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ABSTRACT The Escherichia coli chaperonin GroEL, which helps proteins to fold, consists of two heptameric rings stacked
back-to-back. During the reaction cycle GroEL undergoes a series of allosteric transitions triggered by ligand (substrate protein,
ATP, and the cochaperonin GroES) binding. Based on an elastic network model of the bullet-shaped double-ring chaperonin
GroEL-(ADP)7-GroES structure (R$T state), we perform a normal mode analysis to explore the energetically favorable col-
lective motions encoded in the R$T structure. By comparing each normal mode with the observed conformational changes in
the R$T / TR$ transition, a single dominant normal mode provides a simple description of this highly intricate allosteric tran-
sition. A detailed analysis of this relatively high-frequency mode describes the structural and dynamic changes that underlie the
positive intra-ring and negative inter-ring cooperativity. The dynamics embedded in the dominant mode entails highly concerted
structural motions with approximate preservation of sevenfold symmetry within each ring and negatively correlated ones
between the two rings. The dominant normal mode (in comparison with the other modes) is robust to parametric perturbations
caused by sequence variations, which validates its functional importance. Response of the dominant mode to local changes
that mimic mutations using the structural perturbation method technique leads to a wiring diagram that identifies a network of
key residues that regulate the allosteric transitions. Many of these residues are located in intersubunit interfaces, and may
therefore play a critical role in transmitting allosteric signals between subunits.

INTRODUCTION

Molecular chaperones play an essential role in helping pro-

teins that have low spontaneous yield reach their native states

by mediating their productive folding. Among this class of

nanomachines, the most extensively studied is the Escherichia
coli chaperonin GroEL, which has two heptameric rings

stacked back-to-back (for review see Sigler et al. (1)). GroEL

is among a wide variety of allosteric proteins that have the

intrinsic capacity to undergo conformational changes in re-

sponse to ligand binding (for review see Swain and Gierasch

(2)). In the biological context allostery is widely used as a

regulation mechanism of enzymes. During the reaction cycle

GroEL goes through a number of allosteric states that are

triggered by ATP binding and interactions with the cocha-

peronin GroES (1,3). The substrate protein (SP), which also

affects the allosteric transitions, is most efficiently recog-

nized when GroEL is in the T state, and ATP binding shifts

the equilibrium to the R state. Binding of GroES and sub-

sequent ATP hydrolysis result in the formation of the R$
state. The T / R / R$ allosteric transitions result in the

formation of the cis-ring. When ATP or SP binds to the

opposite or trans-ring the ligands (the inorganic phosphate,

ADP, and GroES) are ejected from the cis-ring. Because the

two rings are out of phase in their function, just as in a two-

stroke motor, it is likely that the symmetric complex in which

GroES is bound to both rings (the football complex) is rarely

if ever populated. It has been appreciated that the dramatic

allostery observed in GroEL is intimately related to its

function (4). Indeed, in the course of the allosteric transitions

the polarity of the inner lining of the cavity changes from

hydrophobic in the T state to hydrophilic in the R$ state. The

SP-GroEL interaction is attractive when GroEL is in the T

state and becomes less so as the T / R / R$ transitions

occur. The change in polarity of the inner cavity is required

for the annealing function of the GroEL machinery (3).

The crystal structures of GroEL (TT state), the double-ring

GroEL-GroES (R$T state) and the cryo-electron microscopy

(cryo-EM) map of the ATP-GroEL complex (RR state) have

given us a glimpse of the working mechanism of GroEL.

Comparison of the structures of the three states has provided

insights into the global motions that GroEL undergoes dur-

ing the reaction cycle (1). The ATP hydrolyzed GroEL-GroES

complex (Protein Data Bank (PDB) code, 1AON) describes

the R$T state, in which the cis-ring has bound ADP and

GroES (R$ state) and the trans-ring is unliganded (T state).

The R$T / TR$ transition involves a series of large-scale

conformational changes that eventually invert the bullet con-

figuration (trans to cis, and cis to trans) as GroEL completes

one-half of its working cycle. During the functional cycle,

the cis-ring releases the SP and ADP, while the trans-ring

binds ATP and encapsulates SP. The cycle of ATP and

GroES binding and subsequent ATP hydrolysis is repeated

until the folding reaction is near completion (1,3).
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Although the outlines of the reaction cycle and the mech-

anism of assisted folding have been clear (1,3) the pathways

and the dynamics connecting the allosteric states have not

been fully elucidated. A number of intriguing questions re-

main. For instance, is a football-shaped conformation (R$R$
state) an obligatory step during the transition? What is the

right sequence of structural changes in the individual do-

mains (E, equatorial domain; A, apical domain; I, interme-

diate domain; see below) along the path? In principle, the

dynamics of allosteric transitions are best studied using detailed

all-atom models of GroEL in explicit water. However, the

long timescales and uncertainties in the force fields prevent

straightforward applications of all-atom dynamics simula-

tions to address the nature of events that control allosteric

regulations in biological enzymes in general and GroEL in

particular. Several simplifications have been used to provide

insights into the allosteric transitions in GroEL. Normal

mode calculations (5) and the targeted molecular dynamics

simulations (6) of a part of the GroEL complex have led

to key insights to the allosteric transitions in GroEL. The

CONCOORD method (7), which yields low frequency col-

lective fluctuations for proteins by generating different con-

formations based on distance restrictions, has been used to

probe the allosteric mechanism in GroEL. de Groot and co-

workers have identified global motions involved in the over-

all allostery of GroEL. More importantly, they showed that,

upon ATP and GroES binding, structural fluctuations in the

nucleotide binding domain are involved in the intra-ring com-

munications (7). In addition, elastic network model (ENM)

