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The accurate modeling of protein dynamics in crystalline states is essential for the development of
computational techniques for simulating protein dynamics under physiological conditions. Follow-
ing a previous coarse-grained modeling study of atomic fluctuations in protein crystal structures,
we have refined our modeling with all-atom representation and force field. We have calculated the
anisotropic atomic fluctuations of a protein structure interacting with its crystalline environment
either explicitly (by including neighboring proteins into modeling) or implicitly (by adding
harmonic restraints to surface atoms involved in crystal contacts). The modeling results are
assessed in comparison with the experimental anisotropic displacement parameters (ADP) deter-
mined by X-ray crystallography. For a list of 40 high-resolution protein crystal structures, we have
found that the optimal modeling of ADPs is achieved when the protein-environment interactions
are much weaker than the internal interactions within a protein structure. Therefore, the intrin-
sic dynamics of a protein structure is only weakly perturbed by crystal packing. We have also
found no noticeable improvement in the accuracy of ADP modeling by using all-atom over coarse-
grained representation and force field, which justifies the use of coarse-grained modeling to inves-
tigate protein dynamics with both efficiency and accuracy. © 2011 American Institute of Physics.
[doi:10.1063/1.3646312]

I. INTRODUCTION

Protein structural dynamics (such as atomic fluctuations
of a protein in an equilibrium state), is widely recognized
as a key player in protein structure-function relationship.1

X-ray crystallography and nuclear magnetic resonance2 are
two primary sources of protein dynamics data at atomic or
near-atomic resolution. In X-ray crystallography, atomic fluc-
tuations of protein crystal structures are routinely quantified
by the isotropic temperature factors (or B factors), which use
an isotropic Gaussian distribution to characterize the spread of
electron density of individual atoms.3 The isotropic assump-
tion is inadequate for large protein complexes which possess
highly flexible structural components undergoing orientation-
specific (anisotropic) motions. Anisotropic thermal param-
eters are needed to properly represent those motions in
structural refinement. In recent years, a growing number of
high-resolution protein crystal structures have been refined
using anisotropic Gaussian distributions, which characterize
atomic fluctuations by a symmetric tensor with six indepen-
dent elements named anisotropic displacement parameters
(ADPs).4, 5 Unlike the isotropic B factors which depict atoms
as isotropic spheres, the ADPs describe atoms as anisotropic
ellipsoids with the information of both magnitude and direc-
tion of atomic fluctuations included. So they offer much more
details of protein structural dynamics in crystalline states,
which is inherently anisotropic and anharmonic6 (for an alter-
native way to improve structural refinement beyond isotropic
Gaussian distributions, see Ref. 7).

a)Author to whom correspondence should be addressed. Electronic mail:
wjzheng@buffalo.edu.

To explore the fine details of protein structural dy-
namics, a range of computational methods from all-atom
molecular dynamics simulation8 to coarse-grained modeling
techniques9 have been developed and utilized. To quantify
the dynamic contributions to crystallographic B factors and
ADPs, low-frequency normal modes, which are known to
capture large-amplitude collective motions of protein struc-
tures, have been used to fit B factors10 and refine ADPs.11

Initially, the normal modes were solved from all-atom force
fields following energy minimization.12–14 This procedure is,
however, computationally expensive for large protein struc-
tures, and it is susceptible to structural distortions caused by
energy minimization. More recently, elastic network mod-
els (ENM), including anisotropic network model (ANM)
(Refs. 15–17) and its isotropic counterpart—Gaussian net-
work model (GNM),18, 19 have been used instead of all-atom
force fields to calculate normal modes. The ENM is typically
constructed using a Cα-only structural representation, where
neighboring Cα atoms are connected by Hookean springs
with a uniform15 or distance-dependent20, 21 force constant.
Such simplification allows the coarse-grained normal modes
to be calculated efficiently without the need for energy mini-
mization. The collective motions described by low-frequency
modes are largely unchanged by the use of coarse-grained
representation and harmonic potential function.22, 23 The crys-
tallographic B factors have been modeled by GNM,24, 25

ANM,26 and their generalization27 with notable success.
ANM has also been used to model ADPs with reasonable
success.28–30 However, in these early studies, an isolated pro-
tein structure was modeled without considering its interac-
tions with crystal environment. Therefore, the contributions
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of global rotations and translations (corresponding to six zero
modes) could not be properly modeled.31

