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The accurate modeling of protein dynamics in crystalline states holds keys to the understanding of
protein dynamics relevant to functions. In this study, we used coarse-grained elastic network models
�ENMs� to explore the atomic fluctuations of a protein structure that interacts with its crystalline
environment, and evaluated the modeling results using the anisotropic displacement parameters
�ADPs� obtained from x-ray crystallography. To ensure the robustness of modeling results, we used
three ENM schemes for assigning force constant combined with three boundary conditions for
treating the crystalline environment. To explore the role of crystal contact interactions in the
modeling of ADPs, we varied the strength of interactions between a protein structure and its
environment. For a list of 83 high-resolution crystal structures, we found that the optimal modeling
of ADPs, as assessed by a variety of metrics, is achieved for weak protein-environment interactions
�compared to the interactions within a protein structure�. As a result, the ADPs are dominated by
contributions from rigid-body motions of the entire protein structure, and the internal protein
dynamics is only weakly perturbed by crystal packing. Our finding of weak crystal contact
interactions is also corroborated by the calculations of residue-residue contact energy within a
protein structure and between protein molecules using a statistical potential. © 2010 American
Institute of Physics. �doi:10.1063/1.3288503�

I. INTRODUCTION

Protein structural dynamics, including both structural
fluctuations in an equilibrium state and large conformational
changes between equilibrium states, is increasingly recog-
nized as a key linkage between protein structures and
functions.1 With the fast progressing of structural probing
techniques such as nuclear magnetic resonance �NMR�,2

high-resolution information of protein dynamics can be ob-
tained via the analysis of various dynamics data such as
NMR order parameter.3 The time-honored x-ray crystallog-
raphy remains the primary source of protein dynamics data at
atomic or near-atomic resolution. Atomic fluctuations in pro-
tein crystal structures have been traditionally quantified by
the isotropic temperature factors �or B factors�, which use an
isotropic Gaussian distribution to characterize the spread of
electron density of each atom.4 Recently, a growing number
of high-resolution protein crystal structures have been re-
fined using anisotropic Gaussian distributions, which charac-
terize atomic fluctuations by a symmetric tensor with six
independent elements named anisotropic displacement pa-
rameters �ADPs�.5,6 Unlike the B factors, the ADPs describe
not only the magnitude but also the direction of mean-
squared atomic displacements. Therefore, they offer much
richer information of protein structural dynamics in crystal-
line states.

To explore the fine details of protein structural dynamics,
an array of computational methods ranging from all-atom
molecular dynamics simulation7 to various coarse-grained

modeling techniques8 have been developed. Several models
have been employed to quantitatively describe the dynamic
contributions to the crystallographic B factors and ADPs.
One popular model �TLS model� describes a protein as an
assembly of rigid subunits, and it fits the B factors with an
optimized combination of translations, librations, and screw-
ing motions.9–11 Alternatively, low-frequency normal modes,
which are known to capture the large-amplitude collective
motions of protein structures, have been used to fit B
factors12,13 and refine ADPs.14,15 Initially, the normal modes
were solved from all-atom potential functions following en-
ergy minimization.16–18 This procedure is computationally
expensive for large protein structures, and it is susceptible to
structural distortions caused by energy minimization. More
recently, elastic network models �ENMs�, including aniso-
tropic network model �ANM�19–21 and its isotropic
variation―Gaussian network model �GNM�,22,23 have been
developed to model protein dynamics with coarse-grained
resolution. The ENM is usually constructed based on a
C�-only representation of protein structures, where neighbor-
ing C� atoms are connected by harmonic springs with a
uniform19 or distance-dependent24,25 force constant. Such
dramatic simplification allows the coarse-grained normal
modes to be calculated efficiently without energy minimiza-
tion. The collective motions described by low-frequency
modes remain unchanged despite the use of coarse-grained
representation and harmonic potential function.26,27 The crys-
tallographic B factors have been modeled by GNM28,29 and
ANM30 with remarkable success. GNM was found to
achieve a better performance than a simplified TLS model
without using any fitting parameters,31 although the full TLSa�Electronic mail: wjzheng@buffalo.edu.
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model �with ten fitting parameters� seemed to perform
better.32 Recently, ANM has been used to model ADPs with
reasonable success.33–35 The major difference between TLS
and ANM is that TLS only considers rigid-body movements
�rotations and translations� and ignores internal motions,
while ANM only accounts for internal motions �captured by
normal modes with nonzero eigenvalue� and ignores global
rigid-body motions. Attempts to include rigid-body motions
in ENM-based fitting of B factors and ADPs supported the
importance of their contributions,32,35,36 although there are
concerns about overfitting with many parameters.35 It is thus
desirable to develop a physically based model to incorporate
both rigid-body motions and internal motions without relying
on multiparameter fitting.

As testified by the great success of x-ray crystallography,
it is generally agreed that a protein’s crystal structures are
relevant to its physiological states in solution. Therefore,
crystal packing is unlikely to significantly alter protein native
conformations, although one of several functionally relevant
conformations may be favored by a particular crystal pack-
ing symmetry. However, it is still not clear how much the
protein dynamics in a crystalline state correlates with the
protein dynamics in solution. It is conceivable that crystal
packing may affect the fluctuations of those atoms involved
in crystal contacts. Indeed, previous studies revealed large
effects of crystal packing on ADPs6 and B factors.37 Recent
studies found better agreement between GNM/ANM-based
predictions and NMR-based structural fluctuation data as
compared to crystallographic B factors,38,39 which was attrib-
uted to the absence/presence of crystal packing for NMR/x-
ray structures. Therefore, to accurately model protein dy-
namics in crystalline states, it is important to properly
consider the effects of crystal packing. To this end, a previ-
ous study31 found that the GNM-based modeling of B factors
was indeed improved by including neighboring protein mol-
ecules in a crystal. In a recent study, Phillips, Jr., and co-
workers performed a systematic modeling of ADPs for 83
high-resolution protein crystal structures by using ENM
coupled with rigorous treatments of boundary conditions and
lattice vibrations.40 Similar study was done for various crys-
tal structures of lysozyme.41

To meet the challenge of modeling protein dynamics in
crystalline states accurately and efficiently, the previous stud-
ies adopted the strategy of treating protein molecules of the
entire crystal equally �under different boundary conditions�
and summing up the contributions of lattice vibrations.40,41

