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Langevin mode theory and the coarse-grained elastic network model (ENM) for proteins are combined to
yield the Langevin network model (LNM). Hydrodynamic radii of 6 Å were assigned to eachR-carbon on
the basis of matching experimental translational and rotational diffusion constants of lysozyme, myoglobin,
and hemoglobin with those calculated using a rigid body bead model with hydrodynamic interactions described
by the Rotne-Prager tensor. LNM analysis of myosin II indicates that all ENM-like modes are overdamped
at water viscosities. The low-frequency LNM modes in the pre-power stroke structure (PDB code: 1VOM)
are substantially less mixed than the corresponding modes of the post-power stroke structure (1Q5G). Results
from a four-bead model of the myosin “lever arm” indicate that coupling between modes increases as the
array departs from linearity and are consistent with the results for 1VOM and 1Q5G. The decay times for all
overdamped Langevin modes are shorter than the calculated rotational tumbling times found for lysozyme
and myosin.

1. Introduction

Biomolecular processes generally take place in a viscous
environment within the cell, and therefore, the ability to model
the effect of solvent friction on proteins is a useful step to
understanding these processes. However, many important
proteins are too large for current computers to simulate with
all-atom Langevin dynamics or molecular dynamics with explicit
or implicit solvent models. One such example is the skeletal
muscle protein myosin II. How is the behavior of myosin
affected by friction? One way to begin to address these questions
is by varying the viscosity of the solvent environment. For
example, experiments where the normal H2O environment has
been replaced with D2O, which has a 25% greater viscosity,
demonstrate a 40-50% slowing of action and an increased rate
of ATP hydrolysis, resulting in a reduced efficiency.1 Another
way to address these questions is to examine the system using
a Langevin mode analysis in which the flexibility of the
macromolecule is coupled with a friction tensor representing
the viscosity of the local environment.

Previous work has been done to incorporate the effects of
friction into vibrational analysis. For example, Kneller examined
Langevin motion in macromolecules using a coarse-grained
scheme and demonstrated that incorporating friction at the
atomic level is not the equivalent to broadening the lines of
the corresponding normal mode spectrum.2 Lange and Grub-
müller developed a collective Langevin dynamics (CLD) method
in which a reduced dimension approach is used to evolve the
dynamics of the system.3 Erkip and Erman used the Langevin
equation to analyze the contributions of solvent friction to
the motion of a protein described by the Gaussian network
model.4

The role of myosin within a muscle is to transform the energy
released by ATP hydrolyzation into mechanical work. Himmel
et al.5 summarized the basic structural details of scallop myosin
collected from crystallographic sources and proposed a mech-
anism relating structure and function. The myosin motor
domain consists of four rigid subdomains, of which the converter
and its C-terminal extension (the lever arm) are particularly
important. The rotational motion or “power stroke” releases the
mechanical energy gained from breaking the phosphate bond
to produce motion along the bound actin. The efficiency of this
process has been estimated to be∼40%.6 Two conformational
states found by structural studies are the pre-power-stroke state,
in which the lever arm is in the up position (Protein Data Bank7

code 1VOM), and the post-rigor weak actin-binding state, in
which the lever arm is in the down position (PDB code:
1MMA). Subsequently, 1Q5G, a nucleotide-free myosin struc-
ture in the rigorlike state that can bind strongly to actins was
solved by Reubold et al.8 Figure 1 shows these three structures
of myosin (lysozyme (PDB code 8LZM), used for testing in
the present study, is also included). Ru¨egg et al. report that for
rabbit fast skeletal muscle myosin II, the working stroke moves
∼5 nm and completes within∼5 ms.9

Myosin and related systems have been well-studied using the
elastic network model (ENM).10-16 The ENM is a coarse-
grained model in which residues are represented by a single
center at the CR position and proximal residues are connected
by harmonic springs. This approach limits the computational
cost and complexity of the calculation and reduces the effect
of noise from a calculation at full atomic detail (i.e., the
sensitivity of the results to minor conformational differences).
Zheng et al. recently studied the transition between the myosin
structures 1VOM and 1Q5G using a mixed ENM potential.17

Here, we combine the Langevin mode theory of Lamm and
Szabo14 and ENM to formulate the Langevin network model
(LNM). We then use LNM to analyze the behavior of myosin
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as the solvent friction increases from 0 (i.e., standard ENM
calculations) to 1 cP (that of water at room temperature).