To deduce protein dynamics under physiological condi-
tions from crystallographic data, it is imperative to relate the
protein dynamics in crystalline states to the protein dynam-
ics in solution. Early studies found significant effect of crystal
packing on the atomic fluctuations of protein structures.5, 32–34

To accurately model the protein dynamics in crystalline states,
recent efforts were made to simulate crystal packing effect in
various ways, for example, by using GNM to model a pro-
tein structure together with its neighboring molecules,35 or
by using ENM coupled with rigorous treatments of bound-
ary conditions and lattice vibrations.36, 37 In a recent study,38

we adopted a different strategy to model crystal packing:
a single protein molecule was selected as the main protein
structure, while the rest of protein crystal was treated as
its environment; the environment was then truncated based
on the distance to the main protein structure or by keeping
the nearest and next nearest neighbors of the main protein
structure. The entire protein-environment system was mod-
eled using three different ENM schemes, including ANM,17

distance network model,28 and a Cα-based ENM proposed by
Hinsen et al.20 Three different boundary conditions38 (fixed,
free, and buffered environment) were considered to account
for the flexibility of environment to different extent. The dy-
namic effects of crystal packing were explored by varying
the strength of protein-environment interactions relative to
the intra-protein interactions. We performed ADP modeling
for a list of 83 high-resolution crystal structures previously
studied.28, 36, 38 We found that the optimal modeling of ADPs
was achieved when the protein-environment interactions are
much weaker than the interactions within the main protein
structure, which may be attributed to several causes (such as
loose packing, large solvent screening for residues involved
in crystal contacts38). As a result, the crystallographic ADPs
and B factors are dominated by contributions from rigid-body
motions of the main protein structure, and the internal protein
dynamics is only weakly perturbed by crystal packing.

In this study, we will further refine our coarse-grained
modeling of protein-environment systems with all-atom rep-
resentation and force field. Our goal is to answer the follow-
ing two key questions: (1) Does the above finding of weak
protein-environment interactions still hold after the all-atom
refinement? (2) Can we further improve ADP modeling by
using all-atom representation and force field?

II. METHODS

A. All-atom modeling of protein-environment system

1. Explicit environment modeling (EEM)

To explicitly model the crystal packing effect while keep-
ing a minimal system size, we construct an all-atom system
consisting of a main protein structure and its environment
comprised of the neighboring proteins that are within a mini-
mal distance of 4.5 Å between heavy atoms (for an example,
see Fig. 1). The atomic coordinates of the neighboring pro-
teins are generated using the crystallographic symmetry trans-

FIG. 1. Explicit modeling of crystalline environment for a crystal structure
of pancreatic trypsin inhibitor (PDB code: 1g6x). The main protein structure,
the residues in neighboring proteins within rc = 20 Å from the main protein
(E1), and the rest of neighboring proteins (E2) are colored red, green, and
blue, respectively.46

formations given by REMARK 290 and the SCALEN records
of protein data bank (PDB) files.

The environment is further divided into two parts (E1 and
E2, see Fig. 1). E1 includes those residues of the neighboring
proteins whose heavy atoms are within a cutoff distance rc

(varying from 0 to 20 Å) to the main protein’s heavy atoms;
the rest is called E2. To properly model the flexibility of crys-
talline environment, we fix the atoms of E2 while allowing the
atoms of E1 to move together with the main protein.

The total potential energy is minimized, initially by mul-
tiple 50-step steepest descent minimizations with first back-
bone atoms and then Cα atoms harmonically restrained, fol-
lowed by 150 000 steps of unrestrained minimization using
the adopted basis Newton-Raphson (ABNR) algorithm. Ad-
ditional 10 000 steps of minimization by ABNR may be ex-
ecuted until the resulting Hessian matrix becomes positive
semi-definite.

The Hessian matrix (comprised of second derivatives of
potential energy) is calculated for the minimized system using
the VIBRAN module of CHARMM program.

2. Implicit environment modeling (IEM)

To implicitly model the crystal packing effect in a protein
crystal, we construct an all-atom system consisting of a main
protein structure alone, and then apply harmonic positional
restraints to its surface heavy atoms in contact with neighbor-
ing proteins (defined as the heavy atoms of the main protein
within a minimal distance of 4.5 Å from the heavy atoms of
neighboring proteins).

