regions where one or the

other Boltzmann factor dominates in Eq. (4). More practi-

cally, to calculate entropies for strong mixing (small T/Tm)

beyond a simple two-state approximation, one can use the

analytical expressions for the free energies and partition

functions for integer NT ¼ Tm/T and estimate the entropy

from the temperature derivative of an interpolation.

Parameterization of MENM

The MENM potential has two parameters: Tm (mixing

temperature) and e2 � e1 (difference in energy offsets).

The energy difference e2 � e1 is determined by the rela-

tive populations of the two end states at equilibrium, as

obtained from experiment. Within the harmonic approxi-

mation to the partition functions of the two states, the

ratio of populations in States 1 and 2 is given by

P1=P2 ¼ e�bT ðe1�e2Þ½detðH2Þ=detðH1Þ�1=2: ð7Þ

For simplicity or without population information

available experimentally, we set e2 ¼ e1.
A bound on the mixing temperature Tm can, in princi-

ple, be obtained from the experimental rate of transitions:

rate � !0 e
� DG

kBT � 1 ðps�1Þ 3 e
� Esp

kBT ð8Þ

Here the prefactor !0 is assumed to have an upper

bound of 1 ps�1 and the free energy barrier DG is

Exploring Transition Paths by MENM
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approximated by Esp (the potential energy at the SP).

Clearly, Eq. (4) is a very coarse approximation, with the

implicit assumption that large-amplitude equilibrium

fluctuations obey a simple dynamics and are realistically

described by the combined energy surface. One can thus

expect only a rough estimate of the barrier height.

For convenience, we here do not use rate information;

instead, to demonstrate the effects of large versus small

Tm, we discuss two extreme cases: weak mixing (Tm ¼ T)

and strong mixing (Tm ¼ Tstrong). Tstrong is defined as the

maximal Tm at which both beginning and end-state

structures remain approximately local minima (or sta-

tionary points) of the mixed potential (see next subsec-

tion). In practice, Tstrong is determined by varying the

mixing temperature Tm in discrete steps until the double-

well structure disappears at high Tm. For kinesin we use

Tstrong ¼ 810 T as the ‘‘strong-mixing’’ temperature, and

for myosin we use Tstrong ¼ 2160 T (where T ¼ 300 K).

SPs and minima of mixed energy surface

We can locate the energy minima and SP for the

MENM system by setting the gradient of the mixed

potential function to zero. From Eq. (4), we have

rEð~xÞ ¼ f1ð~xÞrE1ð~x �~x1Þ þ f2ð~xÞrE2ð~x �~x2Þ ¼ 0;

ð9Þ

where

f1ð~xÞ ¼ e�bðE1ð~x�~x1Þþe1Þ

e�bðE1ð~x�~x1Þþe1Þ þ e�bðE2ð~x�~x2Þþe2Þ ;

f2ð~xÞ ¼ 1� f1ð~xÞ:
ð10Þ

With rE1ð~x �~x1Þ ¼ H1ð~x �~x1Þ and rE2ð~x �~x2Þ ¼
H2ð~x �~x2Þ, we find that the SP (and minima) can be

expressed as

~xsp ¼ f1ð~xspÞH1 þ ð1� f1ð~xspÞÞH2

� ��1

3 f1ð~xspÞH1~x1 þ ð1� f1ð~xspÞÞH2~x2
� � ð11Þ

where the matrix inverse is restricted to the subspace

spanned by the eigenvectors with nonzero eigenvalues. By

combining Eqs. (10) and (11), we find that the SP can

be found by solving a one-dimensional ‘‘fixed-point’’

equation for f1

f1ð~xspðf1ÞÞ ¼ f1: ð12Þ

Equation (12) can be solved efficiently (for example,

by using 1D bisection) without a full-scale minimization

of the gradient in the high-dimensional conformation

space. Its solutions include all SPs and local minima of

the potential, among which the unstable fixed point(s) of

Eq. (12) can be identified as SPs.

The earlier 1D reduction of the multidimensional SP

equation can be applied to a general mixing function

gðE1; E2Þ defining an effective potential

Eð~xÞ ¼ gðE1ð~x �~x1Þ þ e1; E2ð~x �~x2Þ þ e2Þ ð13Þ

In general, the stationary points satisfy

rEð~xÞ ¼ @g

@E1
rE1ð~x �~x1Þ þ @g

@E2
rE2ð~x �~x2Þ

¼ f1ð~xÞrE1ð~x �~x1Þ þ f2ð~xÞrE2ð~x �~x2Þ ¼ 0 ð14Þ

where

f1ð~xÞ ¼
@g
@E1

@g
@E1

þ @g
@E2

; f2ð~xÞ ¼ 1� f1ð~xÞ: ð15Þ

If
@g
@E1

� @g
@E2

> 0, then f1 2 ½0; 1�; so the 1D SP path ~xspðf1Þ
solved from Eq. (11) is independent of the mathematical

form of the mixing function gðE1; E2Þ. In particular, both

the MENM mixing potential [Eq. (4)] and the Hessian

approximation to the PNM formulation25: EðxÞ ¼
½E1ðxÞ þ E2ðxÞ þ e1 þ e2 � f½E1ðxÞ � E2ðxÞ þ e1�e2�2þ
b�2g1=2�=2 satisfy

@g
@E1

� @g
@E2

> 0 and so the SPs should fall

along the same 1D SP path for both mixing schemes.

We determine the SPs and SP paths for two limiting

cases: weak mixing (Tm ¼ T) and strong mixing (Tm ¼
Tstrong). Tstrong is found by gradually increasing Tm in

steps of 10T until the minima of Eð~xspðf1ÞÞ at f1 ¼ 0; 1
are shifted away from 0 or 1 by df > 0.01.

For the parameters we choose here, there is only one

SP. However, at higher mixing temperatures, a situation

can arise with three minima connected by two SPs. We

note that the formalism described above can be general-

ized to mixing of more than two ENMs: for the mixed

potential from K ENMs, one needs to solve a K�1

dimensional fixed-point equation.

