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Coupling between Normal Modes Drives Protein Conformational Dynamics:
Illustrations Using Allosteric Transitions in Myosin II
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ABSTRACT Structure-based elastic network models (ENMs) have been remarkably successful in describing conformational
transitions in a variety of biological systems. Low-frequency normal modes are usually calculated from the ENM that character-
izes elastic interactions between residues in contact in a given protein structure with a uniform force constant. To explore the
dynamical effects of nonuniform elastic interactions, we calculate the robustness and coupling of the low-frequency modes in
the presence of nonuniform variations in the ENM force constant. The variations in the elastic interactions, approximated
here by Gaussian noise, approximately account for perturbation effects of heterogeneous residue-residue interactions or evolu-
tionary sequence changes within a protein family. First-order perturbation theory provides an efficient and qualitatively correct
estimate of the mode robustness and mode coupling for finite perturbations to the ENM force constant. The mode coupling anal-
ysis and the mode robustness analysis identify groups of strongly coupled modes that encode for protein functional motions. We
illustrate the new concepts using myosin II motor protein as an example. The biological implications of mode coupling in tuning
the allosteric couplings among the actin-binding site, the nucleotide-binding site, and the force-generating converter and lever
arm in myosin isoforms are discussed. We evaluate the robustness of the correlation functions that quantify the allosteric
couplings among these three key structural motifs.
INTRODUCTION

It is important to obtain details of the conformational

changes in proteins to elucidate their molecular functions.

To enable efficient simulations and analysis of protein

conformational dynamics, coarse-grained modeling has

been successfully developed using simplified structural

representations and energy functions (1). A prime example

of the structure-based coarse-grained models is the elastic

network model (ENM), where the Ca atoms of amino acid

residues that are within a cutoff distance are connected by

springs (2,3) with a uniform force constant (4). Normal

mode analysis (NMA) based on the ENM has been exten-

sively validated (5,6) and employed to describe the con-

formational dynamics in biomolecular structures (for

reviews, see (7–10)). Remarkably, the global conformational

changes (11–14), conformational transition pathways (15–20),

and allosteric couplings (21–23) in complex systems are

well described by few low-frequency normal modes. The

ENM-based modes have also formed the basis of new

computational techniques for protein structural modeling

and refinements (24–27). The success of ENM-based low-

resolution modeling has been attributed to the robust nature

of the collective motions in multidomain proteins, which are

apparently insensitive to the details of microscopic interac-

tions. Bolstered by the robustness argument, an ENM with

a uniform force constant, k0 and a uniform cutoff distance,

Rc, is typically used despite significant heterogeneity in the
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strength and range of physical interactions between the

amino acid residues. The use of Rc values within the range

8–20 Å or other residue-contact schemes (3,28–30) generally

preserves the lowest few normal modes. In addition, the

lowest modes of ENM were found to be comparable with

the lowest normal modes obtained from the NMA of all-

atom force fields (3). Another study suggested that those

few invariant or robust modes may be functionally important

(31). The robustness in functionally important low-

frequency modes was also discussed in the context of ribo-

some dynamics (32). Our recent studies have also supported

the concept of robustness as a useful criterion for predicting

functionally important modes (14,33).

Despite earlier studies in support of the robustness of

ENM, the dynamic effects of nonuniform perturbations to

the ENM force constant remain to be fully quantified. In

biomolecules, such perturbations may originate from several

sources, such as the approximate use of uniform elastic inter-

actions to account for heterogeneous physical interactions

between residues, and evolutionary sequence variations. To

assess the effects of these complex factors, we will analyze

how the normal modes are perturbed after a Gaussian

random noise is added to the uniform ENM force constant.

The resulting simplification allows analytic treatment of

the perturbation effects (see below), and it provides a reason-

able starting point for further studies of more complex

perturbations.

Using a brute-force approach, one can perform NMA for

a large number of ENM parameter sets with heterogeneous

force constants kij ¼ k0 þ dkij for residue pairs hi, ji, whose

equilibrium distance is d0
ij < Rc; and then statistically
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analyze the variations in the eigenvectors of the normal

modes. Such an approach is computationally expensive for

large structures typical of biological nanomachines. There-

fore, it is useful to develop an approximate method that esti-

mates the statistical variations of normal modes reliably and

efficiently. The brute-force approach can be used to validate

the approximate method (see below).

