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Normal mode analysis (NMA) has been proven valuable in modeling slow conformational dynamics
of biomolecular structures beyond the reach of direct molecular simulations. However, it remains
computationally expensive to directly solve normal modes for large biomolecular systems. In this
study, we have evaluated the accuracy and efficiency of two approximate NMA protocols—one
based on our recently proposed vibrational subsystem analysis (VSA), the other based on the
rotation translation block (RTB), in comparison with standard NMA that directly solves a full
Hessian matrix. By properly accounting for flexibility within blocks of residues or atoms based on
a subsystem-environment partition, VSA-based NMA has attained a much higher accuracy than
RTB and much lower computing cost than standard NMA. Therefore, VSA enables accurate and
efficient calculations of normal modes from all-atom or coarse-grained potential functions, which
promise to improve conformational sampling driven by low-frequency normal modes. © 2009
American Institute of Physics. [DOI: 10.1063/1.3141022]

I. INTRODUCTION

Conformational dynamics plays key roles in the func-
tions of various biomolecular systems from enzymes to mo-
tor proteins.l’2 Of particular interests is the “slow” dynamics
(microseconds to minutes) in large biomolecular complexes,
which is far beyond the simulation time scales (tens of nano-
seconds) of atomistic molecular dynamics (MD) (Ref. 3) us-
ing modern computers.4 To capture such slow dynamics, nor-
mal mode analysis (NMA)*™® has been widely utilized,
which solves the eigenmodes of the Hessian matrix calcu-
lated from either all-atom or coarse-grained potential func-
tions. Although the all-atom NMA is computationally less
expensive than long-time MD simulations, the O(N?) com-
puting time and the O(N?) memory requirement (N is the
number of atoms in the system) have hindered its application
to large systems.

By reducing the number of degrees of freedom (3N), the
coarse-grained (low resolution) modeling9 has greatly ex-
tended the applicability of NMA to large biomolecular sys-
tems. A prime example of coarse-grained models is the elas-
tic network model (ENM) which represents a protein
structure as a network of C, atoms locally connected by
springs.lo*l2 In an ENM, the all-atom force fields are re-
placed by simple harmonic potentials with a uniform force
constant."” Early studies have shown that the large-scale col-
lective motions predicted by the NMA of ENM are insensi-
tive to the dramatic simplification in ENM.'*"? The low-
frequency modes calculated from ENM were found to
compare well with many large-scale domain motions ob-
served crystalloglraphically.]2‘14 Numerous studies have es-
tablished the ENM as an efficient means to probe the func-
tionally  relevant  conformational  dynamics  from
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biomolecular structures with virtually no limit in time scale
or system size.">"7 Indeed, ENM has been applied to large
biomolecular complexes such as ribosome, '*"” chaperonin
GroEL,***! and viral capsids.zz’23 Further coarse graining is
needed to tackle even larger biomolecular or cellular
systems.

The growing need for applying NMA to large biomo-
lecular structures has motivated the development of approxi-
mate NMA methods to solve the low-frequency modes with
less CPU time than standard NMA of the full Hessian matrix.
To this end, NMA techniques based on rotations and transla-
tions of rigid blocks (RTB)**® have been advanced. These
methods assume that low-frequency normal modes of protein
structures can be approximated as rigid-body motions of
“blocks” with six degrees of freedom per block. Here a block
is often defined as a group of sequentially consecutive resi-
dues. Therefore, the total number of degrees of freedom is
greatly reduced from 3N to 6N, (N is the number of atoms
and N, is the number of blocks). RTB was shown to repro-
duce the lowest-frequency modes with reasonable accuracy
and very low computing cost. 24726

The assumption of rigidity in RTB ignores the local flex-
ibility within individual blocks. So RTB cannot fully account
for local changes in structure and energy. Although such lo-
cal inaccuracy does not significantly affect the ability of low-
frequency modes to capture the global features of collective
protein motions, it may become serious when the approxi-
mate normal modes are used to guide the conformational
sampling, where local structural flexibility is important.
Therefore, an approximate NMA technique that incorporates
local flexibility is needed to complement RTB in treating
both local and global structural changes properly.