1D and 2D potential of mean force

We define the following reaction coordinate rð~xÞ for a

given direction ~n:

rð~xÞ ¼ ð~x � ~x1Þ �~n: ð16Þ

So

rð~x1Þ ¼ 0;

rð~x2Þ ¼ ð~x2 �~x1Þ �~n � D12:
ð17Þ

The PMF at temperature T is computed as the free

energy for the subspace constrained by rð~xÞ ¼ r :

FðrÞ ¼ � 1

bT

log ZðrÞð Þ; ð18Þ

W. Zheng et al.
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where

ZðrÞ ¼
Z

e�bTEð~xÞd rð~xÞ � rð Þd~x

¼
Z

e�bðE1ð~x�~x1Þþe1Þ þ e�bðE2ð~x�~x2Þþe2Þ
h iNT

d rð~xÞ � rð Þd~x

The average conformation at given r is

h~xir ¼
1

ZðrÞ
Z

e�bTEð~xÞ~xd rð~xÞ � rð Þd~x ð20Þ

We further compute the 2D PMF by using two sam-

pling directions, ~n1 ¼~nsp;~n2 ¼~x2 �~x1, that define two

reaction coordinates r and r0, respectively:

r ¼ rsp ¼ ð~x �~x1Þ �~nsp= ð~x2 �~x1Þ �~nsp
� �

;
r 0 ¼ r12 ¼ ð~x �~x1Þ �~n2= ð~x2 �~x1Þ �~n2½ �: ð21Þ

The 2D PMF is then

Fðr; r 0Þ ¼ � 1

bT

log Zðr; r 0Þð Þ ð22Þ

Zðr; r 0Þ ¼
Z

e�bTEð~xÞd rð~xÞ � rð Þ � d r 0ð~xÞ � r 0ð Þd~x

¼
Z

e�bðE1ð~x�~x1Þþe1Þ þ e�bðE2ð~x�~x2Þþe2Þ
h iNT

3 d rð~xÞ � rð Þ � d r 0ð~xÞ � r 0ð Þd~x ð23Þ

Similarly, the average conformation at given (r, r0) is

h~xir;r 0 ¼
1

Zðr; r 0Þ
Z

e�bTEð~xÞ~xd rð~xÞ � rð Þd r 0ð~xÞ � r 0ð Þd~x

ð24Þ

For integer NT, Eqs. (16) and (19) can be computed

analytically from Gaussian integrals obtained after a bi-

nomial expansion (see Appendix).

Transition paths

Once the SP is found, one can start from the SP to

trace the SD path that connects the two minima. The

two branches of the SD path satisfy _~x ¼
�rEð~xÞ=jrEð~xÞj with initial values ~x�ð0Þ ¼~xsp � e~nd,
where ~nd is the direction of the eigenvector of the local

Hessian with negative eigenvalue, and e ! 0. The SP

path is divided into frames at intervals of �0.1 Å of

RMSD.

Equation (11) provides a simpler definition of a

transition path. If we use the Boltzmann weight f1 as a

parameter within [0,1], ~xspðf1Þ traces a path that connects

the minima and SPs as f1 is varied from 1 to 0. Here, we

use 100 steps at intervals of df1 ¼ 0.01. Interestingly, the

resulting ‘‘SP path’’ is independent of the mixing temper-

ature Tm and e2 � e1, which means that the path con-

tains the minima and saddles, regardless of the choice of

MENM parameters. Furthermore, it is essentially invari-

ant to the choice of mixing potential Eð~xÞ ¼
gðE1ð~x �~x1Þ þ e1; E2ð~x �~x2Þ þ e2Þ, including the PNM

mixing function25 in a Hessian approximation. The SP

path is particularly appealing for energetically driven

transitions because it is the trace of the SP as "2 � "1,
the thermodynamic driving force, is varied from þ1 to

�1. In addition, we also use the PMF along directions

~n1 and ~n2 in configuration space to define a transition

state and a ‘‘PMF transition path.’’ For that, we analyti-

cally compute the two-dimensional PMF along directions

~nsp and ~x2 �~x1 in conformation space. The direction ~nsp
corresponds to the unstable mode at the SP, and a 1D-

projection on this direction gives to a good approxima-

tion the highest PMF barrier; ~n2 is the vector connecting

the initial and final structure. The minimal free-energy

path (PMF path) is then defined as h~xir;r 0minðrÞ [Eq. (24)],
where r 0minðrÞ corresponds to the minimum of (r, r0) for

given r. To a good approximation, the ‘‘optimal direc-

tion’’ ~nsp, defined as the eigenvector of the unstable

mode at the SP, is given by the gradient of E1 or E2 at

the SP.

RESULTS

We will illustrate the use of the MENM method by

examining the biologically important conformational

transitions in two motor proteins (myosin II and

KIF1A kinesin), which were analyzed previously by

ENM calculation.13,28–29

First, we study the power-stroke transition of myosin

II from the prepowerstroke state (PDB code: 1VOM30)

to the postpowerstroke rigor-like state (PDB code:

1Q5G31): it takes place after ATP hydrolysis in response

to actin binding, resulting in the converter/lever arm

undergoing a large-scale rotation, which is accompanied

by the closure of the actin-binding cleft within the 50-

kDa domain.31

Second, we study a similar force-generating transition

in KIF1A kinesin from the ADP-bound state (PDB code:

1I5S) to the ATP-like state (PDB code: 1I6I): the neck

linker (analogous to the lever arm in myosin) undergoes

a disorder-to-order transition to dock against the motor

domain in response to ATP-binding at the nucleotide-

binding site.32

Our procedure is as follows. First, we construct the

MENM potential based on the two ENM potentials built

from the beginning and end structures (see Methods).

Second, we determine the SP for weak mixing and strong

mixing, and generate the SD path in each case (Methods)

as well as the SP path. Third, we compute the 1D and

Exploring Transition Paths by MENM
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2D PMF and generate transition paths based on free-

energy sampling. Fourth, we compare the various transi-

tion paths that connect the beginning and end structures.

