
A COMPLEXITY FRAMEWORK FOR
COMBINATION OF CLASSIFIERS IN

VERIFICATION AND
IDENTIFICATION SYSTEMS

By

Sergey Tulyakov

May 2006

a dissertation submitted to the

faculty of the graduate school of state

university of new york at buffalo

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Department of Computer Science and Engineering

c© Copyright 2006

by

Sergey Tulyakov

ii

Acknowledgments

I would like to thank my advisor Dr. Venu Govindaraju for directing and supporting

this dissertation. His constant encouragement made the research going, and his nu-

merous suggestions and corrections were very helpful in preparing this thesis. I am

grateful to Dr. Sargur Srihari and Dr. Peter Scott for taking the time to serve on

my dissertation committee. I would also like to thank Dr. Arun Ross for detailed

reading of the draft, and advising multiple ways for its improvement.

During the years of studying and working on the dissertation I have enjoyed the

interactions with many people of the Center of Excellence in Document Analysis and

Recognition (CEDAR) and the Center for Unified Biometrics and Sensors (CUBS). In

particular, I would like to thank Dr. Petr Slavik for introducing me to this interesting

field of research and supervising my earlier work. I had many fruitful discussions with

Dr. Krassimir Ianakiev and Dr. Jaehwa Park on word and character recognition, and

with Dr. Tsai-Yang Jea on fingerprint matching. I enjoyed being in a team with

Dave Bartnik, Phil Kilinskas and Dr. Xia Liu on a fingerprint identification system.

I truly appreciate the support and encouragement of many people I worked with at

CEDAR and CUBS.

I would also like to thank my previous advisors in mathematics, Dr. Aleksandr I.

iii

Shtern and Dr. E. Bruce Pitman. The mathematical background turned out to be

very useful asset during the work on dissertation.

Finally, I extend my thanks to my parents, Viktor and Natalia, who always believed

in me and the success of this work. Also I express the gratitude to all my friends,

and especially to Liana Goncharuk, Vitaliy Pavlyuk and Jaroslaw Myszewski.

iv

Abstract

In this thesis we have developed a classifier combination framework based on the

Bayesian decision theory. We study the factors that lead to successful classifier com-

bination and identify the scenarios that can benefit from specific combination strate-

gies. The classifier combination problem is viewed as a second-level classification task

where the scores produced by classifiers can be taken as features. Thus any generic

pattern classification algorithm (neural networks, decision trees and support vector

machines) can be used for combination. However, for certain classifier combination

problems such algorithms are not applicable, or lead to performance which is worse

than specialized combination algorithms. By identifying such problems we provide

an insight into the general theory of classifier combination. We introduce a complex-

ity categorization of classifier combinations, which is used to characterize existing

combination approaches, as well as to propose new combination algorithms.

We have applied our proposed theory to identification systems with large number of

classes as is often the case in biometric applications. Existing approaches to combina-

tion for such systems use only the matching scores of one class to derive a combined

score for that class. We show both theoretically and experimentally that these ap-

proaches are inferior to methods which consider the output scores corresponding to

v

all the classes. We introduce the identification model which accounts for the rela-

tionships between scores output by one classifier during a single identification trial.

This allows the construction of combination methods which consider a whole set of

scores output by classifiers in order to derive a combined score for any one class.

We also explore the benefits of utilizing the knowledge of classifier independence in

combination methods.

vi

Contents

Acknowledgments iii

Abstract v

1 Introduction 1

1.1 Problem . 2

1.1.1 Combinations of Fixed Classifiers and Ensembles of Classifiers 2

1.1.2 Operating Level of Classifiers 3

1.1.3 Output Types of Combined Classifiers 4

1.1.4 Considered Applications . 5

1.2 Objective . 6

1.3 Outline of the Dissertation . 8

vii

2 Combination Framework 10

2.1 Score Combination Functions and Combination Decisions 10

2.2 Complexity of Classifier Combinators 12

2.2.1 Complexity of Combination Functions 12

2.2.2 Complexity Based Combination Types 15

2.2.3 Solving Combination Problem 21

2.3 Large Number of Classes . 24

2.4 Large Number of Classifiers . 24

2.4.1 Reductions of Trained Classifier Variances 26

2.4.2 Fixed Combination Rules for Ensembles 28

2.4.3 Equivalence of Fixed Combination Rules for Ensembles 31

3 Utilizing Independence of Classifiers 35

3.1 Introduction. 35

3.1.1 Independence Assumption and Fixed Combination Rules . . . 38

3.1.2 Assumption of the Classifier Error Independence 39

3.2 Combining independent classifiers. 39

viii

3.2.1 Combination using density functions. 41

3.2.2 Combination using posterior class probabilities. 42

3.2.3 Combination using transformation functions. 44

3.2.4 Modifying generic classifiers to use the independence assumption. 44

3.3 Estimation of recognition error in combination 46

3.3.1 Combination Added Error . 47

3.4 Experiment with artificial score densiites. 49

3.5 Experiment with biometric matching scores. 52

3.6 Asymptotic properties of density reconstruction 54

3.7 Conclusion . 57

4 Identification Model 59

4.1 Introduction . 59

4.2 Combining Matching Scores under Independence Assumption 61

4.3 Dependent Scores . 64

4.4 Different number of classes N . 68

4.5 Examples of Using Second-Best Matching Scores 74

ix

4.5.1 Handwritten word recognition 74

4.5.2 Barcode Recognition . 76

4.5.3 Biometric Person Identification 79

4.6 Conclusion . 81

5 Combinations Utilizing Identification Model 83

5.1 Previous Work . 84

5.2 Low Complexity Combinations in Identification System 86

5.3 Combinations Using Identification Model 91

5.3.1 Combinations by Modeling Score Densities 93

5.3.2 Combinations by Modeling Posterior Class Probabilities . . . 94

5.3.3 Combinations of Dependent Classifiers 96

5.3.4 Normalizations Followed by Combinations and Single Step Com-

binations . 96

5.4 Experiments . 98

5.5 Identification Model for Verification Systems 99

5.6 Conclusion . 103

x

6 Conclusions 105

A Complexity of Functions with N-dimensional Outputs 109

xi

Chapter 1

Introduction

The ability to combine decisions from different sources is important for any recognition

system. For example, a deer in the forest produces both visual and auditory signals.

Consequently, the predator’s brain processes visual and auditory perceptions through

different subsystems and combines their output to identify the prey. Humans perform

subconscious combination of sensory data and make decisions regularly. A friend

walking at a distance can be identified by the clothing, body shape and gait. It was

noted in psychology literature that significant degree of human communication takes

place in a non-verbal manner[5]. Thus in a conversation we make sense not only from

the spoken words, but also from gestures, face expressions, speech tone, and other

sources.

More deliberate decision making also involves combination of information from mul-

tiple sources. For example, military and economic decisions are committed only after

considering different sources of information about enemies or competitors. Court

decisions are made after considering evidence from all sources and weighing their

1

CHAPTER 1. INTRODUCTION 2

individual strengths.

The field of pattern recognition is about automating such recognition and decision

making tasks. Thus the need to develop combination algorithms is fundamental to

pattern recognition. It is generally agreed that using a set of classifiers and combining

them somehow can be superior to the use of a single classifier[27]. The decisions of the

individual experts are often conflicting [13], [28], [30], [37], [36], [44], and combining

them is a challenging task.

1.1 Problem

The field of classifier combination research has expanded significantly in the last

decade. It is now possible to divide the general problem into subareas based on the

type of the considered combinations. Such a categorization will also allow us to define

precisely the main area of our research.

1.1.1 Combinations of Fixed Classifiers and Ensembles of

Classifiers

The main division is based on whether combination uses a fixed (usually less than

10) set of classifiers, as opposed to a large pool of classifiers (potentially infinite) from

which one selects or generates new classifiers. The first type of combinations assumes

classifiers are trained on different features or different sensor inputs. The advantage

comes from the diversity of the classifiers’ strengths on different input patterns. Each

classifier might be an expert on certain types of input patterns. The second type of

CHAPTER 1. INTRODUCTION 3

combinations assumes large number of classifiers, or ability to generate classifiers. In

the second type of combination the large number of classifiers are usually obtained

by selecting different subsets of training samples from one large training set, or by

selecting different subsets of features from the set of all available features, and by

training the classifiers with respect to selected training subset or subset of features.We

will focus primarily on the first type of combinations.

1.1.2 Operating Level of Classifiers

Combination methods can also be grouped based on the level at which they operate.

Combinations of the first type operate at the feature level. The features of each

classifier are combined to form a joint feature vector and classification is subsequently

performed in the new feature space. The advantage of this approach is that using the

features from two sets at the same time can potentially provide additional information

about the classes. For example, if two digit recognizers are combined in such a fashion,

and one recognizer uses a feature indicating the enclosed area, and the other recognizer

has a feature indicating the number of contours, then the combination of these two

features in a single recognizer will allow class ’0’ to be easily separated from the other

classes. Note that individually, the first recognizer might have difficulty separating

’0’ from ’8’, and the second recognizer might have difficulty separating ’0’ from ’6’

or ’9’. However, the disadvantage of this approach is that the increased number of

feature vectors will require a large training set and complex classification schemes. If

the features used in the different classifiers are not related, then there is no reason

for combination at the feature level.

Combinations can also operate at the decision or score level, that is they use outputs

CHAPTER 1. INTRODUCTION 4

of the classifiers for combination. This is a popular approach because the knowl-

edge of the internal structure of classifiers and their feature vectors is not needed.

Though there is a possibility that representational information is lost during such

combinations, any negative effect is usually compensated by the lower complexity

of the combination method and superior training of the final system. We will only

consider classifier combinations at the decision level.

1.1.3 Output Types of Combined Classifiers

Another way to categorize classifier combination is by the outputs of the classifiers

used in the combination. Three types of classifier outputs are usually considered[63]:

• Type I : output only a single class. This type can also include classifiers out-

putting a subset of classes to which the input pattern can belong. This is

equivalent to the classifier assigning a confidence of 0 or 1 to each class.

• Type II: output a ranking for all classes. Each class is given a score equal to its

rank - 1, 2, . . . , N .

• Type III: output a score for each class, which serves as a confidence measure

for the class to be the true class of the input pattern. Scores are arbitrary real

numbers.

If the combination involves different types of classifiers, their output is usually con-

verted to any one of the above: to type I[63], to type II[28] or to type III[46]. In this

thesis we will assume that the classifier output is of type III.