of GroEL has also been used in exploring the normal modes

that may describe the transitions between known structures

(8). Recently, a self-organized polymer model of GroEL has

been used to probe the dynamics of allosteric transitions in

a single ring (9). These authors identified a network of salt

bridges whose formation and breakage trigger many of the

observed large-scale domain movements. Bahar and co-worker

proposed a novel approach based on Markov propagation of

information to study the potential pathways of allosteric com-

munication in GroEL-GroES (10).

Although these computational models have provided key

insights into the global conformational changes in GroEL

(5–10), the correlation between the low frequency modes

and the structural changes (at the residue level) in the 14-mer

for the R$T / TR$ transition has not been fully explored.

The complexity of the dynamic changes associated with the

allosteric transitions of GroEL has forced many of the studies

to focus on the conformational changes in a single subunit. It

is clear that concerted transitions within one ring and com-

munication between rings are crucial to the GroEL function

(4). Here, we build on previous studies of various proteins

based on ENM (11–18) by performing extensive normal

mode analysis for the double ring GroEL-(ADP)7-GroES

(R$T state) complex (where the cis-ring is in the R$ state,

the trans-ring is in the T state, and GroES is not included). In

particular, we address the following key questions: 1), Can a

small number of normal modes be used to describe the

allosteric transitions in GroEL? Do these modes lead to

anticlockwise movement of the apical domains upon ATP

binding? 2), Are the structurally based normal modes robust

to perturbations from sequence variations? This is an im-

portant issue because from an evolutionary perspective

structures are more conserved whereas there are large se-

quence variations. 3), Are there key (mechanically ‘‘hot’’)

residues that transmit allosteric signals as GroEL undergoes

transitions from T / R / R$ states in response to ATP, SP,

and GroES binding? The answer to this question provides a

link between globally important motions and local fluctua-

tions at the residue level.

To answer the above questions, we employ a combination

of a bioinformatics technique, which utilizes the evolution-

ary information of sequences that are homologous to GroEL,

and ENM, which captures the shape and topology of the

GroEL structure (19,20). By comparing each normal mode

with the observed R$T / TR$ conformational changes, we

show that there is a single dominant normal mode that offers

insights into the complex dynamics governing the R$T /
TR$ transition. Surprisingly, the dominant mode accounts

qualitatively for the puzzling allosteric couplings within and

between the two rings. Analysis of the dominant mode re-

veals a dynamic asymmetry between the cis- and the trans-

rings that tidily explains the positive cooperativity within

one ring and the negative inter-ring cooperativity. To assess

the functional significance of the seemingly high frequency

mode we show that this dominant mode is most robust to

sequence variations. The response of the mode to structural

perturbations, which is in silico mimic of mutations, allows

us to construct the allostery wiring diagram that gives a net-

work of distant residues that are involved in the allosteric

transitions. Many of the residues that are involved in the large

conformational changes are at the interface of two subunits.

Our study shows that understanding the function of complex

biological nanomachines in general and GroEL in particular

requires reliable models of the intact particle made up of all

the subunits. Simulations of single subunit are likely to miss

important roles played by residues at the interfaces in exe-

cuting the complex collective motions that drive allostery in

biological nanomachines.

METHODS

Elastic network model

In the simplest ENM (21,22) the structure of a protein is represented using

only the coordinates of the Ca atoms. A harmonic potential is used to ac-

count for pairwise interactions between the Ca atoms that are within a cutoff

distance RC. The energy in the elastic network representation of a protein is

Enetwork ¼
1

2
+

d
0
ij,Rc

Cijðdij � d
0

ijÞ
2
; (1)

where Cij is the force constant for contact (i, j), which is usually taken to be a

constant (Cij ¼ C; independent of i and j) for all contacts, dij is the distance
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between the Ca atoms i and j, and d0
ij is the corresponding distance in the

folded structure. For the potential energy in Eq. 1 we can compute its

second-order expansion near the basin conformation as follows:

Enetwork �
1

2
dx~

T
Hdx~¼ 1

2
+

d
0
ij,Rc

Cijdx~
T
Hijdx~; (2)

where H ¼ 1=2 +
d0

ij,Rc
CijHij is the Hessian matrix. The eigenvectors of the

lowest frequency normal modes of the Hessian matrix, obtained by a normal

mode analysis (NMA), are used to compute the overlap (or similarity) of a

given mode m with the conformational changes between two states with

known structures (denoted as overlapm; see Zheng and Doniach (18)). To

preserve the sevenfold symmetry of GroEL during the ENM construction,

we do the following symmetry operation: if the pair (i, j) satisfies d0
ij , Rc

and are therefore connected by a spring, then all those pairs related to (i, j) by

sevenfold rotational symmetry are also connected by a spring even if their

distance is slightly larger than Rc in the structure. In other words, a slight

tolerance in Rc is allowed that enables us to produce an ENM with a strict

sevenfold symmetry.