By way of outline, the Methods Section reviews the Langevin
mode method (2.1) and then defines the force matrix (derived
from the elastic network model) (2.2) and the friction matrix
(derived from a bead model treatment of hydrodynamic interac-
tion) (2.3) and describes the approach used to assess overlap
between different modes (2.4). The Results Section begins with
the determination of hydrodynamic radii for theR-carbons (CR)
(3.1) and testing of the LNM method on lysozyme and proceeds
to a detailed study of myosin structures 1VOM and 1Q5G (3.2).
Section 3.3 presents results on four-bead model in linear and
bent arrangements to illustrate geometry dependence of mixing
of LNM modes and provides insight into differences in the
dynamics of the low-frequency normal modes in the pre- and
post-power-stroke structures of myosin.

2. Methods

2.1. Overview of the Langevin Mode Method.Standard
normal-mode analysis formulates Newton’s equations of
motion in matrix form employing the assumption that the
system can be well-represented in the low-temperature harmonic
limit. Diagonalizing a Hessian-based matrix yields eigen-
values and eigenvectors that define oscillatory motion of the
system being studied in the harmonic limit. The Langevin mode
theory developed by Lamm and Szabo18 expands this method
by adding a frictional force conformant to the Langevin
equation:

whereV is the potential energy function,q is the position vector
of the systems,q3 is the velocity vector,q1 is the acceleration,ú
is the 3N× 3N friction matrix, m is the 3N× 3N diagonal
mass matrix, andR(t) is the vector of random forces as a
function of time, which are subject to the following constraints:

wherei andj are atom indices,kB is Boltzmann’s constant,T is
temperature, andδ(t - t′) is the Kronecker delta.

Following Kottalam and Case,19 a first-order Taylor series
expansion of the Langevin equation describes the behavior
of the system in terms of an oscillatory motion around a

minimum position, q0. To simplify, Ri is set to the root
mass weighted deviation fromq0:

Substituting eq 3 into eq 1 yields

If úij ) 0 for all i and j, then there is zero frictional force on
the system, and eq 4 reduces to the usual gas-phase normal-
mode equation.

Writing eq 4 in matrix form gives

where F is the 3N × 3N mass-weighted second derivative
Hessian matrix,I is the 3N× 3N identity matrix, andγ is
the 3N × 3N mass-weighted matrix of theúij terms. This
formulation explicitly decomposes the problem into positional
and velocity components. As Lamm and Szabo show,18 to solve
for r andq3 , it is only necessary to solve the eigenvalue problem
for the 6N × 6N matrix on the right-hand side of eq 5, de-
notedA.

With the F and γ matrices in place,A is diagonalized and
the eigenvalues and eigenvectors are computed using the
DGEEV LAPACK routine. SinceF and γ are nonnegative
definite matrices, the eigenvalues and eigenvectors ofA
take a special form, as described by Lamm and Szabo. Because
A is not symmetric, the eigenvalues may be complex; how-
ever, the real parts must always be nonpositive. Imaginary
eigenvalues appear in complex conjugate pairs. If an eigenvalue
is complex, the corresponding mode is underdamped; the inverse
of the real component is the relaxation time, and the imaginary
part is the oscillation frequency. If a mode is real it has only
the damping part and no oscillatory part. Furthermore, by eq 5,
the top 3N components of the eigenvectors represent the
positional deformation along the mode and the bottom 3N
elements represent velocities. The bottom 3N elements of the
eigenvector are thus equal to the top 3N multiplied by the
eigenvalue.