Finally, we analyze the detailed structural changes along

the parameter-independent SP path. The main focus will

be placed on illustrating the method, although we will

devote brief discussions to the biological implications of

the results produced by the MENM method.

Calculation of the SP

SPs of the mixed potential surface govern the dynami-

cal transitions that connect the two conformational

basins. For both myosin and kinesin, we determine the

SP for the mixed potential function (see Methods) for

two sets of mixing temperatures: Tm ¼ T (weak mixing),

and Tm ¼ Tstrong (strong mixing). In both cases, we set

the energy offset to zero, "2 ¼ "1, resulting in a single SP

located between the two minima at ~x1 and ~x2. The SPs

determined by solving Eq. (12) for weak and strong mix-

ing are nearly identical (RMSDs of 0.02 Å for kinesin

and 0.2 Å for myosin). The larger shift of SP in myosin

than kinesin may result from relatively stronger mixing,

combined with the larger structural difference between

the two structures of myosin that render the two ENM

potentials to be more different and asymmetric. Note

that as Tm is increased above Tstrong, the energy surface

changes qualitatively. The two minima shift significantly

away from ~x1 and ~x2, respectively, and toward each other.

For Tm 	 Tmax, a new minimum develops near the origi-

nal SP.

Calculation of PMF

To a high degree of accuracy, the direction ~nsp of the

unstable mode at the SP coincides with the gradients of

both E1 and E2 at the SP. Figure 1 shows the 1D PMFs

along the corresponding ‘‘optimal’’ coordinate rsp, as

evaluated by projection (see Methods). For weak mixing,

the PMF consists of two harmonic potentials joined in

the middle (Fig. 1; top curves). There are two minima at

rsp ¼ 0 and 1. The maximum is at a cusp-like joint. For

strong mixing, the two minima remain at rsp ¼ 0 and 1,

but at the barrier the PMF has a more rounded shape

(Fig. 1; bottom curves). The maximum of the PMF is

much lower because of the increased mixing. However,

its location shifts only slightly along rsp, remaining at 0.5

for kinesin and moving from 0.49 to 0.53 for myosin,

consistent with the earlier finding of a larger shift of the

SP for myosin than kinesin.

We also compute the 2D PMF in the plane spanned by

the unstable mode at the SP (Fig. 2) and the distance

vector between the two structures. The vectors ~n1 ¼~nsp
and ~n2 ¼~x2 �~x1 (with the component of ~n2 along ~nsp
projected out) define the reaction coordinates rsp and r12,

respectively (see Methods). The 2D PMF provides a more

detailed view of the free energy landscape and the transi-

tion paths than the 1D PMF, especially near the SP.

At weak mixing, the 2D PMF is dominated by two

large harmonic free-energy wells centered at (0,0) and

(1,1), which elongate predominantly along the r12 axis.

The two basins border along a narrow region in the mid-

dle that extends parallel to the r12 axis. At strong mixing,

the border region expands significantly while the two

basins shrink accordingly. This is particularly noticeable

in myosin because of the relatively strong mixing. De-

spite these changes in the PMF landscape, its SP only

shifts slightly [remaining at (0.50, 0.49) for kinesin, shift-

ing from (0.49, 0.56) to (0.53, 0.58) for myosin]. The

larger shift of the SP for myosin is consistent with similar

observations made in the previous sections.

Comparison of the three transition paths

On the basis of the calculations presented in the previ-

ous sections, we can generate three different transition

paths that all connect the two structures ~x1 and ~x2 with

the SP (see Supplementary Materials for movies of the

SP paths): (1) The SD path follows the gradient from the

Figure 1
1D Potentials of mean-force (PMF) as a function of the reaction coordinate rsp for (a) kinesin and (b) myosin in the limits of weak mixing (þ; top curve) and strong

mixing (3; bottom curve), respectively.
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SP toward the beginning and end structures. (2) The SP

path traces ~xspðf1Þ according to Eq. (11), as f1 is varied

from 1 to 0. Unlike the other two paths, it is invariant to

parameter changes and even the detailed form of the

mixing function (see Methods). (3) The PMF-1D path

traces h~xir [Eq. (20)] as r is varied from 0 to 1. We find

that the PMF-1D paths are essentially identical to the

PMF-2D paths based on Eq. (24).

At weak mixing, the PMF-1D path consists of two

roughly linear segments. It initially follows the direction

given by H�1
1 ~nsp or ~xsp �~x1, then it turns around near

~xsp to follow the direction of �H�1
2 ~nsp or ~x2 �~xsp

[Fig. 2(a,c)]. In general ~xsp is not located on the straight

line connecting~x1 with~x2 (for example, in the case of myo-

sin). In case of strong mixing, this path is more nonlinear

[Fig. 2(b,d)], reflecting contributions from many compet-

ing terms in the binomial expansion (see Methods).

To perform a quantitative comparison between the three

different transition paths, we compute a distance between

two paths P1 and P2, DðP1; P2Þ ¼ maxifminj ½RMSDðP1;i;
P2;jÞ�g, defined in terms of the RMSD between frames P1;i
of path P1 and P2;j of path P2. Overall, the SD and PMF-

1D paths deviate relatively little from the SP path, when

compared with the measured RMSD of the conformational

transition (Table I). The deviations are smaller in the

strong mixing limit than in the weak mixing limit, indicat-

ing that the three paths converge better at strong mixing.

After being projected onto the 2D PMF plane, the SP path

indeed lies very close to the PMF-1D path, especially in the

strong-mixing limit (Fig. 2). Therefore, the SP path is not

only parameter-independent, but also representative of the

low free-energy path PMF-1D. We will thus primarily use

the SP path.