The main protein structure is minimized in the same man-
ner as explicit environment modeling (EEM) but in the ab-
sence of neighboring proteins. Then the Hessian matrix is cal-
culated for the minimized system using the VIBRAN module
of CHARMM program.
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The introduction of the harmonic restraints results in the
addition of KENi to the diagonal elements of the ith 3 × 3
diagonal super block of the hessian matrix, where Ni is the
number of heavy atoms of neighboring proteins within 4.5 Å
from atom i of the main protein, and KE is the force constant
of a harmonic restraint. KE is tuned to adjust the strength of
protein-environment interactions and optimize the fitting of
ADP data (see below).

The missing residues are modeled using the MODLOOP

web server.39 The CHARMM program40 is used for energy
minimizations and calculations of Hessian matrices. Energy
minimization causes structural changes of the main pro-
tein with small root mean squared deviation (RMSD) (see
Table I). For all-atom force field, we use an effective energy
function combining the CHARMM 19 polar hydrogen energy
function with an excluded volume implicit solvation model.41

Our choice of the force field follows a previous study.28 Its
advantages are twofold: first, it gives smaller system size than
the more standard CHARMM22 force filed because of the use
of united hydrogen atoms; second, it gives reasonable account
of solvent environment in protein crystals.

B. Coarse-grained modeling of
protein-environment system

Following a previous study,38 we construct a Cα-only
ENM that consists of the following two components: first, the
Cα atoms of a main protein structure (corresponding to the
asymmetric unit of a protein crystal); second, the Cα atoms
of neighboring protein molecules as environment. To reduce
computing cost, the environment atoms are fixed in space.
Other boundary conditions were also studied in our previous
study.38

The potential energy of the two-component ENM is

E = 1

2

∑
i<j

Cij (dij − dij,0)2 + 1

2
fenv

∑
i,I

CiI (diI − diI,0)2,

(1)
where i and j (I) are indices for Cα atoms in the main pro-
tein (environment). dij and diI are Cα–Cα atomic distances.
dij,0 and diI,0 are the values of dij and diI given by the crys-
tal structure. A new parameter fenv within the range [0, 1]
is introduced to tune the strength of protein-environment in-
teractions relative to intra-protein interactions. fenv = 0 cor-
responds to an isolated protein structure. fenv = 1 corre-
sponds to equal strength between protein-environment and
intra-protein interactions. Cij or CiI represents spring force

constant: Cij = { 1, if dij,0 < Rc

0, otherwise
, where Rc is the cutoff

distance. We use Rc = 10 Å because it was found to give
optimal modeling of the ADPs.38

We then calculate a coarse-grained hessian matrix using
the above ENM potential energy.

C. Calculation of ADP

The atomic mean-square fluctuations in a protein crystal
are fitted using a trivariate Gaussian distribution described by
the ADP. To obtain the theoretical values of ADP, we first cal-

TABLE I. Backbone RMSD of structural changes in main protein by energy
minimization

PDB code RMSD of EEM RMSD of IEM
(Å) (Å)

1g6x 1.14 1.20
2fdn 1.00 1.48
1rb9 0.68 0.74
1kth 1.05 0.95
1oai 0.72 1.00
1c75 1.02 1.59
1f94 1.24 1.12
1iqz 1.00 1.00
1vbw 0.95 0.94
1vyy 0.79 0.79
1tg0 0.94 1.11
1m1q 1.77 2.27
1ok0 1.07 0.81
1r6j 0.95 1.42
1xmk 0.97 0.95
1l9l 1.13 0.96
1x6z 1.14 1.14
1u2h 0.78 0.97
1iua 0.93 1.21
1lkk 1.03 1.03
1zzk 1.00 1.68
1ufy 0.97 1.43
2pvb 0.91 0.85
1j0p 1.82 2.69
1gqv 0.83 0.90
1nwz 0.78 0.82
1tqg 0.61 0.73
1r2m 1.17 2.24
1c7k 0.79 0.97
1g4i 1.29 1.26
1unq 1.06 2.16
1w0n 1.23 2.01
1mc2 1.26 1.19
1v6p 1.36 1.70
3lzt 0.81 0.97
1exr 1.27 2.23
1a6m 0.85 1.28
1f9y 0.77 0.93
1tt8 0.72 0.90
1eb6 0.99 1.01

culate the 3N × 3N covariance matrix for the following all-
atom or coarse-grained models of protein-environment sys-
tem (N is the number of atoms or residues).

