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The decryption of transient structural changes during protein

conformational transitions is essential to a detailed

understanding of protein functions. To this end, coarse-grained

protein structural models have proven valuable by enabling

cost-effective simulation/analysis of protein conformational

transitions which are too slow for all-atom molecular dynamics

simulation. Here we survey state-of-the-art coarse-grained

methods for protein conformational transition modeling

developed in the past decade, with focus on those available

online to public. We highlight the similarities and differences

between these methods, and illustrate their usage in case of the

T-to-R00 transition of chaperonin GroEL. This survey aims to

provide researchers with a useful guide to the available tools for

modeling protein conformational transitions.
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Introduction
The molecular functions of many protein complexes

hinge upon their ability to undergo conformational

transitions between various functional states via coordi-

nated motions of functional domains. These conforma-

tional transitions span a wide range of time scales (from

microseconds to seconds) and system sizes (from small

single-domain proteins to large multi-domain/protein

complexes). It has been a holy grail of molecular bio-

physics and structural biology to probe transient con-

formational changes between known structural states at

high spatiotemporal resolution. This is an extremely

challenging task because: first, these transient changes

are often rare events that require exceedingly long time

for computer simulation; second, the short-lived inter-

mediates visited during conformational transitions are
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only sparsely populated, and thus very difficult to probe

experimentally. Therefore, despite fast growth in com-

puting technology, single-molecule biophysical tools

[1,2], and time-resolved structural biology techniques

[3–5], it remains very challenging to computationally

simulate or experimentally probe the transient structur-

al changes and intermediates in protein conformational

transitions.

Various structural analysis tools are available for elucidat-

ing key features of protein conformational changes. Given

multiple experimental structures of a protein in different

functional states, one can readily identify dynamic

domains undergoing rigid-body motions [6,7], and visual-

ize a movie of physically feasible conformational path

between two given end-point structures using various

morphing techniques. These morphing methods are based

on linear/nonlinear geometric interpolation of Cartesian or

internal coordinates [8–10] or rigid-body rotations [11] or

inter-residue distances [12,13,14�], so they tend to yield

highly concerted domain motions as contrary to sequential

domain motions. Despite their extensive usage, these

analysis tools do not provide structural insights to the

transient intermediates of protein conformational transi-

tions and cannot realistically predict how individual

domains move in a sequential or concerted fashion.

To directly explore protein conformational transitions at

atomic resolution, molecular dynamics (MD) simulation

[15] is the method of choice that uses molecular mechan-

ics force fields to realistically simulate protein dynamics

under physiological conditions. Nevertheless, all-atom

MD simulations are computationally expensive and often

limited to a short time scale up to hundreds of nanose-

conds, although much longer (microsecond-millisecond)

simulations have been achieved using massively paralle-

lized or specially-designed supercomputers [16].

To efficiently probe long-time protein conformational

transitions, a variety of coarse-grained (CG) models

[17,18] have been developed based on simplified pro-

tein structural representations and potential energy

functions at the expense of losing all-atom details.

These simplifications have led to significantly reduced

system size and computing cost for energy/force calcu-

lations. Notably, certain simplified energy functions

(such as a harmonic potential) enables analytical solu-

tions to the equation of motion and simulation-free

analysis of protein dynamics. Consequently, CG models

have been widely used to efficiently simulate/analyze
www.sciencedirect.com
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protein conformational transitions that are not accessible

to all-atom MD simulation. Among various CG models,

the Go model [19], constructed based on the native

residue-residue contacts of a folded protein structure,

has been used for protein folding/unfolding simulation

for decades, and for exploring conformational transitions

between two known protein structures [20,21]. Another

popular CG model is the elastic network model (ENM),

also known as the anisotropic network model (ANM) [22–
24], which represents a protein structure as a network of

Ca atoms with nearby ones connected by springs with a

uniform force constant or distance-dependent force con-

stant [25]. The ENM is routinely used to perform CG

normal mode analysis (NMA) that solves a handful of low-

frequency normal modes to describe collective domain

motions involved in various large conformational changes

as observed between different protein structures [26] (also

see reviews [27,28]). Indeed, the ENM has formed the

basis of many methods for modeling protein conforma-

tional transitions, which either use the ENM potential to

construct and sample a multi-well energy landscape [29],

or use the ENM-based normal modes to guide transition

path generation [30] toward the target conformation.