Figure 1. Representations of the myosin structures 1VOM, 1Q5G, 1MMA, and lysozyme 8LYZ using the coarse grained model with a 6.0 Å bead
radius. Residues in the converter of myosin are depicted in dark gray, and the others are semitransparent. Images were generated using VMD33 and
Raster3D.34
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Due to the dimension ofA, there are twice as many Langevin
modes as degrees of freedom in the system. Although the
Langevin modes, like classic normal modes, form a linearly
independent basis set, they cannot be mutually orthogonal, and
therefore, some of them must be coupled. In fact, pairs of
underdamped modes are complex conjugates of one another.
As friction is increased, the magnitude of the damping portions
of these vectors increases while that of the oscillatory part
decreases, and the modes begin to couple. Eventually, the pair
of modes becomes overdamped and the real parts of the
eigenvalues diverge. There are methods, discussed below, of
evaluating the exact magnitude of the change in the motion
represented by the mode as this process occurs.

2.2. Calculation of the Force Matrix. ConstructingA
requires the calculation of both theF andγ matrices. For this
study, the potential used is that of the elastic network model
developed by Tirion.20 This is a spring potential given by

whereC is the force constant and the three-dimensional vector
r ij is defined asqi - qj. Rather than calculating this for each
atom in the system, the model is coarse grained with only
R-carbons (CR) considered.

The calculations of the ENM potentials and second derivative
matrix for the target system were performed using CHARMM,
version c34a2.21 The spring potential was implemented using
the distance restraint functionality of the program after removing
all atoms other thanR-carbons from the system. Two different
force constants were used for myosin: 4.0 kcal/mol/Å2 for the
short range interactions of neighboringCR (within 4.5 Å) and
0.4 kcal/mol/Å2 for pairs more than 4.5 Å but less than the cutoff
value of 10 Å. No springs connectedCR more than 10 Å apart.
Likewise, short and long-range force constants of 5.0 and 0.5
kcal/mol/Å2 for lysozyme were used. These force constants were
determined on the basis of the fitting of B-factors.22

2.3. Calculation of the Friction Matrix . The second matrix
necessary to perform the Langevin modes calculation isγ, the
friction matrix. Kottalam and Case19 report that for crambin and
the DNA duplex d(CpGpCpGpCpG)2, hydrodynamic shielding
can significantly affect the observed relaxation times of the
Langevin modes. The Rotne-Prager tensor accounts for the
shielding and is obtained by defining a matrixT, consisting of
3 × 3 blocks Tij describing the hydrodynamic interaction
between particlesi and j, and inverting. Each element of the 3
× 3 blocks ofT-1 is then divided byxmimj.

The individual bead friction constants (úi) were evaluated
from Stokes Law,

where η is the solvent viscosity anda is the hydrodynamic
radius. All CR were assigned the same hydrodynamic radius,
which was obtained from fitting experimental translational23-26

and rotational27-28 constants using the bead model formalism
of Garcia de la Torre and Bloomfield29 as implemented by
Venable and Pastor.30 As shown in Section 3.1, bead radii
providing reasonable fits to the experimental data are greater
than theCR-CR bond distance; that is, the beads overlap. This
overlap leads to instabilities when the Oseen tensor is used to
describe hydrodynamic interaction and necessitates the use of
the Rotne-Prager tensor31 for Tij .

whererij
t is the adjoint ofrij andI is the 3× 3 identity matrix.

Custom code was used to computeT andT-1, the latter being
calculated using the DGETRF and DGETRI LAPACK routines,
which invert the matrix by means of its LU factorization.

2.4. Calculation of Overlap Scores of Modes.Brooks et
al.32 define an overlap score to compare modes by averaging
the dot products of various modes. The dot product of two
vectors normalized to length 1 ranges from-1 to 1. To simplify
matters, the absolute value of this overlap is given so that two
modes with a dot product of 1 are identical and two modes
with a dot product of 0 are completely orthogonal to one another.
The normal modes calculated by CHARMM are a set of
mutually orthogonal vectors. Therefore, given an arbitrary
vector, the sum of the squares of the dot products of this vector
with each of the normal mode vectors must equal 1 (because
the normal modes span the set of possible motions of the
structure). Therefore, it is possible to determine how closely
many modes must be combined to recapture any motion. Brooks
et al. make use of this fact to compare normal modes calculated
via various mechanisms. It is desirable to develop a similar
methodology for comparing Langevin modes to see how the
motion of the structure changes as friction increases.