Recently, we introduced the structural perturbation

method, based on first-order perturbation theory, to estimate

the robustness of normal modes in the presence of parameter

changes due to sequence variations (14,33). This method is

adopted here to investigate how nonuniform errors in the

ENM force constant perturb the normal modes and the

normal-mode-based correlation functions (see Methods).

Unlike in our earlier studies (14,33), we will add Gaussian

noise to the force constant of all springs regardless of the

conservation level of the residues involved. This simplifica-

tion will be justified by showing that the results of mode

robustness remain qualitatively unchanged even when the

perturbations are restricted to nonconserved residue pairs

only (see Results).

Small perturbations in the ENM force constant will mix or

couple those modes whose eigenvalues are close in the

unperturbed spectrum. This is evident from first-order pertur-

bation theory, because the coupling coefficient between two

modes is inversely proportional to the difference between

their eigenvalues (see Methods). Such mode mixing deter-

mines the robustness of a normal mode: the more strongly

a mode is coupled to other modes, the less robust it is.

However, it is unclear whether the mode coupling computed

from the perturbation theory is relevant to realistic situations

in which the perturbations to the ENM force constant are not

small. For example, the anomalous coupling between near-

degenerate modes might be suppressed in the presence of

finite perturbations. This issue is critical to the applicability

of the perturbation theory to the robustness assessment of

normal modes. In this work, we will validate the use of

perturbation theory to estimate the mode robustness and

the coupling between modes in the presence of finite pertur-

bations to the ENM force constant.

The mode coupling information is useful not only for esti-

mating the robustness of individual modes, but also for eluci-

dating the functional significance of seemingly nonrobust

modes. A mode may appear to be nonrobust if it is strongly

coupled with other modes. However, superposition of the

strongly coupled modes may form a robust mode group

whose members are weakly coupled to those outside the

group. When functional motions of proteins are deduced

based on the NMA of an ENM with inaccurate force

constant, it is important to analyze the modes not individu-

ally but in groups. We expect modes in the same group are

strongly coupled with one another, whereas modes from

different groups are only weakly coupled. Structural motions

described by modes in the same group are more likely to

accompany each other. The variable combinations of
motions described by a mode group allow sequence varia-

tions to fine-tune allosteric couplings in proteins. Another

useful application of mode coupling analysis is to build an

invariant subspace spanned by a subset of low-frequency

normal modes for enhanced conformational sampling (34).

The invariance can be ensured by the lack of strong coupling

between modes included in and modes excluded from the

subset.

The concept of robustness is applicable not only to indi-

vidual modes but also to quantities computed from all

modes. We have recently explored the use of correlation

functions to probe the allosteric coupling between a pair

of functional sites in a protein structure (21). The correlation

functions are computed as a weighted sum of contributions

from all modes (up to a cutoff mode, see Methods). There-

fore, the variations in normal modes will result in changes

in the correlation functions. Here, we will investigate the

robustness of correlation functions in the presence of nonuni-

form perturbations to the ENM force constant. A specific

correlation is deemed significant or robust if its variation

caused by perturbations is much smaller than its unperturbed

value. This calculation will allow us to reliably predict

coupled motions between a pair of protein sites, which

may enable allosteric communications between them.

We illustrate the new analysis using myosin II as an

example. Myosin II is a class of molecular motors that

bind to and move along actin filaments by harnessing the

chemical energy from ATP hydrolysis. The work cycle of

myosin II consists of the following steps (35). In an ATP-

bound myosin detached from actin, ATP hydrolysis

produces ADP and inorganic phosphate, and it is accompa-

nied by a large rotation of the lever arm to the prepower-

stroke position (recovery stroke). Actin binding accelerates

phosphate release from myosin, resulting in a force genera-

tion (powerstroke) as the lever arm rotates to the postpower-

stroke position. Subsequent release of ADP is followed by

the binding of a new ATP, which detaches myosin from actin

and resets myosin for the subsequent cycle. Structural studies

have highlighted extensive communications in the myosin

motor domain (36–40), which consists of four subdomains

(see Fig. 4 inset): the upper and lower 50 kDa (U50 and

L50) subdoman, the N-terminal subdomain, and the con-

verter subdomain. The nucleotide-binding site is located at

the intersubdomain interface (including the P loop, switch

I, and switch II—three conserved loops involved in nucleo-

tide binding and hydrolysis). Despite the strong structural

conservation of the myosin motor domain, myosin isoforms

from different classes (41) vary significantly in their motor

properties, pointing to variations in the functional couplings

between the actin-binding site, the nucleotide-binding site,

and the force-generating lever arm.