CHAPTER 1. INTRODUCTION 5

Among combinations of classifiers of this type we could find combinations with fixed

structure (different voting schemes, Borda count, sum of scores [63, 37]) or combi-

nations that can be trained using available training samples (weighted vote, logistic

regression[28], Dempster-Shafer rules [63] and neural network[46]).

1.1.4 Considered Applications

The efforts to automate the combination of expert opinions have been studied ex-

tensively in the second half of the twentieth century[16]. These studies have cov-

ered diverse application areas: economic and military decisions, natural phenomena

forecasts, technology applications. The combinations presented in these studies can

be separated into mathematical and behavioral approaches[14]. The mathematical

combinations try to construct models and derive combination rules using logic and

statistics. The behavioral methods assume discussions between experts, and direct

human involvement in the combination process. The mathematical approaches gained

more attention with the development of computer expert systems. Expert opinions

could be of different nature dependent on the considered applications: numbers, func-

tions, etc. For example, the work of R. Clemen contains combinations of multiple

types of data, and, in particular, [14] considers combinations of expert’s estimations

of probability density functions.

The pattern classification field developed around the end of twentieth century deals

with more specific problems of assigning input signal to two or more classes. In the

current thesis we consider combinations of classifiers from a pattern classification

perspective. The combined experts are classifiers and the result of the combination

is also a classifier. The output types of classifiers were described in the previous

section. The unifying feature of these outputs is that they could be all represented as

CHAPTER 1. INTRODUCTION 6

vectors of numbers where the dimension of vectors is equal to the number of classes.

As a result, the combination problem can be defined as a problem of finding the

combination function accepting N -dimensional score vectors from M classifiers and

outputting N final classification scores, where the function is optimal in some sense,

e.g. minimizing the misclassification cost. The pattern classification uses mostly

statistical methods, and classifier combination field employs statistics as well.

The applications of pattern classification include image classification, e.g OCR (op-

tical character recognition) and word recognition, speech recognition, person authen-

tication by voice, face image, fingerprints and other biometric characteristics. In

our thesis we will mostly consider the biometric person authentication applications.

Though our proposed classifier combination framework (chapter 2) is applicable to

all applications in general, parts of the thesis might require assumptions specific to

biometric authentication. For example, chapter 3 uses the assumption of classifier in-

dependence which is true for biometric matchers of different modalities, and chapters

4 and 5 assume large number of classes which is appropriate in person identification

systems.

1.2 Objective

The main motivation for our research is to develop an efficient algorithm for com-

bining biometric matchers in person identification systems. After studying multiple

combination methods for biometric data [37, 7, 32, 34], we have observed that the

considered combination functions use only the matching scores of a particular person

to obtain a final combined score for that person. This is different from combinations

considered in the OCR field where a final matching score for a particular character

CHAPTER 1. INTRODUCTION 7

is derived from the matching scores of all the characters [46]. Thus we wanted to

investigate whether similar combinations could be effective in biometric identification

systems. As a result we developed a categorization of classifier combinations based on

the number of considered scores and on the variability of the combination function.

The main objective of this thesis is to develop a framework for classifier combination

based on this categorization.

The framework should help a practitioner to choose a proper combination method for

a particular classifier combination problem. The traditional approach for choosing a

combination method is to try a few methods and find the one which shows the best

performance on a test set. In our work we presume that all combinations methods

are roughly equivalent if they possess a property of universal approximation. Thus,

instead of studying whether a particular combination method (say, SVM or neural

network) has better approximating abilities, we are more interested in the type of

this method, that is how many input parameters it considers and whether its training

is different for each class. The purpose of this thesis is to investigate whether the

choice of the combination type is more important than the choice of the used universal

approximator.

We assume that the combination method is in practice a classifier acting on the

outputs of combined classifiers. The question is whether this combining classifier

should be any different from traditional classifiers used in the pattern classification

field. Pattern classifiers working in a feature vector space do not make any distinction

among features. If we find that there are some distinctions or connections between

the outputs of the combined classifiers (on which combination classifier operates), the

combinator could utilize such connections in order to have a more efficient combina-

tion method. One such connection exists when we consider biometric matchers of

different modalities as the output scores related to different matchers are statistically

CHAPTER 1. INTRODUCTION 8

independent. We will investigate in this thesis whether utilizing such knowledge can

improve combination results.

1.3 Outline of the Dissertation

In the second chapter we will introduce the framework for classifier combination.

The classifier combination task is approached from the complexity point of view. We

describe the challenges, categorize them and develop possible solutions. This chapter

also discusses issues with classifier ensembles.

In the third chapter we consider an example of combinations for which we have the

knowledge of the independence of classifiers’ scores. Combinations of this kind can be

used in biometric person authentication tasks. The chapter deals with the question

of how this additional knowledge can improve the combination algorithm.

The fourth chapter discusses a problem of combining recognition scores for different

classes produced by one recognizer during a single recognition attempt. Such scenarios

occur in identification problems (1:N classification problems) with large or variable

N. By using artificial examples we show that an intuitive solution of making the

identification decision based solely on the best matching score is often suboptimal.

We draw parallels with score normalization techniques used in speaker identification.

We present three real life applications to illustrate the benefits of proper combination

of recognition scores.

The fifth chapter approaches combination problems in cases where the number of

classes is large as in biometric person identification, recognition of handwritten words

and recognition of barcodes. We investigate the dependency of scores assigned to

CHAPTER 1. INTRODUCTION 9

different classes by any one classifier. We will utilize the independence model during

classifier combinations and experimentally show the effectiveness of such combina-

tions.

Finally, the sixth chapter contains the summary of our work and contributions made.

Chapter 2

Combination Framework

In order to produce a combined score for a particular class, combination algorithms

usually use scores assigned by classifiers only to this particular class, although they

could use the set of scores assigned to all classes [46]. For example, a neural network

can be trained to operate only on scores related to a particular class, or on all the

scores output by the classifiers. In this chapter we study both types of combinations.

In fact, combination methods can be divided into 4 types based on the combination

function complexity.

2.1 Score Combination Functions and Combina-

tion Decisions

Any approach to classifier combination essentially operates on the outputs of individ-

ual classifiers. For example, Dar-Shyang Lee [46] used a neural network to operate on

10

CHAPTER 2. COMBINATION FRAMEWORK 11

the outputs of the individual classifiers and to produce the combined matching score.

The advantage of using such a generic combinator is that it can learn the combination

algorithm and can automatically account for the strengths and score ranges of the

individual classifiers. One can also use a function or a rule to combine the classifier

scores in a predetermined manner. It is generally accepted that using combination

rules is preferable although there is no conceptual difference between two approaches.

Note that the final goal of classifier combination is to create a classifier which operates

on the same type of input as base classifiers and separates the same types of classes.

Using combination rules implies some final step of making classification decision. If

we denote the score assigned to class i by base classifier j as sj
i , then the typical

combination rule is some function f and the final combined score for class i is Si =

f({sj
i}j=1,...,M). The sample is classified as belonging to class arg maxi Si. Thus the

combination rules can be viewed as a classifier operating on base classifiers’ scores,

involving some combination function f and the arg max decision.

Classifiers do not have to be necessarily constructed following the above described

scheme, but in practice we see this theme present is commonly used. For example, in

multilayer perceptron classifiers the last layer has each node containing a final score

for one class. These scores are then compared and the maximum is chosen. Similarly,

k-nearest neighbor classifier can produce scores for all classes as ratios of the number

of representatives of a particular class in a neighborhood to k. The class with highest

ratio is then assigned to a sample.

Combination rules f are usually some simple functions, such as sum, weighted sum,

max, etc. Generic classifiers such as neural networks and k-nearest neighbor, on

the other hand, imply more complicated functions. Also, combination rules usually

consider scores corresponding only to a particular class in order to calculate the final

CHAPTER 2. COMBINATION FRAMEWORK 12

score for the class, whereas generic classifiers can consider scores belonging to other

classes as well. We will discuss this consideration of all scores in more detail in the

next section.

In summary, simple combination rules f can be considered as a special type of classifier

which operates on the base classifiers’ scores. We will explore whether this approach

has any advantage over the generic classifiers.

2.2 Complexity of Classifier Combinators

The general scheme for classifier combination is shown in figure 2.2.1. The final

score for a class is derived from the scores received from all the classifiers for that

class. This approach has low complexity, and many well known combination methods

(Borda count, sum of scores) fall into this category. It is also possible to consider a

more general form of combination where derivation of a final score for a particular

class includes all classifier scores, for that class as well as for other classes [46]. A class

confusion matrix can be used for the construction of such combination methods[63].

The disadvantage of this more general approach is that it requires enormous amount

of training data.

2.2.1 Complexity of Combination Functions

We introduce the notion of complexity of combinators in this section. Intuitively,

complexity should reflect the number of base classifier scores that influence the calcu-

lation of the combined scores, and how complicated combination functions really are.

Previous approaches to define the complexity have included simply counting numbers

CHAPTER 2. COMBINATION FRAMEWORK 13

Classifier 1

Classifier 2

Classifier M

Class 1

Class 2

Class N

Score 1

Score 2

Score N

Combination
 algorithm

:

S
1

1

S
1

2

S
1

N

:

S
M

1

S
M

2

S
M

N

:

S
2

1

S
2

2

S
2

N

Figure 2.2.1: Classifier combination takes a set of sj
i - score for class i by classifier j

and produces combination scores Si for each class i.

of trained function parameters, Kolmogorov’s algorithmic function complexity and

the VC (Vapnik-Chervonenkis) dimension [60].

Although the VC dimension seems to be the most appropriate complexity definition

for our purpose, it does not take into account the number of input parameters being

considered. Combination functions might not use all available base classifiers’ scores

for calculating final combination scores. For example, in order to calculate a final

combined score for a particular class sum and product rule use only the base scores

related to that particular class, and do not use scores related to other classes. We

extend the concept of VC dimension to include the number of input parameters.

CHAPTER 2. COMBINATION FRAMEWORK 14

Cf (K) can be taken as the VC dimension of a set of functions {f} where the set

contains functions non-trivially dependent on K input parameters.