This approach is theoretically sound but computationally ex-
pensive �because normal modes have to be solved for many
q values under the Born–von Ka´rma´n boundary condition,
see Ref. 40�. In this study, we will adopt a more efficient
alternative strategy, which selects a single protein molecule
as our main protein structure while treating the rest of crystal
as its environment �also see Ref. 32�. To reduce computing
cost, the environment is truncated based on the distance to
the main protein structure or by keeping the nearest and next
nearest neighbors of the main protein structure �see Sec. II�.
The entire system is modeled using three ENM schemes,
including ANM,21 distance network model �DNM�33 and
HCA model24 under three different boundary conditions

�fixed, free and buffered environment, see Sec. II�. The dy-
namic effects of crystal packing are systematically explored
by varying the strength of protein-environment interactions.
We performed ADP modeling for a list of 83 high-resolution
crystal structures previously studied in Refs. 33 and 40. We
found that the optimal modeling of ADPs, as assessed by a
variety of metrics �see Sec. II�, is achieved for weak protein-
environment interactions �compared to the interactions
within the main protein structure�. As a result, the crystallo-
graphic ADPs and B factors are dominated by contributions
from rigid-body motions of the main protein structure, and
the internal protein dynamics is only weakly perturbed by
crystal packing. The above results support the importance of
explicit consideration of crystal packing to the correct mod-
eling of ADPs40 and parametrization of ENM. Our finding of
weak crystal contact interactions is also corroborated by the
calculations of residue-residue contact energy between
neighboring proteins and within the main protein structure
using a statistical potential.

II. METHODS

A. Elastic network modeling of a protein structure
embedded in crystalline environment

To explicitly model the effects of crystal packing, we
construct a C�-only ENM that consists of two components:
first, the C� atoms of a main protein structure �corresponding
to an asymmetric unit of a crystal�; second, an environment
that includes the C� atoms of other protein molecules in a
crystal. To reduce computing cost, the environment is trun-
cated in two different ways �see Fig. 1�:

�1� Keeping the C� atoms of environment within 25 Å
from the C� atoms of the main protein structure. We
verified that the modeling results are insensitive to
the choice of cutoff distance between 15 and 25 Å.
The C� coordinates of such truncated environment are
generated using the What If webserver �http://
swift.cmbi.ru.nl/servers/html/index.html�.

FIG. 1. Representation of crystalline environment for an oxymyoglobin
crystal structure �PDB: 1A6M�. The main protein structure, its nearest
neighbor molecules �named buffer�, and the nearest neighbor molecules of
buffer are colored red, green, and blue, respectively. The C� atoms of the
environment residues within 25 Å from the main structure are shown as
spheres colored in gray.
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�2� Keeping the nearest neighbor molecules of the main
protein structure in a protein crystal �named buffer�,
together with the nearest neighbor molecules of the
buffer �or the next nearest neighbors of the main pro-
tein structure�. Here two protein molecules are said to
be nearest neighbors if the minimal C�–C� atomic dis-
tance between them is �10 Å. To construct a protein
crystal, we first build a unit cell from the main protein
structure using the crystallographic symmetry transfor-
mations from REMARK 290 of a PDB file. Then, a
protein crystal is built from the unit cell using the three
translational vectors derived from the SCALEn records
of a PDB file.

The potential energy of the two-component ENM is

E = 1
2�

i�j

Cij�dij − dij,0�2 + 1
2 fenv�

i,I
CiI�diI − diI,0�2

+ 1
2 �

I�J

gIJCIJ�dIJ − dIJ,0�2, �1�

where i and j �I and J� are indices for C� atoms in the main
structure �environment�. Cij, CIJ, or CiI represents spring
force constant whose assignments vary between ENM
schemes �see below�. dij, dIJ, and diI are C�–C� atomic dis-
tances. dij,0, dIJ,0, and diI,0 are the values of dij, dIJ, and diI

given by the crystal structure. A new model parameter fenv

within the range �0, 1� is introduced to tune the strength of
interactions between different protein molecules �including
all protein-environment interactions and some interactions
within the environment�. fenv=0 corresponds to the case of
an isolated protein structure. fenv=1 if we assume equal
strength of interprotein and intraprotein interactions. Another
parameter gIJ=1 if the C� atoms I and J belong to the same
protein molecule, and gIJ= fenv if they belong to two different
protein molecules.

The following three schemes of force constant assign-
ments are considered:

�1� ANM:

Cij = �1 if dij,0 � Rc

0 otherwise
� , �2�

where the unit for Cij is arbitrary, and Rc is a cutoff
distance. In agreement with Refs. 33 and 40, the default
value of Rc is set to 10 Å because it gives the optimal
modeling of ADPs �see below�.

�2� DNM:

Cij = �
i1j1:di1j1,0�9

1

di1j1,0
2 , �3�

where the summation is over all pairs of heavy atoms
of residues i and j within a cutoff distance �chosen to
be 9 Å, following Ref. 33�. Here i1 and j1 are indices
for the heavy atoms of residues i and j. The DNM was
proposed in Ref. 33, which sets force constants for sev-
eral distance ranges to the reciprocal of the total num-
ber of atomic contacts in each range. Because the num-
ber of atomic contacts grows quadratically with

distance �assuming the atomic density is constant�, our
DNM formulation is essentially a continuous counter-
part of the original DNM.33 The use of 1 /d2 distance
dependence also agrees with the new parameter-free
ENM proposed in Ref. 25.

�3� HCA:

Cij = �205.5 � dij,0 − 571.2 if dij,0 � 4 Å

305.9 � 103 � dij,0
−6 if 4 Å � dij,0 � 25 Å

0 if dij,0 � 25 Å
	 ,

�4�

where the unit for Cij is kcal /mol Å2. The HCA
scheme24 was developed by a best fit to the all-atom
normal modes calculated based on the AMBER force
field.42

The Hessian matrix H is calculated as the second deriva-
tives of potential energy E �see Eq. �1�� with respective to C�

coordinates. For a protein structure with N residues, H con-
tains N�N superelements �named Hij� with size 3�3 given
as follows:

Hij = 

�2E

�xi � xj

�2E

�xi � yj

�2E

�xi � zj

�2E

�yi � xj

�2E

�yi � yj

�2E

�yi � zj

�2E

�zi � xj

�2E

�zi � yj

�2E

�zi � zj

� , �5�

where xi, yi, and zi are the Cartesian coordinates of the C�

atom i.