In a series of recent studies, the NMA has been employed to

probe myosin’s global conformational changes (12,42), local

conformational changes at the nucleotide-binding site (43),

allosteric coupling (21, 23), structural flexibility (42, 44),
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and conformational transition (19,45). Based on the NMA

using the ENM constructed from a prepowerstroke structure

of myosin II, we have identified two functionally important

modes (21,43). Mode 1 captures a large rotation of the

converter accompanying the powerstroke. Mode 7 captures

a rotation of the U50 subdomain that simultaneously closes

the actin-binding site and opens the nucleotide-binding site,

which explains observations of a negative coupling between

actin binding and nucleotide binding in myosin (38–40).

Here, we assess the robustness of these modes and other

low-frequency modes that are strongly coupled to the function-

ally important modes. By analyzing the low-frequency modes

in mode groups, we will discuss how variations in myosin’s

functional motions can be attained thorough mode coupling.

Central to myosin motor function are allosteric couplings

among actin binding, ATP binding, and product release,

and the rotation of converter and lever arm. Structural

comparisons have revealed two pairs of coupled structural

changes in myosin: 1), the closing/opening of the actin-

binding site and the opening/closing of switch I at the nucle-

otide-binding site (38–40); and 2), the upward/downward

rotation of the converter and lever arm and the closing/

opening of switch II at the nucleotide-binding site (37). By

supplementing correlation analysis (21) with the robustness

assessment, we will computationally validate these ‘‘struc-

tural coupling rules’’ between the nucleotide-binding site

(including switch I and switch II) and two other key sites

(the actin-binding site and converter) in the presence of

nonuniform errors in the ENM force constant.

METHODS

Elastic network model

In an ENM, a protein structure is represented as a network of beads, each

corresponding to a Ca atom. A harmonic potential with a uniform force

constant k0 accounts for pairwise interactions between all Ca atoms that

are within a cutoff distance, Rc (set here to be 10 Å), of each other. The

potential energy is (2,4)

E ¼ 1

2

X
d0

ij
<Rc

k0

�
dij � d0

ij

�2

; (1)

where dij is the distance between Ca atoms i and j, and d0
ij is the equilibrium

distance between Ca atoms i and j in the crystal structure.

We expand the above potential energy function to the second order:

Ez
1

2
dXTH0dX ¼ 1

2

X
d0

ij
<Rc

k0dXTHijdX; (2)

where dX ¼ X - X0, X is a 3N-dimensional vector representing the Cartesian

coordinates of N Ca atoms, X0 gives the equilibrium Ca coordinates

in the crystal structure, H0 ¼
P

d0
ij<Rc

k0Hij is the Hessian matrix, where

Hij ¼ 1
2
V2½ðdij � d0

ijÞ
2 :�

First-order perturbation of normal modes

We consider an ensemble of ENMs with a uniform cutoff distance Rc and

a hererogeneous set of force constants, kij, that depends on residue pair

(i, j). The Hessian of each ENM is
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H ¼
X

d0
ij
<Rc

kijHij; (3)

where kij ¼ k0 þ dkij. For simplicity, the distribution of dkij is assumed to be

a Gaussian function centered at 0 with a standard deviation sk, and it is statis-

tically independent between residue pairs. The first-order perturbation to the

eigenvector Vm of mode m is (14)

dVm ¼
X
nsm

dAmnVn; (4)

where

dAmn ¼
VT

mdH�Vn

lm � ln

; (5)

dH ¼
X

d0
ij
<Rc

dkijHij; (6)

and lm is the eigenvalue of mode m.

The coupling strength Cmn between modes m and n is given by the mean-

squared variation of dAmn, which sums up contributions from all residue

pairs in contact:

Cmn ¼
�
dA2

mn

�
¼ s2

k

X
d0

ij
<Rc

�
VT

mHijVn

lm � ln

�2

: (7)

To identify residues involved in the coupling between modes m and n, we

first sort contributions from all residue pairs (see Eq. 7) from high to low

and keep the top 1% of them; the residues involved in these selected pairs

are defined as those involved in coupling.

The robustness of mode m is assessed using the score

Rm ¼
�
jdVmj2

�
¼
X
nsm

Cmn : (8)

High (low) robustness is indicated by a low (high) value of the above score.