Another drawback of the traditional definition of VC dimension is that it is defined

for functions having output values in one-dimensional space. But the combination

algorithm (Figure 2.2.1) generally would be a map {sj
k}j=1,...,M ;k=1,...,N ⇒ {Si}i=1,...,N

into N -dimensional final score space, where N is the number of classes. In appendix

A we extended the definition of VC dimension to functions having multidimensional

outputs. The essence of the definition and related theorem is that the VC dimension

H of an N dimensional map will be less or equal to the sum of the VC dimensions of

each 1-dimensional components hi if all these VC dimensions are finite; if one of the

components has infinite VC dimension, then the VC dimension of the N-dimensional

map will also be infinite.

Traditionally VC dimension is applied to the derivation of the necessary and suffi-

cient conditions on the convergence of the learning algorithms. Though we would not

be deriving these conditions in the current work, we can hypothesize that the pro-

posed modification can be similarly used in necessary and sufficient conditions on the

convergence of the learning algorithm with its risk functions having N -dimensional

outputs.

The main purpose of the modification is that we can formally define the complexity

of the combination functions which have multi-dimensional outputs as illustrated in

Figure 2.2.1. Thus we define the complexity of the combination algorithm as a VC

dimension of a trainable set of functions {sj
k}j=1,...,M ;k=1,...,N ⇒ {Si}i=1,...,N used in

the combination.

CHAPTER 2. COMBINATION FRAMEWORK 15

If the one-dimensional components of the combination function have finite VC dimen-

sions, then the total VC dimension of the combination is finite and less or equal to

the sum of the components’ VC dimensions. If we view the VC dimension as a num-

ber of trainable parameters (for certain functions) then such summation makes sense.

In the following sections we will assume that all one-dimensional components of the

combination function have the same complexity and generally these components are

independently trained. Thus if Cf is the complexity of one component, then the total

complexity of combination is (generally) NCf .

2.2.2 Complexity Based Combination Types

Combination algorithms (combinators) can be separated into 4 different types de-

pending on the number of classifier’s scores they take into account and the number

of combination functions required to be trained. Let Cf (k) be the complexity of the

one-dimensional component of the combination function where k is the number of

input parameters. As in Figure 2.2.1 i is the index for the N classes and j is the

index for the M classifiers.

1. Low complexity combinators: Si = f({sj
i}j=1,...,M). Combinations of this type

require only one combination function to be trained, and the combination func-

tion takes as input scores for one particular class as parameters. The complexity

of this combination type is Cf (M).

2. Medium complexity I combinators: Si = fi({s
j
i}j=1,...,M). Combinations of

this type have separate score combining functions for each class and each such

function takes as input parameters only the scores related to its class. Assuming

that the complexity of each combination function fi is same Cf (M) the total

CHAPTER 2. COMBINATION FRAMEWORK 16

complexity of combination is NCf (M).

3. Medium complexity II combinators: Si = f({sj
i}j=1,...,M , {sj

k}j=1,...,M ;k=1,...,N,k 6=i).

This function takes as parameters not only the scores related to this class, but

all output scores of classifiers. Combination scores for each class are calculated

using the same function, but scores for class i are given a special place as para-

meters. Applying function f for different classes effectively means permutation

of the function’s parameters. The number of parameters for this function is

N ∗ M and the complexity of combination is Cf (NM).

4. High complexity combinators: Si = fi({s
j
k}j=1,...,M ;k=1,...,N). Functions calculat-

ing final scores are different for all classes, and they take as parameters all output

base classifier scores. The complexity of such combinations is NCf (NM).

Higher complexity combinations can potentially produce better classification results

since more information is used. On the other hand the availability of training samples

will limit the types of possible combinations. Thus the choice of combination type in

any particular application is a trade-off between classifying capabilities of combination

functions and the availability of sufficient training samples.

In practice,we first see if a particular classifier combination problem can be solved

with high complexity combinations as a most general combination type. If complex-

ity NCf(NM) is too big for the available training data size, number of classes N

and the complexities of chosen combination functions NCf (NM), we consider lower

complexity combinations. When the complexity is lowered it is important to see if

any useful information is lost. If such loss happens, the combination algorithm should

be modified to compensate for it.

CHAPTER 2. COMBINATION FRAMEWORK 17

Different generic classifiers such as neural networks, decision trees, etc., can be used

for classifier combinations within each complexity class. From the perspective of

this framework, the main effort in solving classifier combination problem consists in a

justification for a particular chosen complexity type of combination and providing any

special modifications to generic classifiers compensating for this chosen complexity

type. The choice of used generic classifier or combination function is less important

than the choice of the complexity type.

In order to illustrate the different combination types we can use a matrix represen-

tation as shown in Figure 2.2.2. Each row corresponds to a set of scores output by a

particular classifier, and each column has scores assigned by classifiers to a particular

class.

Figure 2.2.2: Output classifier scores arranged in a matrix; sj
i - score for class i by

classifier j.

The illustration of each combination type functions is given in Figure 2.2.3. In order

to produce the combined score Si for class i low complexity combinations (a) and

medium I complexity (b) combinations consider only classifier scores assigned to class

i (column i). Medium II (c) and high complexity (d) combinations consider all scores

CHAPTER 2. COMBINATION FRAMEWORK 18

(a) Low (b) Medium I

(c) Medium II (d) High

Figure 2.2.3: The range of scores considered by each combination type and combina-
tion functions.

CHAPTER 2. COMBINATION FRAMEWORK 19

output by classifiers for calculating a combined score Si for class i.

Low (a) and medium II (c) complexity combinations have the same combination

functions f irrespective of the class for which the score is calculated. Note that

medium II complexity type combinations have scores related to a particular class

in a special consideration as indicated by the second ellipse around these scores.

We can think of these combinations as taking two sets of parameters - scores for a

particular class, and all other scores. The important property is that combination

function f is same for all classes, but the combined scores Si differ, since we effectively

permute function inputs for different classes. Medium I (b) and high (d) complexity

combinations have combining functions fi trained differently for different classes.

Figure 2.2.4: The relationship diagram of different combination complexity types.

Figure 2.2.4 illustrates the relationships between presented complexity types of combi-

nations. Medium complexity types are subsets of high complexity combinations, and

the set of low complexity combinations is exactly the intersection of sets of medium

I and medium II combination types. In order to avoid a confusion in terminology we

will henceforth assume that a combination method belongs to a particular type only

if it belongs to this type and does not belong to the more specific type.

CHAPTER 2. COMBINATION FRAMEWORK 20

It is interesting to compare our combinations types with previous categorization of

combination methods by Kuncheva et al.[43]. In that work the score matrix has

names ’decision profile’ and ’intermediate feature space’. It seems that using term

’score space’ makes more sense here. Kuncheva’s work also separates combinations

into ’class-conscious’ set which corresponds to the union of ’low’ and ’medium I’ com-

plexity types, and ’class-indifferent’ set which corresponds to the union of ’medium

II’ and ’high’ complexity types. Again these terms might not be suitable since we

can think of a combination method as being ’class-conscious’ if each class has its own

combination function (’medium I’ and ’high’ complexity types), and ’class-indifferent’

if combination functions are same for all classes (’low’ and ’medium II’ complexity

types). The continuation of this work [42] gave an example of the weighted sum rule

having three different numbers of trainable parameters (and accepting different num-

bers of input scores), which correspond to ’low’, ’medium I’ and ’high’ complexity

types.

In contrast to Kuncheva’s work, our categorization of combination methods is more

general since we are not limiting ourselves to simple combination rules like weighted

sum rule. Also we consider an additional category of ’medium II’ type, which is missed

there. An example of ’medium II’ combinations are two step combination algorithms

where in the first step the scores produced by a particular classifier are normalized

(with possible participation of all scores of this classifier), and in the second step

scores are combined by a function from ’low’ complexity type. Thus scores in each

row are combined first, and then the results are combined columnwise in the second

step. This thesis explores row-wise combinations in detail in chapter 4 (’identification

model’), and explores combinations using this identification model in chapter 5.

Note that Kuncheva[42] also separates nontrainable and trainable classifiers. We

only consider the problem of finding the best combination algorithm for a few fixed

CHAPTER 2. COMBINATION FRAMEWORK 21

available classifiers. We explain in section 2.4 our rationale for not using nontrainable

combination methods for this problem.

2.2.3 Solving Combination Problem

The problem of combining classifiers is essentially a classification problem in the score

space {sj
i}j=1,...,M ;i=1,...,N . Any generic pattern classification algorithm trained in this

score space can act as a combination algorithm. Does it make sense to search for

other, more specialized methods of combination?

The difference between the combination problem and the general pattern classification

problem is that in combination problem features (scores) have a specific meaning of

being related to a particular class or being produced by a particular classifier. In the

general pattern classification problem we do not assign such meaning to features. Thus

intuitively we tend to construct combination algorithms which take such meaning of

scores into consideration.

The meaning of the scores, though, does not provide any theoretical basis for choos-

ing a particular combination method, and in fact can lead to constructing subopti-

mal combination algorithms. For example, by constructing combinations of low and

medium I complexity types we effectively disregard any interdependencies between

scores related to different classes. There is no theoretical basis for discarding such

dependencies. As it is shown later in this thesis such dependencies do exist in real-life

applications, and accounting for them can make a difference in the performance of

the combination algorithm.

The classifier combination problem can be regarded as a problem of first choosing

CHAPTER 2. COMBINATION FRAMEWORK 22

particular complexity type for combination, then choosing an appropriate combina-

tion algorithm and at last modifying combination algorithm to account for the choice

of complexity type. Usually, the set of training score vectors is the only information

available for these tasks and we should make choices based on this set. The other side

of the combination problem is to see if some other information besides the training

score set is available and if it can be used in the combination algorithm. The mean-

ing of the scores, though is not exact information, serves us to separate combination

methods into complexity types, and can provide insights into methods to compensate

for a chosen complexity type. Other information in addition to training score set can

also be available for particular problems, for example independence between scores.

Combination methods can utilize such information in order to justify the choice of the

complexity type and, in general, for the improvement of the combination algorithm.

Below we give examples where there is a need for constructing specialized combination

algorithms.

1. The number of classes N is large. This problem is quite common. Instead of con-

sidering high complexity combinations with complexities NCf (NM), medium

complexity II (Cf (NM)) and low complexity (Cf (M)) combinations can be

used in such situations.

2. The number of classifiers M is large. For example, taking multiple training sets

in bagging and boosting techniques yields arbitrarily large number of classifiers.

The usual method of combination in these cases is to use some a priori rule,

e.g. sum rule. Thus the complexity of combination is reduced in these cases

by taking low complexity combination function f so that Cf (NM) or Cf (M) is

small.