Structural changes along the transition
paths

The paths defined earlier contain detailed structural

information about the conformational changes associated

Table I
Maximal Deviations D(P1, P2) Between the Three Different Transition

Paths (in Å Units)

RMSDtransition

D(SP, SD) D(SP, PMF-1D)

Weak Strong Weak Strong

Kinesin 2.2 0.41 0.35 0.36 0.12
Myosin 6.6 0.72 0.70 0.82 0.71

Figure 2
2D Potentials of mean-force as a function of reaction coordinates rsp and r12 for (a) weak mixing (kinesin), (b) strong mixing (kinesin), (c) weak mixing (myosin), and

(d) strong mixing (myosin). Contour lines (red) are drawn at intervals of (a) 150, (b) 40, (c) 324, and (d) 27 kBT. The three transition paths (SD, green þ; SP, blue 3;

and PMF-1D, purple *) are projected onto the 2D PMF surface. The initial and final structure correspond the bottom left and top right corners, respectively.
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with the transitions. In the following, we will first analyze

the evolution of the elastic strain energy and the ampli-

tude of motion at each residue along the transition

paths25 (Table II). Both quantities are computed with

reference to the beginning structure for all frames prior

to the SP conformation, and relative to the end structure

beyond the SP.

In a second step, we will analyze the time-ordering of

residue contact forming/breaking along the transition

path. As a result of the transition, ‘‘old’’ residue contacts

specific to the beginning state are broken while ‘‘new’’

end-state specific contacts are formed. Experimentally,

the relevance of residue contacts can be probed by adapt-

ing the F-value analysis of protein folding.3 On the basis

of the MENM calculations, we can identify new contacts

that form early (i.e., before reaching the transition state)

and old contacts that break early along the transition

paths. Those contacts should strongly affect the transition

rate and have correspondingly high F values. To assess

the time-ordering of residue contact forming and break-

ing, we define fcont as the relative frame number along

the transition path at which the contact ‘‘breaks’’ (or

‘‘forms’’). A contact between residue pair (i, j) is defined

to break (form) when the pair distance dij between the

two Ca atoms reaches 1.2 times the initial (final) value.

For example, for a residue pair at an initial distance of

dij ¼ 10 Å and an end distance of 20 Å, with dij < 12 Å

for the first 70 of 100 frames between beginning and end

state, fcont would be 0.7. For the new (old) contacts, we

only consider those residue pairs whose minimal distance

between pairs of heavy atoms is less than 4 Å in the end

(beginning) state but not in the beginning (end) state,

and the change in dij is at least 2 Å between the two

states. The results are given in Table III.

Kinesin

A structural superposition of the ADP-bound and the

ATP-like structures has revealed two regions with marked

differences32: the first consists of loop L9 (residue range:

202–218), which includes the switch I element (residue

range: 211–218) of the nucleotide-binding site; the sec-

ond is the ‘‘switch II cluster’’ (residue range 248–324:

including loop L11, helix a4, loop L12, helix a5, and

loop L13) containing the switch II element (residue

range: 248–253). The two switches are believed to be

essential to sense the g-phosphate of a bound nucleotide

and trigger nucleotide-dependent conformational changes

in motor proteins such as kinesins.34 Our analysis aims

to map the aforementioned two major structural changes

to the sequence of dynamical motions that connect the

beginning and end states of the kinesin transition.

First, we compare the structures of the SP conforma-

tion and the beginning (ADP-bound state) and end

(ATP-like state) structures [Fig. 3(a)]. We focus on the

significant structural differences in the loop L9 cluster,

the switch II cluster and the a6 helix (residue range:

335–351). In the SP conformation, the loop L9 region

resembles the end state more than the beginning state

[Fig. 3(a)], indicating its high mobility during the transi-

tion. In the switch II cluster, the helix a4 appears to

adopt a more mixed conformation: it is unwound at the

N terminus (just like the ATP-like state structure), but at

the C terminus its position is closer to the beginning

state structure. Overall, it is structurally closer to the

beginning state, indicating its lack of mobility in the

transition. This result agrees with an earlier ENM-based

normal mode analysis of the ADP-bound structure,13

which found that the low-frequency normal modes do

not sustain large-scale motions in the a4 helix. In the a6
helix, the SP conformation is closer to the end-state

structure: both show a small translocation toward the C-

terminus compared with the beginning state structure.

Next we examine the frame-by-frame change in strain

energy25 and amplitude of motions at each residue

position [Fig. 4(a)]. Both quantities are computed with

reference to the beginning (end) state structure for the

frames prior to (after) the SP conformation, resulting for

some residues in an abrupt change at the frame of the

SP conformation. For structures near the SP, the strain

Table II
High-Strain-Energy Residues (Top 10%) for Kinesin (top) and Myosin (bottom)

High-strain residues (reference to beginning-state) High-strain residues (reference to end-state)

Kinesin: 4, 5, 6, 151, 202, 203, 204, 205, 206, 207, 208, 209, 210,
211, 212, 213, 214, 215, 216, 254, 255, 267, 268, 269, 270,
271, 272, 282, 285, 286, 320, 321, 324, 352

4, 5, 151, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 266, 267, 268, 269, 270, 271, 272, 273, 274,
286, 317, 318, 319, 320, 321, 351

Myosin: 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 82, 84,
92, 94, 97, 120, 121, 178, 179, 180, 181, 182, 186, 209, 212, 216,

231, 232, 233, 454, 457, 458, 459, 479, 480, 483, 484, 486, 487,
488, 489, 490, 495, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509,
510, 573, 574, 590, 627, 677, 678, 679, 680, 682, 683, 685, 686, 687,
688, 689, 693, 747

16, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 93, 94, 95, 96, 97, 120, 121,
179, 180, 181, 182, 185, 186, 203, 209, 212, 216, 233, 234, 235, 236, 454,
457, 458, 479, 480, 481, 483, 484, 485, 486, 487, 491, 501, 503, 504, 506,
507, 508, 509, 510, 511, 573, 574, 590, 621, 628, 675, 678, 679, 680, 682,
683, 684, 685, 687, 689, 693, 694, 695, 720, 747

Note that the strain energy is calculated relative to the initial and final structures.
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energy distribution is quite similar relative to the begin-

ning and end structures, although some differences exist

[Fig. 4(a): left panel]: relative to the beginning structure,

the strain energy is more concentrated in the loop L9

cluster and the N-terminal part of the switch II cluster;

relative to the end structure, more strain energy is shifted

to the switch II cluster (especially a4 and a5 helices).