Finite perturbation theory for normal modes

Next, we test how well first-order perturbation theory estimates the mode

robustness score and the mode coupling strength in the presence of finite

variations in the ENM force constant. For a perturbed Hessian matrix
H ¼

P
d0

ij<Rc

ðk0 þ dkijÞHij;a new set of modes (with eigenvectors represented

as Um) can be computed. The perturbed modes are numbered such that for

a given m, jVT
n Umj is maximal at n¼ m. The analog of perturbational robust-

ness score Rm (Eq. 8)) at finite perturbations is�
jUm � Vmj2

�
¼ 2

�
1�

�
VT

mUm

�	
z
X
nsm

dA2
mn : (9)

The analog of the coupling strength, Cmn, at finite perturbations is

� 0:5 ,


X
i

�
VT

mUiV
T
n Ui

	2

�
z0:5 ,


�
VT

mVmVT
n dVm

	2

þðVT
mdVnVT

n Vn

	2�¼dA2
mn:ð10Þ

We compute the above two quantities for 100 samples of ENMs perturbed

by Gaussian noise in the ENM force constant with 0 < sk % 1, and then

compare with the corresponding quantities estimated by first-order perturba-

tion theory (Eqs. 7 and 8).

First-order perturbation of correlation function

The correlation between two given directions of movement at site 1 (X1) and

site 2 (X2) is given by the sum of contributions from the lowest M modes (21):
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C12 ¼ XT
1

X
m%M

VmVT
m

lm

X2; (11)

where M is the cutoff mode (with default value 100). A positive value of C12

indicates that the two movements are positively correlated. Some modes

contribute positively and others contribute negatively.

In the presence of perturbations to the Hessian matrix, dH ¼
P

d0
ij<Rc

dkijHij;

first-order perturbation theory predicts that the resulting change in C12 is

dC12 ¼
X

d0
ij
<Rc

dkij

(
XT

1

X
m%M

"X
nsm

VT
mHijVn

lmðlm�lnÞ

 
VnVT

m þ VmVT
n

!

� VT
mHijVm

l2
m

VmVT
m

#
X2

)
¼
X

d0
ij
<Rc

dkijBij : ð12Þ

Thus, the root mean-squared variation of C12 is

sC12
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dC 2

12

�q
¼ sk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
d0

ij
<Rc

B2
ij

s
: (13)

The significance of a correlation function is assessed using the Z score:

Z ¼ C12

sC12

: (14)

Here, we set sk ¼ 1.0. If Z >>1, then the correlation is robust or signif-

icant; otherwise, it is insignificant.

Dynamic domain partition

To visualize the interdomain motions described by a low-frequency mode,

we decompose the conformational change given by the eigenvector of

a normal mode into several movements of dynamic domains that approxi-

mately move (rotate and translate) as rigid bodies (for details, see (22)).

To allow a detailed comparison of the movements of four myosin subdo-

mains (see Fig. 4 inset) described by different modes, four initial centroids

for dynamic domains are chosen at residues I581 (in L50), L429 (in U50),

L106 (in the N-terminal subdoman), and K743 (in the converter).

RESULTS

We will demonstrate the new analyses using a myosin II

structure (PDB code: 1VOM) as an example. Our main

goal is to validate the computational methods for assessing

the robustness of and the coupling between low-frequency

modes. We will also show the application of these methods

to probing allosteric couplings within myosin II.

First-order perturbation theory for mode
robustness and mode coupling

We will evaluate the accuracy of first-order perturbation

theory in estimating mode robustness and mode coupling

by comparing it with statistical estimations of these quanti-

ties for finite perturbations to the ENM force constant (see

Methods). The perturbation theory is only accurate for infin-

itesimally small sk (standard deviation of the perturbations to

the ENM force constant). Here we will explore how its inac-

curacy increases as sk gradually increases from 0 to 1.
We have computed the robustness scores (see Methods) for

the lowest 10 modes (see Fig. 1 a). The perturbation theory

shows that modes 1–3 are the most robust (lowest robustness

scores) (Fig. 1 a), whereas the least robust modes are modes 6

and 7. Comparison with the results of finite perturbations,

with sk varying from 0.1 to 1.0, shows that the agreement is

very good for sk ¼ 0.1. As sk increases, the pronounced

peak at modes 6 and 7 decreases, whereas the robustness

scores of the other modes increase (Fig. 1 a). For 0.5 % sk

% 1, modes 1 and 2 remain relatively robust, whereas the

other eight modes have higher robustness scores. Therefore,

the estimation of perturbation theory for mode robustness

remains quantitatively accurate as long as sk< 0.3. At higher
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FIGURE 1 Robustness score, Rm (in logarithmic scale), for the lowest