3. Additional information about classifiers is available. For example, in the case

CHAPTER 2. COMBINATION FRAMEWORK 23

of multimodal biometrics combination it is safe to assume that classifiers act

independently. This might be used to better estimate joint score density of

M classifiers as a product of M separately estimated score densities of each

classifier. The complexity type of the combination is not necessarily reduced in

this case, but restriction on the set of trainable combination functions f helps

to better train f .

4. Additional information about classes is available. Consider the problem of clas-

sifying word images into classes represented by a lexicon. The relation between

classes can be expressed through classifier independent methods, for example,

by string edit distance. Potentially classifier combination methods could benefit

from such additional information.

The cases listed above present situations where generic pattern classification methods

in score space are not sufficient or suboptimal. The first two cases describe scenarios

where the feature space has very large dimensions. For example, in biometric identi-

fication problems each of the N enrolled persons can have only one available training

sample, thus resulting in N training samples for an MN -dimensional score space.

Clearly, performing classification in such score space is not a viable option.

When additional information besides training score vectors is available as in scenarios

3 and 4 it should be possible to improve on the generic classification algorithms which

use only a sample of available score vectors for training, but no other information.

CHAPTER 2. COMBINATION FRAMEWORK 24

2.3 Large Number of Classes

The situation with large number of classes arises frequently in pattern recognition

field. For example, biometric person identification, speech and handwriting recogni-

tion are applications with very large number of classes. The number of samples of

each class available for training can be one for biometric applications where single

person template is enrolled into the database, or even zero for speech and handwrit-

ing recognition when the class is determined by the lexicon word. High complexity

combinations (NCf (NM)) and medium I complexity combinations (NCf (M)) might

not be reliably trained because of the large multiplier N .

The remaining 2 combination types might provide a solution to the problem. The

low complexity combinations are used almost exclusively for combination problems

with large number of classes. However, it is possible that medium II complexity

type combinations can also be used in this situation. The complexity term Cf (NM)

will require that combination function f is specially chosen so that Cf (NM) is not

big. The advantage of this combination type is that more complex relationships

between classifiers’ scores can be accounted for. In chapter 5 we consider this type of

combination in detail.

2.4 Large Number of Classifiers

The main topic of this thesis is to explore the combinations on a fixed set of classifiers.

We assume that there are only few classifiers and we can collect some statistical data

about these classifiers using some training set. The purpose of the combination algo-

rithm is to learn the behavior of these classifiers and produce an efficient combination

CHAPTER 2. COMBINATION FRAMEWORK 25

function.

Another approach to combinations includes methods trying not only to find the best

combination algorithm, but also trying to find the best set of classifiers for the com-

bination. In order to use this type of combinations there should be some method

of generating a large number of classifiers. Few methods of generating classifiers for

such combinations exist. One of the methods is based on bootstrapping the training

set in order to obtain a multitude of subsets and train a classifier on each of these

subsets. Another method is based on the random selection of the subsets of features

from one large feature set and training classifiers on these feature subsets[45]. A third

method applies different training conditions, e.g. choosing random initial weights for

neural network training or choosing dimensions for decision trees [26]. The ultimate

method for generating classifiers is a random separation of feature space into the

regions related to particular classes [39].

Simplest methods of combination apply some fixed functions to the outputs of all the

generated classifiers (majority voting, bagging [10]). More complex methods, such

as boosting [52, 20], stack generalization [62], attempt to select only those classifiers

which will contribute to the combination.

Although there is substantial research on the classifier ensembles, very few theoretical

results exist. Most explanations use bias and variance framework which is presented

below. But such approaches can only give asymptotic explanations of observed per-

formance improvements. Ideally, the theoretical foundation for classifier ensembles

should use statistical learning theory [59, 60]. But it seems that such work will be

quite difficult. For example, it is noted [53] that unrestricted ensemble of classifiers

has higher complexity than individual combined classifiers. The same paper presents

an interesting explanation of the performance improvements based on the classifier’s

CHAPTER 2. COMBINATION FRAMEWORK 26

margin - the statistical measure of the difference between scores given to correct and

incorrect classification attempts. Another theoretical approach to classifier ensemble

problem was developed by Kleinberg in the theory of stochastic discrimination[38, 39].

This approach considers very general type of classifiers (which are determined by the

regions in the feature space) and outlines criteria on how these classifiers should

participate in the combination.

In our framework of combination, the complexity terms Cf (NM) or Cf (M) present

in the different combination types, will have large values of M . Hence, we must use

low complexity combination functions f in order to be able to train the combina-

tion algorithm. But if the used function f is of low complexity (for example, f is a

fixed function), then complexities of all combination types can be low (especially if

the number classes N is small). Thus instead of traditional low complexity combi-

nations (Cf (M)) we might as well use class-specific medium I (NCf(M)) and high

(NCf (NM)) and non-class-specific medium II (Cf (NM)) combinations. Using such

combinations for classifier ensembles is a good topic for research.

Below we present additional discussion on ensembles of classifiers, in particular, the

applicability of different combination rules. We also prove the equivalence of combi-

nation rules combining scores using symmetrical functions.

2.4.1 Reductions of Trained Classifier Variances

One way to explain the improvements observed in ensemble combination methods

(bagging, boosting) is to decompose the added error of the classifiers into bias and

variance components[40, 57, 10]. There are few definitions of such decompositions[20].

CHAPTER 2. COMBINATION FRAMEWORK 27

Bias generally shows the difference between optimal Bayesian classification and aver-

age of trained classifiers, where average means real averaging of scores or voting and

average is taken over all possible trained classifiers. The variance shows the difference

between typical trained classifier and an average one.

The framework of Tumer and Ghosh[58] associates trained classifiers with the approx-

imated feature vector densities of each class. This framework has been used in many

papers on classifier combination recently[41, 42, 21, 22]. In this framework, trained

classifiers provide approximations to the true posterior class probabilities or to the

true class densities:

fm
i (x) = pi(x) + εm

i (x)

where i is the class index and m is the index of trained classifier. For a fixed point x the

error term can be represented as a random variable where randomness is determined

by the random choice of the classifier or used training set. By representing it as a

sum of mean β and zero-mean random variable η we get

εm
i (x) = βi(x) + ηm

i (x)

For simplicity, assume that the considered classifiers are unbiased, that is βi(x) = 0

for any x, i. If point x is located on the decision boundary between classes i and j

then the added error of the classifier is proportional to the sum of the variances of ηi

and ηj:

Em
add ∼ σ2

ηm
i

+ σ2
ηm

j

If we average M such trained classifiers and if error random variables ηm
i are inde-

pendent and identically distributed as ηi, then we would expect the added error to

be reduced M times:

Eave
add ∼ σ2

ηave
i

+ σ2
ηave

j
=

σ2
ηi

+ σ2
ηj

M

CHAPTER 2. COMBINATION FRAMEWORK 28

The application of the described theory is very limited in practice since too many

assumptions about classifiers are required. Kuncheva[42] even compiles a list of used

assumptions. Besides independence assumption of errors, we need to hypothesize

about error distributions, that is the the distributions of the random variable ηi. The

tricky part is that ηi is the difference between true distribution pi(x) and our best

guess about this distribution. If we knew what the difference is, we would have been

able to improve our guess in the first place. Although there is some research [41, 3]

in trying to make some assumptions about these estimation error distributions and

seeing which combination rule is better for a particular hypothesized distribution, the

results are not proven in practice.

2.4.2 Fixed Combination Rules for Ensembles

In this section we outline the reasons why we differentiate between the combination

algorithms for fixed classifiers and combination algorithms for ensembles. The main

assumption about ensembles is that all classifiers in the ensemble approximate the

same posterior class probabilities P (ci|x) or same class densities pi(x), where x is a

feature vector or some input unique for all ensemble classifiers and i is the index of the

class. On the other hand, our research focus is on the combination methods for fixed

classifiers which might have different inputs and are not supposed to approximate a

single function.

The difference becomes apparent if we visualize the distributions of scores in both

cases. Suppose we have two classifiers outputting scores s1
i , s

2
i in the range [0, 1].

In the case of ensemble classifiers both scores will approximate the same function

fi(posterior probability or density) and for each classification attempt with input x

they will have approximately the same value: s1
i ∼ s2

i ∼ fi(x). Thus, in the score

CHAPTER 2. COMBINATION FRAMEWORK 29

space pairs (s1, s2) will be located near the diagonal s1 = s2 and scores s1
i and s2

i

will be very strongly correlated. In the case of fixed classifiers operating on different

inputs there is no such strong correlation between scores. Score pairs (s1
i , s

2
i) could

in fact have arbitrary distributions in the score space. This is especially true for

independent classifiers as in biometric matchers of different modalities where s1
i and

s2
i are independent random variables.

Figure 2.4.1: Sample of score distributions (s1
i , s

2
i) of two classes.

Figure 2.4.1 shows an example of score distributions of these two cases. We assume

that we have only two classes and one class has scores s1
i and s2

i close to 0 and other

class has scores close to 1.

Let us now investigate how fixed combination rules separate classes in the score

space. Assume we have two classes and we are combining two classifiers. Assume

also that the sum of the scores assigned to two classes by each classifier equals 1:

sj
1 +sj

2 = 1, j = 1, 2. This assumption holds if, for example, scores represent posterior

CHAPTER 2. COMBINATION FRAMEWORK 30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Product rule

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Sum rule

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Max rule

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Min rule

Figure 2.4.2: Fixed combination rules with ratio based decisions

class probabilities. If f is some combination rule (or rather function associated with

combination rule), then Si = f(s1
i , s

2
i), i = 1, 2 are combined scores assigned to two

classes.

Traditionally, combination rules classify a pattern by finding the maximum of com-

bined scores: ci = arg maxi Si. Let us expand this decision algorithm by basing our

decision on the ratios of the combined scores: S1/S2 = r. Such decision rule is not

necessarily optimal for a particular task. But if combined scores reflect posterior

class probabilities then this rule would correspond to optimal Bayesian decision rule

for varying prior class probabilities and different classification costs. The decision

surfaces for the usual combination rules - product, sum, max and min are presented

in Figure 2.4.2. Decision surfaces are drawn for r = {0.125, 0.25, 0.5, 1, 2, 4, 8}.

By comparing decision surfaces in Figure 2.4.2 with possible distributions of class

samples in Figure 2.4.1 we conclude that the choice of the combination rule is not

really important in the case of ensemble classifiers. In the diagonal region s1 ∼ s2

where scores of ensemble classifiers are concentrated, all decision surfaces are some-

what perpendicular to the diagonal and thus make decisions in a similar manner.