1. EEM

The atoms of main protein (M) and part of environment
(E1) are free to move, while the rest of environment (E2) is
fixed. So the atomic covariance matrix of the main protein is

〈
uMuT

M

〉
EEM = kBT ·

[
HMM HME1

HE1M HE1E1

]−1

MM

, (2)

where uM represents the atomic displacement of the main pro-
tein, kB is the Boltzmann constant, T is the temperature,HMM ,
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HME1 , HE1M, and HE1E1 are four sub-matrices of the all-atom
Hessian matrix that involve the main protein and E1.

2. IEM

The atomic covariance matrix of the main protein is

〈
uMuT

M

〉
IEM = kBT (HM + KENE)−1, (3)

where HM is the all-atom Hessian matrix of an isolated main
protein, NE is a diagonal matrix whose (3i + j)th diagonal
element (j = 0, 1, 2) is given by the number of heavy atoms
of neighboring proteins within 4.5 Å from atom i of the main
protein, and KE is the force constant of a harmonic restraint.

3. Two-component ENM with fixed environment

The covariance matrix of Cα atoms in the main protein is

〈
uMuT

M

〉
ENM = kBT (HMM )−1, (4)

where HMM is the MM sub-matrix of the coarse-grained
Hessian matrix.38

To exploit the sparseness of Hessian matrix, we use a
sparse linear-equation solver CHOLMOD (Ref. 42) to calculate
matrix inversion in Eqs. (2)–(4). It is computationally more
efficient and accurate than the calculation of H−1 using a sub-
set of low-frequency modes.28

Given the covariance matrix 〈uMuT
M〉, one can calculate

the theoretical ADP tensor for atom i using the ith 3 × 3 diag-
onal block Cii of 〈uMuT

M〉:

Cii =

⎡
⎢⎣

〈
δx2

i

〉 〈δxiδyi〉 〈δxiδzi〉
〈δxiδyi〉

〈
δy2

i

〉 〈δyiδzi〉
〈δxiδzi〉 〈δyiδzi〉

〈
δz2

i

〉
⎤
⎥⎦

=

⎡
⎢⎣

U11 U12 U13

U12 U22 U23

U13 U23 U33

⎤
⎥⎦ , (5)

where the diagonal elements U11, U22, U33 give the mean-
squared fluctuations of atom i along x, y, z direction, and
the off-diagonal elements U12, U13, U23 describe the covari-
ance among the displacements of the atom i along x, y, z di-
rection. Together, the six ADP elements determine a three-
dimensional Gaussian distribution function which describes
both the direction and magnitude of the atomic fluctuations.5

For fixed probability value, the distribution is ellipsoidal with
a directional preference along the long axis, which is given
by the eigenvector of ADP tensor with the largest eigenvalue.
The anisotropy of the Gaussian distribution is defined as the
ratio of the smallest to the largest eigenvalue of ADP tensor.

The isotropic B factor is related to the trace of ADP ten-
sor as follows:

B = 8π2 (U11 + U22 + U33) /3. (6)

D. Comparison between theoretical
and experimental ADP

We use the following metrics to assess the similarity be-
tween experimental and theoretical ADP tensors (represented
as U and V).

1. Real-space correlation coefficient

The following real-space correlation coefficient is calcu-
lated to evaluate the overlap integral of two three-dimensional
Gaussian distributions given by U and V:5

cc(U,V ) = (det U−1 det V −1)1/4

[det(U−1 + V −1)/8]1/2
. (7)

Based on the real-space correlation coefficient, the following
two metrics have been introduced to evaluate the directional
similarity of two ADPs.

a. Normalized correlation coefficient (ncc).

ncc(U,V ) = cc (U,V )

cc (U,Uiso) cc (V, Viso)
, (8)

where Uiso = Viso = I3/3, I3 is a 3 × 3 identity matrix, U
and V have been normalized by their trace. ncc measures the
similarity between U and V relative to their similarities to an
isotropic tensor.5 Following a previous study,30 we use a sim-
ple ratio of the number of ADPs with ncc > 1 and the total
number of ADPs (named fncc) to measure the overall similar-
ity between two sets of ADPs.

b. Modified correlation coefficient (cc mod )

cc mod (U,V ) = cc (U,V ) − cc (U,V ∗)

1 − cc (U,V ∗)
, (9)

where V ∗ is a 3 × 3 tensor generated by taking the eigen-
vectors of U and using the eigenvalues of V, with the largest
and smallest switched to define the two ellipsoids with per-
fect misalignment.28, 36 cc mod is 1.0 (0) if the two ellipsoids
are perfectly aligned (misaligned).