10 modes of the myosin II structure (PDB code: 1VOM). (a) Solid lines

show Rm computed using first-order perturbation theory, and dotted lines

correspond to results for finite perturbations at five sk values. (b) Results

of first-order perturbation theory in the presence of unrestricted and

restricted Gaussian perturbations are shown as solid and dotted lines, respec-

tively (the latter are restricted to nonconserved residue pairs with a given

cutoff for conservation score). Note that a high (low) score means low

(high) robustness.
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FIGURE 2 Coupling strength, Cmn (in logarithmic

scale), between the lowest 10 modes of the myosin II struc-

ture (PDB code: 1VOM), which are computed using first-

order perturbation theory (a), and at finite perturbations

of three different magnitudes: sk ¼ 0.3 (b), sk ¼ 0.5 (c),

and sk ¼ 1.0 (d). The gray scale is used to illustrate

mode coupling strength.
sk values, certain qualitative features (for example, modes 1

and 2 being the most robust) are still correctly captured. The

finding of high robustness for modes 1 and 2 agrees with

our recent finding that these two modes are most robust to

sequence variations (14). The low robustness of mode 7 seems

surprising given the previous suggestion (21) that it plays

a functional role in coupling actin binding/release with nucle-

otide release/binding. We address this apparent paradox

below, after introducing mode coupling analysis.

In our earlier studies, we used first-order perturbation

theory to estimate the robustness of normal modes to

sequence variations (14,33). In these studies, we introduced

sophisticated perturbations to residue-residue interactions,

which are modulated by sequence variations. To investigate

how the choices of different perturbations affect the results of

mode robustness, we have modified the present perturbation

protocol (see Methods) by restricting the Gaussian perturba-

tions to those residue pairs involving at least one noncon-

served residue. Here, a residue position is conserved if the

conservation score from ConSurf-HSSP (46) (score ranges

from 1 to 9, where 1 is most variable and 9 most conserved)

is greater than or equal to a cutoff value (set to be 7, 8, or 9).

Then the robustness scores are computed for the lowest 10

modes of 1VOM in the presence of the ‘‘restricted’’ pertur-

bations (see Fig. 1 b). Although the robustness scores are

quantitatively reduced, the relative robustness of the lowest

10 modes is qualitatively preserved. In particular, modes 6

and 7 still have the highest scores, whereas modes 1–3

have the lowest scores. Therefore, the results of mode robust-

ness are qualitatively insensitive to the choice of different

perturbations to the force constant.

We have computed the strength of coupling (see Methods)

between the lowest 10 modes, and the results are shown in

Fig. 2. The perturbation theory predicts three strongly

Biophysical Journal 96(6) 2128–2137
coupled mode pairs, (6, 7), (4, 5), and (8, 9) (see Fig. 2 a),

with the strongest coupling for mode pair (6, 7). These strong

mode couplings account for the high robustness scores for

modes 4~9 (see Eq. 8 in Methods), especially modes 6 and

7. In contrast, modes 1–3 are minimally coupled with all

the other modes, resulting in their low robustness scores.

We compare the mode-coupling results of the perturbation

theory with their counterparts for finite perturbations with sk

varying from 0.3 to 1.0 (Fig. 2, b–d). The agreement is very

good for sk ¼ 0.3—the same three strongly coupled mode

pairs are found (Fig. 2 b). As sk further increases, stronger

coupling arises between the three pairs (for example,

between modes 6 and 7 and mode 5), but the couplings

within these pairs remain higher than the couplings between

them (Fig. 2, c and d). Therefore, perturbation theory gives

a qualitatively correct prediction of the three strongly

coupled mode pairs that persists even for relatively large

perturbations (for sk up to 1.0). In particular, the very high

coupling between modes 6 and 7, also found for finite pertur-

bations, is not an artifact of perturbation theory caused by

near-degeneracy of these two modes.

