Frontiers in Neurodegenerative Disorders

May 3, 2017 190 Kapoor Hall

Links to text books

• Basic and Clinical Pharmacology

http://accesspharmacy.mhmedical.com.gate.lib.buffa lo.edu/book.aspx?bookid=388

Very little on neurodegenerative disease outside PD

 Goodman and Gilman's The Pharmacological Basis of Therapeutics

http://accesspharmacy.mhmedical.com.gate.lib.buffa lo.edu/book.aspx?bookid=374

Chapter 22 – Alzheimer's, ALS, Huntington's

Neurodegenerative Diseases

- Alzheimer's disease
- Parkinson's disease
- Huntington's disease
- Amyotrophic Lateral Sclerosis (ALS)
- Others:
 - Frontotemporal dementia with Parkinsonism
 - Prion diseases
 - Multiple sclerosis

Common features?

- 1. Loss of neurons and neurological function
- 2. Inherited (rare & typically early onset) and sporadic forms (more common, unclear cause)
- 3. More prevalent in older populations problem is exacerbated as global population ages
- 4. Common pathological observations are the intracellular and extracellular protein aggregation and deposition of insoluble proteins.
- 5. Mitochondrial dysfunction?

Concepts

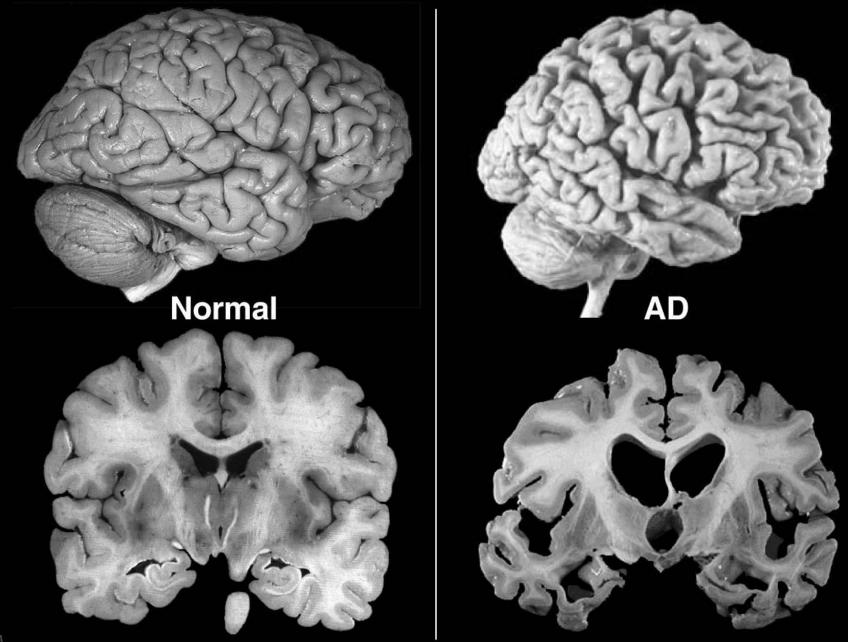
- Functional reserve
 - Threshold below which clinical signs appear
- Selective vulnerability
 - Genetic mutation in all cells causes dysfunction and death in subset of neurons
 - PD SNpc DA neurons
 - HD medium spiny neurons in neostriatum
 - ALS upper and lower motor neurons
 - AD cholinergic neurons
- Common mechanisms?
 - Misfolding & protein accumulation
 - PD alpha-synuclein
 - AD beta-amyloid and tau
 - HD huntingtin
 - ALS SOD1 and TDP-43
 - Excitotoxicity/NMDA

Selective vulnerability

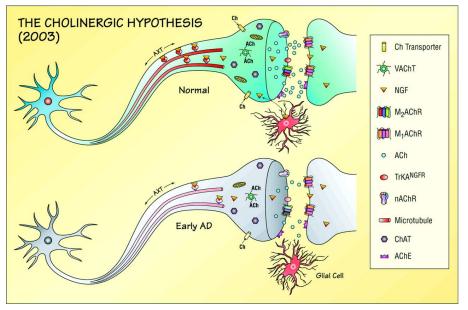
- Specific neurodegeneration specialized function of subsets of neurons
- Transmitter usage (dopamine)
- Receptors
- Biochemical specialization

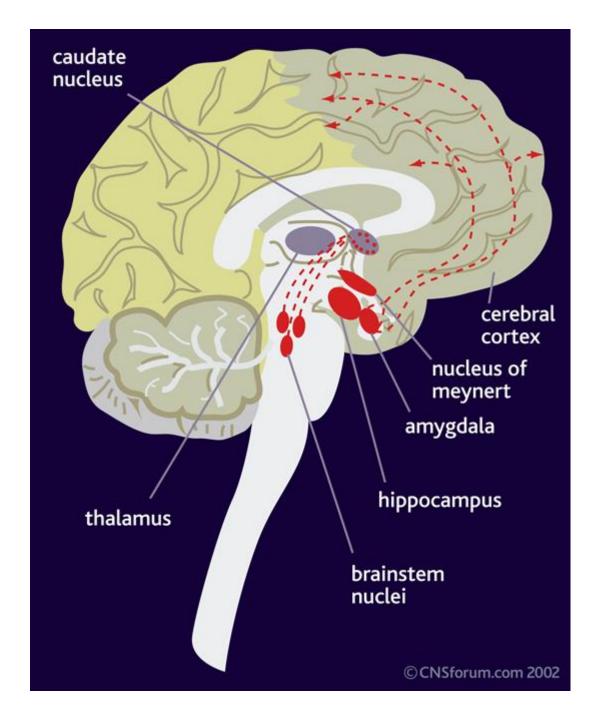
Precise mechanisms largely unclear

Alzheimer's disease


- Prevalence
 - USA: 5.5 million patients, with 350,000 new patients / yr
 - Under 65 yr age, rare but increases with age
 - > 85 yr age, between 10-30% of population!
 - Most common cause of dementia (50-56%)
- Common genetic causes (1-2% familial)
 - Amyloid precursor protein (APP)
 - Presenilin 1 (PSEN1) 11% of genetic cases
 - Presenilin 2 (PSEN2)
 - APOE4, an important risk factor

Clinical overview


- Medial temporal lobe entorhinal cortex and hippocampus
- Anterograde episodic memory loss: repeated questions, misplaced items, missed appointments, and forgotten details of daily life. (termed mild-cognitive impairment)
- AD diagnosis requires dementia
- MCI progresses to AD at rate of 10% / yr
- Imaging is used to exclude other diagnosis
- Death: 3-9 years after diagnosis
- Definitive AD only possible post-mortem