B. Calculation of ADP and B factors

The Hessian matrix H can be partitioned into four sub-
matrices as follows �P denotes main protein structure, E de-
notes environment�:

H = �HPP HPE

HEP HEE

 . �6�

We consider the following three boundary conditions for
treating the crystalline environment �assuming fenv�0�:

�1� Fixed environment. The C� atoms of environment are
fixed in space, so the covariance matrix of C� atoms in
the main protein structure is

�uPuP
T� = kBTHPP

−1, �7�

where uP is the displacement vector of C� atoms in the
main protein structure, kB is the Boltzmann constant, T
is temperature, HPP

−1 is the inverse of the HPP subma-
trix.

�2� Free environment. The C� atoms of environment are
free to move, so the covariance matrix of C� atoms in
the main protein structure is

�uPuP
T� = kBTH−1

PP, �8�

where H−1
PP is the PP-submatrix of the pseudoinverse

H−1, which is calculated after projecting out six trans-
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lational and rotational zero modes of the entire two-
component system.

�3� Buffered environment. The C� atoms of buffer �the
nearest neighbors of the main protein structure� are free
to move, while the rest of environment �the next nearest
neighbors of the main protein structure� is fixed, so the
covariance matrix of C� atoms in the main protein
structure is

�uPuP
T� = kBT�HPB,PB�−1

PP, �9�

where �HPB,PB�−1
PP is the PP-submatrix of the inverse

of the submatrix of H that involves C� coordinates in
the main protein structure and buffer �named HPB,PB�.

To exploit the sparseness of Hessian matrix, we use a
sparse linear-equation solver CHOLMOD

43 to calculate matrix
inversion in Eqs. �7�–�9�. To eliminate the overflow due to
zero modes, a small positive number �=0.0001 is added to
the diagonal matrix elements of H before its inversion, then
the six translational and rotational zero modes are projected
out from �H+��−1. The use of sparse linear equation solver is
computationally more efficient and accurate than the calcu-
lation of H−1 using a subset of low-frequency modes.33

The ith 3�3 diagonal block Cii of the covariance matrix
�uPuP

T� gives the theoretical prediction of ADP tensor for the
C� atom i:

Cii = 
 ��xi
2� ��xi�yi� ��xi�zi�

��xi�yi� ��yi
2� ��yi�zi�

��xi�zi� ��yi�zi� ��zi
2�

� = 
U11 U12 U13

U12 U22 U23

U13 U23 U33
� ,

�10�

where the diagonal elements U11, U22, and U33 give the
mean-squared fluctuations of the C� atom i along the x, y,
and z directions, and the off-diagonal elements U12, U13, and
U23 describe the covariance among the displacements of the
C� atom i along the x, y, and z directions. Together, the six
ADP elements determine a three-dimensional Gaussian dis-
tribution function which describes both the direction and
magnitude of the atomic fluctuations.6 For fixed probability
value, the distribution is ellipsoidal with a directional prefer-
ence along the long axis, which is given by the eigenvector
of ADP tensor with the largest eigenvalue. The anisotropy of
the Gaussian distribution is defined as the ratio of the small-
est to the largest eigenvalue of ADP tensor.

The B factor is related to the trace of ADP tensor as
follows:

B = 8�2�U11 + U22 + U33�/3. �11�

C. Comparison between theoretical and experimental
ADP

We use the following metrics to assess the similarity
between experimental and theoretical ADP tensors �repre-
sented as U and V�:

1. Real-space correlation coefficient

The following real-space correlation coefficient is calcu-
lated to evaluate the overlap integral of two three-
dimensional Gaussian distributions given by U and V:6

cc�U,V� =
�det U−1 det V−1�1/4

�det�U−1 + V−1�/8�1/2 . �12�

Based on the real-space correlation coefficient, the following
two metrics have been introduced to evaluate the directional
similarity of two ADPs:

a. Normalized correlation coefficient

ncc�U,V� =
cc�U,V�

cc�U,Uiso�cc�V,Viso�
, �13�

where Uiso=Viso= I3 /3, I3 is a 3�3 identity matrix, and
U and V have been normalized by their trace. The normal-
ized correlation coefficient �ncc� measures the similarity be-
tween U and V relative to their similarities to an isotropic
tensor.6 Following Ref. 35, we use a simple ratio of the num-
ber of ADPs with ncc�1 and the total number of ADPs
�named fncc� to measure the overall similarity between two
sets of ADPs.

b. Modified correlation coefficient �ccmod�

ccmod�U,V� =
cc�U,V� − cc�U,V��

1 − cc�U,V��
, �14�

where V� is a 3�3 tensor generated by taking the eigenvec-
tors of U and using the eigenvalues of V, with the largest and
smallest switched, to define the two ellipsoids with perfect
misalignment.33,40 ccmod is 1.0 �0� if the two ellipsoids are
perfectly aligned �misaligned�.

2. Kullback–Leibler distance

The Kullback–Leibler �KL� distance44 evaluates the dif-
ference between the three-dimensional Gaussian distribu-
tions a and b as defined by U and V.34 The KL distance can
be expressed in terms of the eigenvalues �dak and dbk, k
=1,2 ,3� and eigenvectors �vak and vbk, k=1,2 ,3� of U and V
as follows:

Dab = −
3

2
+

1

2�
k=1

3

ln
dbk

dak
+

1

2�
k=1

3

�
l=1

3
dak

dbl
�vak

T vbl�2. �15�

Since the KL distance is asymmetric �Dab�Dba�, the arith-
metic average �Dab+Dba� /2 was calculated in Ref. 34. We
notice that Dab diverges if the distribution b is highly aniso-
tropic �with a near-zero eigenvalue�. To avoid such diver-
gence, we use min�Dab ,Dba� instead of �Dab+Dba� /2 as our
KL distance metric.