The finding that mode 7 is strongly coupled with modes 5

and 6 explains its low robustness. Nevertheless, this does not

rule out the functional relevance of mode 7. On the contrary,

mode 7 is strongly coupled to modes 5 and 6 to attain vari-

ations of functional motion between different members of

a protein family (see below). Indeed, if we consider pertur-

bations to the ENM force constant due to sequence varia-

tions between myosin isoforms (33), it is very likely that

the eigenvectors of the strongly coupled modes would be

mixed in a perturbed normal mode spectrum. Therefore, to

reliably deduce functional motions and their variations in

myosin, the strongly coupled modes should be analyzed

together.
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FIGURE 3 Results of dynamic domain partition for

modes #4–9. Dynamic domains are shown in four different

colors (see online version) (blue, cyan, green, yellow), and

their directions of rotation with respect to a fixed domain

(blue) are shown by arrows. The flexible parts not

belonging to any domain are gray. The head (stem) of an

arrow is assigned the same color as the moving (fixed)

domain.
Biological implications of mode couplings
in myosin

Next we discuss the potential roles of mode coupling in

tuning the allosteric couplings among the actin-binding

site, the nucleotide-binding site and the converter/lever arm

in the myosin motor domain (see Fig. 4 inset). To this end,

we will dissect the motions involving the four subdomains

(see Fig. 4 inset), as described by the three pairs of strongly

coupled modes, by performing a dynamic domain partition

analysis (see Methods).

Mode pair (6, 7)

Mode 7 describes a rotation of the U50 subdomain (Fig. 3, #7,

cyan) accompanied by rotations of two other dynamic

domains—one consisting of the lower half of the relay helix,

part of the converter, and part of the N-terminal subdomain

(green), and the other comprised of part of the converter

(yellow). The first rotation of U50 appears to couple the closing

of the actin-binding cleft with the opening of the nucleotide-

binding site (near switch I, see (21)). The other two rotations

involve the relay helix, converter, and the N-terminal subdo-

main. Therefore, mode 7 couples actin binding with distant

movements in the N-terminal and converter subdomains,

which are potentially relevant to the powerstroke. In compar-

ison, mode 6 describes a rotation of the U50 subdomain (Fig. 3,

#6, cyan) similar to that of mode 7 (the rotational axes are

pointed in similar directions (Fig. 3, #7)). However, the
motions of the other subdomains differ significantly between

these two modes, especially in the relay helix and the converter,

which belong to different dynamic domains (Fig. 3, #6, yellow,

and Fig. 3, #7, green). Therefore, a variable mixing of these

two modes can couple a similar rotation of the U50 subdomain

with a variety of movements in the relay helix and the

converter. This may allow different myosin isoforms, with

varied residue-residue interactions, to couple actin binding to

different movements in the converter, leading to variations in

the force-generation process between myosin isoforms.

Mode pair (4, 5)

Unlike mode pair (6, 7), modes 4 and 5 describe similar rota-

tions in the N-terminal subdomain (Fig. 3, #4 and #5, green),

but different rotations in the U50 subdomain (Fig. 3, #4 and

#5, cyan) and converter (Fig. 3, #4 and #5, yellow). There-

fore, a combination of these two modes can couple a similar

rotation of the N-terminal subdomain with a range of move-

ments in the U50 and converter subdomains.

Mode pair (8, 9)

Modes 8 and 9 share similar rotations in the U50 subdomain

(Fig. 3, #8 and #9, cyan) and the N-terminal subdomain (Fig. 3,

#8 and #9, green), but they differ in the converter (Fig. 3, #8 and

#9, yellow). Therefore, similar to mode pair (6, 7), this coupling

can facilitate variable allosteric coupling between the converter

and the U50 subdomain.
Biophysical Journal 96(6) 2128–2137
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In summary, the strong couplings within the three mode pairs

are likely to be functionally significant by allowing isoform-

dependent tuning of allosteric couplings among the actin-

binding site, the nucleotide-binding site, and the converter in

myosin. The residues involved in the coupling of these three

mode pairs (see Methods) are shown in Table 1. For example,

residues involved in the coupling of mode pair (6, 7) are mostly

distributed in the N-terminal subdomain, relay helix, SH1 helix,

and converter, indicating the importance of these regions

in tuning the allosteric coupling between actin binding and

converter movement. The biological significance of the pre-

dicted mode coupling can be tested by mutational experiments

that perturb the residues involved in the mode coupling. We

propose that these targeted perturbations modulate allosteric

couplings, and alter the motor properties of myosin.