In a recent study, one of us has proposed the subsystem
NMA based on ENM (Ref. 27) which calculates the “local
modes” for a subset of a protein structure (named subsystem)
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RTB partition

VSA partition

FIG. 1. A cartoon example for partitioning a protein structure into rigid
blocks (in RTB) and flexible blocks (in VSA): protein residues are repre-
sented by spheres, which are sequentially connected by peptide bonds
(shown as thick lines). Four blocks are shown. Each block corresponds to a
segment of three consecutive residues along the protein sequence. In total,
there are 24 RTB modes and 12 VSA modes. In VSA partition, subsystem
(environment) residues are represented by black (white) spheres.

while treating the rest as fast-fluctuating “environment.” This
method has been employed to analyze the active-site dynam-
ics of two motor proteins (myosin and kinesin)®’ and ATP-
binding induced conformational changes in NS3 helicase.™®
It was recently reformulated as the vibrational subsystem
analysis (VSA) method for coupling global motions to a lo-
cal subsystem with all-atom representations and hybrid quan-
tum mechanical/molecular mechanical potentials.29

One promising application of VSA is to perform ap-
proximate NMA—an all-atom or C-only protein structure is
first partitioned into a set of blocks, then one representative
C, atom per block is selected to make up the subsystem
while the rest is treated as environment, then the normal
modes (named VSA modes) are solved for the effective Hes-
sian matrix of the subsystem (see Sec. II). For the structural
motions described by VSA modes, the environment residues
can fully fluctuate by following the movements of “sub-
system” residues. Therefore, VSA allows us to account for
flexibility within blocks which is ignored in RTB-based
NMA. This advantage is achieved with fewer normal modes
than RTB (the total number of modes is 3N, for VSA and
6N, for RTB, where N, is the number of blocks). For a
cartoon example that demonstrates the differences between
RTB and VSA, see Fig. 1.

Although VSA has been well established by previous
studies,” ™ its efficiency and accuracy have not been fully
tested in comparison with alternative NMA methods (such as
RTB), especially for large biomolecular systems. Compared
with standard NMA, VSA requires the additional calculation
of the effective Hessian matrix for subsystem which involves
the inversion of the Hessian submatrix of the environment
(see Sec. II). To enable practical applications of VSA to large
biomolecular systems, it is important to implement VSA ef-
ficiently to minimize this computing overhead. The accuracy
and efficiency of the VSA-based NMA must be assessed in
comparison with alternative state-of-the-art NMA methods.

In this study, we have implemented the VSA-based
NMA using a highly efficient sparse linear-equation solver
named CHOLMOD.” Then we have evaluated its perfor-
mance in solving low-frequency normal modes for Hessian
matrices based on either coarse-grained ENM or all-atom
potential function. Three large protein structures (F; ATPase
with ~3000 residues, chaperonin GroEL-GroES with >8000
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residues, and myosin II motor domain with >10 000 atoms)
are used for the evaluation. The efficiency and accuracy of
VSA-based NMA are compared with the standard NMA that
solves full Hessian matrices using a sparse eigensolver
named BLZPACK (Ref. 24) and the RTB-based NMA.** The
VSA-based NMA is found to be significantly faster than BLZ-
PACK (up to >10 times) but slower than RTB, while its ac-
curacy is much higher than RTB. Therefore, VSA makes a
unique addition to the spectrum of NMA methods with bal-
anced efficiency and accuracy.