3. Dot product

It is defined as the absolute value of the dot product
between the two eigenvectors of U and V with the largest
eigenvalue.33 The dot product is 1 if the long axes of U and
V are perfectly aligned, and 0 if their long axes are perpen-
dicular to each other.
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4. Pearson correlations

The above metrics only evaluate the directional similar-
ity of two ADPs. To include the magnitude of ADPs into
comparison, we compute the Pearson correlation �termed
pcall� between two sets of ADPs as two 6N�-dimensional

vectors Ũ and Ṽ �Ref. 34� �N� is the number of ADPs�:

pc =
� j=1

6N��Ũj − �Ũ���Ṽj − �Ṽ��
�� j=1

6N��Ũj − �Ũ��2� j=1
6N��Ṽj − �Ṽ��2

. �16�

We also calculate the Pearson correlations for 3N� diagonal
and 3N� off-diagonal ADP elements separately �termed
pcdiagonal and pcoffdiagonal, respectively�, and the Pearson cor-
relation between theoretical and experimental B factors
�termed pctrace�.

34

D. Crystallographic data set for model evaluation

We evaluate our modeling of ADPs using a set of 83
ultrahigh-resolution crystal structures �with resolution at or
beyond 1 Å� collected and studied in Refs. 33 and 40. From
the ANISOU records of these PDB structures, we collect
16 852 usable ADPs for those C� atoms with occupancy of
1.0 �though all C� atoms are included in the construction of
ENM�.

Following Refs. 33 and 40, for the evaluation of Pearson
correlations of all, diagonal, off-diagonal ADP elements and
B factors, we use all 16 852 ADPs; for the evaluation of
directional metrics �fncc, ccmod, KL distance and dot product�,
we use a subset of 6784 ADPs with anisotropy of �0.5.

III. RESULTS AND DISCUSSION

To explore how crystal packing affects the modeling of
ADPs, we performed ENM-based modeling of a protein
structure embedded in crystalline environment for a list of 83
high-resolution crystal structures.33,40 We will address the
following questions based on the modeling results.

A. How does the quality of ADP modeling depend on
the strength of protein-environment interactions?

In previous modeling of protein structures in crystalline
states,40,41 it was assumed that the intraprotein interactions
are of the same strength as the interactions between neigh-
boring protein molecules. Although this assumption is
chemically sound �same types of atomic forces are involved
in both intraprotein and interprotein interactions�, the follow-
ing three lines of reasoning suggest that the latter may be
significantly weaker than the former:

�1� The intraprotein interactions among densely packed
residues are dominated by favorable hydrophobic inter-
actions, hydrogen bonds, and weakly screened electro-
static interactions. However, the crystal contact interac-
tions often involve loosely packed surface residues
exposed to solvents, so they are energetically less fa-
vorable �in particular, the electrostatic interactions are
subject to strong solvent screening�.

�2� The intraprotein interactions, thanks to their key roles
in stabilizing protein native conformations, tend to be

evolutionally conserved, while the crystal contact inter-
actions are not under evolutionary pressure.

�3� Weak crystal contact interactions are also consistent
with the general observation that protein native confor-
mations are not significantly altered by crystal packing,
and proteins can remain functionally active in crystal-
line states �see Ref. 45�.

To further explore the above issue, we performed ENM-
based modeling of a two-component system comprised of a
protein structure and its crystalline environment. A new pa-
rameter fenv is introduced to describe the strength of inter-
protein interactions relative to that of intraprotein interac-
tions �see Sec. II�. To offer a glimpse to the modeling results,
we have shown the results of ADP modeling for a zinc pro-
tease crystal structure �PDB: 1C7K, see Fig. 2� under two
modeling conditions: isolated protein structure �fenv=0� and
weak protein-environment interactions �fenv=0.02�. The
fixed-environment boundary condition �see Sec. II� is used
here. A better agreement between theoretical and experimen-
tal ADPs �see Fig. 2�a�� and B factors �see Fig. 2�b�� is found
at fenv=0.02; the Pearson correlations for all, diagonal, off-
diagonal ADP elements and B factors �see Sec. II� increase
from 0.72, 0.32, 0.24, and 0.38 at fenv=0 to 0.89, 0.54, 0.53,
and 0.65 at fenv=0.02. For the directional comparison of ex-
perimental and theoretical ADPs, we focus on 66 out of 132
experimental ADPs with anisotropy �0.5 �following Ref.
40�. We calculate four metrics for directional similarity be-
tween theoretical and experimental ADPs �fncc, ccmod, KL
distance and dot product, see Sec. II�, which all indicate
improvement from fenv=0 to fenv=0.02− fncc increases from

FIG. 2. The results of ADP modeling for a zinc protease crystal structure
�PDB: 1C7K�: �a� Scatter plot of experimental ADPs vs theoretical ADPs �in
unit of Å2�. The theoretical ADPs are calculated for isolated structure �fenv

=0, colored gray� and weak protein-environment interactions �fenv=0.02,
colored black�. The diagonal and off-diagonal ADP elements are shown as
squares ��� and circles ���, respectively. Panels �b�–�f� show the ADP
traces and several directional metrics �ncc, ccmod, dot product, KL distance�
as a function of residue number for isolated structure �fenv=0, colored gray�
and weak protein-environment interactions �fenv=0.02, colored black�. In
panel �b�, the experimental B factors �rescaled by 3 /8�2� are colored in light
gray. The ANM scheme with fixed-environment boundary condition is used
here �see Sec. II�. The theoretical ADPs are normalized so that the sum of
theoretical ADP traces is equal to the sum of experimental ADP traces.
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0.77 to 0.94 �see Fig. 2�c��, the average ccmod increases from
0.56 to 0.71 �see Fig. 2�d��, the average dot product increases
from 0.63 to 0.69 �see Fig. 2�e��, and the average KL dis-
tance decreases from 0.17 to 0.10 �see Fig. 2�f��. Notably, the
introduction of weak protein-environment interactions has
suppressed sharp peaks in the theoretical B factors �see Fig.
2�b�� and KL distances �see Fig. 2�f��. For comparison, we
also explored strong protein-environment interactions �fenv

=1, data not shown�. The modeling quality of fenv=1 lies
between fenv=0 and 0.02; the Pearson correlations for all,
diagonal, off-diagonal ADP elements and B factors are 0.84,
0.39, 0.32, and 0.48, fncc is 0.80, the average ccmod is 0.61,
the average dot product is 0.66, and the average KL distance
is 0.14. Therefore, among the above three modeling condi-
tions �fenv=0 ,0.02,1�, the optimal ADP modeling for 1C7K
is achieved at weak protein-environment interactions �fenv

=0.02�.
The above ADP modeling and evaluation have been con-

ducted for 16 852 ADPs collected from 83 PDB
structures.33,40 To deduce the average performance of our
ADP modeling, we average four Pearson correlations �for all,
diagonal, off-diagonal ADP elements and B factors� over 83
structures, and three directional metrics �ccmod, dot product
and KL distance, see Sec. II� over a subset of 6784 ADPs
with anisotropy of �0.5 �another directional metric fncc is
calculated over this ADP subset, see Sec. II�. To explore how
the ADP modeling quality depends on the strength of
protein-environment interactions, these average metrics are
plotted as a function of fenv for three boundary conditions
�free, fixed, and buffered environment� and three ENM
schemes �ANM, DNM, and HCA� �see Sec. II�.