Fitting B-factors to calibrate the cutoff distance Rc

The ENM has two parameters, namely, the RC and the force constant C. The

normal mode spectrum depends on RC whereas C merely sets a uniform

scaling factor for the eigenvalues. We calibrate RC by fitting the isotropic

crystallographic B-factors Bi of the Ca atoms of given crystal structure using

(see Eyal et al. (23))

Bi

8p
2 ¼ Æu2

i æisotropic ¼
kBTcrystal

3
+

m¼1...100

v~
2

m;i

lm

; (3)

where Æu2
i æisotropic is the isotropic mean square displacement (from rest

position) of Ca atom i, kB is Boltzmann constant, v~m;i is the three-

dimensional component of the eigenvector of mode m at position i, lm is the

eigenvalue of mode m, and Tcrystal is the temperature at which the structure

was determined. The quality of the fit is evaluated by the cross-correlation

coefficient between the experimental and the calculated B-factors. In most

previous studies a physically reasonable value of RC is used, and typically

the normal mode spectrum is relatively insensitive to the precise RC values.

Application to GroEL shows that the maximal overlap is sensitive to RC.

Therefore, it is crucial to choose RC that reproduces experimental B-factors

as closely as possible.

Structural perturbation method

To decipher the network of residues that transmit allostery (allostery wiring

diagram) in biological nanomachines, we introduced a structural perturba-

tion method (SPM) (19). The basic premise of SPM is that, for a given mode

M, the dynamic importance of the ith position can be assessed by the

response to a local perturbation at i. The perturbation, which in the context of

ENM is realized by small changes in the force constant of those springs that

connect i to its neighbors, is akin to a point mutation in experiments. The

response is measured in terms of a normalized score dvM
i given by

dv
M

i ¼
NresC

2lM

+
j:d

0
ij,Rc

v~T

MHijv~M; (4)

where v~M(lM) is the eigenvector (eigenvalue) of mode M, and Nres is the

total number of residues in the protein. The residues with high dvM
i are

dynamically critical (with values �1) to the motion of mode M. Such

residues constitute mechanical ‘‘hot-spot residues’’ that may be involved

in controlling the domain movements (19). The set of high dvM
i residues,

which are dispersed throughout the structure, form the allostery wiring

diagram.

Assessing mode robustness: combined structural
and bioinformatic approach

We showed in a previous study (20) that normal modes that most accurately

describe the motions between two specific structures, in a number of bio-

logical nanomachines, are most robust to sequence variations. The variations

in sequences are evaluated using the evolutionary imprints within a given

family. To assess the robustness of a mode we first used PSI-BLAST (www.

ncbi.nlm.nih.gov/blast) to obtain homologous sequences (search nr data-

base with E cutoff, 10; j ¼ 1). Subsequently, we used clustalW to align the

sequences. We retain only sequences with .30% sequence identity to the

query sequence. In this study, we do multiple sequence alignment for a single-

chain sequence of GroEL structure 1AON because all the chains have the

same sequence.

Evaluation of the probability of nonconservation at
a position based on MSA

Following our previous study (20), we define the residue-similarity score for

an amino-acid substitution (Ria4Rib) at position i using

SðRia;RibÞ ¼ log
PðRia4RibjconðiÞÞ

PðRia4RibÞ
; (5)

where PðRia4RibjconðiÞÞ is the probability of the substitution Ria4Rib if

position i is conserved (‘‘conserved’’ means position i maintains its inter-

actions with its neighbors). We use the PAM250 score to evaluate residue

similarity SðRia;RibÞ in Eq. 5. The probability of the ith position not being

conserved, if the substitution Ria4Rib is allowed, is given by

PðnotconðiÞjRia4RibÞ
¼ ½1� PðconðiÞjRia4RibÞ�;
¼ ½1� PðconðiÞÞ3 e

SðRia ;RibÞ�;
¼ ½1� ð1� PrandÞ3 eSðRia ;RibÞ�Srand �; (6)

where Prand ¼ 0.5. We compute the average Srand ¼ ÆSðRa;RbÞærand for two

randomly generated residues (Ra;Rb) (both are randomly chosen from all

20 types of amino acids). The probability of nonconservation of position i is

given by

PðnotconðiÞÞ ¼ 1� ð1� PrandÞ3 ÆeSðRia ;RibÞ�Srand æMSA; (7)

where the average is over all possible (Ria;Rib) for the given position i in the

MSA.

The robustness score of mode M (20) based on its eigenvalue (fractional

variation of its eigenvalue lM) is assessed using

f
M

dE
¼ dlM

lM

¼
+

i

PðnotconðiÞÞ3 dv
M

i

+
i

dv
M

i

; (8)

where dvM
i is computed using Eq. 4, and PðnotconðiÞÞ is given in Eq. 7.