The amplitude plot [Fig. 4(a): right panel] points to a

consistent picture: the motions in the loop L9 cluster

dominate before the SP, while the motions in helices a4
and a5 significantly increase after the SP [Fig. 4(a)].

These results agree with the earlier observations based on

structural comparisons [Fig. 3(a)].

Finally, we analyze the time-ordering of residue contact

forming/breaking along the transition path. The residue

contacts specific to the ADP-bound state break in two

stages: near the ADP, the contacts involving residues 155

and 202, 203, 208 of loop L9 break early [colored in red,

see Fig. 5(a) and Table III]; far from the ADP, the con-

tacts involving residues 5, 6, 84, 251, 271, 275, 282, 285,

289, 322, 347 (most of them are part of the switch II

cluster and nearby regions) break late [colored in purple,

see Fig. 5(a) and Table III]. Such two-stage ordering is

consistent with an earlier study13: without being favored

by lowest normal modes, the observed large-scale

motions in the a4 helix are delayed to near the end of

the transition path. The earliest-broken contact involving

the switch II cluster (contact 267-211) appears to provide

a link between the loop L9 cluster (near ADP) and the

switch II cluster (far from ADP), possibly playing a role

in relaying the nucleotide-binding signals from the for-

mer to the latter.

Early-forming residue contacts specific to the ATP-like

state involve residues from both the loop L9 cluster (148,

204), and the switch II cluster and nearby regions (263,

272, 283, 347) [colored red, see Fig. 5(b)]. The contact

347-283 between helix a6 and helix a4 forms early,

which agrees with the recent finding of a hinge motion

of the a6 helix encoded in a lowest normal mode of the

ADP-bound structure.28 The earliest-formed contact

involving the switch II cluster [contact 272-263, see Fig.

5(b)] is adjacent to the early-broken contact 267-211,

which may jointly relay the signals from the nucleotide-

binding site to the switch II cluster.

Myosin

A recently solved crystal structure (PDB code: 1Q5G)

of the myosin II motor domain in the rigor-like state

was compared with the previously determined structures

of myosin II in the prepowerstroke state (PDB code:

1VOM) and the postrigor state (PDB code: 1MMA).

Three striking differences were identified31: first, the

switch I region (residue range: 233–238) has moved 8 Å

away from its original position, and the switch II (resi-

due range: 454–459) is also in the open state. In compar-

ison, 1VOM has both switch I and II closed (C/C);

1MMA has switch I closed and switch II open (C/O).

Second, the 50-kDa domain undergoes a large rotation

that alters the relative orientation between its two parts:

the U50 and L50 subdomains, resulting in a new configu-

Table III
Time-Ordering of Breaking Beginning-State Residue Contacts (Column 1)

and Forming End-State Contacts (Column 2) Along the SP Path for Kinesin

(top), Myosin (bottom).

Pair
Distance
change (�) Fcont Pair

Distance
change (�) Fcont

208, 155 11.60->20.54 0.18 204, 148 11.73->8.24 0.19
208, 202 8.22->17.69 0.10 204, 155 13.16->9.50 0.23
208, 203 6.86->14.90 0.07 211, 205 11.65->5.37 0.49
211, 150 9.58->15.33 0.31 211, 206 10.49->4.53 0.33
213, 148 8.21->11.26 0.68 212, 205 10.10->5.12 0.66
213, 150 7.18->11.15 0.43 213, 205 10.04->3.89 0.43
216, 211 7.72->12.51 0.59 214, 206 10.65->4.66 0.88
267, 211 9.57->17.07 0.34 269, 152 10.58->5.33 0.98
267, 251 8.32->11.27 0.84 271, 264 10.65->6.62 0.48
282, 6 7.16->10.59 0.87 271, 265 10.09->6.71 0.50
285, 5 7.16->11.40 0.92 272, 216 10.86->7.53 0.63
285, 6 6.97->10.91 0.89 272, 263 11.42->8.85 0.13
286, 6 5.63->10.31 0.71 273, 152 10.67->7.37 0.53
289, 5 7.40->10.72 0.97 321, 316 10.12->6.64 0.78
318, 243 6.87->10.19 0.72 347, 283 10.08->7.68 0.18
322, 84 10.37->12.39 1.00
347, 275 9.45->11.73 0.90

83, 28 5.66->10.09 0.54 20, 7 12.82->6.30 0.79
84, 28 5.89->11.17 0.11 23, 18 13.98->7.39 0.90
212, 201 6.42->10.92 0.25 24, 17 13.31->8.65 0.53
212, 202 8.06->13.22 0.28 233, 180 10.15->7.46 0.58
219, 190 8.07->10.41 0.48 482, 121 11.58->8.73 0.20
223, 190 11.36->15.06 0.50 485, 121 11.32->8.95 0.02
232, 181 6.29->10.40 0.76 489, 121 14.53->8.82 0.13
237, 186 7.56->11.54 0.53 505, 484 12.19->6.24 0.39
455, 185 7.87->11.26 0.41 507, 480 12.17->4.86 0.88
457, 181 4.62->10.40 0.01 633, 590 11.46->9.44 0.03
457, 185 8.12->11.82 0.66 674, 232 16.48->12.64 0.30
458, 179 6.83->10.00 0.64 678, 458 11.63->5.60 0.91
458, 181 5.57->13.43 0.06 680, 122 11.30->9.20 0.01
475, 179 8.05->12.55 0.28 683, 479 13.04->8.51 0.45
478, 178 7.57->11.00 0.72 686, 509 16.28->10.99 0.75
591, 586 6.79->10.90 0.23 687, 483 11.12->8.54 0.02
620, 589 10.88->16.09 0.74 688, 97 11.73->8.67 0.42
620, 590 10.22->13.05 0.98 693, 92 12.44->5.64 0.98
626, 534 7.48->12.04 0.49 694, 92 15.43->6.61 0.49
627, 620 6.35->10.25 0.08 694, 93 17.10->5.44 0.99
654, 479 10.15->12.29 0.98 694, 94 20.23->7.25 0.98
654, 482 10.15->12.23 0.99 694, 95 21.53->6.72 0.96
662, 232 7.65->15.02 0.04 704, 84 38.82->11.35 0.99
662, 233 7.38->13.07 0.01 747, 501 14.12->11.38 0.01
662, 234 8.63->13.00 0.03
679, 482 8.69->10.88 0.86
680, 487 10.07->14.53 0.45
680, 508 6.97->15.19 0.36
682, 97 7.12->10.11 0.30
683, 487 8.73->12.83 0.64
683, 506 6.32->10.42 0.88
683, 508 8.49->13.04 0.80
684, 487 7.74->10.41 0.89
687, 491 9.09->13.00 0.93
688, 121 6.68->10.68 0.27
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ration poised for actin-binding. Third, the lever arm and