Robustness of the allosteric couplings in myosin

Finally, we revisit the allosteric couplings in the myosin

motor domain in our previous study (21). Here, we assess

the robustness of four correlation functions (see Methods)

that quantify the observed coupled structural changes

between the nucleotide-binding site (including P loop, switch

I, and switch II) and another two key sites, the actin-binding

site (38–40) and the converter (37) (see Fig. 4 inset).
The directions of movement in these sites are obtained by

aligning their conformations between a prepowerstroke

structure of Dictyostelium myosin (PDB code: 1VOM) and

a postpowerstroke rigorlike structure of myosin V (PDB

code: 1W8J). The two myosins can be structurally aligned

because their sequences are 41% identical. Four movements

in the above sites are observed from the prepowerstroke

structure to the postpowerstroke structure (see Fig. 4):

TABLE 1 Residues involved in the modeling coupling in

myosin II

Mode pair

Residues involved

in mode coupling

4, 5 7, 19, 34, 36, 37, 44, 45, 46, 47, 52, 60, 70, 71, 72, 77, 78, 79,

83, 95, 96, 97, 98, 104, 231, 233, 234, 368, 391, 392, 395,

396, 397, 398, 399, 400, 403, 404, 405, 406, 407, 408,

409, 410, 485, 508, 573, 593, 595, 646, 658, 659, 660,

662, 668, 669, 673, 674, 682, 683, 686, 723, 739 (62 total)

6, 7 7, 16, 18, 19, 21, 25, 28, 29, 36, 37, 44, 45, 46, 47, 72, 77, 78,

80, 82, 83, 84, 86, 97, 98, 104, 105, 112, 121, 397, 398, 399,

404, 407, 420, 485, 486, 488, 490, 493, 494, 496, 497, 501,

504, 505, 506, 509, 590, 591, 593, 629, 649, 650, 651, 652,

668, 669, 673, 674, 687, 690, 691, 692, 693, 695, 696, 697,

698, 699, 701, 702, 705, 706, 712, 713, 715, 720, 723, 734,

739, 741, 742, 744, 745 (84 total)

8, 9 7, 16, 18, 19, 20, 21, 25, 27, 28, 29, 32, 33, 34, 37, 45, 46, 51,

52, 53, 60, 72, 74, 76, 77, 78, 79, 80, 82, 83, 84, 86, 89, 94,

97, 99, 100, 112, 153, 194, 216, 397, 399, 404, 407, 494,

496, 499, 501, 575, 591, 629, 668, 673, 674, 677, 682,

683, 689, 690, 691, 692, 695, 699, 701, 712, 723, 731,

732, 733, 734, 735, 736, 737, 738, 739, 742, 746 (77 total)
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1. Opening of switch I (residues 233–238, using the

residue numbers of Dictyostelium myosin, same

below) relative to the P loop (residues 179–186);

2. Opening of switch II (residues 454–459) relative to the

P loop;

3. Closing of the actin-binding cleft, indicated by a relative

rotation of the HO helix of the U50 subdomain (residues

411–441) with respect to the helix-loop-helix (HLH)

motif of the L50 subdomain (residues 510–553);

4. Downward rotation of the converter (residues 692–747)

relative to the N-terminal subdomain (residues 80–178).

To test whether the above movements are coupled by the

normal modes calculated from the prepowerstroke structure,

we computed four correlations (see Methods) between

movement 1/2 and movement 3/4, as follows:

1. The correlation between the opening of switch I and the

closing of the actin-binding cleft (Fig. 5 a) is found to

be positive and significant (C12¼ 0.042, sC12
¼ 0.015,

so Z ~ 2.8). Its highest contribution is from mode 7,

supporting the importance of this mode in allosteri-

cally coupling the actin-binding site and the nucleo-

tide-binding site (21).

2. The correlation between the opening of switch II and the

closing of the actin-binding cleft (Fig. 5 b) is weak and

insignificant (C12¼ 0.0078, sC12
¼ 0.0098, so Z ~ 0.8).

This weak correlation results from cancellation

FIGURE 4 Conformational changes from the prepowerstroke myosin

structure (1VOM; blue) to the rigorlike structure (1W8J; red). The two struc-

tures are aligned in the HLH motif. Local movements at the actin-binding

site (HLH motif and HO helix), the nucleotide-binding site (P loop, switch

I, and switch II), and the converter are highlighted by opaque cartoons.