In this review, we will survey recent development of CG

methods for modeling protein conformational transitions

based on relevant literature published in the past decade.

We will focus on methods that use a CG physical potential

function to generate a transition path from a given begin-

ning structure to a given end structure. We will not

consider transitions involving protein folding/unfolding,

or unbiased CG simulations of a transition starting from

an initial structure. We will place emphasis on those

methods which are available online as public webservers

or downloadable programs. Due to limited space and non-

exhaustive literature search, we apologize for not covering

some relevant methods in this short review.

Review of available conformational transition
modeling methods (in the chronological order
of publication)
MinActionPath (MAP) [31�]

This method defines two potential functions of Ca-only

ENM for the beginning and the end structures which are

expanded using the harmonic approximation

(EðXÞ�EðX0Þ þ ðXT�XT
0 ÞHðX�X0Þ=2), where E is the

ENM potential energy, X/X0 represents the Cartesian

coordinates of the present/initial structure, H is the

ENM Hessian matrix). Then it solves the Langevin

equation analytically using the Onsager and Machlup

action minimization formalism on each side of the transi-

tion. The crossover between the two ENM potentials is

found numerically using an iterative approach, producing

the most probable trajectory with transition state and

energy determined as well. The MAP-produced transition

path is reversible (i.e., unchanged after switching

the beginning and the end structures). It exhibits less
www.sciencedirect.com 
non-linearity than the other ENM-potential-based meth-

ods (see Figure 1(b)), which can be attributed to the use of

harmonic approximation resulting in loss of higher-order

terms in the potential energy functions.

mixed ENM (mENM) [32�]

This method solves the saddle points of a double-well

potential function constructed from two ENM potential

functions based at the beginning/end conformations of a

transition using an exponential mixing scheme [20]. The

saddle point equation is solved analytically as a linear

equation after using the harmonic approximation to ex-

pand both ENM potentials to the second order (see

above). The idea of mixing two single-well potentials

into a double-well potential for conformational sampling

was introduced in early studies of conformational transi-

tions [20,29]. Similar to MAP, the mENM-predicted path

is also reversible, and it exhibits greater non-linearity than

MAP, but less non-linearity compared to those ENM-

potential-based methods that do not use the harmonic

approximation (see Figure 1(b)).

adaptive ANM (aANM) [33�]

This method starts simultaneously from both the begin-

ning and the end structures by recruiting small subsets of

ENM-based normal modes to create a series of interme-

diate conformations via an adaptive ANM methodology

until the two intermediates merged within a predefined

root mean square deviation (RMSD). The aANM param-

eters allow users to adjust the balance between two

competing requirements for transition path generation:

first, to minimize the deformation energy by following the

lowest-frequency modes which often cause large devia-

tion from the targeted direction; second, to minimize the

length of transition path by moving along the targeted

direction. The optimal balance between these two com-

peting factors is likely protein-dependent, which compli-

cates the use of aANM as a general method for modeling

any given protein conformational transition. Like MAP

and mENM, the aANM-generated paths are reversible.

An aANM path generally exhibits a three-stage transition

which initially follows the low-frequency modes of the

beginning structure, and then enters an energy-barrier

region before subsequently following the low-frequency

modes of the end structure (see Figure 1(b)).

Climber [14�]

In this nonlinear morphing method, the inter-residue

distances of a beginning conformation are pulled towards

the distances in the end conformation using a set of

harmonic restraints that are added to the internal energy

function, which is minimized iteratively. The force con-

stant of the restraint energy is self-adjusted to maintain a

roughly constant speed in approaching the end conforma-

tion. Like other geometric interpolation methods, the

goal of Climber is to generate physically feasible paths

that go around (not over) high-energy barriers. Because
Current Opinion in Structural Biology 2017, 42:24–30
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Figure 1
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(a) Comparison of the T-state and the R00-state conformations of GroEL superimposed along the E domain: the E, I, and A domain in the T state

are colored blue, green, and red; the E, I, and A domain in the R00 state are colored iceblue, orange, and pink; the motions of the I/A domains are

marked by curved arrows colored in green/red. (b) Analysis of transition paths for the T-to-R00 transition of GroEL: two reaction coordinates (RCIE

and RCAE) are calculated for intermediate conformations along the transition paths generated by MAP, mixed-ENM, aANM, Climber, iENM,