2. Kullback-Leibler (KL) distance

The KL distance43 evaluates the difference between the
three-dimensional Gaussian distributions a and b as defined
by U and V.29 The KL distance can be expressed in terms of
the eigenvalues (dak and dbk , k = 1, 2, 3) and eigenvectors (vak

and vbk , k = 1, 2, 3) of U and V as follows:

Dab = − 3

2
+ 1

2

3∑
k=1

ln
dbk

dak

+ 1

2

3∑
k=1

3∑
l=1

dak

dbl

∣∣vT
akvbl

∣∣2
.

(10)
Since the KL distance is asymmetric (Dab �= Dba), the arith-
metic average (Dab + Dba)/2 was calculated previously.29

We notice that Dab diverges if the distribution b is highly
anisotropic (with a near-zero eigenvalue). To avoid such
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divergence, we use min {Dab,Dba} instead of (Dab + Dba)/2
as our KL distance metric.

3. Dot product

It is defined as the absolute value of the dot product
between the two eigenvectors of U and V with the largest
eigenvalue.28 The dot product is 1 if the long axes of U and V
are perfectly aligned, and 0 if their long axes are perpendicu-
lar to each other.

4. Pearson correlations

The above metrics only evaluate the directional similarity
of two ADPs. To include the magnitude of ADPs into com-
parison, we compute the Pearson correlation (termed pcall)
between two sets of ADPs as two 6N ′-dimensional vectors
Ũ and Ṽ (Ref. 29) (N ′ is the number of ADPs):

pc =
∑6N ′

j=1 (Ũj − 〈Ũ 〉)(Ṽj − 〈Ṽ 〉)√∑6N ′
j=1 (Ũj − 〈Ũ 〉)2

∑6N ′
j=1 (Ṽj − 〈Ṽ 〉)2

. (11)

We also calculate the Pearson correlations for 3N ′ diago-
nal and 3N ′ off-diagonal ADP elements separately (termed
pcdiagonal and pcoffdiagonal, respectively), and the Pearson corre-
lation between theoretical and experimental B factors (termed
pctrace).29

E. Crystallographic dataset for model evaluation

We evaluate our modeling of ADPs using a set of 40 high-
resolution protein crystal structures (PDB codes: 1g6x, 2fdn,
1rb9, 1kth, 1oai, 1c75, 1f94, 1iqz, 1vbw, 1vyy, 1tg0, 1m1q,
1ok0, 1r6j, 1xmk, 1l9l, 1x6z, 1u2h, 1iua, 1lkk, 1zzk, 1ufy,
2pvb, 1j0p, 1gqv, 1nwz, 1tqg, 1r2m, 1c7k, 1g4i, 1unq, 1w0n,
1mc2, 1v6p, 3lzt, 1exr, 1a6m, 1f9y, 1tt8, 1eb6), which are the
smallest 40 structures of an old list of 83 PDB structures pre-
viously studied.28, 36, 38 From the PDB files of these structures,
we collect 4178 usable ADPs for those Cα atoms with occu-
pancy of 1.0.

Following earlier studies,28, 36, 38 for the evaluation of
Pearson correlations of all, diagonal, off-diagonal ADP ele-
ments, and B factors, we use all 4178 ADPs; for the eval-
uation of directional metrics (fncc, ccmod, KL distance, and
dot product), we use a subset of 1648 ADPs with anisotropy
≤ 0.5.

III. RESULTS

To explore how crystal packing affects the modeling
of ADPs, we have performed all-atom modeling of a pro-
tein structure in a crystalline environment for a list of
40 high-resolution crystal structures taken from previous
studies.28, 36, 38 We have calculated theoretical ADP tensors
and compared them with experimental ADPs.