As described above, the Langevin modes are coupled with
one another at high friction. Hence, although it is still possible
to compare two Langevin modes, the sum of the squares of the
dot products of a given vector versus an entire set of Langevin
modes will yield a result greater than 1. This scheme is thus
unusable for comparing how much of the total range of motion
is captured in any particular vector. To use the Langevin modes
for this task, it is necessary to simplify them. Fortunately, the
top and bottom halves of the vectors are related as described
above. For critically damped and overdamped, either half may
be taken and renormalized to give a length 3N vector that can
be compared directly with ENM normal mode vectors. For
underdamped modes, the two halves each contain complex
vectors yielding information about both the damping and
oscillatory motions. We take half of the vector, renormalize it,
split the vector into its real and imaginary components, and
compare these with the ENM normal mode vectors to determine
how much of the motion is captured in the oscillatory and real
parts of the vector. An example of this analysis for a very simple
system is given in Section 3.3. It is also possible to extrapolate
the zero friction Langevin modes from the ENM modes and
compare these with higher-frequency LNM modes directly. This
has been done to generate the overlap scores with lysozyme
and myosin.

Results

3.1. Determination of Cr Hydrodynamic Radius. Trans-
lational and rotational diffusion constants were evaluated for
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lysozyme (lys), myoglobin (Mb), and hemoglobin (Hb) for CR
radii varying from 1 to 9 Å. Three structures from the Protein
Data Bank were used for each protein (Table 1). The top two
panels of Figure 2 compare results for lys obtained from the
Oseen and Rotne-Prager (R-P) tensors, respectively. At a bead
radius of 1 ÅDcalc/Dexpt, the ratio of calculated and experimental
diffusion constants for translation (open symbols) and rotation
(closed symbols) are nearly identical, as expected when there
is no overlap between hydrodynamic beads (the distance
between neighboring CR in proteins is 3.8 Å). However, the
calculated diffusion constants are too high, indicating that larger
bead radii are required. Here, the results for the Oseen tenor

become slightly nonmonotonic and sensitive to structure for
translation, and wildly nonmonotonic and very sensitive to
structure for rotation. In contrast, the results for the R-P tensor
smoothly cross a value ofDcalc/Dexpt ) 1 at approximately 6 Å
for both translation and rotation and with essentially no variation
among the three structures. Results for Mb and Hb with the
R-P tensor (bottom two panels) are similar to those for lys,
with the optimal bead radii for translation and rotation of 5 and
6 Å, respectively. Because internal modes of a protein are
arguably closer in character to rotation than to translation, a
bead radius 6 Å isadopted for most of the calculations presented
here. Values of the translation diffusion constants,Dt, and
rotational relaxation times,τiso, for the three proteins are listed
in Table 1;τiso ) 1/6Dr, whereDr is 1/3 of the trace of the
rotational diffusion tensor.

Only beads near the surface of a rigid object contribute to
the translational and rotational friction constants; that is, those
buried in the center are shielded and can be ignored.30 To
illustrate this effect for the present systems, the accessible
surface area (ASA) of each 6 Å bead in lysozyme and myosin
(1VOM) was evaluated. CR whose ASA was 0 Å2, e 10 Å,2

ande50 Å2 were assigned a friction constant of zero to yield
three groups. Table 2 shows the results for lysozyme and myosin
for the preceding groups and the no-cutoff case. Even at the
highest cutoff for lysozyme (60% of beads removed),Dt

decreases by only 2% andτiso increases by 8%. For myosin,
these differences are 1 and 3% when almost 75% of the beads
are removed.