(Inset) Four subdomains—the upper and lower 50 kDa (U50 and L50),

the N-terminal subdomain (N), and the converter (C)—and key structural

components of myosin (relay helix, SH1 helix, lever arm, and switches I

and II).
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FIGURE 5 Correlation functions between (a) opening of

switch I and closing of the actin-binding site (C12 ¼ 0.042,

sC12
¼ 0.015); (b) opening of switch II and closing of the

actin-binding site (C12 ¼ 0.0078, sC12
¼ 0.0098); (c)

opening of switch I and downward rotation of the converter

(C12 ¼ 0.038, sC12
¼ 0.013); and (d) opening of switch II

and downward rotation of the converter (C12 ¼ 0.026,

sC12
¼ 0.011). The solid line shows the cumulative corre-

lation as a function of the cutoff mode (see Methods), and

the impulses show the contributions from each mode (see

Methods). The mode number is shown in logarithmic scale

to clearly illustrate the positions and contributions of low-

frequency modes.
between positive and negative contributions from indi-

vidual modes. Therefore, switch II is not directly

coupled to actin binding.

3. The correlation between the opening of switch I and the

downward rotation of the converter (Fig. 5 c) is posi-

tive and significant (C12 ¼ 0.038, sC12
¼ 0.013, so

Z ~ 2.9). Its highest positive contribution is from

mode 7, supporting the importance of this mode in

allosterically coupling the converter and the nucleo-

tide-binding site (21). We note that mode 2 gives

a large negative contribution to this correlation that

is cancelled by positive contributions from other

modes, resulting in a positive net correlation. There-

fore, it is important to analyze the net effects of all

modes instead of focusing on a single mode.

4. The correlation between the opening of switch II and

the downward rotation of the converter (Fig. 5 d) is

also positive and significant (C12 ¼ 0.026, sC12
¼

0.011, so Z ~ 2.4). Its highest contribution is from

mode 8, supporting the importance of this mode in

allosteric coupling.

Therefore, the present correlation analysis has validated

in silico the ‘‘structural coupling rules’’ deduced from struc-

tural comparisons (37–40). In particular, the observed

coupled motions from the prepowerstroke structure to the

postpowerstroke structure are encoded in the former struc-

ture. Furthermore, we have uncovered a new coupling

between the opening of switch I and the downward rotation

of the converter. Therefore, actin binding may be indirectly

coupled to the downward rotation of the converter, with

the signal being transmitted through switch I.

DISCUSSION AND CONCLUSION

In this study, we have focused on the robustness of ENM-

based normal modes to variations in the strength of elastic
interactions instead of the network connectivity, because

the former is amenable to quantitative comparison with

first-order perturbation theory. To further explore the mode

robustness to variations in network connectivity, we have

examined the effects of varying the cutoff distance, Rc

(with the addition of random Gaussian noise of sRc
¼ 1 or

2 Å). The resulting robustness scores, Rm, are qualitatively

similar to the curve of sk ¼ 1.0 in Fig. 1 a—the lowest

two modes have low Rm values, whereas the remaining eight

modes have high Rm values. Therefore, our first-order pertur-

bation theory makes qualitatively sound predictions for

mode robustness to variations in both the interaction strength

and the network connectivity.

Our study shows that the mode robustness analysis should

be combined with the mode coupling analysis to identify

groups of strongly coupled modes, which must be analyzed

together to deduce meaningful information about protein

functional motions. Although some functionally relevant

modes are found to be robust individually (14,31), others

are robust not by themselves but as a group (i.e., multiple

collective motions can dominate protein functions). Mode

coupling allows Nature to fine-tune protein conformational

changes and thereby achieve functional diversity based on

a common structural architecture. More case studies along

the lines proposed here will offer a more complete under-

standing of both conservation and variation in protein

conformational dynamics and the associated functions.

Our results are consistent with the finding by Tama and

co-workers (45) that a few low-frequency normal modes

can describe the observed conformational transitions,

although they may be mixed by a changing coarseness of

model representation. In our formulation, the modes

involved in the observed conformational transitions form

a ‘‘robust group’’, the members of which may be strongly

coupled to each other, leading to mixing between them,

but are weakly coupled to outsiders, which explains the

Biophysical Journal 96(6) 2128–2137
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robust description of the observed conformational transi-

tions. Therefore, it is important to use the mode coupling

analysis proposed here to assess the robustness of a group

of coupled modes for meaningful analysis of protein func-

tional dynamics.

By supplementing the ENM-based NMA with the assess-

ments of mode robustness and mode coupling of the low-

frequency modes, we have found a valid and efficient way

to systematically explore the effects of parameter uncertainty

in ENM-based modeling, and to evaluate the statistical

significance of the results. This study lays a useful frame-

work for using ENM-based modeling to predict combina-

tions of modes that are important for functions. In addition,

our study highlights the structural mechanism by which

similar proteins (such as myosin II) in various organisms

carry out functions with varying efficiency.
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