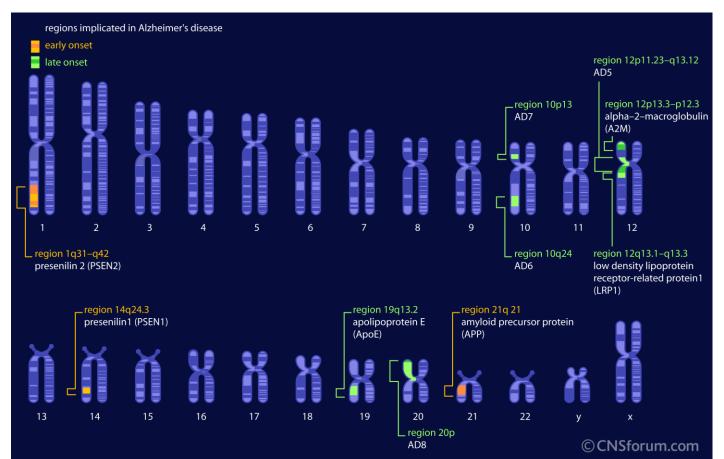

Brain Atrophy in Advanced Alzheimer's Disease

Neurochemistry of AD the *cholinergic hypothesis*

- Profound deficiency of acetylcholine (ACh)
- Atrophy of subcortical cholinergic neurons
 - Basal forebrain cholinergic neurons
 - Noradrenergic neurons in locus ceruleus
 - 5-HT neurons in raphe
- Cholinergic antagonists can induce similar 'confused' state to that observed in AD patients

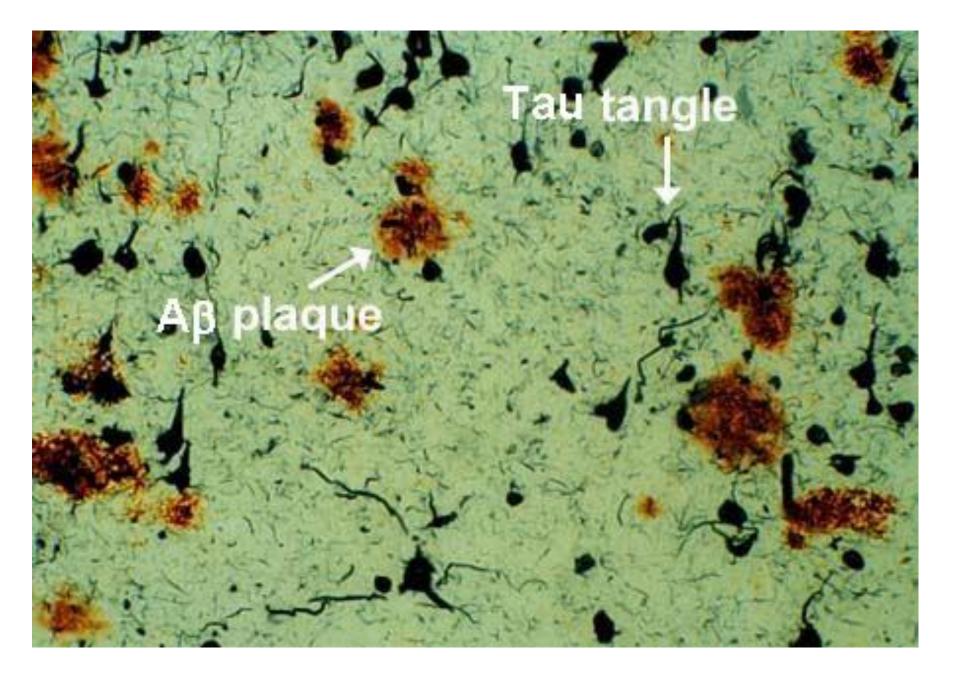
Approved Alzheimer's drugs – NONE MODIFY THE DISEASE

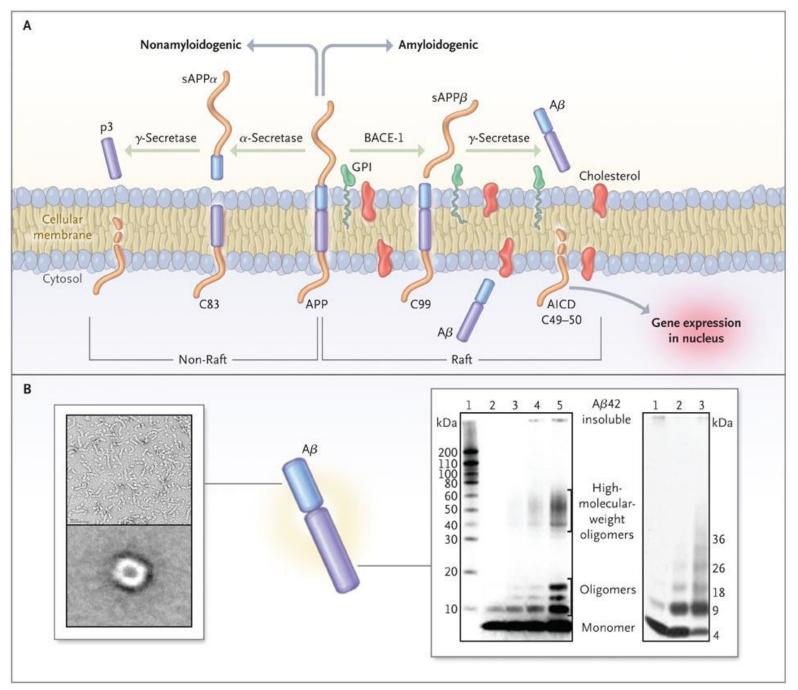
- AChE inhibitors
 - Donepezil
 - Rivastigmine
 - Galantamine
 - Tacrine (rarely used due to adverse side-effect profile)
- Non-competitive NMDAR antagonist
 - Memantine, acts on Mg²⁺ site to prevent excessive activation
- Combination of donepezil and memantine statistically significant benefit but of marginal effect size
- Treatment of behavioral systems in AD
 - Atypical antipsychotics, mood stabilizers, antidepressants


	Donepezil	Rivastigmine	Galantamine	Tacrine ^a
Brand name	ARICEPT	EXELON, generic	RAZADYNE, generic	COGNEX
Enzymes inhibited ^b	AChE	AChE, BuChE	AChE	AChE, BuChE
Mechanism	Noncompetitive	Noncompetitive	Competitive	Noncompetitive
Typical maintenance dose ^c	10 mg once daily	9.5 mg/24h (transdermal)	8-12 mg twice daily (immediate- release)	20 mg, four times daily
		3-6 mg twice daily (oral)	16-24 mg/day (extended- release)	
FDA-approved indications	Mild–severe AD	Mild–moderate AD,	Mild–moderate AD	Mild–moderate AD
		Mild–moderate PDD ^d		
Metabolism ^e	CYP2D6, CYP3A4	Esterases	CYP2D6, CYP3A4	CYP1A2

Why do AChE inhibitors fail?