For ANM combined with three boundary conditions, it is
found that the bottom of average KL distance and the peaks
of other metrics are roughly aligned near fenv�0.02 �see Fig.
3�. Therefore, the optimal ADP modeling is attained when
the protein-environment interactions are much weaker than
the intraprotein interactions. For fixed environment, the im-
provement from fenv=0 to 0.02 is significant for all metrics
�see Fig. 3�a��; the average Pearson correlations for all, di-
agonal, and off-diagonal ADP elements and B factors in-
crease from 0.60, 0.40, 0.26, and 0.48 at fenv=0 to 0.83, 0.58,
0.46, and 0.64 at fenv=0.02; fncc increases from 0.79 to 0.94,
the average ccmod increases from 0.57 to 0.74, the average
dot product increases from 0.64 to 0.74, and the average KL
distance decreases from 0.23 to 0.10. The performance at
fenv=1 is intermediate between fenv=0 and 0.02 �for ex-
ample, the Pearson correlation of B factors is 0.51 and fncc is
0.81 at fenv=1, see Fig. 3�a��. Similar results are found for
the free-environment and buffered-environment boundary
conditions �see Figs. 3�b� and 3�c��.

Similar results are obtained for DNM and HCA com-
bined with three boundary conditions,46 although the optimal
fenv ��0.04 for DNM and �0.06 for HCA under fixed-
environment boundary condition� is higher than ANM. The
optimal performance of HCA and DNM is slightly better
than ANM―for HCA and fixed environment, the average
Pearson correlation of B factors is 0.69, fncc is 0.95, the
average ccmod is 0.75, the average dot product is 0.75, and
the average KL distance is 0.09 at fenv=0.06; for DNM and

fixed environment, the average Pearson correlation of B fac-
tors is 0.68, fncc is 0.96, the average ccmod is 0.75, the aver-
age dot product is 0.76, and the average KL distance is 0.09
at fenv=0.04.

To further assess the significance of our finding of opti-
mal ADP modeling at small fenv, we investigated how the
fenv-dependence of ADP modeling quality varies among the
83 PDB structures. Using ANM combined with fixed envi-
ronment, we calculated all metrics �see Sec. II� and then
averaged the three directional metrics �ccmod, dot product,
and KL distance� over the ADPs of each structure with an-
isotropy �0.5 �see Fig. 4�. It is found that the improvement
of ADP modeling from fenv=0 to 0.02 is achieved for 99%,
96%, 100%, 94%, 86%, 95%, 88%, and 99% of all structures
as assessed by the Pearson correlations for all, diagonal, and
off-diagonal ADP elements and B factors, fncc, ccmod, dot
product, and KL distance. Similarly, the improvement from
fenv=1 to 0.02 is achieved for 85%, 93%, 88%, 81%, 80%,
96%, 89%, and 96% of all structures as assessed by the Pear-
son correlations for all, diagonal, and off-diagonal ADP ele-
ments and B factors, fncc, ccmod, dot product, and KL dis-
tance. So the finding of optimal ADP modeling at fenv

=0.02 �compared to fenv=0, 1� holds for �80% PDB struc-
tures of our data set. The p-value of this finding is estimated
to be �2.1�10−8, which indicates its statistical significance.

B. How much do the rigid-body motions contribute
to ADP?

The importance of rigid-body motions to protein dynam-
ics at crystalline states remains controversial. The earlier
modeling of B factors and ADPs by ENM usually ignored
the contribution from rigid-body motions.30,33,35 One study
compared a set of models for crambin at 0.83 Å resolution

FIG. 3. The results of ADP modeling averaged over 83 PDB structures
using ANM under three boundary conditions: �a� fixed environment, �b� free
environment, and �c� buffered environment. Shown here are Pearson corre-
lations of diagonal �� �, off-diagonal �� �, all elements ��� of ADPs and B
factors ���, and directional metrics including fncc ���, ccmod ���, KL dis-
tance �� �, dot product ���, and the fractional contribution of rigid-body
motions fRT � �� as a function of fenv. Also shown in panel �a� are the average
maximum overlap �Omax� �� � and average cumulative overlap �Ocumu� �+�.
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using TLS model and concluded that rigid-body libration of
entire crambin contribute 60% of the overall mobility.47 In a
recent study, vGNM was proposed to take into account the
contribution of rigid-body motions and allow the amplitude
of low-frequency modes to be variables,36 and it was found
that rigid-body motions account for nearly 60% of the total
atomic fluctuations.36 However, a recent comparison of mo-
lecular dynamics simulations with crystallographic B factors
estimated that rigid-body motions contribute only 20%–30%
of total positional variance in B factors.48

To address the above controversy, we calculated the frac-
tional contribution of six translational and rotational modes
to the total positional variance in a protein structure:

fRT =
�m=1

6
VRT,m

T �uPuP
T�VRT,m

Trace�uPuP
T�

, �17�

where VRT,m is the eigenvector of the mth translational and
rotational mode �1�m�6� of a protein structure, �uPuP

T� is
the covariance matrix given in Eqs. �7�–�9�. fRT is calculated
as a function of fenv �see Fig. 3�. Because the rigid-body
motions of a protein structure are restrained by the crystal
contact interactions characterized by fenv, fRT decreases as
fenv increases from 0 to 1. For fenv=0, the protein structure is
unrestrained by crystal contacts, so the translations and rota-
tions dominate the thermal fluctuations because they can be
excited without energy cost �this anomaly was usually re-
moved by excluding the contributions of translational and
rotational modes to �uPuP

T��.30,33,35 Depending on the ENM
scheme and boundary condition, fRT ranges from 50% to
70% when the optimal ADP modeling is attained �with fenv

within 0.02�0.06�. Our result is in agreement with several
previous studies,36,47 and it confirms that rigid-body motions
contribute significantly to the atomic fluctuations of protein
structures in crystalline states, so they must be considered for
correct modeling of ADPs.