Robustness score for the eigenvector of a normal mode

Given a perturbation to the Hessian matrix dH, as a result of variations in the

force constants Cij, the first-order correction to the eigenvector of mode M is

dv~M ¼ +
m6¼M

v~
T

MdHv~m

lm�lM

� �
3v~m ¼

1

2
+

d
0
ij,Rc

dCij +
m 6¼M

v~
T

MdHv~m

lm�lM

� �
3v~m:

(9)
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For simplicity, we assume that the distributions of dCij are centered at zero,

and are independent of the residue pairs. As a result, the mean square

average of the amplitude of dv~M is

Æjdv~Mj2æ ¼ +
d

0
ij,Rc

ÆjdCijj2æ +
m 6¼M

v~
T

MHijv~m

lm � lM

� �2

;

� +
d

0
ij,Rc

ðPðnotconðiÞÞ1 Pðnotconð jÞÞÞ +
m6¼M

v~
T

MHijv~m

lm � lM

� �2

;

(10)

where we estimate ÆjdCijj2æ as the sum of probability of nonconservation at

position i and j. For improved efficiency without loss of accuracy, in Eq. 10

we only sum over mode m with jm�Mj,3 3 Nres=10 rather than all the

modes. The robustness score of mode M based on its eigenvector (fractional

variation of its eigenvector’s amplitude) is

f
M

dv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æjdv~Mj2æ

q
: (11)

Here we have used f M
dE

(Eq. 8) and f M
dv (Eq. 10) to assess the robustness of

functionally relevant modes.

RESULTS

B-factors fitting calibrates the cutoff distance Rc

The only essential parameter in the ENM is Rc (see

Methods), which determines the maximal distance between

two Ca atoms of residues that are considered in contact in a

given structure. Previous studies have used Rc in the range

7 Å , Rc ,20 Å depending on the system (11–18). We

choose an ‘‘optimal’’ Rc so that the computed and measured

B-factors are maximally correlated (see Eq. (3)). Comparison

of the B-factors for the GroEL structure at R$T state as a

function of Rc (Fig. 1) show that for Rc¼ 10 Å we obtain the

highest cross-correlation coefficient between the B-factors

computed using ENM and the crystallographic B-factors.

Interestingly, with Rc ¼ 10 Å the maximal overlap between

the dominant mode and the observed R$T / TR$ con-

formational change is also at maximum. For other Rc values

the maximal overlap decreases sharply (Fig. 1). This ob-

servation suggests that the allosteric transitions in GroEL

may hinge on a delicate balance between interactions over a

range of distance scales. Allosterically coordinated multido-

main motions are best described if the interaction range is

optimally chosen. Within the ENM description, the range Rc

can be adjusted so as to obtain the best correlation between

the experimental and the computed B-factors. This proce-

dure for choosing Rc can be used for other systems as well.

R$T ! TR$ transition is captured by a single
dominant normal mode 18

To assess the relevance of various modes we compare each

normal mode for the R$T state (PDB code, 1AON) with the

observed transitions R$T / TR$, R$T / TT, and R$T /
RR. The PDB codes for TT and RR structures are 1GR5 and

2C7E, respectively. The R$T / TR$ transition, which is

the last step in the reaction cycle of GroEL, is dominated by a

single mode 18 (with overlap ¼ 0.68). Several subdominant

modes, namely, 3, 8, 17, 38–39, also have lower but rela-

tively significant overlaps (Fig. 2 top). In contrast, the other

two transitions are spread over multiple modes. The maximal

overlap per mode for the R$T / TT transition is 0.49, and

for the transition R$T / RR it is 0.43. In both these

transitions the dominant mode is 18. Because R$T / TR$
transition is best captured by a single dominant mode, we

focus on this transition. The other two states (TT and RR)

appear to be less favorable for GroEL to visit during the

R$T / TR$ transition. Even if these two other transitions

are also functionally important, the lower overlap values

would probably render the analysis based on a single mode

less accurate. The results for R$T / TR$ support the

functional importance of mode 18, which warrants a more

detailed analysis.

Mode 18 is most robust to perturbations
from sequence variations

The finding that mode 18, with a relatively high frequency, is

functionally the most relevant to the GroEL double ring,

seems to contradict previous studies that usually found that

the lowest two to 10 modes are sufficient to capture the

functional motions of protein complexes (14). Indeed, an

earlier ENM study of GroEL (8) was limited to the lowest 10

modes based on the assumption that the higher modes are

less likely to be relevant. We use the robustness to sequence

variations as a criterion to justify the importance of mode 18

FIGURE 1 Dependence of B-factors fitting and the maximal overlap on Rc.

The cross-correlation coefficient between the calculated B-factors based on

the ENM and the crystallographic B-values is shown by the top line. The

bottom line shows the maximal overlap between each mode and the observed

R$T / TR$ conformational changes in GroEL, which is defined as

maxm$1foverlapmg: Interestingly, for both quantities, Rc ¼ 10 Å is the

optimal value.
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in addition to the retrospective validation by computing the

overlap values. The robustness is determined by fdE, which is

the fractional variation of the eigenvalue of each mode in

response to the random perturbations to the force constants

caused by sequence variations (19). By combining the

robustness criterion with the low-frequency criterion, we can

accurately select the functionally significant modes that

should be robust to sequence variations.

Mode 18 has the highest robustness score (or lowest value

in fdE), and modes 19 and 20 rank second and third, respec-

tively (see Fig. 2 middle). Therefore, the robustness score fdE

allows us to precisely predict the dominant mode, although

the subdominant modes (3, 8, 17, 38–39) are not as accu-

rately predicted.