NMSim, MDdMD, GOdMD, ANMP, and iMODS. The diagonal dash line corresponds to a linear interpolation path. RCIE (RCAE) quantifies the

progress of conformational change of the I domain (the A domain) relative to the E domain — it is 0 for the T-state conformation and 1 for the R00-

state conformation. The backward R00-to-T paths are also shown for Climber, NMSim, MDdMD, GOdMD, and iMODS (using thicker lines than the

forward paths). The RC data points for 53 experimental structures of GroEL are shown as black dots (PDB ids: 1aon, 1dk7, 1dkd, 1fy9, 1fya, 1gr5,

1grl, 1gru, 1jon, 1kid, 1kp8, 1la1, 1mnf, 1oel, 1pcq, 1pf9, 1ss8, 1svt, 1sx3, 1sx4, 1xck, 2c7c, 2c7d, 2c7e, 2cgt, 2eu1, 2nwc, 2yey, 2ynj, 3c9v,

3cau, 3e76, 3qou, 3vz6, 3vz7, 3vz8, 3wvl, 3zpz, 3zq0, 3zq1, 4aaq, 4aar, 4aas, 4aau, 4ab2, 4ab3, 4hel, 4ki8, 4pkn, 4pko, 4wgl, and 4wsc).
this method pulls all distant pairs of Ca atoms, it can drive

large concerted motions between distant domains like in

linear interpolation. This is distinct from the ENM-poten-

tial-based methods which only pull those residue pairs that

are in contact in either the beginning or the end structure.

Therefore, a Climber-produced path exhibits intermediate

non-linearity between a linear-interpolation path and the

ENM-potential-based paths (see Figure 1(b)). The Climb-

er-generated paths are not reversible.

interpolated-ENM (iENM) [34�]

This method is an improved version of the mixed ENM

formulation [32�]. The key idea is to accurately solve the

saddle points of a general double-well potential function

constructed from two ENM potential functions based at

the beginning and the end conformations of a transition.

These saddle points form a minimal-energy path which is

independent of the ENM and mixing parameters. Be-

sides its generality, iENM has improved the accuracy of

mixed ENM by accurately solving the saddle point equa-

tion without using the harmonic approximation, preserv-

ing covalent bonding between neighboring residues, and

penalizing residue-residue collisions during a transition.
Current Opinion in Structural Biology 2017, 42:24–30 
This protocol is efficient thanks to the use of a sparse

linear equation solver in place of a more expensive eigen-

solver. Similar to MAP and mENM, an iENM-predicted

path is reversible. It exhibits more pronounced non-

linearity than MAP and mENM (see Figure 1(b)).

NMSim [35�]

This method first decomposes a protein structure into

rigid clusters and flexible regions using the FIRST

algorithm [7], then solves normal modes using an

ENM-based iterative rigid cluster NMA [36], and uses

the low-frequency modes to guide constrained geometric

simulations by biasing backbone motions toward a target

conformation and side chain motions toward favorable

rotamer states. Like other normal-modes-following

methods, the NMSim-generated paths are biased by

the normal modes of the beginning structure (not the

end structure) and therefore not reversible (see

Figure 1(b)).

MDdMD [37�]

This method constructs a transition path by using discrete

molecular dynamics [38] and biasing techniques includ-
www.sciencedirect.com
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ing normal-modes-based essential dynamics and Max-

well–Demon sampling techniques. The MDdMD-gen-

erated paths are stochastic and not reversible, which differ

significantly from the deterministic and reversible paths

generated by the ENM-potential-based methods (MAP,

mENM, iENM, etc, see Figure 1(b)).

GOdMD [39�]

Similar to MDdMD, this method uses discrete molecular

dynamics [38] to sample protein conformational space. It

combines a multi-minima Go-like potential energy func-

tion with enhanced sampling strategies such as normal-

modes-biased metadynamics, Maxwell Demon molecular

dynamics, and normal-modes-based essential dynamics.

The GOdMD-generated paths are not reversible, and

similar to other normal-modes-following paths (see

Figure 1(b)) in being biased by the low-frequency modes

of the beginning structure.