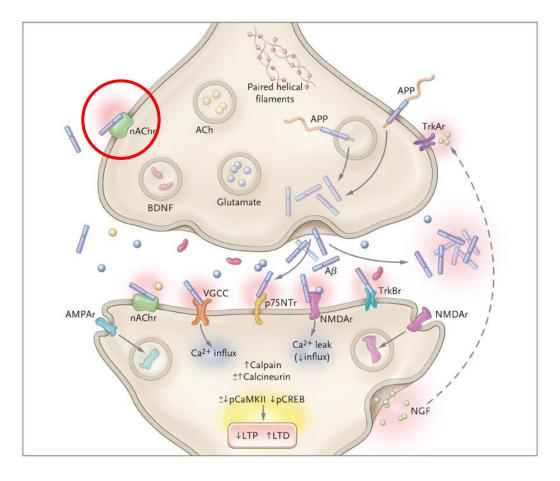
- Many other neuronal systems affected
 - Glutamatergic, 5-HT, neuropeptides
 - Cortical and hippocampal atrophy in addition to cholinergic degeneration
- Disease is far more complex!


Familial AD


- Mutations in APP -> early onset AD
 - Mouse models show plaques not tangles
- Trisomy 21 very early onset dementia like AD with massive AD-like pathology
 - Mouse models of APP over-production do not result in AD-like pathology
- Presenilin 1 & 2 causes over-production of A $\!\beta$

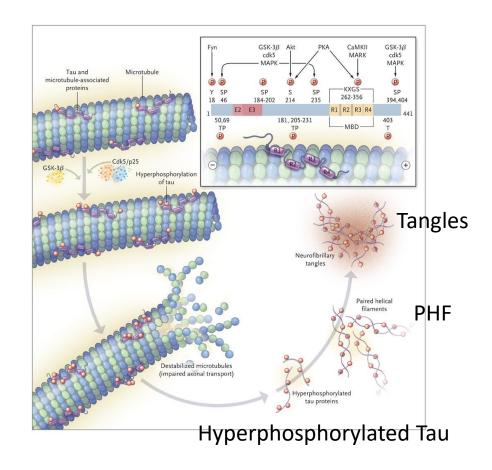
Pathological hallmarks of AD

- <u>Cortical wasting</u> widening of sulci and loss of tissue
- <u>Senile plaques</u> Beta-amyloid (A β) accumulation
 - Soluble A β is highly neurotoxic
- <u>Neurofibrillary tangles</u>
 - Comprised of hyper-phosphorylated Tau
 - Appears to be a consequence of $\mathsf{A}\beta$ accumulation
- <u>Characteristic pattern of changes</u>
 - Early temporal lobe in entorhinal cortex
 - Hippocampus
 - Later other cortical areas
 - Consistent with idea of spread along known connections

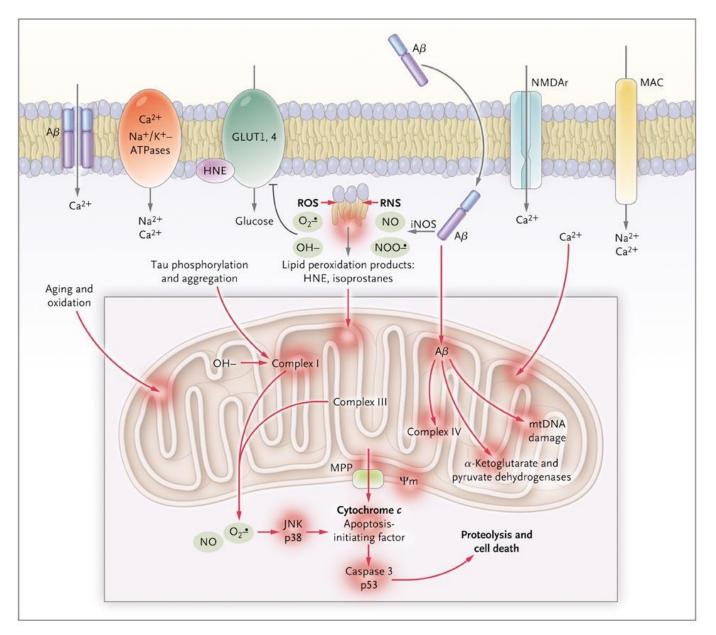


Querfurth H, LaFerla F. N Engl J Med 2010;362:329-344

Aβ & Amyloid Hypothesis

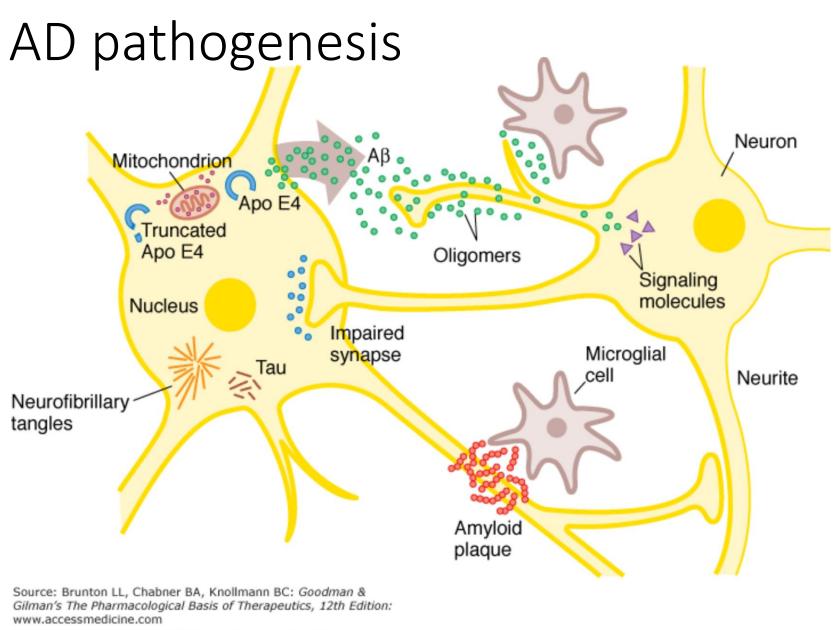

- Produced by abnormal processing of APP
 - BACE
 - Gamma-secretase (4 subunit protein, contains PSEN1/2)
- A β is 36-43 amino acid fragment of APP
- Accumulates, oligomerizes & forms insoluble plaques
- $A\beta_{42}$ is <u>directly</u> toxic to synapses
- Extracellular A β can lead to excitotoxic cell death by mediating glutamate release