3.2. Results for Lysozyme and Myosin.Langevin mode
calculations were run for 1VOM, 1Q5G, and 8LYZ and were
computed at a variety of different solvent viscosities from 0 to
1 cP, as shown in Table 3. This table shows the number of
overdamped modes for each structure as solvent friction
increases. At zero friction, there are precisely 12 modes with
zero eigenvalues; these correspond to the purely translational
and rotational motions of the structure. As friction increases,
the modes become critically damped, and then overdamped.
When a mode becomes critically damped its eigenvalue becomes
real. Above 0.1 cP, the vast majority of modes are overdamped,
and at 1 cP, all lysozyme modes and all but a very few of the
myosin modes follow this pattern.

Because the model used is coarse-grained, many degrees of
freedom are eliminated, including those existent entirely within

TABLE 1: Experimental and Calculated Translational
Diffusion Constants (10-6 cm2/s), Rotational Relaxation
Times (ns), and Protein Data Bank Codes for Structures
Used

D20,w τiso

protein expt calca expt calca,b PDB codes

lysozyme 1.07c 1.09 5.7d 5.5 1E8L, 2VB1, 8LYZ
myoglobine,f 1.02e 1.02 9.7f 11.1 1DWR, 1WLA, 1YMB
hemoglobine,f 0.69e 0.66 37.7f 38.7 1GXZ, 2DN2, 2H35

a Average from each of the 3 PDB coordinate sets indicated.b Scaled
to experimental temperature and viscosity (1.1 cP for Mb and Hb;
assumed to be that of pure water for lys).c Average of values from
refs 23-25. d Ref 27.e Ref 25. f Ref 28.

Figure 2. Ratio of calculated and experimental translational (open
symbols) and rotational (filled symbols) diffusion constants for
lysozyme (lys), myoglobin (Mb), and hemoglobin (Hb) versus hydro-
dynamic radius of the CR carbon. Values in top panel for Oseen tensor
(OS); all others for Rotne-Prager (RP) tensor. Unique symbols are
used for each structure of a given protein.

TABLE 2: Translational Diffusion Constants (10-6 cm2/s)
and Rotational Relaxation Times (ns) at 20°C for Lysozyme
and Myosin (1VOM), Where Cr with Accessible Surface
below the Cutoff (Å2) Were Assigned a Zero Friction
Constanta

lysozyme myosin

cutoff N D20,w τiso N D20,w τiso

no cutoff 129 1.09 8.10 730 0.56 61.4
0 92 1.10 7.92 427 0.56 60.8

10 82 1.11 7.81 329 0.56 60.5
50 54 1.12 7.47 204 0.57 59.5

a N is the number of beads in each system.

TABLE 3: Number of Critically Damped or Overdamped
Langevin Modes for Different Solvent Viscosities

η (cp)
8LYZ

(774 modes)
1VOM

(4380 modes)
1Q5G

(4620 modes)

0 12 12 12
0.01 90 814 854
0.1 696 3982 4206
0.5 766 4320 4558
1.0 774 4370 4610
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a given residue. This eliminates some very high-frequency
modes from the system. In an all-atom approach, it is probable
that a higher percentage of modes would remain underdamped
at a given viscosity level. However, as reported by Kottalam
and Case, above a certain level of friction, almost all low-
frequency modes will become overdamped. Therefore, this
result indicates that the long time-scale dynamics of lysozyme
and myosin are strongly affected by solvent friction, as is
expected.

As in the case of lysozyme, the results indicate that a
significant number of residues become overdamped, even at
relatively low friction, meaning that motion is appreciably
affected by the presence of solvent. An interesting question that
arises from this basic result is how much the motion described
by a given mode changes as friction increases. The mechanism
proposed by Brooks and described above was employed to
analyze similarities between modes. Because there are many
modes to consider and it is difficult to determine a priori which
ones are significant, a reliable averaging method would be
difficult to construct, and thus, a dot product matrix showing
the overlap of all Langevin modes with the 10 lowest-frequency
ENM modes was generated. The highest overlapping Langevin
modes for 1VOM and 1Q5G are listed in Table 4.