In addition to the eigenvalue-based robustness analysis,

we performed a similar analysis based on the eigenvectors.

The small perturbation in the Hessian matrix can be captured

using the first-order correction to the eigenvector of a normal

mode as a linear combination of the eigenvectors from the

other modes (see Methods). We computed the fractional

variation of the amplitude of an eigenvector fdv, i.e., the

amplitude of the above first-order correction averaged over

random perturbations to the force constants caused by se-

quence variations (Methods). The results for fdv pinpoint four

most robust modes (3, 8, 17, 18) as nearly degenerate global

minima, and several other highly robust modes (say 39) as

local minima (Fig. 2 bottom). All of these modes correspond

to either the dominant mode (18) or subdominant modes (3,

8, 17, 38–39). Because the motions from one allosteric state

to another takes place along the eigenvectors, fdv appears to

be a more effective indicator of functional relevance than fdE.

These results suggest that for a large system, such as the 14-

mer GroEL at R$T state, multiple modes are required to fully

capture the functionally relevant motions that drive allosteric

transitions.

Mode 18 reveals a dynamic asymmetry
between cis- and trans-rings

The identification of a single dominant mode allows us to

describe the initial structural changes that occur during the

R$T / TR$ transition. By comparing the motions in the

dominant mode with the observed structural differences be-

tween the two allosteric states, we tentatively identify two

types of regions in the GroEL structure. First, the regions of

good fit where the selected mode overlaps well with the

observed changes between the end states. The motions in

these regions may describe the initial structural changes of

the transition. Second, the regions of discrepancy where the

selected mode fails to fit well to the observed differences.

Such deviations may determine late-stage structural changes

in the transition that are not encoded in the initial-state

structure. By distinguishing between these two types of re-

gions and their associated structural changes, we can achieve

a qualitative (or even semiquantitative) view of the complex

dynamic transitions connecting the R$T and TR$ states.

The structural displacements of mode 18 for all seven

trans-ring subunits are found to be nearly symmetric (ob-

eying sevenfold rotational symmetry). They overlay well

along the polypeptide chain of 524 residues (Fig. 3). The

sevenfold symmetry is preserved in the cis-ring for mode 18.

Therefore, this mode indeed describes a highly symmetric

and concerted set of motions in both the cis- and the trans-

rings. However, there are substantial differences between the

FIGURE 2 Mode-dependent variations of key

factors in the allosteric transitions in GroEL.

The top panel shows the overlap with the observed

R$T / TR$ transition for the lowest 50 modes.

The middle panel gives the robustness score based

on the eigenvalue (fdE) for the lowest 50 modes.

The bottom panel displays the robustness score

based on the eigenvector (fdv) for the lowest 50

modes. Nonzero mode number starts from 1. Low

values of the dimensionless robustness scores mean

high robustness (see Methods for details). The

coincidence of the modes that are important to the

allosteric transition (with high overlap values) and

the modes that are most robust (with low values

of the robustness scores) is shown by the arrows

(including modes 3, 8, 17, 18).
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two rings. In the trans-ring, mode 18 matches well in

amplitude with the observed T / R$ changes in the E and I

domains, but in the A domain mode 18 predicts significantly

reduced motions than is observed (see Fig. 3). Therefore,

the preferred motions of the trans-ring in the T state, as

described by 18, can quantitatively account for the moderate

movements of the I and E domains but not the very large-

amplitude motions of the A domain. This is consistent with

the global two-stage T / R$ transition where the I domain

moves into the R$-state configuration (clamping downward to

close the nucleotide binding site) before the A domain fully

opens (twisting in the clockwise direction and swinging

upward) for GroES binding (6,9,24).

In the cis-ring, however, mode 18 predicts larger-amplitude

motions in the A and E domains of the cis-ring than in the

trans-ring (see Fig. 3). The substantial differences in motions

between the two rings have the following consequences.

First, the inter-ring interface may be structurally distorted

due to the unequal motions in E domains between the trans-

and cis-rings, which may then facilitate the transmission of

allosteric signals from the cis-ring to the trans-ring. Second,

the observation that the motion in the A domain is much

larger in the cis-ring than in the trans-ring, indicates that

large-scale closing motions of the A domain probably occur

early in the cis-ring. This is subsequently followed by the

large-scale opening motions of the A domain in trans-ring.

These observations are also suggestive of a two-stage R$ /
T transition in the cis-ring that qualitatively reverses the

T / R$ transition in the trans-ring. This also points to a

possible on-path intermediate state with the A domains in

both rings adopting a closed conformation. The analysis

seems to rule out the presence of a football-shape interme-

diate state where the A domains in both rings are in open/

elevated conformation. These conclusions, based on the

ENM model, should be viewed as tentative because of the

absence of explicit dynamics. It is likely, as shown by using

the self-organized polymer model of GroEL, that there are

multiple paths that connect the various allosteric states (9).

The existence of parallel pathways for the ATP-induced

allosteric transition in GroEL was also supported by an

experimental F-value analysis (25).