converter rotate from an up to a down position consist-

ent with a force-generating power-stroke. Here we focus

on the transition from 1VOM (beginning state) to 1Q5G

(end state).

First, we perform a structural comparison of the SP

conformation with the beginning and end structures

[Fig. 3(b)]. We focus on the significant structural differ-

ences in the nucleotide-binding site (including the P-

loop, the switch I and the switch II), the relay helix, the

SH1 helix, and the converter. In the SP conformation,

both switches adopt positions intermediate between the

beginning and the end state, with the P loop being well

aligned in all three structures. The relay helix (analogous

to the helix a4 in kinesin) also adopts an intermediate

conformation. However, unlike the helix a4 in kinesin,

the C terminus of the relay helix (together with the

converter) is closer to the end-state structure. In the SH1

helix (analogous to the a6 helix in kinesin), the SP

conformation is closer to the end structure than the

beginning structure (similar to what is observed in the

a6 helix of kinesin).

Next we examine the evolution in strain energy and am-

plitude of motions at each residue position along the tran-

sition path [Fig. 4(b)]. The distribution of the strain

energy of the SP structure relative to the beginning and

end structures is similar, except for some subtle differences

[Fig. 4(b): left panel]: relative to the beginning structure,

the strain energy is more concentrated in the N terminal

domain, the C-terminal end of the relay helix (residue

range: 500–510), and the SH1 helix. This is consistent with

our previous study29 on an ENM-based fluctuation analy-

sis of the beginning state structure that identified these

regions as flexible hinges. The amplitude plot [Fig. 4(b):

right panel] shows that the converter and the SH1 helix

move more before the SP than after the SP. These results

agree with the earlier structural comparison.

Finally, we analyze the time-ordering of residue contact

forming/breaking along the transition path. Early-break-

ing residue contacts specific to the beginning state are

mostly near the nucleotide-binding site [including resi-

dues 181 of the P loop, 232, 233, 234 of switch I, 457,

458 of switch II, and 662, see Fig. 5(c)], and a few near

the actin-binding site (620, 627) and the N-terminal sub-

domain (28, 84). These residues were previously found at

the hinge regions on the myosin motor domain.29

Early-forming residue contacts specific to the end state

[Fig. 5(d)] are mostly distant from nucleotide-binding

site, involving residues on or near the relay helix (482,

483, 485, 489, 501), actin binding site (590, 633), SH1

Figure 3
Structural comparisons of the SP conformation (green) with the beginning (blue) and end structures (red) for (a) kinesin and (b) myosin. (a) Kinesin. For clarity, the SP

structure (green) shows only regions with large motions: the L9 cluster (202–218), the switch II cluster (248–324), and the a6 helix (335–351). The structural alignment

uses 40 b-strand residues from residues (90–150, 218–248) with RMSD ¼ 0.36 Å between the beginning and end structures. (b) Myosin. For clarity, the SP structure

(green) only shows the P-loop (179–186), switch I (233–238), switch II (454–459), relay helix (466–498), SH1 helix (668–690), and converter (690–747). Part of the N-

terminal subdomain is not shown. The structural alignment uses 70 b-strand or a-helical residues from the core of the N-terminal domain (range: 88–198) with RMSD

¼ 0.62 Å between the beginning and end structures.
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helix (680, 687), N-terminal subdomain (121, 122), and

converter (747). These residues are also located in the

hinge regions.29

Unlike kinesin, the relay helix and the SH1 helix in

myosin are involved in several early-forming residue con-

tacts (Table III), because their flexibility and mobility are

sustained by the lowest ENM-derived normal modes.28

These differences may lead to different force-generation

mechanisms between these two molecular motors.

CONCLUDING REMARKS

We have explored a formalism to study large-scale con-

formational changes in proteins with known beginning

Figure 4
Frame-by-frame change in ‘‘strain energy’’ (kBT) and amplitude of motions (Å) at each residue position for (a) kinesin and (b) myosin. Both quantities are computed

with reference to the beginning (end) state structure for the frames prior to (after) the SP conformation.
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and end structures. ENM harmonic potentials for the

known structures of the transition end points are mixed

into a smooth potential function. The resulting coarse-

grained energy surface retains the beginning and end struc-

tures as local minima, connected by a single saddle. The

MENM method is applicable if the transition is dominated

by collective motions. Such transitions are usually well

described by the ENM-derived normal modes. The

Figure 5
Time-ordering of residue-contact forming and breaking. (a) Kinesin contact breaking; (b) kinesin contact forming; (c) myosin contact breaking; and (d) myosin contact

forming. Residue contacts are shown as atomic surfaces. Residues involved in the contacts that form or break early are shown in red [fcont in (0, 0.2)]. Contacts breaking/

forming at intermediate times are shown in green [fcont in (0.2, 0.5)] and blue [fcont in (0.5, 0.8)]. Contacts breaking/forming late are shown in purple [fcont in (0.8, 1)].
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MENM formalism is computationally efficient, as it only

requires the construction and inversion of Hessian matri-

ces, and is essentially not limited by the size of proteins. It

is based on a mathematically simple form of a mixed

potential, whose SP and conformation-dependent free

energies are easy to compute analytically or numerically.