ANMPathway (ANMP) [40�]

This method is based on a two-state potential combining

two ENM potentials of the beginning/end structures. It

first locates the minimum energy structure on the cusp

hypersurface as the transition state, and then follows the

steepest descent trajectories from the transition state on

each side of the cusp hypersurface. This method corre-

sponds to a limiting case of the Plastic Network Model

[29] with zero mixing between the two ENM potentials.

An ANMP-predicted path is reversible, and exhibits

pronounced non-linearity similar to the iENM path

(see Figure 1(b)). Unlike iENM, an ANMP-produced

path depends the location of the transition state (i.e., the

saddle point) which is sensitive to the ENM parameters

and energy offset between the two ENM potentials.

iMODS [41�]

This method uses NMA in internal (dihedral) coordinates

to solve normal modes that capture collective motions

while implicitly maintaining stereochemistry. To simu-

late a conformational transition, the beginning structure is

iteratively deformed along the lowest modes while the

RMSD to the end structure is minimized. The iMODS-

generated paths are not reversible, and qualitatively

similar to other normal-modes-following paths (see

Figure 1(b)).

Review of other conformational transition
modeling methods
Other normal-modes-following methods have been de-

veloped. The ANM Monte Carlo algorithm [42] gener-

ates a targeted path between two conformations, where

the collective modes from ANM are used for iterative

deformation, and the conformational energy of the de-

formed structure is minimized via a Monte Carlo algo-

rithm. The coarse-grained virtual atom molecular

mechanics algorithm [43] yields a transition path between

two given structures by moving each structure toward the
www.sciencedirect.com 
other in iterations of moves directed along the normal

mode of greatest engagement with its target structure. Al-

Bluwi et al. used a tripeptide-based-ENM to perform

NMA and predict several collective modes, which are

linearly combined for conformational exploration per-

formed by a robot motion planning algorithm [44].

A geometric targeting method was developed for gener-

ating stereochemically acceptable transition paths in pro-

teins [45]. It gradually changes the system’s RMSD

relative to the target structure while enforcing a set of

geometric constraints. The generated paths are geomet-

rically plausible by maintaining good covalent bond dis-

tances and angles, keeping backbone dihedral angles in

allowed Ramachandran regions, avoiding eclipsed side-

chain torsion angles, avoiding non-bonded overlap, and

maintaining a set of hydrogen bonds and hydrophobic

contacts.

A method named Path Similarity Analysis was developed

to quantify the similarity and difference between two

transition paths, and it was applied to compare a number

of protein transition path generating algorithms including

those based on molecular dynamics and ENM [46].

A hybrid elastic-network Brownian dynamics simulation

method was proposed by extracting the transition routes

from principal component analysis of structurally-rich

ensembles and coarse-grained simulations [47]. This

method was used to explore the conformational land-

scapes of five well-studied proteins, and predict the

structures of intermediates along the paths.

Analysis of transition paths for the T-to-R00

transition of GroEL
The quality of conformational transition modeling can be

assessed using various criteria: First, does the transition

path preserve the chemical structures with minimal geo-

metrical distortions or steric clashes? Second, does the

transition path pass known intermediate conformations?

Third, does the transition path correctly predict the order

of domain motions during a transition? Here we will focus

on the third criterion.

To quantify the domain motional order, we introduced

the following reaction coordinate (RC) for an interme-

diate conformation of a given domain S:

RCS ¼ ðdXS�dXS;obsÞ= dXS;obs

�
�

�
�
2
, where dXS is the dis-

placement vector of S from the beginning conformation

of a transition to a given intermediate conformation,

and dXS,obs is the observed displacement of S from the

beginning conformation to the end conformation of a

transition. RCS measures the motional progress of S in

the direction of a transition. RCS = 0 (1) at the begin-

ning (end) of a transition. For two different domains

(named S1 and S2) in an intermediate conformation, if
Current Opinion in Structural Biology 2017, 42:24–30
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RCS1
> RCS2

, then S1’s movement precedes S2’s move-

ment.