Coordinated interdomain structural changes are
revealed by mode 18

To visualize the detailed structural motions in the A, E, and I

domains of both rings, we show in Fig. 4 the deformed struc-

tural model along mode 18 superimposed on the initial

structure of a subunit from each ring as given in the PDB

structure 1AON. In a trans-ring subunit, the E domain tilts

slightly downward near its N- and C-terminals, which face

the interior of the central cavity (Fig. 4 c; see arrows, lower
right). In the E domain, there is an axial-translation in helix C

and a shift at the tip of the stem loop away from where the

ADP is located (Fig. 4 c; see arrows, middle). The helices F

and M of the I domain shift down toward the E domain (the

distances between helices M/F and the stem loop decrease).

The A domain swings slightly upward, and twists in the

counterclockwise direction, which is consistent with the EM

study (24). When viewed along the central axis from outside

the cavity, the A domains in all seven subunits rotate in the

counterclockwise direction, while the seven E domains ro-

tate in the clockwise direction.

In a cis-ring subunit, the E domain tilts slightly upward

near its N- and C-terminals (Fig. 4 d; see arrows, lower
right). The ADP pocket remains closed by helices F and M

of the I domain and the stem loop (although there is an over-

all shift in them, the distances between helices F and M and

the stem loop remain unchanged). The A domain swings

downward significantly, and twists in the clockwise direc-

tion. Viewing along the central axis from outside the cavity,

the seven A domains rotate in the clockwise direction, while

all the E domains rotate in the counterclockwise direction.

At the interface between the two rings, two inter-ring

contacts (A109, A109) and (V464, V464) are slightly closer

as a result of unequal tilting of the cis-ring and trans-ring.

Therefore, the structural changes of mode 18 may result in

stronger inter-ring interactions that may reverse the weak-

ening effect of ATP binding (24).

In summary, mode 18 predicts anticorrelated motions

between the trans- and cis-rings together with highly sym-

metric motions within each ring, therefore suggesting an

intrinsic coupling between the negative inter-ring coopera-

tivity and the positive intra-ring cooperativity (26). Such a

coupling was also found in experiments that showed that

a mutation (E461K) at the inter-ring interface causes the

intra-ring cooperativity to be abolished (27). The predicted

structural changes in the trans-ring are compatible with

ATP binding (28), which are coupled via mode 18, to the

FIGURE 3 Amplitude of the eigenvector of mode 18 (green for trans-

ring, red for cis-ring) and the observed trans-cis-swapping transition (blue)

as a function of residue position. Displacement amplitudes at seven subunits

of trans- and cis-rings are overlaid in the same panel. The locations of the

domains are: A domain (191–376), E domain (6–133, 409–548), I domain

(134–190, 377–408). The superposition of the amplitudes for the seven

subunits is indicative of the concerted nature of the allosteric transitions (see

a similar plot in Yang 2006 (42)).
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large-scale downward motions in the A domains of the cis-

ring. The downward motions of the A domains may disfavor

binding with GroES and cause its release. This explains the

observed allosteric coupling between ATP binding in the

trans-ring and GroES release in the cis-ring (29). The E

domains of the trans-ring and the cis-ring tilt in opposite

directions, which agrees with the crystallographic observa-

tions (30). However, unequal amplitudes in the E domain’s

motions (larger amplitude in cis-ring than trans-ring) most

likely result in structural distortions at the inter-ring inter-

face, which is consistent with the EM study (24) that found

that the E domains of the T ring (trans-ring) have a smaller

tilt opposing that of the R ring (cis-ring).

Allostery wiring diagram identified by the
structural perturbation method reveals the
importance of residues at the interface of subunits

In a recent article (20), we generated the allostery wiring dia-

gram (see Methods) for the subunit A of GroEL cis-ring by

performing the SPM analysis (19). For the cis-ring subunit

A, mode 1 has maximal overlap with the R$ / T transition.

For the reverse T / R$ transition in subunit H of the trans-

ring, mode 3 was found to give the maximal overlap. Using

the SPM we obtained the network of cis-ring residues that

encode the dynamics described by mode 1, many of which

were found to be important to GroEL functions by

FIGURE 4 Structural displacements (from blue to red) as predicted by mode 18. (a) This shows the side view (perpendicular to the central axis) for one

trans-ring subunit (chain H). (b) The side view for cis-ring subunit of chain A is shown using the ribbon diagram. (c) Structural representation of the double-

ring complex is displayed. The boxes enclose a single subunit from cis- and trans-ring as shown in panels a and b. The arrows give the two viewing directions

for panels d and e. (d) The structure shows the top view (along the central axis) for the apical domains of cis-ring. The clockwise rotation of the A domains are

indicated. (e) We show a bottom view for the apical domains of trans-ring with explicit counterclockwise rotation of the A domains.
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mutational studies. In a previous article (20), we made

comparisons between our computational study and genetic

experiments (31) that identified key residues. Because our

previous work was restricted to a single subunit, we could

not pinpoint the allostery wiring diagram that describes intra-

and inter-ring couplings. With the identification of mode 18

for the double-ring GroEL as being the most relevant for the

allostery in the whole complex, we use SPM to identify

additional residues that encode the interactions between

subunits. Comparisons of the allosterically relevant residues

for a single subunit and for the 14-mer (see Table 1) allow us

to infer the wiring diagram that describes allostery in the

whole ‘‘two-stroke’’ nanomachine.