Il. METHODS
A. Formulation of VSA

Here we seek approximate solution of the normal modes
for the Hessian matrix of a two-component (S: subsystem, E:
environment) harmonic system

Hgs Hpp [LVE 0 Mgp]lLVel
where My (M) represents the diagonal mass submatrix of S
(E) component, Vg (Vi) denotes the S (E) component of an

eigenvector, and \ is the corresponding eigenvalue.
Then we rewrite Eq. (1) as

HgpVp=(\Mg— Hgg) Vs,

(2)
HggVg= (7\ME - HEE)VE'

After removing the Vi variable, we obtain the following non-
linear eigenequation for Vy:

Hsg(\M g — Hgp) " HpsVs= (\Ms — Hgg) V. 3)
At the limit of small X\,

(M= Hyg)™" = = Hpp = NHppMgHpy. @)
So Eq. (3) can be approximately reduced to a linear
eigenequation as follows:

Hilve=\M$"vs, (5)
where

HS§ = Hgs — HsgH pH s,

(6)
M gff =Ms+H SEI_FEIEM EhrE}EH ES-

Thus the solution of eigenmodes for a full Hessian matrix
[Eq. (1)] is reduced to a generalized eigenproblem with
smaller dimension (Eq. (5)).

After solving Vg from Eq. (5), the corresponding Vj is
solved as follows:

Ve=(\Mg—Hgp) 'HgsVs
~ = HypHpsVs — NHppM pHypH g V. (7)

B. Implementation of VSA and RTB

Under the condition of Ng<< Ny (Ng: number of residues/
atoms in subsystem, Nz: number of residues/atoms in envi-
ronment), the NMA of a full Hessian matrix is reduced to the
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FIG. 2. (Color) Three test cases of large protein structures: (a) F; ATPase
(PDB: 1BMF); (b) Chaperonin GroEL-GroES (PDB: 1AON); (c) An all-
atom model of myosin II motor domain (built from PDB: 1VOM).

NMA of a significantly smaller effective Hessian matrix H.
The computing overhead for the calculation of H&i involves
the solution of linear equations I-FE;EH s (the inversion of Hyp
assumes the absence of zero modes for Hyp, which is gener-
ally true). These calculations can be done efficiently using
the Cholesky factorization technique for sparse and positive
definitive matrices [as implemented in CHOLMOD (Ref.
30)]. The NMA of H% is performed using the generalized
eigensolver subroutine DSYGVX from LAPACK (http://
www.netlib.org/lapack/).

For comparison, RTB-based NMA was implemented by
using BLZPACK to solve normal modes for the following re-
duced RTB Hessian matrix:**

Hgrs = PTHP, (8)

where P is an orthogonal matrix built with vectors associated
with the rotations and translations of each block** and H is
the full Hessian matrix.

C. Test cases

We have assessed the accuracy and efficiency of VSA-
based NMA compared with RTB-based NMA and full Hes-
sian eigensolver BLZPACK using three large protein structures
(see Fig. 2). Two crystal structures of F;, ATPase (PDB:
IBMF with 2987 residues) and chaperonin GroEL-GroES
(PDB: 1AON with 8015 residues) are used to construct
C,-based ENM with a cutoff distance of 10 A and two force
constants (C;=1 between nonbonded residues and C,=100
between bonded residues). Then a Hessian matrix is com-
puted from the ENM potential function'® and solved by the
above three NMA protocols. The entire structure is divided
into blocks of 3-20 residues for RTB-based and VSA-based
NMA (each block corresponds to a segment of consecutive
residues along the protein sequence, see Fig. 1).

Starting from a myosin II crystal structure (PDB:
1VOM), an all-atom structural model (with 11970 atoms)
was built by using MODLOOP (Ref. 31) to add disordered
loops and HBUILD to add hydrogen atoms.*” The nonprotein
ligands are deleted for simplicity. Then CHARMM program33
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is used to perform energy minimization with CHARMM?22
force field (nonbonded parameters: ATOM FSHIFT CDIE
VDW VSHIFT CUTNB 13.0 CTOFNB 12.0 CTONNB 8.0
WMIN 1.5 EPS 1.0). Then the VIBRAN module of CHARMM
is used to calculate the all-atom Hessian matrix, which is
then solved by the above three NMA protocols. The entire
structure is divided into blocks of 1-10 residues for RTB-
based and VSA-based NMA.