Synaptic dysfunction caused by $\mathsf{A}\beta$

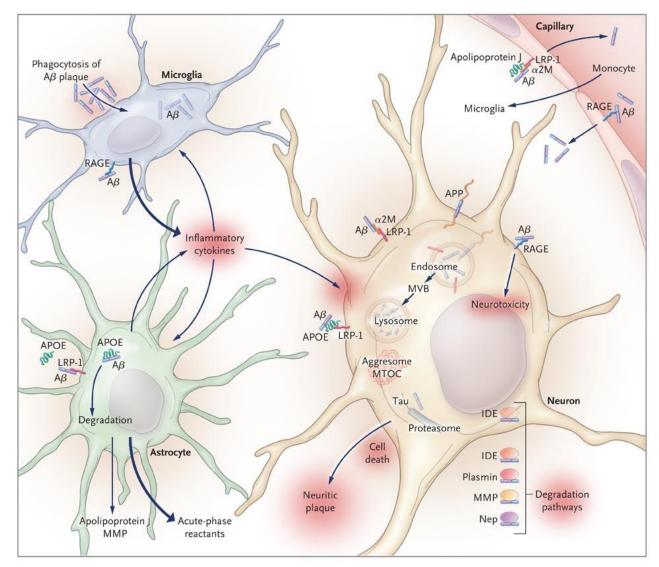


Tau & Tangles

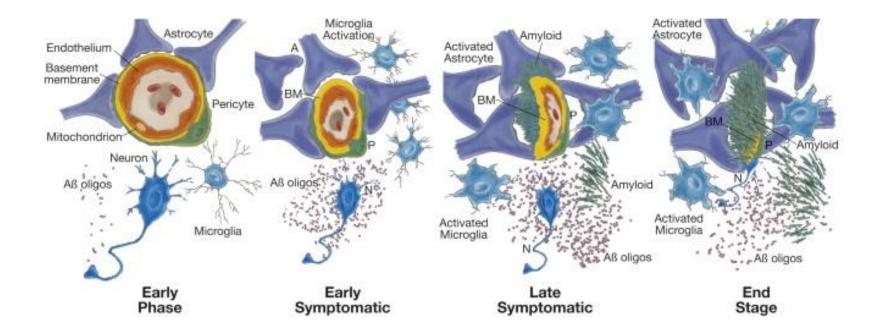
- Abnormally phosphorylated <u>tau</u>
- Insoluble and associates to formed paired-helical filaments
- Tau is a microtubule associated protein binds to and stabilizes microtubules (MTs)
- Phosphorylation of tau reduces binding
- Likely secondary to $\mbox{A}\beta$



Oxidative stress and mitochondrial failure


New drugs

- Targeted at beta-amyloid
 - LY450139 γ -secretase inhibitor (Phase 3 failed in 2010)
 - <u>Vaccines</u> to elicit immune response against $A\beta$
 - AM-1792 Phase 2a: stopped due to brain inflammation adverse events.
 - ACC-001 Phase 2a. Better safety profile. Phase 3: ineffective.
 - Antibody against A β . Bapineuzumab. Also failed Phase 3.
- Neuroprotection
 - AL-108 intranasal peptide Phase 2a promising (2009).
 - PBT2 Phase 2a promising (2010) metal chaperone reduce free divalent metal ions that result in ROS damage
 - Etanercept (Enbrel) RA drug, small Phase 2 promising (2008)
- Tau
 - Methythionium chloride methylene blue, reduces tau oxidation and aggregation (TRx023 - ongoing Phase III trials)



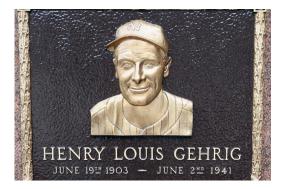
Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

More complex interactions of A $\!\beta$ with neural environment

Does impaired clearance of Aβ lead to neurovascular dysfunction?

YES! 60-90% patients have ischemic vascular disease, with high incidence of major infarctions. Many vascular dementia's have pathological changes akin to AD.

A β is toxic to endothelial and small muscle components of neurovascular compartment.

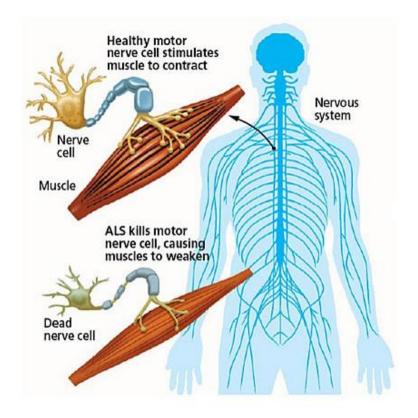

Future

- 1772 trials in ClinicalTrials.gov
- 523 open trials
- 54 Phase III
 - Amyloid targeting vaccine, 2nd generation (CAD106, CNP520)
 - BACE1 inhibitors (LY3314814, JNJ-54861911)
 - TTP448 (antagonist of RAGE, interacts with $A\beta$)
 - Encenicline (α 7-nAChR agonist)

Neurodegenerative Diseases

- Alzheimer's disease
- Parkinson's disease
- Amyotrophic Lateral Sclerosis (ALS)
- Huntington's disease
- Others:
 - Frontotemporal dementia with Parkinsonism
 - Prion diseases
 - Multiple sclerosis

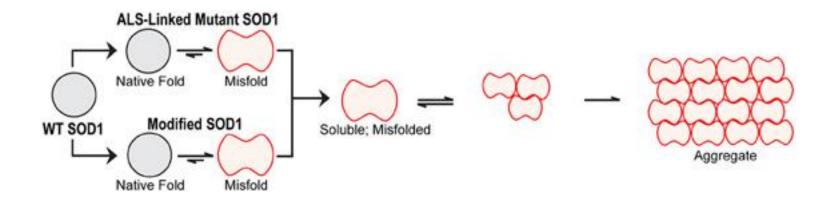
Amyotrophic Lateral Sclerosis

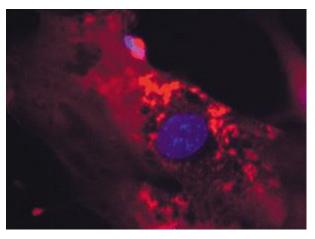

- Motor neuron disease (Lue Gehrig's disease)
- 5-10% cases have known genetic cause (i.e. familial)
- Rapidly fatal (1-5 years)
- Loss of upper (cortical) and lower (spinal) motor neurons

Epidemiology and genetics

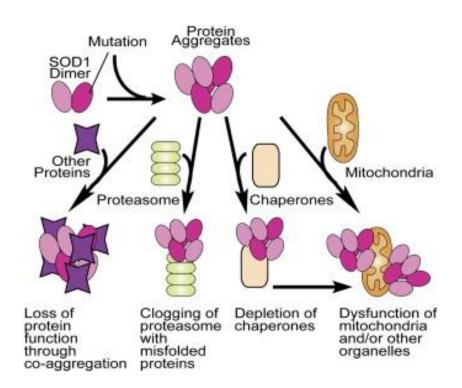
- Prevalence
 - Much rarer than AD and PD
 - Age of onset between 40-60 yrs
 - Men > Women
 - USA: 6000-8000 people, 530 new cases / yr
 - 4.7 cases per 100,000
 - Lifetime risk is 1 in 1000
- Genetic risk (90% are sporadic)
 - Superoxide dismutase (SOD1) 15-20% of genetic cases
 - TAR DNA binding protein (TDP-43)
 - FUS/TLS
 - Both bind DNA/RNA regulating transcription