C. How robust are low-frequency modes to crystal
packing?

Numerous studies demonstrated the importance of low-
frequency modes in describing protein functional
motions.26,27 Therefore, it is essential to assess to what extent
they are affected by crystal packing. To this end, we com-
pared the following two sets of low-frequency modes: �A�
the 10 lowest nonzero modes solved for an isolated protein
structure �fenv=0� �the six translational and rotational zero
modes for isolated protein structure are excluded from com-
parison� and �B� the 16 lowest nonzero modes solved for the
entire protein-environment system with fenv� �0,1�. We only
consider ANM combined with fixed environment �see Sec.
II�, because the normal modes solved for free or buffered
environment are not directly comparable with the modes for
isolated protein structure due to their different dimension.

To assess the individual similarity between the above
two sets of modes �A and B�, we compute the average maxi-
mal overlap Omax=�m=1

10 max1�n�16�O�m ,n�� /10, where
O�m ,n� is the absolute value of the dot product between the
eigenvectors of mode m from A set and mode n from B set.
To assess the collective similarity between the two sets of
modes, we calculate the average cumulative overlap Ocumu

=�m=1
10 �n=1

16 O�m ,n�2 /10. Omax and Ocumu are calculated and
averaged over 83 PDB structures to get �Omax� and �Ocumu�
as a function of fenv �see Fig. 3�a��.

�Omax� ��Ocumu�� is found to decrease from 1 to 0.39
�0.48� as fenv increases from 0 to 1 �see Fig. 3�a��. At fenv

=0.02, �Omax��0.88 and �Ocumu��0.97, which indicate that
the low-frequency modes at fenv=0.02 are highly similar to
the modes for isolated protein structure. In particular, the
finding that �Ocumu��1 suggests that the essential subspace
spanned by the low-frequency modes is nearly invariant de-
spite weak crystal contact interactions. The robustness of
low-frequency modes to crystal packing implies that proteins
in crystalline states have intact functional motions and there-
fore can remain functionally active �see Ref. 45�.

D. How does crystal packing affect the optimal
parametrization of ANM?

In previous studies, it was found that the optimal fitting
of B factors by ANM is attained at a high cutoff distance
Rc=15 Å–24 Å,30 which is beyond the range of C�–C�

distances between contacting residues �4.4–12.8 Å, see Ref.
49�. Such inconsistency casts doubt on the validity of ENM
parametrization by fitting B factors without considering crys-
tal packing effects.40 To address this issue, we evaluated the
quality of ADP modeling by ANM as a function of Rc for
isolated protein structure �fenv=0� and weak protein-
environment interactions �fenv=0.02�. Interestingly, the
Rc-dependence differs significantly between the two cases
�see Fig. 5�.

At fenv=0, the quality of ADP modeling assessed by the
four average Pearson correlations �for all, diagonal, off-
diagonal ADP elements, and B factors� and average KL dis-
tance improves as Rc increases from 7 to 20 Å �see Fig.
5�a��. The average ccmod also peaks at 20 Å. So the optimi-

FIG. 4. The variation of ADP modeling results among 83 PDB structures
calculated using ANM and fixed environment. Panels �a�–�h� show Pearson
correlations of diagonal, off-diagonal, all elements of ADP and B factors,
and directional metrics including fncc, ccmod, dot product, and KL distance.
The results of fenv=0, 0.02, and 1 are colored gray, black, and light gray,
respectively. Because three PDB structures do not have ADPs with aniso-
tropy �0.5, only results for 80 PDB structures are shown.
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zation of ADP fitting by ANM without considering crystal
packing leads to a high Rc	20 Å in agreement with previ-
ous findings.30,40

At fenv=0.02, all metrics peak near Rc=10 Å �except the
average KL distance and the average Pearson correlation for
all ADP elements, which are flat for 10 Å�Rc�20 Å� �see
Fig. 5�b��. Thus an optimal fitting of ADPs is attained near
Rc=10 Å.

The finding of optimal parametrization of ANM at fenv

=0.02 is physically more meaningful, because Rc=10 Å
falls well within the range of C�–C� distances between con-
tacting residues. Our finding supports the importance of con-
sidering crystal packing effects for the modeling of ADPs.40

E. Further evaluation of interprotein and intraprotein
residue-residue interactions

Based on the optimization of ADP modeling, we found
that the interprotein interactions are much weaker than the
intraprotein interactions in protein crystals. This finding is
somewhat unexpected because both interprotein and intra-
protein interactions involve the same chemical forces at the
atomic level. To further assess the above finding, we used a
statistical potential developed by Miyazawa and Jernigan50

to evaluate the residue-residue contact energy between
neighboring proteins and within a protein for the list of 83
protein structures. Following Ref. 50, for a protein structure
and its neighboring molecules, we calculated the contact en-
ergy between pairs of residues whose side-chain centers are
within 6.5 Å. The average contact energy between residues
of neighboring proteins �termed einterprotein� and residues
within a protein �termed eintraprotein� are calculated and re-
ported in Table I. To assess the favorability of calculated
energy values, we also calculated a reference energy eref

=�n=1
20 �m=1

20 fnfmenm, where n and m are indices for amino acid

FIG. 5. Rc-dependence of ADP modeling results averaged over 83 PDB
structures using �a� ANM for isolated structure �fenv=0� and �b� ANM with
fixed environment and weak protein-environment interactions �fenv=0.02�.
Shown here are Pearson correlations of diagonal �� �, off-diagonal �� �, all
elements ��� of ADPs and B factors ���, and directional metrics including
fncc ���, ccmod ���, KL distance �� � and dot product ��� as a function of
Rc.

TABLE I. Comparison of average residue-residue contact energy between
neighboring proteins �einterprotein�, within a protein �eintraprotein�, and the refer-
ence energy �eref�. The energy is calculated using the Miyazawa–Jernigan
statistical potential �Ref. 50�. For details, see Sec. III of main text.