The situation is quite different if we have a few fixed and not strongly correlated clas-

sifiers as in the example of Figure 2.4.1(b). Distributions of scores can be arbitrary

CHAPTER 2. COMBINATION FRAMEWORK 31

and the choice of combination rule can make a significant difference in the system

performance. Thus using fixed combination rules to combine non-ensemble classifiers

is a hit-and-miss strategy: we might get perfect decision if score distributions acci-

dentally correspond to the chosen (or one of few tried) decision rules, or we might

get a suboptimal decision. In either case we will be unable to tell if our solution is

good and how far it stands apart from the optimal combination algorithm. We can

summarize the above discussion in following claim:

Claim 2.1 1. Combination of ensemble classifiers can be performed by fixed com-

bination rules (sum, product, max, min). If all combined classifiers are trained to

approximate the same function, and thus have highly correlated scores, then it does

not matter which combination rule is used.

2. In case of non-ensemble classifiers (fixed classifiers trained on different features

and having non-correlated or weakly correlated scores) the use of fixed combination

rules should be avoided.

These claims show that combination problems should clearly state whether they are

considering classifiers ensembles or non-related classifiers. The main problem in en-

semble combinations is to make sure that the generated classifiers have properties

useful for combination, that is they all approximate some function with small error.

And the main problem in non-ensemble combinations is finding the best combination

algorithm.

2.4.3 Equivalence of Fixed Combination Rules for Ensembles

Note that the traditional case of choosing maximum of combined scores is equivalent

to decision surface r = 1 and corresponds to the diagonal from (0, 1) to (1, 0) in

CHAPTER 2. COMBINATION FRAMEWORK 32

Figure 2.4.2 for all rules. This picture illustrates the results of previous attempts

to show the equivalence of some combination rules. For example, Alexandre et al.

[2] analytically prove that the product and sum rules are equivalent in the situation

presented above. It would be quite trivial to prove that max and min rules are also

equivalent to product and sum rule, but we omit the proof and simply reference the

Figure 2.4.2.

The other point made by Alexandre[2] is that these rules are not equivalent if number

of classes or number of classifiers is bigger than two. We might notice, though, that

non-equivalence is proven by presenting examples of points located far away from

the diagonal. Points lying outside the diagonal region pertain to the non-ensemble

classifier combinations. Thus we should not consider such points when we deal with

classifier ensembles.

The following theorem captures the equivalence of arbitrary combination rules in the

neighborhood of the diagonal s1 = s2 = · · · = sn if combination rules correspond to

smooth symmetric functions.

Theorem 2.1 Consider a classifier combination problem with 2 classes and M clas-

sifiers using notation and assumptions of the previous section. If symmetric smooth

functions are used for combining scores in the combination rule, then the decision

surface of the combination rule is perpendicular to the diagonal s1 = s2 = · · · = sM

in the score space.

Proof: Using notations of Figure 2.2.1 Si = f(s1
i , s

2
i , . . . , s

M
i), i = 1, 2 are combined

scores constructed with the help of the combination function f . The traditional com-

bination rule requires that one finds ci = arg maxi Si. As in the previous section

CHAPTER 2. COMBINATION FRAMEWORK 33

we can consider a more general combination decision rule D(S1, S2) ∼ r (an exam-

ple of D(S1, S2) = S1/S2 was given there), where D is some smooth function, and

classification decision surfaces coincide with contours of

D(S1, S2) = D(f(s1
1, . . . , s

M
1), f(s1

2, . . . , s
M
2))

Now we accept assumption of sj
1+sj

2 = 1, so that a set of classification scores could be

identified with points lying in M -dimensional space {s1
1, . . . , s

M
1 }. Thus the decision

surfaces are contours of a function

F (s1
1, . . . , s

M
1) = D(f(s1

1, . . . , s
M
1), f(1 − s1

1, . . . , 1 − sM
1))

Since f is a symmetric function in its arguments, it can be seen that function F also

will be symmetric irrespective of the choice of D. F will also be smooth since f is

assumed to be smooth and D is smooth by our choice. In order to prove the theorem,

it is sufficient to show that the gradient of function F will be collinear to the diagonal

s1 = s2 = · · · = sn, or equivalently, the gradient will have equal coordinates.

Take arbitrary point (s1
0, . . . , s

M
0) = (s0, . . . , s0) on the diagonal s1 = s2 = · · · = sn

and consider a gradient of F at this point:

(

∂F (s1
1, . . . , s

M
1)

∂s1
1

, . . . ,
∂F (s1

1, . . . , s
M
1)

∂sM
1

)

∣

∣

∣

(s1
0,...,sM

0)

Since F is symmetric, F (s1
1, . . . , s

M
1) = F (si

1, s
1
1, . . . , s

M
1) and

∂F (s1
1, . . . , s

M
1)

∂si
1

∣

∣

∣

(s0,...,s0)
=

∂F (si
1, s

1
1, . . . , s

M
1)

∂si
1

∣

∣

∣

(s0,...,s0)
=

∂F (s1
1, . . . , s

M
1)

∂s1
1

∣

∣

∣

(s0,...,s0)

In the last equality we did a change in notation: si
1 → s1

1, s
1
1 → s2

1, etc.

The case with the number of classes N larger than 2 is difficult and will not yield

to such simple analysis. The reason is that above proof used easily constructed

decision functions D to separate the two classes. It would be impossible to create

CHAPTER 2. COMBINATION FRAMEWORK 34

such decision functions if the number of classes is larger than two. Still it might be

possible to consider decision functions defined locally near the generalized diagonal

region(the intersection of hypersurfaces s1
i = s2

i = · · · = sM
i , i = 1, . . . , N), but not

in the area of contention of three or more classes(say sj
i1

= sj
i2

= sj
i3
, for some i1, i2, i3

and all j = 1, . . . ,M).

If combination functions are not symmetric(weighted combination rules) or non-

smooth(as min and max rules) then combination rules might result in a different

performance. For example, if two classifiers have scores approximating same pos-

terior class probability, but it is known that one classifier will have smaller score

variance (and thus probably will have better performance for a particular training

set), then making its weight in the weighted combination rule greater will result in

the smaller variance of the combined scores, and thus result in a better combined

classifier.

Chapter 3

Utilizing Independence of

Classifiers

3.1 Introduction.

Traditional methodology for classifier combinations is to try a number of available

combination methods and see which method performs best on the validation set

[3, 12]. The assumption is that one combination method might be better on one

particular problem, and another combination method might be better in different

situation. It is difficult to predict which method is the best for a particular dataset,

so one can try all of them and determine the best one through experiments. Though

such approach is reasonable in practical situations, it is based on heuristic rather than

on sound theory.

35

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 36

In this chapter we will address the question of how one can be sure that the best per-

forming method is indeed the best. It is possible that all the tested methods do not

include the best option. We also want to find how the experimentally chosen combi-

nation method performs compared to the theoretically optimal combination method.

It is usually desirable to estimate the added error of classification - the measure be-

tween a particular classification algorithm and the optimal Bayesian classification,

which assumes a knowledge of class feature densities. Recall that we argued that

a combination algorithm is equivalent classification in score space (assuming only

score datasets are available for training and not features). So the question about

the magnitude of the added error for classifiers in the pattern classification field is

also relevant for combinators. Namely, we want to estimate the difference between

a particular combination algorithm and an optimal Bayesian classification using true

score densities of classes.

These questions are the same general questions arising in the area of pattern classifi-

cation: which classifier is better to use, and what is the difference in the performance

of such classifier and optimal Bayesian classifier. Unfortunately, there are no clearcut

answers to these questions so far, and the mathematical theory behind them is still in

development. Similarly, it would be hard to answer these questions for the classifier

combination problem. Fortunately, classifier combination problems can possess some

information about the problem in addition to the set of training scores. Such addi-

tional information can provide the basis for the theoretical justification of a particular

classifier combination strategy.

In this section we will explore the utilization of the classifier independence information

in the combination process. As in chapter 2, we assume that classifiers output a set

of scores reflecting the confidences of input belonging to the corresponding class.

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 37

Definition 3.1 Classifiers Cj1 and Cj2 are independent if for any class i the output

scores sj1
i and sj2

i assigned by these classifiers to the class i are independent random

variables. Specifically, the joint density of the classifiers’ scores is the product of the

densities of the scores of individual classifiers:

p(sj1
i , sj2

i) = p(sj1
i) ∗ p(sj2

i)

The assumption of classifiers independence is quite restrictive since the combined

classifiers usually operate on the same input. Even when using completely different

features for different classifiers the scores can be dependent. For example, features

can be similar and thus dependent, or image quality characteristic can influence the

scores of the combined classifiers. A low quality input will yield low scores for all

matchers. In certain situations even classifiers operating on different inputs will have

dependent scores, as in the case of using two fingers for identification (fingers will

likely be both moist, both dirty or both applying same pressure to the sensor).

One recent application where independence assumption holds is the combination of

biometric matchers of different modalities. In the case of multimodal biometrics the

inputs to different sensors are indeed independent (for example, there is no connection

of fingerprint features to face features). In this chapter we will investigate if the

independence assumption can be used to improve the combination results.

Much of the effort in the classifier combination field has been devoted to dependent

classifiers and most of the algorithms do not make any assumptions about classifier

independence. Thus the question of constructing good combination algorithms em-

ploying independence of classifiers did not attract attention of researchers. Though

independence assumption was used to justify some combination methods[37], such

methods were mostly used to combine dependent classifiers. With the growth of bio-

metric applications there is some previous work [32] where independence assumption

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 38

is used properly to combine multimodal biometric data. Our goal is to investigate

how combination methods can effectively use the independence information, and what

performance gains can be achieved.

3.1.1 Independence Assumption and Fixed Combination Rules

The assumption of classifier independence has been used before to justify the use of

particular combination rules. For example, in the often cited work of Kittler et al.[37]

the product rule is derived by assuming classifier independence. The product rule

assumptions are that the scores represent the posterior class probabilities and that

the classifiers are independent.