Clinical overview

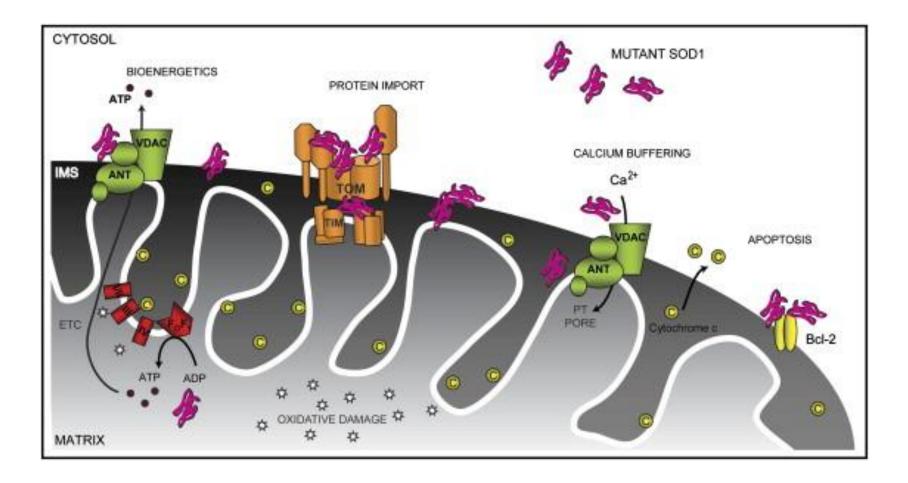

- Rapid progressive weakness, muscle atrophy and fasciculations (twitch), spasticity (stiffness), dysarthria (speech), dysphagia (eating), respiratory compromise.
- Sensory (non-motor) function is spared
- ALS usually is progressive and fatal. Most patients die of respiratory compromise and pneumonia after 2-3 years.

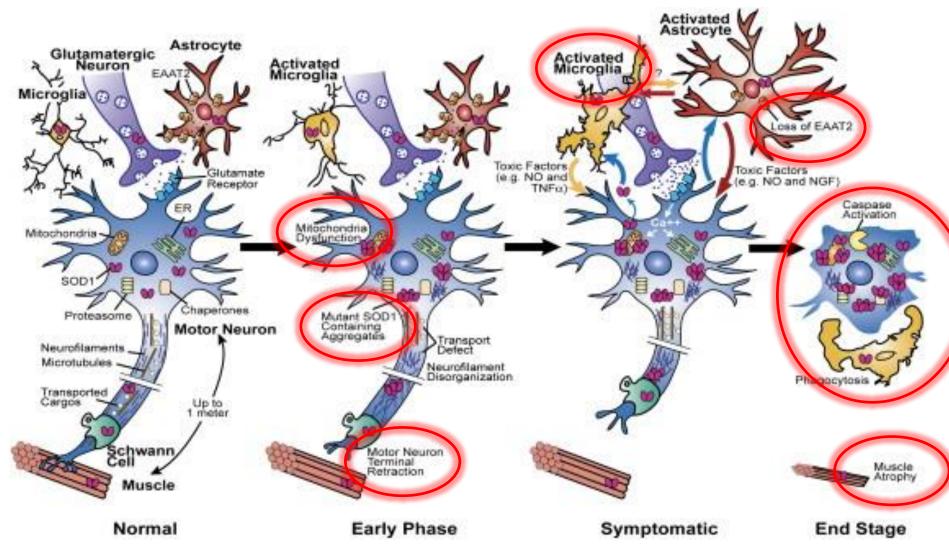


Pathological mechanisms?


SOD1 mutations in ALS identified in 1993

- Oxidative hypothesis model
 - SOD1 involved in converting superoxide radicals
 - Some SOD mutations can result in reduce function leading to oxidative stress
 - Others do not effect enzyme function
 - SOD1 null mice do not develop ALS-like pathology
 - Suggests a toxic 'gain of function'
- Aggregation?


SOD1 mutant aggregates


Why do SOD1 aggregates kill motor neurons?

- SOD1 misfolding is detected by the *unfolded protein response* (UPR), a cellular stress response.
- This should activate a cellular stress pathway in an attempt to restore homeostasis
 - 1. Increases proteolysis via proteasome (increase clean-up of misfolded protein)
 - 2. Increases chaperone expression (improve folding)
 - 3. Reduces protein translation (reduce burden)
- High threshold for this stress response in motor neurons may contribute to *selective vulnerability*
- Failure of the UPR can result in stimulation of apoptosis

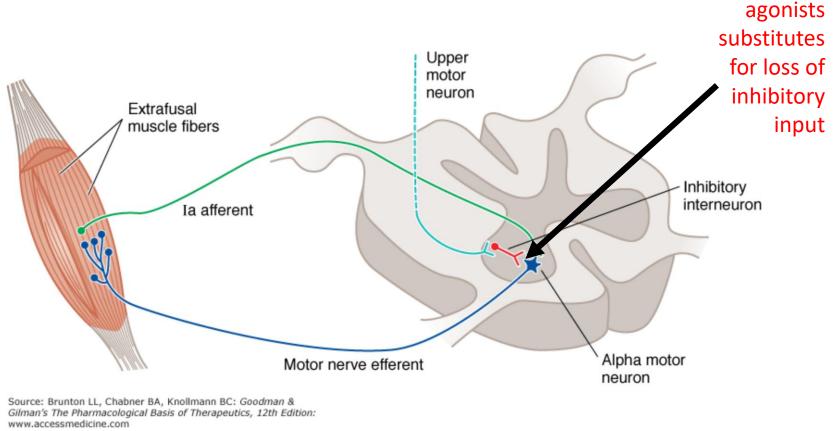
Mitochondrial dysfunction as a proximal cause of MN death?

Evolution of MN injury in ALS

Treatment of ALS

• <u>ONLY</u> Riluzole approved for treatment

Mechanism of action is poorly characterized, effects include:


- 1. Inhibition of glutamate release
- 2. Blockade of post-synaptic NMDA and kainate receptors
- 3. Inhibition of Na_v channels.
- 4. GPCR target?

Modest effect on survival and well tolerated. Milestone but unclear how this will lead to future advances in drug therapy.

<u>Spasticity</u> – Balcofen (GABA_B) and diazepam (GABA_A) <u>Dysphagia</u> – Amitriptyline (TCA) – anticholinergic to prevent excess saliva production

Loss of upper MN input leads to spasticity

GABA

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Current trials on ClinicalTrials.gov

- 38 trials Phase III 5 open
 - Olanzapine
 - Aimed at treating appetite loss
 - Tirasemtiv (Cytokimetics)
 - Skeletal muscle troponin activator increases sensitivity to Ca²⁺ thereby allowing fewer MN fibers to elicit larger effects, i.e. may delay loss of muscle function
 - Masitinib (AB1010) anti-cancer inhibits RTKs
 - Reduce inflammation