Despite its formal simplicity, the MENM method generates

highly nontrivial energy surfaces and transition paths that

are different from ad hoc interpolations and can be used to

predict time-ordering of multiple movements involved in

the conformational changes. The MENM energy surface

can be parameterized by X-ray crystallographic B factors,

relative populations, and transition rates. But even without

this information, one can characterize the structural transi-

tion using the parameter-independent SP path. Finally, it

is straightforward to generalize this method to more than

two structures.

The relative mathematical simplicity of the MENM

surfaces permits analytical treatments as well as fast com-

putational approaches. However, their applicability is

limited to cases where local (or global) protein unfolding

is not a relevant factor in the conformational transition.

If such unfolding is potentially important, as was found

in the case of the arc-repressor mutant transition

between helical and sheet forms,26 one may want to use

instead (or in addition) multistate Gō-type models intro-

duced by Best et al.26

The MENM formalism allows us to explore large-scale

conformational transitions with limited computational

effort by using a coarse-grained model with a simplified

energy function. The resulting SP structures and transi-

tion paths can be further explored and characterized

using molecular dynamics simulations combined with,

for instance, transition path sampling35 or dynamics

projected onto collective modes.36 The MENM calcula-

tions also provide experimentally testable predictions for

the contributions of specific amino-acid contacts and

other structural elements to the transition state ensemble.

An MENM web server is available at http://enm.lobos.

nih.gov.

ACKNOWLEDGMENTS

We thank Prof. Martin Karplus and Dr. Paul Maragakis

for stimulating discussions.

REFERENCES

1. Kern D, Zuiderweg ERP. The role of dynamics in allosteric regula-

tion. Curr Opin Struct Biol 2003;13:748–757.

2. Geeves MA, Holmes KC. Structural mechanism of muscle contrac-

tion. Annu Rev Biochem 1999;68:687–728.

3. Fersht AR, Matouschek A, Serrano L. The folding of an enzyme. I.

Theory of protein engineering analysis of stability and pathway of

protein folding. J Mol Biol 1992;224:771–782.

4. Rhoades E, Cohen M, Schuler B, Haran G. Two-state folding

observed in individual protein molecules J Am Chem Soc 2004;126:

14686–14687.

5. Karplus M, McCammon JA. Molecular dynamics simulations of

biomolecules. Nat Struct Biol 2002;9:646–652.

6. Krebs WG, Gerstein M. The morph server: a standardized system

for analyzing and visualizing macromolecular motions in a database

framework. Nucleic Acids Res 2000;28:1665–1675.

7. Fischer S, Karplus M. Conjugate peak refinement: an algorithm for

finding reaction paths and accurate transition states in systems

with many degrees of freedom. Chem Phys Lett 1992;194:252–

261.

8. Zuckerman DM. Simulation of an ensemble of conformational

transitions in a united-residue model of calmodulin. J Phys Chem

B 2004;108:5127–5137.

9. Tozzini V. Coarse-grained models for proteins. Curr Opin Struct

Biol 2005;15:144–150.

10. Tirion MM. Large amplitude elastic motions in proteins from a

single-parameter, atomic analysis. Phys Rev Lett 1996;77:1905–

1908.

11. Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar

I. Anisotropy of fluctuation dynamics of proteins with an elastic

network model. Biophys J 2001;80:505–515.

12. Delarue M, Sanejouand YH. Simplified normal mode analysis of

conformational transitions in DNA-dependent polymerases: the

elastic network model. J Mol Biol 2002;320:1011–1024.

13. Zheng W, Doniach S. A comparative study of motor protein

motions using a simple elastic network model. Proc Natl Acad Sci

USA 2003;100:13253–13258.

14. Navizet I, Lavery R, Jernigan RL. Myosin flexibility: structural

domains and collective vibrations. Proteins 2004;54:384–393.

15. Song G, Jernigan RL. An enhanced elastic network model to repre-

sent the motions of domain-swapped proteins. Proteins 2006;63:

197–209.

16. Van Wynsberghe A, Li GH, Cui Q. Normal-mode analysis suggests

protein flexibility modulation throughout RNA polymerase’s func-

tional cycle. Biochemistry 2004;43:13083–13096.

17. Li GH, Cui Q. Analysis of functional motions in Brownian molecu-

lar machines with an efficient block normal mode approach: myo-

sin-II and Ca2þ-ATPase. Biophys J 2004;86:743–763.

18. Krebs WG, Alexandrov V, Wilson CA, Echols N, Yu H, Gerstein M.

Normal mode analysis of macromolecular motions in a database

framework: developing mode concentration as a useful classifying

statistic. Proteins 2002;48:682–695.

19. Bahar I, Rader AJ. Coarse-grained normal mode analysis in struc-

tural biology. Curr Opin Struct Biol 2005;15:586–592.

20. Ma JP. Usefulness and limitations of normal mode analysis in model-

ing dynamics of biomolecular complexes. Structure 2005;13:373–

380.

21. Tama F, Brooks CL. Symmetry, form, and shape: guiding principles

for robustness in macromolecular machines. Annu Rev Biophys

Biomol Struct 2006;35:115–133.

22. Kim MK, Chirikjian GS, Jernigan RL. Elastic models of conforma-

tional transitions in macromolecules. J Mol Graph Model 2002;21:

151–160.

23. Kim MK, Jernigan RL, Chirikjian GS. Rigid-cluster models of con-

formational transitions in macromolecular machines and assem-

blies. Biophys J 2005;89:43–55.

24. Miyashita O, Onuchic JN, Wolynes PG. Nonlinear elasticity, pro-

teinquakes, and the energy landscapes of functional transitions in

proteins. Proc Natl Acad Sci USA 2003;100:12570–12575.

25. Maragakis P, Karplus M. Large amplitude conformational change in

proteins explored with a plastic network model: adenylate kinase. J

Mol Biol 2005;352:807–822.

26. Best RB, Chen YG, Hummer G. Slow protein conformational dy-

namics from multiple experimental structures: the helix/sheet tran-

sition of arc repressor. Structure 2005;12:1755–1763.