Even though we might deal with applications in which classifiers are indeed inde-

pendent, as in multimodal biometric systems, the assumption of scores representing

posterior class probabilities rarely holds. In fact, in our assumed biometric applica-

tions, the number of classes can be variable, and matchers usually do not account

for the number of classes. If we attempt to perform some score normalization before

applying combination rules, such normalization should be considered as a part of the

combination algorithm. In the cited paper the experiment for combining multimodal

scores used non-normalized scores, and the product rule was not the best one. Since

score normalization is a necessary part for fixed combination rules and normalization

is a part of training procedure, such rules simply represent a specific type of trainable

classifier used for combinations. This is an additional reason that we do not consider

simple combination rules in this thesis.

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 39

3.1.2 Assumption of the Classifier Error Independence

In the framework of bias and variance decompositions[58](see section 2.4.1) one fre-

quent assumption necessary for the analysis of the combination rules is the inde-

pendence of the training errors of combined classifiers εm
i (x). In this framework the

outputs of the classifiers sm
i (x) = pi(x)+ εm

i (x) approximate class densities si = pi(x)

(or posterior class probabilities) which implies that the scores sm
i (x) are very strongly

correlated for different m. At the same time errors εm
i (x) are assumed to be indepen-

dent due to different training procedures, different training sets and possibly different

classification methods.

It is rather difficult to ensure that such assumptions hold in practice. Indeed, dur-

ing ensemble training it is common to reuse training samples from the same pool of

training data. Or, if ensembles are constructed by utilizing different features in clas-

sifiers, it is common to reuse features. Even if features are not reused, the features

themselves might be related. Finally, the classification methods might use similar

algorithms (e.g. same kernels) which would still result in dependent classifier errors.

Thus we can not guarantee that classifiers have independent errors. Even though

we can use the assumption of classifier error independence for the analysis of the

performance of classifier ensembles, it seems that it would be almost impossible to

utilize such independence assumption to improve the combination algorithm.

3.2 Combining independent classifiers.

We will investigate the combination of classifiers for 2-class problems. In particular,

our research is motivated by the increased number of applications using biometric

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 40

verification and identification. In the verification problem an input signal is compared

with the given stored signal and the closeness of the match is measured. The task

of the recognition system is to classify a signal as belonging to one of the possible

two classes: the class of signals originating from the same source as stored signal

(genuine match), and the class of signals originating from the different source as stored

signal (impostor match). In the identification problem we deal with k enrolled signals

coming from k different sources and the task is to find to which of k corresponding

classes the input signal belongs. Optionally, one more class is introduced to enclose

all other signals not belonging to the k enrolled classes. Since the number of enrolled

classes is usually large, the identification problem can be reduced to k verification

problems, each verification producing a measure of match. The best matching class

is chosen as the answer to the identification problem. Thus both verification and

identification can be reduced to 2-class problems, and the combination algorithm can

deal exclusively with two classes. In this chapter we assume that we have only two

classes. In terms of the combination framework developed in previous chapter, we

deal with low complexity combinations for two classes.

Even though two classes are considered, only one score for each matcher is usually

available - the score between the input biometric and the stored biometric of the

claimed identity. Consequently, we will assume that the output of the 2-class clas-

sifiers is 1-dimensional. For example, samples of one class might produce output

scores close to 0, and samples of the other class produce scores close to 1. The set

of output scores originating from n classifiers can be represented by a point in the

n-dimensional score space. Assuming that for all classifiers samples of class 1 have

scores close to 0, and scores of class 2 are close to 1, the score vectors in the combined

n-dimensional space for two classes will be close to points {0, ..., 0} and {1, ..., 1}.

Any generic pattern classification algorithm can be used in this n-dimensional space

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 41

as a combination algorithm.

Note that this is somewhat different from the usual framework of k-class classifier

combination, where k-dimensional score vectors are used and, for example, samples

of class i are close to vector {0, ..., 1, ..., 0} with only 1 at i-th place. In this case the

scores for the n classifiers will be located in nk-dimensional space and the classification

problem will be more difficult.

In the rest of this section we present several combination methods utilizing classifier

independence. Although the experiments use only the first combination method em-

ploying score densities, we have listed other methods to provide a reference for future

research and applications.

3.2.1 Combination using density functions.

Consider the combination problem with n independent 2-class classifiers. Let us

denote the density function of scores produced by the j-th classifier for elements of

class i as pij(xj), the joint density of scores of all classifiers for elements of class i

as pi(x), and the prior probability of class i as Pi. Let us denote the region of n-

dimensional score space being classified by the combination algorithm as elements of

class i as Ri, and the cost associated with misclassifying elements of class i as λi. Then

the total cost of misclassification in this problem is defined as c = λ1P1

∫

R2
p1(x)dx+

λ2P2

∫

R1
p2(x)dx.

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 42

Since R1 and R2 cover the whole score space,
∫

R1
p1(x)dx +

∫

R2
p1(x)dx = 1. Thus

c = λ1P1

(

1 −

∫

R1

p1(x)dx

)

+ λ2P2

∫

R1

p2(x)dx

= λ1P1 −

∫

R1

(λ2P2p2(x) − λ1P1p1(x)) dx

To minimize cost c, the region R1 should be exactly the set of points x for which

λ2P2p2(x) − λ1P1p1(x) < 0. Since we have independent classifiers,

pi(x) =
∏

j pij(xj) and decision surfaces are described by the equation

f(λ1, λ2,x) = λ2P2p2(x)−λ1P1p1(x) = λ2P2

n
∏

j=1

p2j(xj)−λ1P1

n
∏

j=1

p1j(xj) = 0 (3.2.1)

To use the equation 3.2.1 for combining classifiers we need to learn 2n 1-dimensional

probability density functions pij(xj) from the training samples.

3.2.2 Combination using posterior class probabilities.

Suppose we have posterior class probabilities Pi(ωi|xj) =
p(xj |ωi)P (ωi)

p(xj)
=

pij(xj)Pi

p(xj)
avail-

able for the combination algorithm. In this case

P (ωi|x) =
p(ωi,x)

p(x)
=

p(x|ωi)P (ωi)

p(ω1,x) + p(ω2,x)
=

pi(x)Pi

P1p1(x) + P2p2(x)

=
Pi

∏n

j=1 pij(xj)

P1

∏n

j=1 p1j(xj) + P2

∏n

j=1 p2j(xj)

=

(

Pi

∏n

j=1 pij(xj)
)

/
∏n

j=1 p(xj)
(

P1

∏n

j=1 p1j(xj) + P2

∏n

j=1 p2j(xj)
)

/
∏n

j=1 p(xj)

=
Pi

∏n

j=1
Pi(ωi|xj)

Pi

P1

∏n

j=1
P1(ω1|xj)

P1
+ P2

∏n

j=1
P2(ω2|xj)

P2

=
P

−(n−1)
i

∏n

j=1 Pi(ωi|xj)

P
−(n−1)
1

∏n

j=1 P1(ω1|xj) + P
−(n−1)
2

∏n

j=1 P2(ω2|xj)

(3.2.2)

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 43

Using the fact that P (ωi|x)p(x) = p(ωi,x) = Pipi(x) the decision surfaces of equation

3.2.1 can be rewritten as

f(λ1, λ2,x) = λ2P2p2(x)− λ1P1p1(x) = λ2P (ω2|x)p(x)− λ1P (ω1|x)p(x) = 0 (3.2.3)

or

f(λ1, λ2,x) = λ2P
−(n−1)
2

n
∏

j=1

P2(ω2|xj) − λ1P
−(n−1)
1

n
∏

j=1

P1(ω1|xj) = 0 (3.2.4)

The derived combination method is exactly the product rule presented in [37] with ad-

ditional misclassification costs. Thus the product rule is the optimal combination rule

for independent classifiers with output scores representing posterior class probabili-

ties. If the output scores of classifiers do not represent posterior probabilities this rule

might be suboptimal. For example, if scores represent not Pi(ωi|xj) but ln(Pi(ωi|xj))

then the sum rule becomes the optimal rule. Unfortunately many published papers

fail to mention what combined output scores represent or only do simplistic score

normalizations, thus making any comparisons of the combination methods difficult.

Note that this also applies to the outputs of neural networks trained on 0-1 values,

which should be properly normalized to represent Pi(ωi|xj).

Since we have only two classes we can assume P1(ω1|xj)+P2(ω2|xj) = 1. Then, in or-

der to use equation 3.2.4 for combination, we need to learn n 1-dimensional functions

P1(ω1|xj). Though this method requires less functions to learn when compared to the

previous method, it might be more difficult to do implement [18]. On the other hand,

it is observed[59] that solving the more general problem of estimating probability

density functions and consequent derivation of posterior probabilities is disadvanta-

geous to the direct estimations of posterior probabilities. Thus we can expect that

by properly learning functions P1(ω1|xj) we can produce better combination method

than by using probability density functions.

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 44

3.2.3 Combination using transformation functions.

The idea of using normalizing functions has been explored in few papers on classifier

combination; [4] has review and references to many such methods. We want to find a

transformation of the output score of a classifier, so that some fixed combination rule

(product, sum, etc.) would produce superior performance. We consider the following

transformation of the scores:

yj = f(xj) = P2(ω2|xj) =
P2p2j(xj)

P1p1j(xj) + P2p2j(xj)
(3.2.5)

We assume that the transformation is defined only for those xj where pij is non-zero.

According to formula 3.2.2, transformed scores y1, . . . , yn from n recognizers can be

combined using formula

y =
P

−(n−1)
2

∏n

j=1 yj

P
−(n−1)
1

∏n

j=1(1 − yj) + P
−(n−1)
2

∏n

j=1 yj

(3.2.6)

Since the combined score y represents posterior probability P (ω2|x), the decision

surfaces derived in formula 3.2.3 can be rewritten as

f(λ1, λ2,x) = λ2P (ω2|x) − λ1P (ω1|x) = λ2y − λ1(1 − y) = 0 (3.2.7)

Note that different score transformation formula 3.2.5 can yield different combination

rules 3.2.6, for example, sum rule. Formula 3.2.6 has the advantage of being recursive,

that is as recognizers are added, the already combined score can be used.

3.2.4 Modifying generic classifiers to use the independence

assumption.

Any generic pattern classifier operating in the score space can be used as a combi-

nation method. In case of the verification problem, the two classes are ’genuine’ and

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 45

’impostor’ matches. For the identification problem, the two classes are the same, but

a confidence score output is required for deciding the most probable identified class.

Most generic classifiers do provide such confidence score.

We expect the generic pattern classifiers to learn the independence property from the

training data. However, if we could incorporate independence information directly

into these combination methods or their training, it would lead to better combination

performance.

Figure 3.2.1: Possible configuration of combination neural network utilizing the in-
dependence assumption of scores s1

i and s2
i .