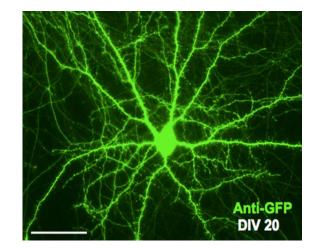
Neurodegenerative Diseases

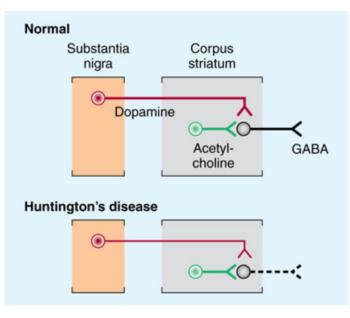
- Alzheimer's disease
- Parkinson's disease
- Amyotrophic Lateral Sclerosis (ALS)
- Huntington's disease
- Others:
 - Frontotemporal dementia with Parkinsonism
 - Prion diseases
 - Multiple sclerosis

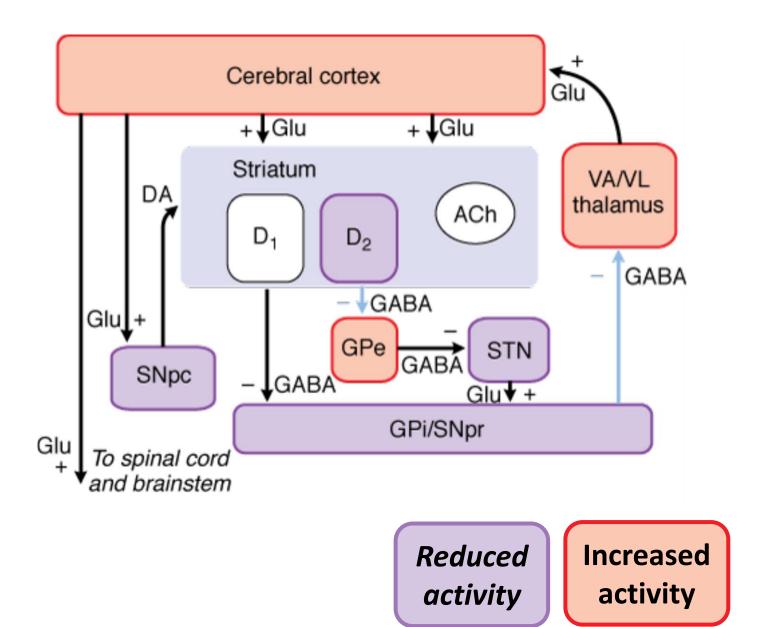
Huntington's disease

- Incidence 4-10 / 100,000 new cases per year
- Genetically determined autosomal dominant
- Near 100% dominance with prominent anticipation

- i.e. subsequent generations suffer from earlier onset


- Trinucleotide repeat disease (CAG_n) in the huntington gene (Chr 4)
 - Normal = 9-34 triplets (median: 19)
 - HD = 40-100+

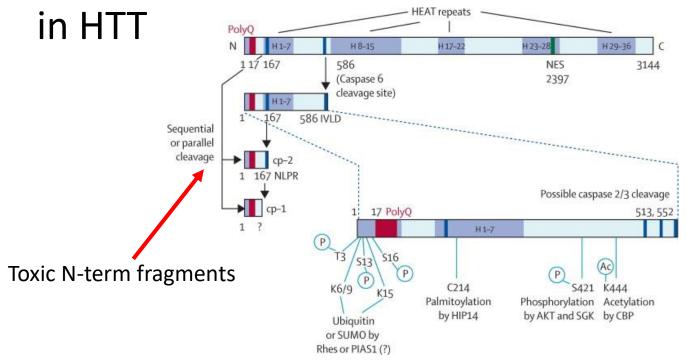

Clinical overview


- Gradual onset of motor incoordination and cognitive decline
- Huntington's chorea movement disorder brief jerk-like movements
- Fine-motor coordination and impairment of rapid eye movements are early symptoms
- Psychiatric symptoms (confusion, amnesia, psychosis) and cognitive dysfunction (dementia)
- Disease is fatal, typically over 15-20 years.

Basal Ganglia Pathology

- Massive loss of medium spiny neurons in neostriatum (up to 95%)
 - GABAergic inhibitory interneurons that receive input from SNpC DA neurons
 - Affects innervation of GPi and SNpr (indirect) before Gpe (direct pathway)

	Drug	Class	Main adverse effects and treatment notes
Chorea			
Myoclonus, d spasticity	Г МЛС	JUIEA .	THE DISEASE
Myoclonus			
	Levetiracetam	Anticonvulsant	Gastrointestinal disturbance, rash, mood changes, myalgia
Rigidity (particularly associated with juvenile Huntington's disease or young adult-onset parkinsonian phenotype)	Levodopa	Amino acid precursor of dopamine	Gastrointestinal disturbance, postural hypotension, insomnia, agitation, psychiatr symptoms, increased chorea
Rigidity, spasticity	Baclofen, tizanidine	Skeletal muscle relaxants	Sedation, drowsiness, confusion, gastrointestinal disturbances, hypotension
Bruxism, dystonia	Botulinum toxin	Inhibits acetycholine release at neuromuscular junction to cause muscle paralysis	Could paralyse nearby muscles
Psychosis, irritability	Olanzapine Quetiapine	Atypical neuroleptics Atypical neuroleptics	Sedation, parkinsonism, tardive dyskinesia, and neuroleptic malignant syndrome, less risk of these than with older neuroleptics, raised triglycerides, weight gain from increased appetite, which could be beneficial (in relation to the weight loss seen in Huntington's disease). Caution should be exercised in patients with diabetes, and I glucose should be monitored. Might rarely cause prolonged QT interval. Useful if p also has agitation, irritability, and anxiety As above for olanzapine, but less metabolic syndrome
Psychosis, chorea, irritability	× 1	<i>,</i> , ,	
Psychosis, chorea, initability	Risperidone Sulpiride Haloperidol	Atypical neuroleptics Older neuroleptics Older neuroleptics	As above for olanzapine, but less effect on increasing appetite Agitation, dystonia, akathisia, sedation, hypotension, dry mouth, constipation Sedation, more parkinsonism than atypical neuroleptics, dystonia, akathisia, hypotension, constipation, dry mouth, weight gain, tardive dyskinesia, higher risk neuroleptic malignant syndrome than atypical neuroleptics
Treatment-resistant psychosis	Clozapine	Atypical neuroleptics	As for other neuroleptics, plus agranulocytosis, myocarditis, and cardiomyopathy. blood monitoring
Psychosis with prominent negative symptoms	Aripiprazole	Atypical neuroleptics	Parkinsonism, akathisia, drowsiness, gastrointestinal disturbance, tremor, blurred
Depression, anxiety, obsessive compulsive behaviour, irritability	Citalopram Fluoxetine Paroxetine	SSRI SSRI SSRI	Gastrointestinal disturbance, hypersensitivity reactions, drowsiness, syndrome of inappropriate antidiuresis, postural hypotension As for citalopram, sleep disturbances As for other SSRIs, raised cholesterol
	Sertraline Mirtazapine	SSRI Presynaptic α2-antagonist, increases central noradrenaline and serotonin activity	As for other SSRIs Weight gain, oedema, sedation, headache, dizziness, tremor. Useful for sedation w insomnia is a problem
	Venlafaxine	Serotonin and noradrenaline reuptake inhibitor	Hypertension, gastrointestinal disturbance, hypersensitivity reactions, drowsiness, agitation, syndrome of inappropriate antidiuresis, palpitations
Altered sleep-wake cycle	Zopiclone, zolpidem	Hypnotics	Drowsiness, confusion, memory disturbance, gastrointestinal disturbance
Mania or hypomania	Sodium valproate Carbamazepine	Anticonvulsants Anticonvulsants	As above for myoclonus Hypersensitivity reactions, drowsiness, blood dyscrasia, hepatitis, hyponatraemia, dizziness, gastrointestinal disturbance
	Lithium	Mood stabiliser	Renal insufficiency, hypothyroidism, and tremor, with a narrow therapeutic windo