The question of exactly what the highly correlated Langevin
mode represents now arises. Zheng and Brooks show that ENM
mode 1 of 1VOM is largely a descriptor of the large rotation of
the myosin converter.14 Figure 3 shows the values of the length
3N position vector of this mode versus the zero-friction mode
1 vector and also highlights the most displacedCR. It is
immediately apparent from this figure why there is such a high
overlap between these two modes. The effect of friction on the

motion is visible in the difference between displacement
magnitude of the highly displaced and less displaced residues
decreasing from the ENM mode to the Langevin mode. The
figure also demonstrates that the most displaced residues are
those on the converter, showing that these centers move the
farthest, as would be expected in a rotational swing motion.
Therefore, the properties of the Langevin mode, which correlates
heavily with ENM mode 1, describe the behavior of this motion
in the presence of solvent. Large displacements become muted,
and some residues that are less displaced at zero friction become
modestly more so, since the entire mode remains normalized.
This is the result of interaction between myosin and the
surrounding solvent, and the degree to which the zero-friction
motion is affected by these forces depends on the conformation
of the solvent and its velocity.

The method of using dot products to generate overlap scores
as implemented in Table 4 gives a reasonable method for
judging the relative effects of solvent on the motion of various
ENM zero-friction modes. The Langevin modes that have the
highest overlap scores when compared to ENM modes 1, 2, 3,
and 6 have higher overlaps than those that correlate well with
the other low-frequency, zero-friction modes. This indicates that
the directions of motions represented by these zero-friction
modes are not changed as much when solvent viscosity increases
as those motions described by other modes such as mode 10.

Another important result is that the low-frequency modes of
1VOM correspond to Langevin modes with noticeably higher
overlaps than those associated with the corresponding 1Q5G
zero-friction modes. This conclusion is somewhat surprising
because 1Q5G appears more compact than 1VOM, and there-
fore, individual domains would be less affected by friction. It
seems likely, however, that since 1VOM has the myosin
converter primed for the power stroke, there is a significant
internal force driving the low-frequency modes. As the arm
swings down, this force, though damped, is not dissipated into
other degrees of freedom. In the 1Q5G case, the swinging
motion has already largely completed, and myosin is in a
“closed” state with the converter arm docked to the rest of the
motor domain. It may be that the 1Q5G modes are more
susceptible to mixing because 1Q5G is in a “closed” state with
the converter docked to the rest of the motor domain.

It is also necessary to confirm that these Langevin modes do
not overlap substantially with other zero-friction modes. Because
normal modes form a mutually orthogonal basis set, it is possible
for a single Langevin mode to overlap significantly with many
zero-friction modes. Table 5 shows the sums of correlations
from the Langevin modes in Table 1. This shows that the highly
overlapping Langevin modes for 1VOM overlap primarily with
a single zero-friction mode, and therefore, their motion is close

Figure 3. The displacement of the 730 residues of 1VOM for zero-
friction elastic network model mode 1 (dotted line) and the displacement
portion of the corresponding Langevin network model 10 (solid line).

TABLE 4: Highest Overlap Scores and Corresponding
Langevin Mode Number for the Lowest 10 Modes of 1VOM
at 1 cP

1VOM 1Q5G

ENM
mode

highest
overlap

Langevin
mode

highest
overlap

Langevin
mode

1 0.8023 10 0.7796 51
2 0.7455 13 0.6493 22
3 0.8628 7 0.5005 8
4 0.5521 11 0.5194 9
5 0.4893 19 0.4217 15
6 0.6751 14 0.4011 18
7 0.4782 15 0.5416 10
8 0.4344 109 0.5127 2325
9 0.4046 32 0.3807 28

10 0.4459 89 0.4543 42

TABLE 5: Total Absolute Overlap between the Most
Significant Langevin Modes andAll Elastic Network Model
Modes at 1 cP

1VOM 1Q5G

ELM
mode

top 5
overlaps

top 10
overlaps

ELM
mode

top 5
overlaps

top 10
overlaps

10 0.988 0.999 51 0.878 0.921
13 0.947 0.986 22 0.822 0.913
7 0.950 0.983 8 0.948 0.995