To illustrate and compare the above-reviewed methods,

we chose as a test case the well-studied T-to-R00 transition

in Escherichia Coli. chaperonin GroEL, which features

large motions between three domains: a large twisting

and upward displacement of the apical (A) domain and a

downward movement of the intermediate (I) domain

relative to the equatorial (E) domain [48] (see

Figure 1(a)). We have applied the above methods to

generate a forward transition path from the T-state con-

formation (PDB id: 1AON, chain H) to the R00-state

conformation (PDB id: 1AON, chain A) of a GroEL

subunit, together with a backward R00-to-T transition

path. Then we have calculated the reaction coordinates

(RCIE and RCAE) for the I & E domains (residues 2-135,

136-191, 373-410, and 411-525) and the A & E domains

(residues 2-135, 192-372, and 411-525) to quantify the

motional order between the I domain and the A domain

relative to the E domain during the T-to-R00 transition.

For validation, we calculated and plotted the RC data

points for 53 experimental structures of E. Coli. GroEL

(see Figure 1(b)). The main differences between these

structures are in their nucleotide state and whether they

are bound to the co-chaperonin GroES. They can be

grouped into various states including the apo T state,

the nucleotide-bound R state, and the nucleotide-GroES-

bound R00 state. The R-state structures correspond to

structural intermediates of the T-to-R00 transition.

The results are summarized as follows:

The ENM-potential-based methods (MAP, mENM,

iENM, and ANMP) predict qualitatively similar and

reversible paths, suggesting an early I-domain motion

followed by a later A-domain motion in the T-to-R00

transition, and a reversed order for the backward R00-to-

T transition (see Figure 1(b)). This is consistent with the

distribution of experimental structures (see Figure 1(b)).

However, they exhibit different level of non-linearity

(i.e., deviation from the linear-interpolation path), with

MAP showing minimal non-linearity while iENM and

ANMP showing maximal non-linearity (see Figure 1(b)).

The ENM-modes-following methods (GOdMD, NMSim,

and iMODS) predict qualitatively similar and irreversible

paths. The forward and backward paths both suggest an

early A-domain motion followed by a later I-domain

motion (see Figure 1(b)). Only the backward path is

consistent with the distribution of experimental structures

(see Figure 1(b)).

Unlike the other ENM-based methods, the aANM-gen-

erated T-to-R00 path (using the optimal parameter

Fmin = 0.5[33�]) predicts a more complex three-stage T-

to-R00 transition with the A domain moving first followed
Current Opinion in Structural Biology 2017, 42:24–30 
by the I domain motion and then the A domain motion

again. At higher Fmin, aANM is expected to behave more

like a linear interpolation [33�].

MDdMD and Climber predict irreversible paths that

deviate less from the linear-interpolation path than the

other methods (except MAP, see Figure 1(b)). They

suggest roughly concerted motions of the A domain and

the I domain during the T-to-R00 and R00-to-T transitions.

Conclusion
In sum, we have reviewed ten CG methods for modeling

protein conformational transitions which differ in revers-

ibility and non-linearity. For those methods that generate

irreversible paths, users should be careful in choosing

which of the two end-point structures to start the simula-

tion. In particular, when using those normal-modes-fol-

lowing methods, one should start from the structure

whose low-frequency modes best capture the targeted

conformational changes (such as the R00-state conforma-

tion of GroEL in the above test case). If the goal is to

predict a sequence of domain motions during a transition,

one should use those methods capable of producing

highly non-linear paths (such as iENM and ANMP).

To ensure the robustness of transition path modeling,

it is recommended that multiple methods are utilized to

make consensus-based predictions.

We caution that some complex issues may arise in the

study of transition paths, including partial unfolding and

existence of multiple/irreversible paths. If one of the two

end-point structures is partially disordered, then those

ENM-based methods may not be appropriate and other

models that allow unfolding (such as the Go model)

should be used. Such complex issues should be better

addressed in future development of transition path

modeling methods.

Although structural interpolation has been widely used by

structural biologists for visualizing conformational

changes between different structures, less effort has been

made to obtain mechanistic insights from the predicted

structural intermediates (e.g., predicting the sequence of

domain motions [49]). The methods reviewed here prom-

ise to boost such effort in the future. We urge all structural

biologists to make full use of these methods and provide

feedback on whether they work or do not work. This will

enable synergistic efforts for future development, refine-

ment, and validation of these useful methods.
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