The results in Tables 1 and 2 show that many high-dv

residue positions are shared between the single subunit mode

(20) and the double-ring mode 18. Several of the identified

residues have been found to be functionally important by

experiments or in computational studies (20). There are also a

number of new high-dv residues (Tables 1 and 2) due

to intersubunit couplings, which are mostly located at inter-

subunit interfaces (some are intra-ring, others are between

rings). These residues are predicted to be involved in the sig-

nal transmissions between different subunits of the two rings.

Many of the relevant residues that are identified using SPM

are displayed in Fig. 5.

In what follows, we discuss the intersubunit contacts in-

volving the high-dv residues with reference to the structure

and their relevance to experiments.

A domains

In the cis-ring residues Y203, F204, T210 form contacts with

I305, G306, Q351 of the adjacent subunit. Residues V263

and V264 also form contact with I305 and G306 of the neigh-

boring subunit. In the trans-ring, residues G269 and I270

form contact with residue E257 of the neighboring subunit.

Experiments have shown that mutants Y203E and F204E

both do not show GroES or SP bindings (32). Residue T210

is at the hinge of the loop (199–204) between strands 6 and 7

that binds SP in the T state. Residue E209 was proposed to

contact R58 in E domain (note S55 and V56 are high-dv

residues of mode 3 of subunit H) (28) and may affect the

hinge motion between the E and A domains. Residues V263

and V264 bind to SP in the T state, and form part of the

GroEL-GroES interface in the R$ state (30). Mutant V263S

shows no GroES/SP binding, and V264S shows reduced

ATPase activity and no GroES/SP bindings (32). Residue

R268 is also a potential SP-binding site (33). Mutants L309K

and L314K show reduced SP folding (32). Residues I301–

K311 were found to be indirectly involved in peptide binding

(34). Danziger and co-workers found that E257 is a sensor

involved in coupling polypeptide substrate binding to

stimulation of ATP hydrolysis (35). E257 was also shown

TABLE 1 List of high-dv residues for mode 18 of the

double-ring versus mode 3 of the trans-ring

subunit (chain H)

Mode Residue numbers (normalized dv score)

Mode 3

subunit H

26 (2.7) 29 (2.2) 38 (12.2) 39 (22.3) 40 (11.3)

41 (9.5) 42 (6.7) 43 (4.3) 45 (3.3) 46 (2.3)

47 (18.7) 48 (12.6) 49 (3.8) 50 (13.6) 51 (2.4)

55 (32.0) 56 (2.9) 83 (32.8) 85 (2.1) 86 (3.0)

136 (2.3) 139 (3.2) 147 (2.1) 171 (4.1) 173 (3.1)

176 (2.5) 189 (4.4) 206 (7.9) 207 (16.4) 209 (53.7)

210 (3.9) 211 (8.3) 214 (3.5) 215 (2.2) 327 (23.7)

328 (11.3) 333 (2.2) 374 (3.5) 404 (2.2) 407 (2.6)

492 (2.9)

Mode 18

trans-ring

109 (3.3) 110 (3.3) 145 (3.3) 146 (3.3) 147 (2.7)

148 (2.7) 171 (3.9) 172 (3.9) 173 (3.0) 174 (3.0)

175 (2.4) 176 (2.4) 267 (2.1) 268 (2.1) 279 (2.1)

280 (2.1) 369 (2.4) 370 (2.4) 373 (3.6) 374 (3.6)

385 (2.1) 386 (2.1) 411 (2.1) 412 (2.1) 463 (3.0)

464 (3.0) 491 (4.7) 492 (4.7) 493 (2.7) 494 (2.7)

New high-dv residues only present in mode 18 are underlined. The cutoff

value of dv is 2.

TABLE 2 List of high-dv residues for mode 18 of the

double-ring versus mode 1 of the cis-ring subunit (chain A)

Mode Residue numbers (normalized dv score)

Mode 1

subunit A

83 (10.5) 141 (2.1) 144 (2.5) 161 (2.6) 164 (2.6)

165 (4.2) 166 (7.4) 167 (7.9) 168 (16.1) 169 (4.9)

170 (4.7) 171 (9.3) 172 (15.4) 173 (5.6) 174 (16.8)

175 (12.8) 176 (10.9) 177 (3.5) 187 (2.6) 188 (2.8)

189 (4.2) 190 (7.0) 191 (25.3) 192 (10.2) 193 (8.2)

194 (14.0) 195 (8.2) 288 (11.2) 291 (7.4) 295 (7.5)

331 (6.1) 332 (2.5) 333 (2.1) 346 (3.7) 347 (4.2)

349 (2.6) 352 (4.0) 353 (2.5) 357 (2.1) 359 (12.5)

360 (3.0) 361 (2.3) 363 (8.1) 364 (3.2) 365 (5.3)

366 (6.5) 367 (5.8) 368 (32.1) 369 (6.0) 370 (2.5)

371 (4.6) 372 (2.6) 373 (18.1) 374 (9.6) 375 (7.4)

376 (20.5) 377 (4.4) 378 (8.4) 379 (2.8) 397 (3.9)

400 (6.1) 404 (3.2)

Mode 18

cis-ring

87 (2.1) 88 (2.1) 109 (2.7) 110 (2.7) 165 (5.9)

166 (5.9) 167 (3.3) 168 (3.3) 169 (3.0) 170 (3.0)