D. Evaluation of accuracy and efficiency of VSA
and RTB

To evaluate the accuracy of low-frequency normal
modes solved by VSA-based and RTB-based NMA, we have
compared the eigenvalues and eigenvectors of the VSA/RTB
modes with those of the exact modes solved from the full
Hessian matrix by BLZPACK.

We compute the overlaps (absolute value of dot product)
between the eigenvector of the lowest ten VSA/RTB modes
(named as mode m,) and the lowest 15 exact modes and find
the exact mode with the maximal overlap (named as mode
m,). Then the overlap between mode m, and mode m, gives
the accuracy of the eigenvector of mode m, (an overlap close
to 1 indicates high accuracy). The ratio between the eigen-
value of mode m, and mode m, gives the accuracy of the
eigenvalue of mode m, (a ratio close to 1 indicates high
accuracy). Finally the maximal overlaps and eigenvalue ra-
tios are averaged over the lowest ten VSA/RTB modes to
quantify their average accuracy.

To assess the computing cost, the three NMA protocols
are run on a dual quad core Xeon work station (2.5 GHZ)
with 32GB memory, and the CPU times (clock time) are
compared.

lll. RESULTS AND DISCUSSION

We have assessed the accuracy and efficiency of VSA-
based NMA in comparison with RTB-based NMA and a full
Hessian eigensolver BLZPACK using three test cases (see Sec.
II). The full Hessian matrices are calculated from a coarse-
grained ENM potential (cases 1 and 2) or an all-atom em-
pirical force field (case 3). The chosen protein systems are
much larger than the ones studied previously by VSA

A. Evaluation of accuracy

To evaluate the accuracy of the VSA-based and RTB-
based NMA, we have compared the eigenvalues and eigen-
vectors of the lowest ten VSA/RTB modes with those of the
exact modes solved by BLZPACK (see Sec. II). The eigenvec-
tor accuracy is assessed by the maximal overlap between a
VSA/RTB mode and exact modes. The eigenvalue accuracy
is assessed by the ratio of eigenvalue between a VSA/RTB
mode and the corresponding exact mode (see Sec. IT). The
results of three test cases are discussed as follows.

Case 1: F, ATPase [Fig. 2(a)]

The accuracy of both VSA and RTB declines as block
size increases from 3 to 20 despite some fluctuations [see
Fig. 3(b)]. The accuracy of VSA decreases slower than RTB
as block size increases [see Fig. 3(b)]. For a block size of 20,
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FIG. 3. Evaluation of accuracy and computing cost of VSA-based, RTB-based, and exact NMA for Case 1 (PDB: 1BMF): (a) CPU time of exact (@),
VSA-based (V), RTB-based (l) NMA as a function of block size (in logarithmic scale); (b) Average accuracy of the lowest ten VSA/RTB modes as a function
of block size: VSA eigenvalues (A), VSA eigenvectors (V), RTB eigenvalues (), RTB eigenvectors (®); (c) Pairwise comparison in eigenvector between the
lowest ten VSA modes (block size=20) and exact modes; (d) Pairwise comparison in eigenvector between the lowest ten RTB modes (block size=20) and
exact modes; (e) Eigenvector amplitude as a function of residue position for the VSA mode 1 (left panel), exact mode 2 (middle panel), and the RTB mode

1 (right panel).

the lowest ten VSA eigenvectors have an average overlap of
~0.89 with the corresponding exact modes, while the lowest
ten RTB eigenvectors have an average overlap of ~0.62. The
VSA eigenvalues also compare much better with exact
modes (with average ratio of ~0.91) than RTB eigenvalues
(with average ratio of ~0.32).