A. Explicit vs. implicit modeling
of protein-environment system

In several previous studies,35–38 the effect of crystalline
environment on the atomic fluctuations of a protein structure
was modeled using a coarse-grained model (ENM) under var-
ious boundary conditions. It remains unknown how much the
inherent inaccuracy of coarse-grained representation and elas-
tic force field affects the modeling results. To address this
issue, we have used all-atom representation and force field
(see Sec. II) to refine the modeling of protein-environment
system. Two complementary models of crystalline environ-
ment are considered—explicit environment modeling (EEM)
and implicit environment modeling (IEM). The EEM explic-
itly models the atomic fluctuations of neighboring proteins
(as environment) together with the main protein, while the
IEM implicitly models the effect of crystal packing by apply-
ing harmonic positional restraints to the surface atoms of the
main protein in contact with neighboring proteins (see Sec.
II). The two approaches complement each other very well:
the EEM describes protein-environment interactions more ex-
plicitly but is computationally more expensive, while the IEM
allows the flexibility of tuning protein-environment interac-
tions and is computationally cheaper. To evaluate the accu-
racy of both models, we have employed them to calculate the
ADPs of Cα atoms in the main protein and then compared
with the experimental ADPs determined by high-resolution
X-ray crystallography (see Sec. II).

To offer a glimpse to the modeling results, we have
shown the results for a crystal structure of pancreatic trypsin
inhibitor (PDB code: 1g6x, see Fig. 1) using EEM and IEM.
A better agreement between theoretical and experimental
ADPs is found for IEM than EEM—the Pearson correlations
for diagonal, off-diagonal, all ADP elements, and B factors
(for definitions, see Sec. II) increase significantly from 0.17,
−0.02, 0.48, 0.21 for EEM to 0.71, 0.55, 0.89, 0.80 for IEM.
For the directional comparison of experimental and theoret-
ical ADPs, we focus on 18 out of 58 experimental ADPs
of 1g6x with anisotropy ≤0.5. We calculate four metrics for
directional similarity between theoretical and experimental
ADPs (fncc, ccmod, KL distance, and dot product, see Sec. II
for definitions), which all indicate improvement from EEM to
IEM—fncc increases from 0.82 to 0.91 (see Fig. 2(b)), the av-
erage dot product increases from 0.45 to 0.68 (see Fig. 2(c)),
the average ccmod increases from 0.70 to 0.72 (see Fig. 2(d)),
and the average KL distance decreases from 0.32 to 0.055 (see
Fig. 2(e)).

The ADP modeling based on EEM and IEM has been
performed for 4178 ADPs of Cα atoms collected from 40
high-resolution protein crystal structures, which is a subset
of an old list used in previous studies28, 36, 38 (see Sec. II).
To deduce the overall performance of our ADP modeling,
we average four Pearson correlations (for all, diagonal, off-
diagonal ADP elements, and B factors) over 40 structures,
and three directional metrics (ccmod, dot product, and KL dis-
tance) over a subset of 1648 ADPs with anisotropy ≤0.5. An-
other directional metric fncc is also calculated over this sub-
set (see Sec. II). For EEM, we explore how the ADP model-
ing quality depends on the level of environment flexibility by
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FIG. 2. The results of ADP modeling for a crystal structure of pancreatic trypsin inhibitor (PDB code: 1g6x): panels (a)–(e) show the B factors and four
directional metrics (ncc, dot product, ccmod, KL distance) as a function of residue number for EEM (rc = 20 Å, colored red), IEM (KE = 0.01, colored blue),
and ENM (fenv = 0.02, colored green). In panel (a), the experimental B factors (rescaled by 3/8π2) are also shown in black.

varying the cutoff distance rc that determines the partition of
environment to moving and fixed parts (see Sec. II)—a higher
rc implies higher environment flexibility. For IEM, we ex-
plore how the ADP modeling quality depends on the strength
of protein-environment interactions by varying the force con-
stant KE for harmonic restraints (see Sec. II)—a higher KE

implies stronger protein-environment interactions.
For EEM, it is found that all metrics gradually improve

as rc increases (see Fig. 3(a)). Meanwhile, all metrics seem
to saturate as rc approaches 20 Å (see Fig. 3(a)). Therefore,
the atomic fluctuations of the main protein depend more on
the flexibility of the environment atoms near the main protein
than those environment atoms far away from the main pro-
tein. This observation justifies our truncation of environment
based on distances from the main protein. Consequently, we
can use the EEM results at rc = 20 Å to assess the accuracy of
ADP modeling based on explicit and equal treatment of intra-
protein and protein-environment interactions (i.e., no tuning
of protein-environment interactions).