Figure 3.2.1 presents an example of the possible modification of the neural network

classifier (multilayer perceptron) used for combination to account for the indepen-

dence of classifier’s scores. Instead of a fully connected neural network we consider a

network separately processing classifier’s scores and combining them only in the last

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 46

layer. Restricting the configuration of neural network allows us to train lesser number

of weights. Alternatively, we could provide more complex processing of each score.

In any case we expect better performance from the modified neural network com-

pared to a fully connected one. Similar modifications can be made on other generic

classification methods such as SVMs.

3.3 Estimation of recognition error in combination

We choose the magnitude of the added error as a measure of the combination ’good-

ness’. It is the difference between an error of the optimal Bayesian combination and

the current combination algorithm. In order to calculate this error we make a hy-

pothesis on the true score distribution, and produce training and testing samples

using these hypothesized distributions. This technique can be used to estimate the

added error in practice to provide a confidence in the combination results. This would

enable us to say: ”‘The total combination error in this particular combination is 5%

and the added error due to the combination algorithm is likely to be less than 1%”’.

The added error introduced by Tumer and Ghosh[58] has been studied recently [41,

21, 22, 2]. This definition of added error assumes that the combined classifiers operate

in the same feature space and the class samples are random points in this space with

some fixed distributions. The Bayes error is determined by the distributions in the

feature space and the added error is the difference of the combination error of trained

classifiers and the Bayes error.

This framework is not applicable for combinations of biometric classifiers since these

classifiers do not have the same feature space. For our task we will be treating clas-

sifiers as black boxes outputting matching scores. Scores are random variables in the

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 47

score space defined by some fixed score distributions and the combination algorithm

is a classifier operating in the score space. The Baeys error, or rather the minimum

Bayes cost, of the combination is determined by the score distributions. We define the

combination added error, or combination added cost, as a difference between the total

error(cost) and this Bayes error(cost). The difference from the previous definition is

that we use distributions of scores in the score space and not the distributions of

feature vectors in the feature vector space. Thus our combination added error (unlike

the previously defined added error[58]) does not depend on the added errors of the

individual classifiers but depends only on the combination algorithm. Section 3.3.1

gives a formal definition of combination added error.

To further explain the difference between the two types of added error, let us have

an example of few imperfect classifiers operating in the same feature space. Suppose

that we have the optimal combination based on the Bayesian classifier operating

in the score space (assuming the score distribution are known). In this scenario the

added error in Tumer and Ghosh’s framework will be some non-zero number reflecting

the errors made by the classifiers. By our definition the added error is 0, since the

combination algorithm is perfect and did not add any errors to the classification

results. Our definition is suitable for combination of fixed classifiers, whereas Tumer

and Ghosh’s definition works for classifier ensembles. In the next section we give a

formal definition of combination added error.

3.3.1 Combination Added Error

Learning 1-dimensional probability density function pij(xj) from training samples will

result in their approximations p′ij(xj). Using equation 3.2.1 with these approximations

will result in decision regions R′
i which ordinarily will not coincide with the optimal

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 48

Bayesian decision regions Ri. The combination added cost(AC) can be defined as a

difference between the cost of using the trained regions R′
i and optimal regions Ri for

combination:

AC = λ1P1

∫

R′

2

p1(x)dx + λ2P2

∫

R′

1

p2(x)dx

− λ1P1

∫

R2

p1(x)dx − λ2P2

∫

R1

p2(x)dx (3.3.1)

Using set properties such as R′
1 = (R′

1 ∩ R1) ∪ (R′
1 ∩ R2), we get

AC =

∫

R′

2∩R1

(λ1P1p1(x) − λ2P2p2(x)) dx

+

∫

R′

1∩R2

(λ2P2p2(x) − λ1P1p1(x)) dx (3.3.2)

For generic classifiers we define R′
i as the region in which samples are classified as

belonging to class i. The combination added error is defined in the same way.

In order to calculate the combination added error we need to know the true distribu-

tions of the classifier’s scores. We do not have this information and there is no way to

calculate the combination added error. Nevertheless, we can still use the combination

added error if we apply the following algorithm. First, estimate the score distribu-

tions. Second, assume that the true distributions are the same as the estimated score

distributions. Finally, run simulations sampling training data sets from the assumed

true distributions, training combination algorithm and comparing its performance

with the assumed Bayes combination. Such simulations will provide a rough estimate

on the combination added error.

In the next section we provide an example of estimating the combination added error

in which we fixed the true score densities as Gaussians. Alternatively, we might have

considered some approximated densities from real life classifiers in order to get the

approximated combination added error.

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 49

3.4 Experiment with artificial score densiites.

In the following experiments we will assume that prior costs and probabilities of

classes are equal, and use the term ’error’ instead of ’cost’. We will also use relative

combination added error, which will be defined as combination added error divided

by the Bayesian error, and this number will be used in the tables. For example, entry

of 0.1 will indicate that the combination added error is 10 times smaller than the

Bayesian error.

The experiments are performed for two normally distributed classes with means at

(0,0) and (1,1) and different variance values (same for both classes). It is also assumed

that costs and prior probabilities of both classes are equal. The Bayesian decision

boundary in this case is a straight line x + y = 1. Note that both the sum and

product combination rules have this line as a decision surface, and combinations

using these rules would give no combination added error. This is the situation where

specific distributions would favor particular fixed combination rules, and this is why

we eliminated these rules from our experiments.

The product of densities method described in the previous section is denoted here as

DP. The kernel density estimation method with normal kernel densities [55] is used for

estimating one-dimensional score densities. We chose the least-square cross-validation

method for finding a smoothing parameter. Arguably, the choice of a normal ker-

nel would favor this combination method given the underlying normal distributions.

We employ kernel density estimation Matlab toolbox [6] for implementation of this

method.

For comparison we used generic classifiers provided in PRTools[17] toolbox. SVM is

a support vector machine with second order polynomial kernels, Parzen is a density

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 50

estimation Parzen classifier, and NN is back-propagation trained feed-forward neural

net classifier with one hidden layer of 3 nodes.

Each experiment simulates sampling score distributions to obtain training data, train-

ing classifiers with this training data and evaluating classifier performance. Since score

distributions are available, it is possible to generate an arbitrarily large testing set,

but instead we simply use formula 3.3.2 to numerically obtain the added error. For

each setting we average results of 100 simulation runs and take it as the average added

error. These average added errors are reported in the tables.

In the first experiment (Table 3.4.1) we tried to see what added errors different

methods of classifier combination have relative to the properties of score distributions.

Thus we varied the standard deviation of the score distributions (STD) which varied

the minimum Bayesian error of classifiers. All classifiers in this experiment were

trained on 300 training samples.

STD Bayesian error DP SVM Parzen NN
0.2 0.0002 1.0933 0.2019 1.2554 3.1569
0.3 0.0092 0.1399 0.0513 0.1743 0.1415
0.4 0.0385 0.0642 0.0294 0.0794 0.0648
0.5 0.0786 0.0200 0.0213 0.0515 0.0967

Table 3.4.1: Dependence of combination added error on the variance of score distri-
butions.

The first observation is that smaller standard deviations result in larger relative added

errors. This is expected in the case of density based classifiers because of the inherent

difficulty of estimating density in the tails of distributions. Small standard deviation

means that the optimal decision boundary is at the ends of both class distributions,

and a density based method will work poorly there. Interestingly, SVM and NN

classifiers also showed similar behavior. Another observation is that SVM shows

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 51

better performance than all the other methods, especially for low Bayesian error

cases. Only for STD = .5, DP method is able to match the SVM performance.

In the second experiment (Table 3.4.1) we wanted to see the dependency of combi-

nation added error on the size of the training data. We fixed the standard deviation

to be 0.5 and performed training/error evaluating simulations for 30, 100 and 300

training samples.

Number of training samples DP SVM Parzen NN
30 0.2158 0.1203 0.2053 0.1971
100 0.0621 0.0486 0.0788 0.0548
300 0.0200 0.0213 0.0515 0.0967

Table 3.4.2: Dependence of combination added error on the training size.

As expected, the added error diminishes with increased training data size. It seems

that the DP method improves faster than other methods with increased training data

size. Interestingly, the magnitude of the added error is relatively small for all methods.

Note that we did not experiment with the number of hidden units of neural network,

which might explain why its performance did not improve much with the increase of

training samples.

For the third experiment (Table 3.4.3) we study how the added error changes if we

combine 3 classifiers instead of 2. We take normally distributed scores with standard

deviations of .4 and the size of the training data as 30. Although the additional

classifier increases the relative combination added error, the significant decrease of

Bayesian error would be much more important for total error. Also note that the

result for 3 classifiers and results of first two rows of Table 3.4.1 have comparable

Bayesian errors, with the SVM method not performing as well as for two classifiers.

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 52

Number of classifiers Bayes error DP SVM Parzen NN
2 0.0385 0.2812 0.1645 0.2842 0.2669
3 0.0004 0.8544 0.7882 0.6684 0.8747

Table 3.4.3: Dependence of combination added error on the number of classifiers

3.5 Experiment with biometric matching scores.

First experiment provided valuable observations on the impact of utilizing the knowl-

edge of the score independence of two classifiers. The reported numbers are averages

over 100 simulations of generating training data, training classifiers and combining

them. Caution should be exercised when applying any conclusions to real life prob-

lems. The variation of performances of different combination methods over these sim-

ulations is quite large. There are many simulations where ’worse in average method’

performed better than all other methods for a particular training set. Thus, in prac-

tice it is likely that the method, we find best in terms of average error, is outperformed

by some other method on a particular training set. We performed experiments com-

paring performances of density approximation based combination algorithms (as in

example 1) on biometric matching scores from BSSR1 set [1]. The results of these

experiments are presented in Figures 3.5.1 and 3.5.2.

In the first figure we combine scores from the left index fingerprint matching (set li)

and face (set C) matching. In the second figure we combine the same set of fingerprint

scores and different set of face scores (set G). In both cases we have 517 pairs of genuine

matching scores and 517*516 pairs of impostor matching scores. The experiments are

conducted using leave-one-out procedure. For each user all scores for this user (one

identification attempt - 1 genuine and 516 impostor scores) are left out for testing and

all other scores are used for training the combination algorithm (estimating densities

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 53

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.02

0.04

0.06

0.08

0.1

0.12

FRR

F
A

R

2d pdf reconstruction
1d pdf reconstruction

(a) Low FRR range

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

FRR

F
A

R

2d pdf reconstruction
1d pdf reconstruction

(b) Low FAR range

Figure 3.5.1: ROC curves for BSSR1 fingerprint (li set) and face (C set) score com-
binations utilizing and not utilizing score independence assumption.