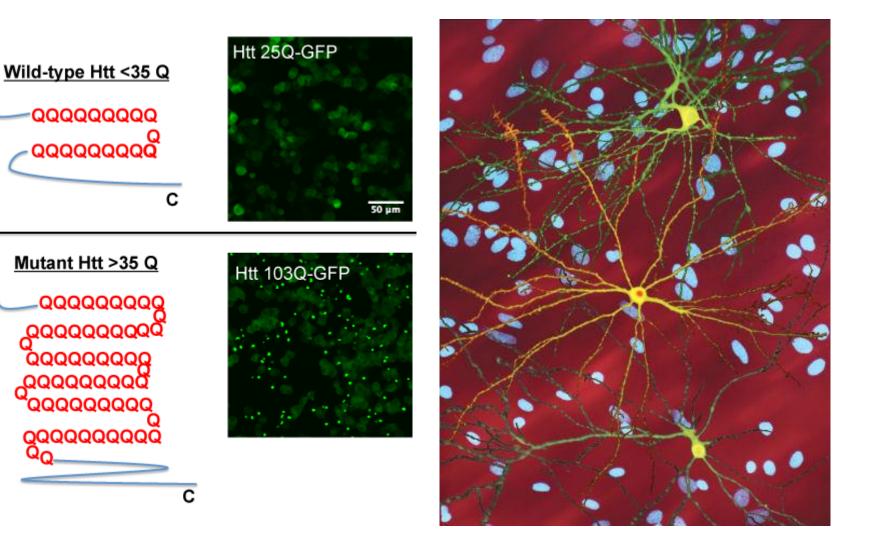

Table: Symptomatic drug treatment for Huntington's disease

Pathological mechanisms – two hypotheses

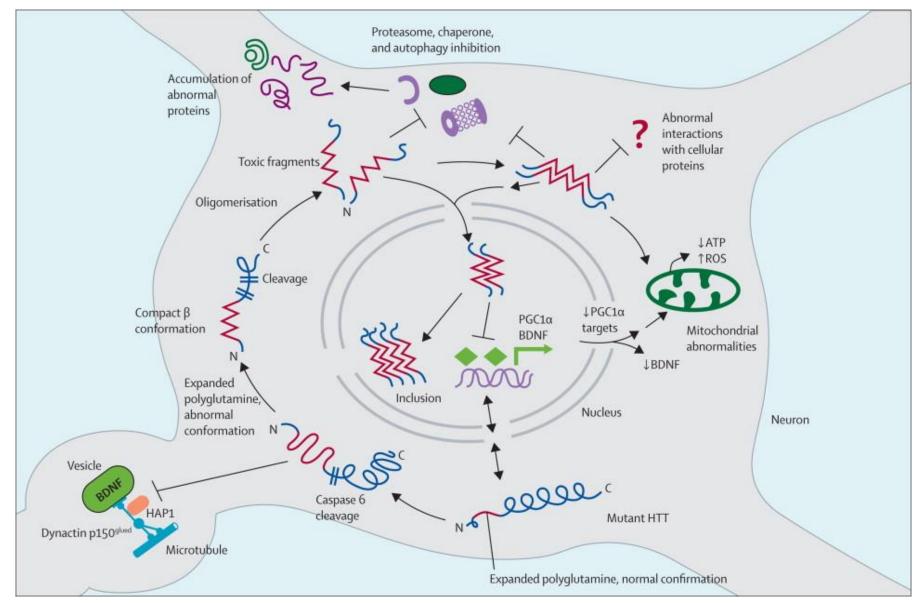
- Excitotoxicity
 - Animal model infusion of excitotoxin into striatum can produce similar motor symptoms and loss of MSNs
 - MSNs receive large excitatory input from neocortex
- Mitochondrial dysfunction
 - Ultrastructural evidence
 - PET reduced glucose and O₂ metabolism
 - Mitochondrial toxins into striatum cause similar pattern of MSN loss with preservation of other interneurons
 - Which can be blocked by removal of cortical input or NMDA antagonists
- Combination?

HD is a monogenic autosomal dominant disease

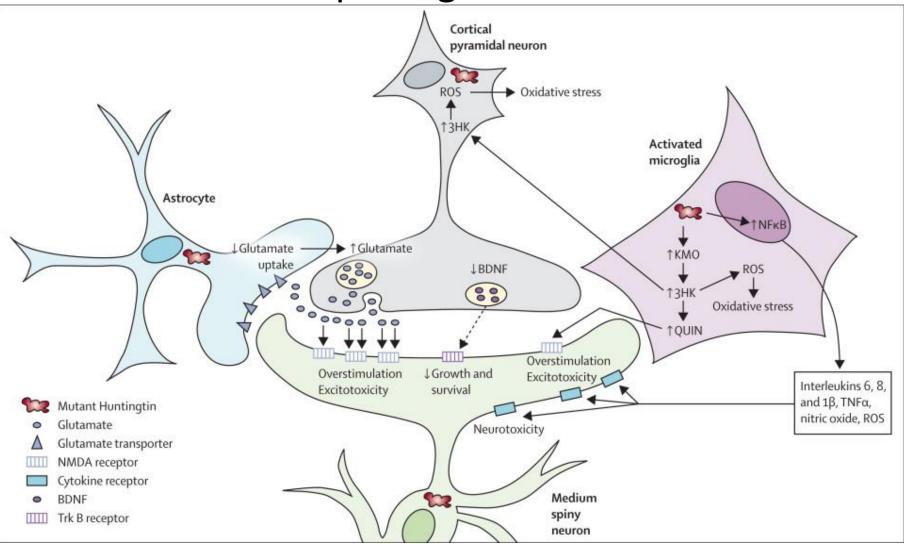
- One gene when mutated causes disease
- Identified in 1993 as Huntingtin (HTT)
- Mutation characterized as a CAG triplet repeat