PDB code

Average residue-residue contact energy

eintraprotein einterprotein eref

1a6m 
3.94 
2.15 
3.04
1byi 
3.72 
2.71 
3.10
1c75 
3.43 
1.83 
2.76
1c7k 
3.09 
1.83 
2.66
1ea7 
3.24 
2.37 
2.82
1eb6 
3.20 
1.98 
2.65
1exr 
3.58 
2.03 
2.90
1f94 
3.42 
3.00 
3.09
1f9y 
3.97 
2.29 
3.23
1g4i 
3.45 
2.59 
2.84
1g66 
3.30 
2.19 
2.83
1g6x 
3.46 
2.98 
2.99
1ga6 
3.22 
2.34 
2.83
1gkm 
3.68 
2.95 
3.15
1gqv 
3.57 
2.24 
2.93
1gvk 
3.51 
2.54 
3.08
1gwe 
3.29 
2.84 
2.82
1hj9 
3.44 
2.13 
2.93
1i1w 
3.57 
1.93 
2.97
1iqz 
3.41 
3.23 
2.87
1iua 
3.35 
2.36 
2.75
1ix9 
3.64 
1.98 
2.98
1ixh 
3.45 
1.76 
2.84
1j0p 
2.73 
1.58 
2.38
1jfb 
3.82 
2.29 
3.03
1k5c 
3.40 
1.91 
2.84
1kth 
3.06 
2.90 
2.74
1kwf 
3.41 
1.98 
2.91
1l9l 
3.85 
1.92 
2.82
1lkk 
3.73 
2.38 
2.98
1lni 
3.54 
2.49 
2.93
1lug 
3.64 
1.94 
2.92
1m1q 
3.02 
2.11 
2.57
1m40 
3.63 
2.28 
3.02
1mc2 
3.34 
2.36 
2.81
1mj5 
3.75 
2.28 
3.11
1muw 
3.60 
3.03 
3.02
1mwq 
3.48 
2.62 
3.01
1n4w 
3.48 
2.33 
3.02
1n55 
3.70 
3.00 
3.05
1nki 
3.98 
2.14 
3.24
1nls 
3.53 
2.47 
2.97
1nwz 
3.77 
2.18 
2.95
1o7j 
3.59 
2.07 
3.06
1oai 
3.83 
2.14 
2.79
1od3 
3.64 
2.44 
2.99
1ok0 
3.12 
3.06 
2.91
1pq7 
3.47 
2.06 
2.91
1r2m 
4.00 
3.25 
3.29
1r6j 
4.08 
2.81 
3.07
1rb9 
3.29 
2.02 
2.64
1rtq 
3.35 
2.12 
2.86
1sfd 
3.77 
2.58 
3.01
1ssx 
3.31 
2.21 
2.92
1tg0 
3.73 
2.51 
2.91
1tqg 
4.29 
2.49 
3.22
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types, fn is the percentage of amino acid n in a given protein,
and enm represents the Miyazawa–Jernigan contact energy50

between amino acid n and m. A contact energy value is con-
sidered favorable �or unfavorable� if it is lower �or higher�
than eref.

Among the 83 protein structures, it is found that
einterprotein�eintraprotein and eintraprotein�eref in all cases, while
einterprotein�eref only in nine cases �see Table I�. Therefore,
the intraprotein residue-residue interactions are significantly
stronger than the interprotein ones. The former are highly
favorable in stabilizing protein native structures, while the

latter are much less favorable. This finding strongly supports
our modeling of ADPs based on weak protein-environment
interactions �i.e., small fenv�.

To further establish the proposed dependence of ADP
modeling quality on the relative strength of interprotein and
intraprotein interactions, we selected the following two sub-
sets from the list of 83 protein structures. Subset I consists of
ten structures with the highest values of eintraprotein

−einterprotein, which have relatively strong interprotein interac-
tions �i.e., comparable to intraprotein interactions�. Subset II
consists of ten structures with the lowest values of
eintraprotein−einterprotein, which have very weak interprotein in-
teractions �i.e., much higher than intraprotein interactions�.
Then we modeled the ADPs from each subset using a “ho-
mogeneous” two-component ENM �i.e., fenv=1� �for results,
see Table II�. Indeed, the modeling performance, as assessed
by various metrics, is much better for subset I than subset II
�see Table II�. Compared with the results of ADP modeling at
fenv=0 �see Table II�, we found significant improvement
from fenv=0 to 1 for subset I. In contrast, most metrics indi-
cate either weak or no improvement from fenv=0 to 1 for
subset II. The above results strongly support our proposal
because the use of fenv=1 assumes comparable strength for
interprotein and intraprotein interactions, which is true for
subset I but not subset II. In sum, the above results not only
support our finding that the interprotein interactions are
much weaker than the intraprotein interactions in protein
crystals, but also point to possible use of energy calculations
based on statistical potentials to guide the tuning of fenv to
optimize ADP modeling.

IV. CONCLUSION

We performed ENM-based modeling of atomic fluctua-
tions in a protein structure that interacts with its crystalline
environment. The modeling results are compared with the
ADP data from a data set of 83 high-resolution crystal
structures.33,40 The main contributions of this study are as
follows:

�1� We explored crystal packing effects using ENM with a
new parameter fenv to tune the relative strength of in-
terprotein and intraprotein interactions. We found that
the optimal modeling of ADPs require significantly

TABLE I. �Continued.�

PDB code

Average residue-residue contact energy

eintraprotein einterprotein eref

1tt8 
3.99 
2.54 
3.27
1u2h 
3.40 
2.59 
2.81
1ufy 
3.98 
3.07 
3.16
1ug6 
3.70 
2.72 
3.16
1unq 
3.44 
2.79 
2.86
1us0 
3.80 
1.99 
3.12
1v0l 
3.48 
1.95 
2.87
1v6p 
2.87 
2.34 
2.41
1vbw 
3.46 
2.35 
2.77
1vyr 
3.48 
2.00 
2.91
1vyy 
3.33 
3.27 
3.00
1w0n 
3.57 
2.51 
2.98
1x6z 
3.25 
2.38 
2.64
1x8q 
3.40 
1.92 
2.83
1xmk 
3.66 
2.63 
2.94
1y55 
3.55 
3.55 
3.08
1ylj 
3.44 
2.19 
2.88
1zk4 
3.45 
3.17 
2.93
1zzk 
3.62 
2.53 
2.89
2bt9 
3.18 
2.17 
2.76
2bw4 
3.51 
2.90 
3.02
2cws 
3.45 
2.14 
2.87
2f01 
3.09 
2.87 
2.78
2fdn 
3.60 
2.98 
2.99
2pvb 
3.79 
2.16 
2.96
3lzt 
3.57 
2.31 
2.90
7a3h 
3.52 
1.97 
2.93
Average 
3.52 
2.41 
2.92

TABLE II. ADP modeling results averaged over two subsets and the entire list of 83 PDB structures. Subset I consists of ten structures with relatively strong
crystal contact interactions. Subset II consists of ten structures with very weak crystal contact interactions. Results of fenv=0 and 1 are shown. See Sec. II for
definitions of the metrics for ADP modeling assessment.