For a block size of 20, an all-to-all pairwise comparison
in eigenvector between the lowest ten VSA/RTB modes and
the lowest ten exact modes is shown in Figs. 3(c) and 3(d).
The VSA modes 1-7 compare well (with overlap >0.8) with
the exact modes 2-6, 9, and 10, respectively, while only the
RTB mode 1 compares well (with overlap >0.8) with the
exact mode 2. For VSA mode 1, the eigenvector amplitude as
a function of residue position nearly coincides with that of
the exact mode 2 [see Fig. 3(e)], while significant differences
exist between the RTB mode 1 and the exact mode 2 [see
Fig. 3(e)]. Both methods fail to capture the exact modes 1
and 8 because they involve highly localized motions within a
block. Overall, VSA offers a significantly more accurate ap-
proximation to the lowest ten exact modes than RTB.

Case 2: Chaperonin GroEL-GroES [Fig. 2(b)]

The improvement in accuracy from RTB to VSA is even
more substantial in this case [see Fig. 4(b)]. For a block size
of 20, the lowest ten VSA eigenvectors have an average
overlap of ~1.00 with the corresponding exact modes, while
the lowest ten RTB eigenvectors have an average overlap of
~0.68. The VSA eigenvalues also compare much better with
the exact modes (with average ratio of ~0.98) than RTB
eigenvalues (with average ratio of ~0.31).

For a block size of 20, an all-to-all pairwise comparison
in eigenvector between the lowest ten VSA/RTB modes and
the lowest ten exact modes is shown in Figs. 4(c) and 4(d).
The VSA modes 1-10 are nearly identical (with overlap of
~1.0) to the exact modes 1-10, while only RTB modes 1-3
compare well (with overlap >0.8) with the exact modes 1-3.
For VSA mode 1, the eigenvector amplitude as a function of
residue position essentially coincides with that of the exact
mode 1 [see Fig. 4(e)], while significant differences
exist between the RTB mode 1 and the exact mode 1 [see
Fig. 4(e)].
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FIG. 4. Evaluation of accuracy and computing cost of VSA-based, RTB-based, and exact NMA for Case 2 (PDB: 1AON): (a) CPU time of exact (@),
VSA-based (V), RTB-based (l) NMA as a function of block size (in logarithmic scale); (b) Average accuracy of the lowest ten VSA/RTB modes as a function
of block size: VSA eigenvalues (A), VSA eigenvectors (V), RTB eigenvalues (H), RTB eigenvectors (®); (c) Pairwise comparison in eigenvector between the
lowest ten VSA modes (block size=20) and exact modes; (d) Pairwise comparison in eigenvector between the lowest ten RTB modes (block size=20) and
exact modes; (¢) Eigenvector amplitude as a function of residue position for the VSA mode 1 (left panel), exact mode 1 (middle panel), and the RTB mode

1 (right panel).

Case 3: Myosin II motor domain [Fig. 2(c)]

In this case, we calculate the normal modes for the all-
atom Hessian matrix computed from the CHARMM?22 force
field (see Sec. IT). The improvement in accuracy from RTB
to VSA is substantial [see Fig. 5(b)]. For a block size of ten
residues, the lowest ten VSA eigenvectors have an average
overlap of ~0.88 with the corresponding exact modes, while
the lowest ten RTB eigenvectors have an average overlap of
~0.60. The VSA eigenvalues also compare much better with
the exact modes (with average ratio of ~0.93) than RTB
eigenvalues (with average ratio of ~0.07).

For a block size of ten, an all-to-all pairwise comparison
in eigenvector between the lowest ten VSA/RTB modes and
the lowest ten exact modes is shown in Figs. 5(c) and 5(d).
The VSA modes 1-5, 8, and 10 compare well (with overlap
>0.8) with the exact modes 1-5, 9, and 10, respectively,
while only the RTB mode 1 compares well (with overlap
>(.8) with the exact mode 1. For the VSA mode 1, the
eigenvector amplitude as a function of atom position nearly

coincides with that of the exact mode 1 [see Fig. 5(e)], while
visible differences exist between the RTB mode 1 and the
exact mode 1 [see Fig. 5(e)].