For IEM, it is found that the minimum of average KL
distance and the maxima of other metrics are roughly aligned
near KE ∼ 0.02 (see Fig. 3(b)), where the optimal ADP
modeling is attained. Furthermore, the optimal ADP mod-
eling by IEM (at KE ∼ 0.02) is significantly better than
that of EEM (at rc = 20 Å)—the average Pearson correla-
tions for all, diagonal, off-diagonal ADP elements, and B fac-
tors increase from 0.78, 0.40, 0.32, and 0.47 for EEM (see
Fig. 3(a)) to 0.84, 0.55, 0.42, and 0.63 for IEM (see
Fig. 3(b)). We then compare the directional metrics between
EEM and IEM (see Figs. 3(a) and 3(b)): fncc increases from
0.87 to 0.91, the average ccmod increases from 0.65 to 0.68,
the average dot product increases from 0.69 to 0.71, and the
average KL distance decreases from 0.14 to 0.10. This find-
ing supports the importance of tuning protein-environment in-
teractions (as in IEM) in optimizing the modeling of ADPs,
which agrees with our earlier study.38 In particular, the op-
timal modeling of ADPs is not achieved by treating intra-
protein and protein-environment interactions equally (as in
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FIG. 3. The results of ADP modeling averaged over 40 protein crystal structures for: (a) EEM; (b) IEM; (c) ENM. Shown here are Pearson correlations
of diagonal (�), off-diagonal (�), all elements (�) of ADPs and B factors (�), and directional metrics including fncc (•), dot product (�), ccmod (�), KL
distance (★).

EEM). We will discuss whether the optimal modeling of
ADPs by IEM is achieved at weak protein-environment in-
teractions in Subsection III C.

To assess the statistical significance of our finding of bet-
ter ADP modeling by IEM than EEM, we have compared the
ADP modeling quality of IEM and EEM for each of the 40
crystal structures. For both IEM and EEM, we have calculated
all metrics for each structure and then averaged the three di-
rectional metrics (ccmod, dot product, and KL distance) over
the ADPs of each structure with anisotropy ≤0.5. It is found
that better ADP modeling from EEM to IEM is achieved for
80%, 90%, 75%, 90%, 60%, 68%, 68%, and 85% of all struc-
tures as assessed by the Pearson correlations for all, diagonal,
off-diagonal ADP elements, B factors, fncc, ccmod, dot prod-
uct, and KL distance, respectively (see Fig. 4). So IEM out-
performs EEM according to all eight metrics, which strongly
supports its statistical significance.

B. All-atom vs. coarse-grained modeling
of protein-environment system

Next, we ask if the all-atom modeling improves the
fitting of experimental ADPs over our previous coarse-

grained modeling.38 To answer this question, we have per-
formed ENM-based modeling of a protein structure in a crys-
talline environment for the same list of 40 high-resolution
crystal structures.38 We have then calculated theoretical
ADP tensors and compared them with experimental ADPs.
The similarity metrics between theoretical and experimen-
tal ADPs are calculated and plotted as a function of fenv

(see Fig. 3(c)). Here fenv tunes the strength of protein-
environment interactions relative to intra-protein interactions
(see Sec, II).38

Same as our previous study,38 it is found that the mini-
mum of average KL distance and the maxima of other metrics
are roughly aligned near fenv ∼ 0.02 (see Fig. 3(c)). So the op-
timal ADP modeling is attained at weak protein-environment
interactions relative to intra-protein interactions.38 The opti-
mal values of all metrics are very similar between ENM and
IEM (see Figs. 3(b) and 3(c)): for ENM (IEM), the average
Pearson correlations for all, diagonal, off-diagonal ADP ele-
ments, and B factors are 0.84, 0.55, 0.42, and 0.63 (0.83, 0.55,
0.44, and 0.61), fncc is 0.91 (0.92), the average ccmod is 0.68
(0.69), the average dot product is 0.71 (0.73), and the aver-
age KL distance is 0.10 (0.11). Therefore, all-atom refinement
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FIG. 4. The variation of ADP modeling results among 40 protein crystal structures calculated using EEM (in red), IEM (in blue), and ENM (green): panels
(a)–(h) show Pearson correlations of diagonal, off-diagonal, all elements of ADPs and B factors, and directional metrics including fncc, dot product, ccmod, KL
distance.

does not lead to noticeable improvement of ADP modeling
over coarse-grained modeling.38