Exploring Transition Paths by MENM

DOI 10.1002/prot PROTEINS 55



27. Okazaki K, Koga N, Takada S, Onuchic JN, Wolynes PG. Multiple-

basin energy landscapes for large-amplitude conformational

motions of proteins: structure-based molecular dynamics simula-

tions. Proc Natl Acad Sci USA 2006;103:11844–11849.

28. Zheng W, Brooks BR. Probing the local dynamics of nucleotide

binding pocket coupled to the global dynamics: myosin versus kine-

sin. Biophys J 2005;89:167–178.

29. Zheng W, Brooks BR. Identification of dynamical correlations

within the myosin motor domain by the normal mode analysis of

an elastic network model. J Mol Biol 2005;346:745–759.

30. Smith CA, Rayment I. X-ray structure of the magnesium(II).ADP.

vanadate complex of the Dictyostelium discoideum myosin motor

domain to 1.9 A resolution. Biochemistry 1996;35:5404–5417.

31. Reubold TF, Eschenburg S, Becker A, Kull FJ, Manstein DJ. A struc-

tural model for actin-induced nucleotide release in myosin. Nat

Struct Biol 2003;10:826–830.

32. Kikkawa M, Sablin EP, Okada Y, Yajima H, Fletterick RJ, Hirokawa N.

Switch-based mechanism of kinesin motors. Nature 2001;411:439–445.

33. Hinsen K. Analysis of domain motions by approximate normal

mode calculations. Proteins 1998;33:417–429.

34. Kull FJ, Endow SA. Kinesin: switch I & II and the motor mecha-

nism. J Cell Sci 2002;115(Part 1):15–23.

35. Dellago C, Bolhuis PG, Csajka FS, Chandler D. Transition path

sampling and the calculation of rate constants. J Chem Phys

1998;108:1964–1977.

36. Garcı́a AE. Large-amplitude non-linear motions in proteins. Phys

Rev Lett 1992;68:2696–2699.

APPENDIX

1D Potential of Mean Force

The PMF at temperature 1/bT along a reaction coordi-

nate R that is obtained by projection onto a normalized

sampling vector ~n, Rð~xÞ ¼ ð~x �~x1Þ �~n, is defined as

FðRÞ ¼ � 1

bT

logðZðRÞÞ;

with

ZðRÞ ¼
Z

e�bTEð~xÞdðRð~xÞ � RÞd~x

¼
Z

e�bðE1ð~x�~x1Þþe1Þ þ e�bðE2ð~x�~x2Þþe2Þ
h iNT

dðRð~xÞ � RÞd~x

¼
XNT

m¼0

NT

m

� �
� Zm:

In the binomial expansion of the last step, we assumed

that

NT ¼ bT

b
;

is an integer number. The Zm can be computed as Gaus-

sian integrals:

ZmðRÞ
¼
Z

e�b½mðE1ð~x�~x1Þþe1ÞþðNT�mÞðE2ð~x�~x2Þþe2Þ�dðRð~xÞ�RÞd~x

¼ e�bE

m

Z
e�

b
2
ð~x�~x
mÞTHmð~x�~x
mÞdðRð~xÞ�RÞd~x

¼ e�bE

m

Z
e�

b
2
ð~xTHm~xÞdðRð~xþ~x
mÞ�RÞd~x

¼ e�bE

m

Z
e�

b
2
xTP HPPxPþ2xTP HPQ~xQþ~xTQHQQ~xQÞdðxp� x
pÞdxP d~xQ

¼ e�bE

m�b

2
�x
TP HPPx



P

Z
e�

b
2
ð2x
TP HPQ~xQþ~xTQHQQ~xQÞd~xQ

¼ e�bE

m�b

2
~x
THm~x



Z

e�
b
2ð~xQ�~x
QÞTHQQð~xQ�~x
QÞd~xQ

¼ 2�

b

� �nQ=2

� e
�bE


m�b
2
~x
THm~x


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðHQQÞ

p

¼ 2�

b

� �nQ=2

� e
�bE


m�b
2
�ðR�R
mÞ2
~nT H�1

m ~nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðHM Þ � ð~nTH�1

m ~nÞ
q

with nQ the number of nonzero eigenvalues of HQQ, and

the determinant being their product,

P ¼~n �~nT ; Q¼ I �P;

xP ¼~nT �~x; ~xQ ¼Q~x

HPP ¼~nTHm~n; HPQ ¼~nT �HmQ; HQQ ¼QHmQ

and

~x
 ¼~x
Q þ x
P �~n
¼�ðR�R


mÞ �H�1
QQHQP þðR�R


mÞ~n

¼ ðR�R

mÞ �H�1

m ~n

~nTH�1
m ~n

where R

m ¼ ð~x
m �~x1Þ � n: Hm and ~x
m are defined in the

next subsection.

Note: ~n must have zero overlap with the six transla-

tion/rotation zero-modes of H1 (and H2)

2D Potential of Mean Force

The 2D PMF can be computed similarly for two sam-

pling vectors ~a and ~b:

ZðR1;R2Þ ¼
Z

e�bTEð~xÞdðR1ð~xÞ � R1Þ � dðR2ð~xÞ � R2Þd~x

¼
Z

e�bðE1ð~x�~x1Þþe1Þ þ e�bðE2ð~x�~x2Þþe2Þ
h iNT

dð~x �~a � R1Þ

3dð~x �~b � R2Þd~x ¼
XNT

m¼0

NT

m

� �
� Zm;
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where NT ¼ bT

b and

Zm ¼
Z

e�b½mðE1ð~x�~x1Þþe1ÞþðNT�mÞðE2ð~x�~x2Þþe2Þ�dð~x �~a�R1Þ

3dð~x �~b�R2Þd~x
¼ e�bE


m
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e�b½1

2
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mÞ�dð~x �~a�R1Þ �dð~x �~b�R2Þd~x

¼ 2�

b

� �nQ=2e�bðE
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P ¼~a �~aT þ~b �~bT ; Q ¼ I � P
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