11 0.928 0.990 9 0.949 0.991
19 0.822 0.926 15 0.737 0.872
15 0.896 0.961 18 0.751 0.899
14 0.776 0.898 10 0.830 0.891

109 0.658 0.738 2325 0.678 0.762
32 0.678 0.833 28 0.632 0.810
89 0.697 0.801 42 0.737 0.850
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to that of the original zero-friction model. For 1Q5G, there is
more mode mixing, although not significantly so for some
modes. The conclusion that can be drawn from this is that
although the motion of mode 1 in 1VOM may be slowed by
friction, the directional characteristic of the motion changes
relatively little. This result is not obtained for the 1Q5G
structure, indicating that the motion of the lever arm of myosin
may be especially designed to be efficient because it does not
mix up among many Langevin modes as much as other motions
do. Mode 3, which has the highest overlap score, has a large
number of motions in the converter, which may be caused by
missing residues in this part of the structure.

As stated by Kottalam and Case,19 it is possible to construct
the Langevin mode relaxation time for a particular mode by
inverting the real part of its eigenvalue. Table 6 shows that at
1 cP, the damping time of myosin is∼2.35 ns and that for
lysozyme is∼0.21 ns. The difference in these two figures is
reasonable given that the myosin structure is much larger than
lysozyme. It is not appropriate, in this instance, to directly
compare ENM mode 1 of 1Q5G because it represents a motion
that is different from mode 1 of 1VOM. Instead, Figure 4 shows
the relaxation times of the Langevin modes that best overlap
the first 10 ENM modes for both 1VOM and 1Q5G. This shows
that in general modes for 1Q5G relax more quickly than those
of 1VOM. Given that 1Q5G has more highly dissipated
Langevin modes, it is possible that the system is designed to
trade intact motion for quicker relaxation. Also note in Figure
4 that mode 3 for 1VOM has a significantly longer relaxation
time than all other nontranslational and nonrotational degrees
of freedom. As stated above, this mode is largely internal to
the converter and may represent looseness of the converter
subdomain, causing very local motions to be heavily damped
by the presence of friction. To verify that the removal of buried
residues does not affect these results, the LNM modes for
lysozyme were calculated with the friction-buried beads set to
zero using the same criteria as applied to overall translation
and rotation (Section 3.1, Table 2). The results are shown in
Table 7 and indicate that for translation and rotation, buried
residues do not substantially affect the results of the simulation.
These results are consistent with those shown in Table 2

3.3. A Four-Bead Model.To facilitate a basic understanding
of Langevin modes, a four-bead, two-dimensional model is used
to represent a lever arm or strained pendulum. More generally,
it is useful to consider the variations in a simple model as a
function of viscosity. Four different four-bead models, which

vary only in the bond anglesθ1 andθ2, are considered (Figure
5). The four pairs of angles used are 180°-180° (A), 180°-
90° (B), 180°-135° (C), and 135°-180° (D). In each case, all
beads were separated by 10 Å and assigned a hydrodynamic
radius of 15 Å. This value was chosen because in the lysozyme
and myosin models presented above, the hydrodynamic radius
is roughly 1.5 times the length of a CR-CR bond. Beads 1 and
2 were held in a close-to-rigid state via a harmonic restraint
with a force constant of 900 kcal/mol/Å2, while beads 3 and 4
were permitted to move freely in thex andy directions. A single
bond with a force constant of 100 kcal/mol/Å2 and ideal length
of 10 Å connects adjacent beads. A vibrational analysis of these
four models produces 12 normal and 24 Langevin modes. Of
the 12 normal modes, the 2 that represent the unfixed beads
swinging freely in thex and y directions have the lowest
frequencies. The lowest-frequency mode has beads 3 and 4
moving together, whereas the second lowest has this “arm” bent.