To further assess the statistical significance of our find-
ing that ADP modeling by IEM and ENM attains similar
accuracy, we have compared the ADP modeling quality of
IEM and ENM for each of the 40 crystal structures. For both
IEM and ENM, we have calculated all metrics for each struc-
ture and then averaged the three directional metrics (ccmod,
dot product, and KL distance) over the ADPs of each struc-
ture with anisotropy ≤0.5. It is found that the improvement
of ADP modeling from ENM to IEM is achieved for 58%,
58%, 40%, 58%, 43%, 35%, 48%, and 73% of all structures
as assessed by the Pearson correlations for all, diagonal, off-
diagonal ADP elements, B factors, fncc, ccmod, dot product,

and KL distance, respectively (see Fig. 4). So IEM performs
better according to four metrics (Pearson correlations for all,
diagonal ADP elements, B factors, KL distance), while ENM
performs better according to the other four metrics (Pearson
correlation for off-diagonal ADP elements, fncc, ccmod, dot
product). Overall, their performance is comparable to each
other.

C. All-atom modeling supports weak
protein-environment interactions

In our previous study,38 we found that ENM-based ADP
modeling is optimal when the protein-environment interac-
tions are much weaker than intra-protein interactions. Does
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FIG. 5. The ratio between the average of B factors for 40 protein crystal
structures calculated from IEM and that calculated from EEM as a function
of the force constant of harmonic restraints (KE).

the same conclusion hold for all-atom modeling based on
IEM? If so, the weak protein-environment interactions can
account for the better performance of IEM than EEM (see
Figs. 3(a) and 3(b)). To answer this question, we need to
determine the force constant KE in IEM that corresponds to
EEM (because EEM assumes equal strength of intra-protein
and protein-environment interactions). To this end, we have
computed the ratio between the average of B factors for 40
structures calculated by IEM and that calculated by EEM. As
expected, this ratio decreases as KE increases, and it crosses
value 1 when KE ∼ 0.07 (see Fig. 5), which corresponds to
equal strength of intra-protein and protein-environment in-
teractions. Since IEM attains optimal ADP modeling at KE

∼0.02 	 0.07, we infer that the optimal ADP modeling by
IEM is indeed achieved at weak protein-environment interac-
tions relative to intra-protein interactions.

Although qualitatively similar, the findings by coarse-
grained and all-atom modeling are quantitatively distinct. The
optimal ADP modeling by ENM is attained when protein-
environment interactions are much weaker than intra-protein
interactions (between residues) by a factor of ∼50.38 In con-
trast, the optimal ADP modeling by IEM requires a much
smaller ratio of ∼4 between protein-environment and intra-
protein interactions (between atoms). Such reduction is at-
tributed to the use of more realistic all-atom force field (with
atom-specific van der waals and electrostatic forces replacing
uniform elastic forces between residues or atoms38).

IV. CONCLUSION

In conclusion, we have refined the modeling of atomic
fluctuations in a protein crystal structure using all-atom rep-
resentation and force field. The crystalline environment is
modeled either explicitly (assuming equal intra-protein and
protein-environment interactions) or implicitly (as harmonic
restraints with tunable force constant). We have then evalu-
ated the modeling by comparing theoretical ADPs with ex-
perimental ADPs for 40 high-resolution protein crystal struc-
tures. Our findings are summarized as follows:

1. The implicit treatment of crystalline environment by
IEM outperforms the explicit treatment of crystalline

environment by EEM, which implies a difference in
strength between protein-environment and intra-protein
interactions.

2. ADP modeling is optimal when the protein-environment
interactions are much weaker than the intra-protein in-
teractions, which is in qualitative agreement with our
previous study based on coarse-grained modeling.38

Compared with the coarse-grained modeling,38 the all-
atom modeling has found much smaller difference be-
tween protein-environment and intra-protein interac-
tions, thanks to the use of more realistic all-atom
force field over simple elastic force field of ENM. Fu-
ture improvement in the explicit modeling of protein-
environment interactions with better account of elec-
trostatic screening and solvation effect may eventu-
ally remove the need to adjust the strength of protein-
environment interactions to attain optimal fitting of
experimental ADPs.

3. All-atom modeling does not lead to noticeable improve-
ment over coarse-grained modeling, which supports the
usefulness of coarse-grained modeling, and also sug-
gests that the accuracy of ADP modeling is limited by
factors other than force field accuracy. Future studies
should go beyond harmonic approximation and improve
the modeling of other aspects of protein dynamics in-
cluding anharmonicity44 and solvent-damped diffusive
motions.45
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