In summary, the accuracy of VSA-based NMA is signifi-
cantly higher than RTB-based NMA especially for a large
block size. The improvement in accuracy is particularly high
for eigenvalues, which RTB significantly underestimates for
the lack of local flexibility within the blocks.

B. Evaluation of efficiency

To establish the practical value of an approximate
method such as VSA, both accuracy and efficiency relative
to the exact method must be demonstrated. Compared with
the exact NMA of full Hessian matrix, VSA only solves an
effective Hessian matrix H‘;tsf with a reduced dimension (see
Sec. II). However, VSA has a computing overhead for the
calculation of H;fsf which involves the solution of linear
equations [—FE}SH ks A tradeoff between these two opposing
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FIG. 5. Evaluation of accuracy and computing cost of VSA-based, RTB-based, and exact NMA for Case 3 (myosin II all-atom model): (a) CPU time of exact
(@), VSA-based (V), RTB-based () NMA as a function of block size (in logarithmic scale); (b) Average accuracy of the lowest ten VSA/RTB modes as a
function of block size: VSA eigenvalues (A), VSA eigenvectors (V¥), RTB eigenvalues (), RTB eigenvectors (@); (c) Pairwise comparison in eigenvector
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size=10) and exact modes; (e) Eigenvector amplitude as a function of atom position for the VSA mode 1 (left panel), exact mode 1 (middle panel), and the

RTB mode 1 (right panel).

factors determines the computing cost of VSA. To calibrate
the efficiency of VSA, we compare the CPU times for solv-
ing the lowest ten normal modes using the VSA-based NMA,
RTB-based NMA, and exact NMA using BLZPACK, respec-
tively. The results for three test cases are discussed as
follows.

Case 1: F; ATPase [Fig. 3(a)]

The computing cost of VSA (CPU time~79 s) is com-
parable to the exact NMA (CPU time ~ 53 s) for block size
of three. As the block size increases from 3 to 20, the CPU
time of VSA decreases significantly (from 79 to 4 s). For a
block size of 20, VSA is ~14 times faster than the exact
NMA. For a larger block size the CPU time of VSA becomes
flat. For a block size between 3 and 20, RTB is about 4.5
times faster than VSA.

Case 2: Chaperonin GroEL-GroES [Fig. 4(a)]

Similar to Case 1, as block size increases from 3 to 20,
the CPU time of VSA decreases significantly (from 1399 to

40 s). For a block size of 20, VSA is ~22 times faster than
the exact NMA. For a block size between 3 and 20, RTB is
5-9 times faster than VSA.

Case 3: Myosin II motor domain [Fig. 5(a)]

The computing cost of VSA (CPU time~698 s) is ~7
times lower than the exact NMA (CPU time ~ 2880 s) for a
block size of one residue. As block size increases from one to
ten, the CPU time of VSA decreases by ~50% (from 698 to
344 s). For a block size between one and ten, RTB is >30
times faster than VSA.

In summary, the efficiency of VSA is intermediate be-
tween exact NMA and RTB. VSA is much faster than the
exact NMA especially for a large block size. RTB is even
faster than VSA.

IV. CONCLUSION

We have evaluated the accuracy and efficiency of two
approximate NMA protocols (VSA based and RTB based) in

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



194111-7 Approximate normal mode analysis based on VSA

comparison with standard NMA that directly solves a full
Hessian matrix. By properly accounting for flexibility within
the blocks based on subsystem-environment partition,27
VSA-based NMA has attained a much higher accuracy than
RTB and much lower computing cost than standard NMA.
Therefore, VSA enables accurate and efficient calculations of
normal modes from all-atom or coarse-grained potential
functions, which promise to improve conformational sam-
pling driven by low-frequency normal modes.

Our evaluation suggests that RTB remains a most effi-
cient option for solving low-frequency normal modes of
large biomolecular systems especially if high accuracy in
eigenvalue or eigenvector is not required.

In the future, we will combine VSA-based NMA with
our previously developed methods for coarse-grained model-
ing of the conformational fluctuations™ and transitions™® in
large biomolecular systems.
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