Key features of HD pathogenesis

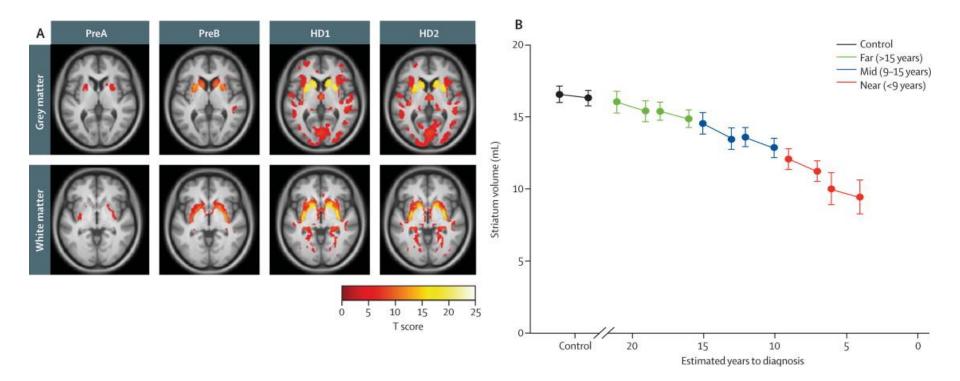
- 1. Mutant HTT misfolds
- 2. Unfolded protein response is impaired
- 3. Mutant HTT is truncated and fragments are highly toxic
- 4. Post-translational modifications of HTT influence toxicity
- 5. Nuclear translocation of HTT contributes to toxicity
- 6. Cellular metabolism is impaired


HTT inclusion in medium spiny neurons

Ν


Ν

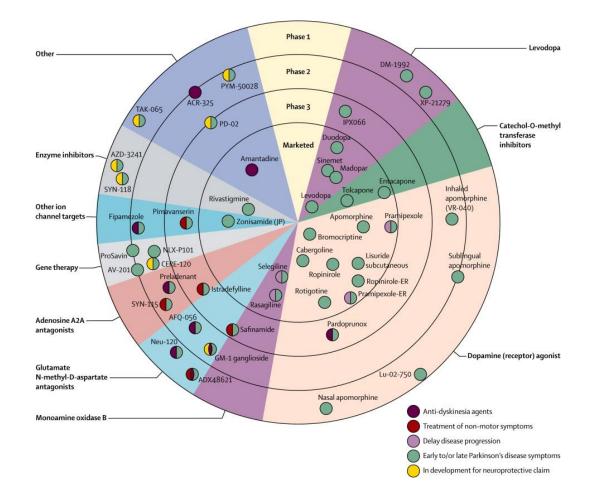
Intracellular pathogenesis in HD


Cell interactions and intercellular pathogenesis

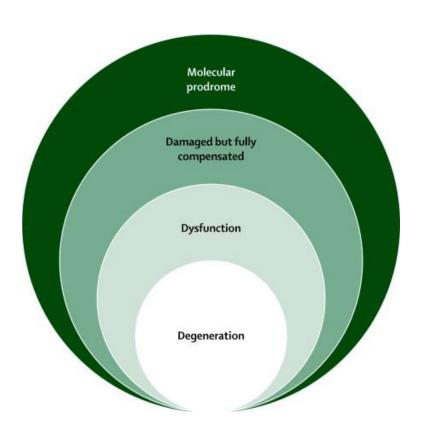
Several new HD targets -> Clinical Trials

- No drug has proven efficacious
- HD progresses slowly, and disease is heterogeneous
- Variability in assessment of disease progression
 Therefore trial design is difficult
- Focus on novel biomarkers including imaging
- Observational rather than interventional trials

MRI identifies prodromal disease and may be used to identify HD patients for improved intervention

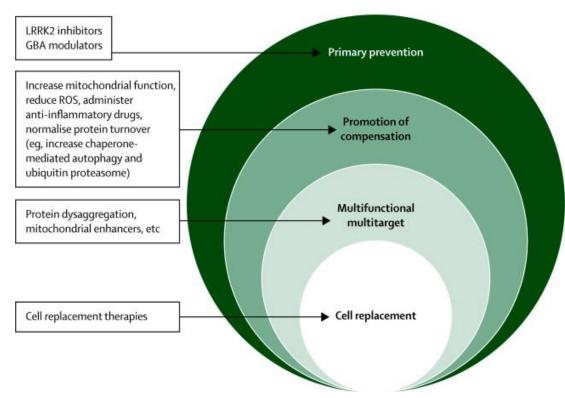


Other triplet repeat disease

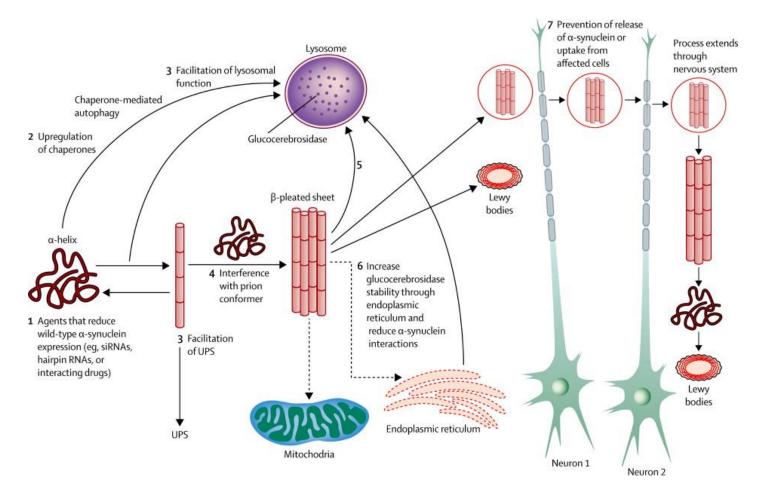

- HD part of a family of triplet repeat diseases characterized by polymorphic triplet repeats
- Show 'anticipation' earlier onset in subsequent generations
- Can be in coding and non-coding regions, in coding regions they encode poly amino acid repeats

Huntington's Disease	CAG
Fragile X Disease	CGG
Myotonic Dystrophy	CTG
Spinocerebellar atrophy (type 1)	CAG
Spinal and bulbar muscular atrophy (Kennedy's disease)	CAG

Existing and potential treatments in PD



Evolution of neurodegenerative diseases



Therapeutic strategies

Examples in PD

Strategies to prevent protein misfolding, aggregation and UPR stress

Examples in PD

Gene and cell therapy for neurodegenerative disease

- Cell replacement?
 - PD fetal mDA neurons, iPSCs, etc
 - HD MSNs
 - ALS MNs
 - AD unclear, too challenging
- Gene therapy?
 - Viral vectors likely AAV-based
 - GDNF, BDNF, IGF, etc.

Cellular Transplantation

- Cellular source and preparation
- Placement of cells
 - Original site of damage (requires projection though tissue)
 - Target site (will not receive appropriate inputs)
- Immunologic rejection
 - CNS privileged site but immunosuppression will be necessary for allogenic or xenografts
- Function

Transplantation in PD

- 6-OHDA model apomorphine induce rotations due to R supersensitivity
- Inject DA neuron-containing graft
- Assess rotational behavior
- Early clinical trials (Sweden, 1987) used chromaffin cells failure
- Human fetal midbrain grafts
 - PET confirmation of DA release
 - 12 months to reach peak
- Stem cells: hES & iPSCs
- Directed reprogramming: PMY516 recitation