Test cases fenv pcdiagonal pcoffdiagonal pcall pctrace fncc ccmod Dot product KL distance

Subset I: 1y55, 1ok0,1vyy,1kth, 1iqz,2f01,1zk4, 1f94,1gwe,1g6x 1.000 0.56 0.41 0.78 0.64 0.90 0.66 0.71 0.13
0.000 0.41 0.23 0.56 0.49 0.81 0.51 0.64 0.46

Subset II: 1l9l, 1nki,1us0,1tqg, 1a6m,1lug,1oai, 1ixh,1f9y,1ix9 1.000 0.40 0.24 0.76 0.46 0.78 0.58 0.62 0.17
0.000 0.42 0.26 0.63 0.53 0.77 0.56 0.59 0.25

All 83 structures 1.000 0.44 0.30 0.77 0.51 0.81 0.60 0.66 0.15
0.000 0.40 0.26 0.60 0.48 0.79 0.57 0.64 0.23

014111-9 Modeling protein atomic fluctuations J. Chem. Phys. 132, 014111 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



weaker interprotein interactions than intraprotein inter-
actions. This robust result is obtained for three different
boundary conditions �fixed, free, and buffered environ-
ments� and three ENM schemes �ANM, DNM, and
HCA�. The fixed and free environments represent two
opposite limits of treating the mobility of crystalline
environment, while the buffered environment is in be-
tween these two limits. So our finding is unlikely to be
an artifact of a particular choice of boundary condition
or model parameter. Further evaluation of residue-
residue contact energy using the Miyazawa–Jernigan
statistical potential50 supports the above finding.

�2� Despite the simplicity of our model, we achieved com-
parable ADP-modeling quality than previous studies
that used more fitting parameters51 or computationally
expensive formulation of boundary conditions.40 Our
ADP modeling based on ANM and fixed environment
boundary condition �fenv=0.02� yielded average pctrace

�0.64, average ccmod�0.74, and average dot product
�0.74. In comparison, these metrics were found to be
0.55, 0.70, and 0.73 in a recent ADP-modeling study
based on ANM and Born–von Ka´rma´n boundary
condition.40 It will be interesting to see if the combina-
tion of weak protein-environment interactions and
Born–von Ka´rma´n boundary condition would lead to
further improvement in ADP modeling.

�3� Our modeling protocol is highly efficient thanks to the
use of a sparse linear-equation solver instead of more
expensive eigensolver. Furthermore, the use of matrix
inversion �see Eqs. �7�–�9�� accounts for contributions
of all modes to ADPs, which helps to improve the mod-
eling accuracy.33

Following Ref. 40, we also explored ANM combined
with the periodic boundary conditions for the asymmetric
unit, which result in worse ADP modeling results than the
three boundary conditions considered here �data not shown�.
Therefore, it is not sufficient to only consider those normal
modes that observe the crystallographic symmetry. Other
contributions, either from lattice vibrations at q�0 �Ref. 40�
or symmetry-breaking modes of protein-environment sys-
tem, should be counted for accurate modeling of ADPs.

The finding of optimal ADP modeling for weak protein-
environment interactions has the following important impli-
cations:

�1� The rigid-body motions of a protein relative to its crys-
talline environment are only weakly restrained, so they
can contribute significantly to thermal fluctuations as
found in previous studies36,47 �however, recent studies
showed that internal motions may contribute more sub-
stantially in large flexible protein complexes, see Refs.
14 and 15�. Therefore, the modeling of ADPs with in-
ternal motions alone is not justified and may lead to
unphysical parametrization of ENM, while the proper
incorporation of rigid-body motions can result in physi-
cally meaningful parametrization of ENM.32,40 The
finding of weak protein-environment interactions for
optimal fitting of ADPs is consistent with our previous
finding that the addition of a small fraction of GNM

potential to ANM potential improves the fitting of B
factors and crystallographically observed conforma-
tional changes.52 In both formulations, large contribu-
tions of rigid-body motions are taken into account.

�2� Our finding lends support to the general notion that
crystal packing only causes weak perturbations to the
internal protein dynamics. So the conformational fluc-
tuations relevant to protein functions can be studied by
x-ray crystallography despite the effects of crystal
packing.

We have seen small but noticeable improvement in ADP
modeling from ANM to DNM and HCA �see Fig. 3 and Ref.
46�, which supports the efforts to refine the force constants
of ENM to better represent chemical forces in protein
structures.24,33 Given the previous finding that all-atom po-
tential gives better prediction of directions of ADPs than
C�-based potentials,33 it will be worthwhile to incorporate
crystal contact interactions into all-atom potential to further
improve the modeling of ADPs �Zheng, work in progress�.
Work in this direction will be greatly aided by the recent
development of a highly efficient normal mode analysis pro-
tocol based on subsystem-environment partition.53–55

Continuing progress in the ENM-based modeling of
ADPs will not only lead to deeper understanding of the dy-
namic basis of ADPs, but also help to improve the accuracy
of ENM parameters. The latter is essential to the develop-
ment and refinement of ENM-based techniques that probe
protein dynamics of functional importance, which have been
pursued in our recent studies.56–59

We caution that ENM is limited to the modeling of ther-
mal fluctuations at harmonic limit. Future work is clearly
needed to account for nonharmonic fluctuations and other
contributions to ADPs beyond thermal fluctuations �such as
static disorders, lattice defects, etc.�. As indicated by a recent
study, the thermal fluctuations may only make a small con-
tribution to the crystallographic B factors.41 If that is the
case, there remains a long way to go before a satisfactory
understanding of ADPs can be achieved.
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