171 (24.9) 172 (24.9) 175 (9.2) 176 (9.2) 187 (2.1)

188 (2.1) 189 (9.5) 190 (9.5) 191 (6.8) 192 (6.8)

193 (6.2) 194 (6.2) 195 (3.3) 196 (3.3) 203 (3.3)

204 (3.3) 207 (4.4) 208 (4.4) 209 (2.1) 210 (2.1)

263 (2.1) 264 (2.1) 305 (5.0) 306 (5.0) 307 (3.6)

308 (3.6) 309 (2.4) 310 (2.4) 331 (5.6) 332 (5.6)

333 (3.0) 334 (3.0) 343 (3.0) 344 (3.0) 345 (7.1)

346 (7.1) 347 (6.8) 348 (6.8) 349 (6.5) 350 (6.5)

351 (4.7) 352 (4.7) 353 (6.5) 354 (6.5) 361 (2.1)

362 (2.1) 365 (2.1) 366 (2.1) 367 (4.2) 368 (4.2)

369 (16.9) 370 (16.9) 371 (3.0) 372 (3.0) 373 (5.9)

374 (5.9) 375 (9.5) 376 (9.5) 377 (3.9) 378 (3.9)

379 (2.1) 380 (2.1) 381 (3.3) 382 (3.3) 383 (12.5)

384 (12.5) 385 (2.4) 386 (2.4) 397 (3.0) 398 (3.0)

401 (2.1) 402 (2.1) 403 (6.2) 404 (6.2) 407 (15.7)

408 (15.7) 463 (3.0) 464 (3.0) 465 (3.0) 466 (3.0)

505 (3.3) 506 (3.3)

New high-dv residues only present in mode 18 are underlined. The cutoff

value of dv is 2.
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to be involved in the unfolding action of GroEL on a protein

substrate in a recent computational study (36). Stan et al.

have also emphasized the role of E257 in the release of SP

using all-atom simulations (37). R58 and M267 were previ-

ously found as part of the wiring diagram in a bioinformatic

study by Kass and Horovitz (38).

E domains of both rings

Residues A109 and G110 are involved in inter-ring contacts,

as are residues S463 and V464.

Between E and I domains

In the cis-ring residue Y506 forms contacts with residues A384

and T385 of neighboring subunit. Mutants A503V and A507T

were found to give active single-ring GroEL (39).

Between A and I domains A

In the trans-ring, residue F281 forms contact with residues

T181 and A383–E386 of neighboring subunit. Experimentally,

the F281D mutant has decreased ATPase activity and de-

creased SP folding (32). Mutant A383E has no ATPase

activity, no GroES binding, and no SP refolding (32). A salt

bridge forms between R197 and E386 in the T state and a

new E386–K80 salt bridge may be formed in the ATP-bound

state (24). Mutants T385I, E388K, M389I were found to give

active single-ring GroEL (39).

Among the above high-dv residues, A109, G110, Y203,

F204, V263, R268, P279, G280, A383, T385, and E386 are

highly conserved (40) with conservation score $8 (using

conservation scores from ConSurf-HSSP ranging from 1 to

9, where 1 means most variable and 9 most conserved) (41).

The overlap between the dynamically key residues and SP

binding residues suggest that SP binding is closely coupled

with the allosteric transitions and the associated large-scale

structural changes.

CONCLUSIONS

We have performed an ENM-based normal mode analysis on

the R$T state of the GroEL structure to explore the preferred

collective motions encoded in the 14-mer GroEL complex.

For the R$T / TR$ conformational transition, we have

FIGURE 5 Some key residues in the allostery wiring

diagram for GroEL determined using the SPM are overlaid

in the structure. Residues with high-dv for mode 18

(spheres in red and orange) involved in intersubunit con-

tacts in trans-ring subunits (green) and cis-ring subunits

(blue) are explicitly shown. For clarity, only three subunits

from each ring are shown.
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found a single dominant normal mode 18 that offers a

simplified glimpse into this highly intricate allosteric tran-

sition. An in-depth analysis of mode 18 has revealed the

structural and dynamic details that underlie the positive intra-

ring and negative inter-ring allosteric couplings. This mode

predicts that the structural motions are highly concerted within

each ring, and are anticorrelated between the two rings. By

assessing the robustness of this dominant mode (in compar-

ison with the other modes) to parametric perturbations caused

by sequence variations, we have validated its functional im-

portance. Finally, we have applied the structural perturbation

method technique to this dominant mode to identify the al-

lostery wiring diagram, namely, a network of key residues

that control its motions. Many of these residues are located at

intersubunit interfaces and are therefore predicted to play

critical roles in transmitting allosteric signals between sub-

units. These results also show that to obtain insights into the

conformational changes in multimodular structures it is im-

portant to study the entire complex. By merely focusing on

a single subunit and appealing to symmetry, the important

consequences of dynamic symmetry breaking and the role

played by interface contacts may be missed.

The combination of structural and bioinformatics methods

proposed here is general enough that it can be used to ex-

amine allostery in other biological systems as well. It is im-

portant to assess if the dynamics in a mode is also robust

enough to evolutionary sequence variations because it is be-

lieved that it is the structure, rather than the sequence, that is

more conserved for functional reasons.

The SPM tool is available at http://enm.lobos.nih.gov.
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