TABLE 6: Relaxation Times (ns) of the Langevin Mode
Most Closely Overlapping with the Elastic Network Model
Mode 1 for Myosin (1VOM) and Lysozyme (8LYZ) at
Different Viscosities

h (cp) 8LYZ 1VOM

0.01 0.005 0.015
0.1 0.022 0.234
0.5 0.108 1.178
1.0 0.217 2.356

TABLE 7: Relaxation Times (ps) and Overlap Scores for
the LNM Mode Most Overlapping with ENM Mode 1 of
Lysozyme Where Cr with Accessible Surface below the
Cutoff (Å 2) Were Assigned a Zero Friction Constant. N Is
the Number of Beads in Each System.

cutoff N
relaxation
time (ps) overlap score

no cutoff 129 216 0.80
0 92 201 0.82

10 82 191 0.84
50 54 174 0.83

Figure 4. Relaxation times of the Langevin network model modes
that overlap with the 10 lowest frequency Elastic network model modes
for 1VOM (dark line with open circles) and 1Q5G (dashed line with
dark circles).

Figure 5. Four different conformations of the four bead model: (A)
θ1 ) θ2 ) 180°; (B) θ1 ) 180°, θ2 ) 135°; (C) θ1 ) 180°, θ2 ) 90°;
and (D)θ1 ) 135°, θ2 ) 180°. Beads restrained in all three dimensions
are dark-colored; those restrained in only the out-of-plane direction
are light colored. Solid arrows show the direction and approximate
magnitude of motion of normal mode 1; dashed arrows show the same
for normal mode 2.
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All of the other normal modes are much higher in frequency
due to the restraints placed upon the system.

One question that can be answered by analyzing this structure
is how the different conformations affect the amount of mixing
of the Langevin modes. It is important to consider how much
the coupling of the straight swinging motion with the bending
motion of such an exposed domain changes as friction is
increased and how the starting conformation of the arm affects
this. In this case, conformations A and D have the “arm”
extended straight out (collinearly with the remainder of the
structure in A and at a 135° angle in D), whereas B and C have
it bent at angles of 90° and 135°, respectively. Figure 6 shows
how the damping portions of the four lowest Langevin modes
overlap with normal modes 1 and 2 as friction is applied. There
is a difference in the way the overlaps between the modes cross
as viscosity increases. In both cases, the overlap scores of the
damping parts increase with friction until the pair of modes
overdamps (as is expected). In the case of structure A, however,
when the lowest pair splits, the downward sloping eigenvalue
line crosses with the splitting of the eigenvalues of the second-
lowest pair. That is not the case, however, with C. This leads
to a “double crossing” of the overlap scores for A but not for
C, therefore indicating that initial conformation plays a role in
the ultimate method by which Langevin modes couple as friction

is applied. As friction is increased beyond 0.1 cP, the overlap
scores do not change appreciably, and the modes of A remain
much more highly coupled than those of C.

4. Conclusion

In this paper, we combine the elastic network model
techniques with Langevin mode theory to develop the Langevin
network model. The method is applied to myosin II. In the action
of myosin, any energy introduced into degrees of freedom
orthogonal to the power stroke itself likely results in the
production of heat. Roughly 60% of the free energy released
from the phosphate bond results in the production of heat instead
of mechanical work. By examining the Langevin modes of such
systems, one can start to address the details of energy loss due
to friction. For 1VOM, the critical modes 1 and 2 from the ENM
are relatively unperturbed by that addition of friction, other than
to provide direct solvent damping. By contrast, with the post-
power-stroke 1Q5G structure, there is significant mixing of
modes with the addition of friction.

The relaxation times calculated for overdamped LNM modes
are all shorter than the translational and rotational diffusion times
listed in Table 1. This is because the rotational friction involves
all surface residues, whereas a specific Langevin mode involves
significant motion only on a subset of surface residues. The
relaxation times reported for LNM modes are also significantly
shorter than the millisecond time scales for the working stroke.
The experimental full cycle time of 5 ms includes numerous
steps and reaction barriers, and thus, the times cannot be directly
contrasted with a single LNM power stroke result.
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