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.05

0.1

0.15

0.2

0.25

FRR

F
A

R

2d pdf reconstruction
1d pdf reconstruction

(a) Low FRR range

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

FRR

F
A

R

2d pdf reconstruction
1d pdf reconstruction

(b) Low FAR range

Figure 3.5.2: ROC curves for BSSR1 fingerprint (li set) and face (G set) score com-
binations utilizing and not utilizing score independence assumption.

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 54

of genuine and impostor matching scores). The scores of ’left out’ user are then

evaluated on the ratio of impostor and genuine densities providing test combination

scores. All test combination scores (separately genuine and impostor) for all users

are used to create the ROC curves. We use two graphs for each ROC curve in order

to show more detail. The apparent ’jaggedness’ of graphs is caused by individual

genuine test samples - there are only 517 of them and most are in the region of low

FAR and high FRR.

Graphs show we can not assert the superiority of any one combination method.

Although the experiment with artificial densities shows that reconstructing one-

dimensional densities and multiplying them instead of reconstructing two-dimensional

densities results in better performing combination method on average, on this partic-

ular training set the performance of two methods are roughly the same.

3.6 Asymptotic properties of density reconstruc-

tion

In this section we provide a theoretical explanation for the improvement we see when

we use the product of approximated one-dimensional score densities instead of recon-

structing two-dimensional densities.

Let us denote true one-dimensional densities as f1 and f2 and their approximations by

Parzen kernel method as f̂1 and f̂2. Let us denote the approximation error functions

as ε1 = f̂1 − f1 and ε2 = f̂2 − f2. Also let f12, f̂12 and ε12 denote true two-dimensional

density, its approximation and approximation error: ε12 = f̂12 − f12.

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 55

We will use the mean integrated squared error in current investigation:

MISE(f̂) = E

(
∫ ∞

−∞

(f̂ − f)2(x)dx

)

where expectation is taken over all possible training sets resulting in approximation

f̂ . It is noted in [24] that for d-dimensional density approximations by kernel methods

MISE(f̂) ∼ n− 2p

2p+d

where n is the number of training samples used to obtain f̂ , p is the number of

derivatives of f used in kernel approximations (f should be p times differentiable),

and window size of the kernel is chosen optimally to minimize MISE(f̂).

Thus approximating density f12 by two-dimensional kernel method results in asymp-

totic MISE estimate

MISE(f̂12) ∼ n− 2p

2p+2

But for independent classifiers the true two-dimensional density f12 is the product of

one-dimensional densities of each score: f12 = f1 ∗ f2 and our algorithm presented

in the previous sections approximated f12 as a product of approximations of one-

dimensional approximations: f̂1 ∗ f̂2. MISE of this approximations can be estimated

as

MISE(f̂1 ∗ f̂2) = E

(
∫ ∞

−∞

∫ ∞

−∞

(

f̂1(x) ∗ f̂2(y) − f1(x) ∗ f2(y)
)2

dxdy

)

=

E

(
∫ ∞

−∞

∫ ∞

−∞

(

(f1(x) + ε1(x)) ∗ (f2(y) + ε2(y)) − f1(x) ∗ f2(y)
)2

dxdy

)

=

E

(
∫ ∞

−∞

∫ ∞

−∞

(

f1(x)ε2(y) + f2(y)ε1(x) + ε1(x)ε2(y)
)2

dxdy

)

=

(3.6.1)

By expanding power 2 under integral we get 6 terms and evaluate each one sepa-

rately below. We additionally assume that
∫∞

−∞
f 2

i (x)dx is finite, which is satisfied

if, for example, fi are bounded (fi are true score density functions). Also, note that

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 56

MISE(f̂i) = E

(

∫∞

−∞
(f̂i − fi)

2(x)dx

)

= E

(

∫∞

−∞
(εi)

2(x)dx

)

∼ n− 2p

2p+1 .

E

(
∫ ∞

−∞

∫ ∞

−∞

f 2
1 (x)ε2

2(y)dxdy

)

=

∫ ∞

−∞

f 2
1 (x)dx ∗ E

(
∫ ∞

−∞

ε2
2(y)dy

)

∼ n− 2p

2p+1

E

(
∫ ∞

−∞

∫ ∞

−∞

f 2
2 (y)ε2

1(x)dxdy

)

=

∫ ∞

−∞

f 2
2 (y)dy ∗ E

(
∫ ∞

−∞

ε2
1(x)dx

)

∼ n− 2p

2p+1

E

(
∫ ∞

−∞

∫ ∞

−∞

f1(x)ε1(x)f2(y)ε2(y)dxdy

)

=

E

(
∫ ∞

−∞

f1(x)ε1(x)dx

)

∗ E

(
∫ ∞

−∞

f2(y)ε2(y)dy

)

≤

√

∫ ∞

−∞

f 2
1 (x)dx

√

E

(
∫ ∞

−∞

ε2
1(x)dx

)

√

∫ ∞

−∞

f 2
2 (y)dy

√

E

(
∫ ∞

−∞

ε2
2(y)dy

)

∼

∼

√

n− 2p

2p+1

√

n− 2p

2p+1 = n− 2p

2p+1

E

(
∫ ∞

−∞

∫ ∞

−∞

f1(x)ε1(x)ε2
2(y)dxdy

)

=

E

(
∫ ∞

−∞

f1(x)ε1(x)dx

)

∗ E

(
∫ ∞

−∞

ε2
2(y)dy

)

≤

√

∫ ∞

−∞

f 2
1 (x)dx

√

E

(
∫ ∞

−∞

ε2
1(x)dx

)

E

(
∫ ∞

−∞

ε2
2(y)dy

)

∼

√

n− 2p

2p+1 n− 2p

2p+1 = o
(

n− 2p

2p+1
)

Similarly,

E

(
∫ ∞

−∞

∫ ∞

−∞

ε2
1(x)f1(x)ε2(y)dxdy

)

= o
(

n− 2p

2p+1
)

E

(
∫ ∞

−∞

∫ ∞

−∞

ε2
1(x)ε2

2(y)dxdy

)

= E

(
∫ ∞

−∞

ε2
1(x)dx

)

E

(
∫ ∞

−∞

ε2
2(y)dy

)

= o
(

n− 2p

2p+1
)

Thus we proved the following theorem:

Theorem 3.1 If score densities of two independent classifiers f1 and f2 are p times

differentiable and bounded, then the mean integrated squared error of their prod-

uct approximation obtained by means of product of their separate approximations

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 57

MISE(f̂1 ∗ f̂2) ∼ n− 2p

2p+1 , whereas mean integrated squared error of their product ap-

proximation obtained by direct approximation of two-dimensional density f12(x, y) =

f1(x) ∗ f2(y) MISE(f̂12) ∼ n− 2p

2p+2 .

Since asymptotically n− 2p

2p+1 < n− 2p

2p+2 , the theorem states that under specified condi-

tions it is more beneficial to approximate one-dimensional densities for independent

classifiers and use a product of approximations, instead of approximating two or more

dimensional joint density by multi-dimensional kernels. This theorem partly explains

our experimental results, where we show that DP method (density product) of clas-

sifier combination is superior to multi-dimensional Parzen kernel method of classifier

combination. This theorem applies only to independent classifiers, where knowledge

of independence is supplied separately from the training samples.

3.7 Conclusion

In this chapter we evaluated combination added error. We showed experimentally

that this error is relatively small for all combination methods. So it does not really

matter which combination method is used to combine results of classifiers. By using a

larger number of training samples, an inferior combinator can outperform a superior

combinator. Thus it is more important to see what is the minimum Bayesian error

of combined system, which is determined by the classifiers’ performances and their

interdependencies (assuming that trainable generic classifier is used as combinator and

not fixed combination rules, like sum or product rule). The choice of the combination

algorithm becomes more important when classifiers have small Bayesian errors.

Our method for combining independent classifiers by multiplying one-dimensional

CHAPTER 3. UTILIZING INDEPENDENCE OF CLASSIFIERS 58

densities shows slightly better performance than a comparable Parzen classifier. Thus

using the independence information can be beneficial for density based classifiers.

However, the DP method is not as good as SVM. It seems that if more training samples

are used and more classifiers are combined, DP might prove to be better than SVM.

Incorporating the knowledge about independence of the combined classifiers into other

methods (such as neural networks or SVMs) can improve their performance as well.

The main motivation of this chapter was to find the best combination method for

multimodal biometric matchers. The presented techniques should help to choose

combination method, although other factors should also be taken into consideration.

For example, if costs of incorrect classification or prior probabilities of classes change,

the SVM or neural network method will require retraining. Also, if output of combina-

tion confidence is required for system operation, the ability of density based methods

to output posterior class probability can be a decisive factor for their adoption.

Chapter 4

Identification Model

4.1 Introduction

The identification problem of pattern recognition can be loosely defined as a classifi-

cation problem with variable classes. One of the applications is identifying the person

using speech, handwriting or other biometric samples among n enrolled persons. The

number of enrolled persons and their identities change arbitrarily, thus class rela-

tionships are frequently discarded. Other applications which we will consider in this

chapter are handwriting recognition with variable lexicon, and barcode recognition.

The class relationships are usually discarded due to problem intractability. For ex-

ample, the number of persons or handwritten words can be large, and the number of

samples available for training can be just 1 - for biometric templates, or none - for word

recognition. Therefore, most recognition algorithms do not include relationships be-

tween classes in their training procedure. Consequently, during the recognition stage

59

CHAPTER 4. IDENTIFICATION MODEL 60

classes are matched one at a time. The class whose matching produces the best score

is declared as winner.

The problem occurs it is needed to ensure that the winner class is indeed the truth

for the input sample. A quick solution is to set a threshold θ and accept the winner

only if the matching score is better than threshold. However, if there is a second

candidate with a score close to the best score there is a fair chance that the true class

might be the one with the second best score instead of first. Thus instead of condition

s1 > θ, where s1 is the best score and > means better score, we might want to use

condition s1 > θ1 and s1 − s2 > θ2, where s2 is the second best score. The second

condition takes into consideration not only the individual matching scores, but also

relations between the scores of the different classes. Thus this approach incorporates

class relationship information into the classification task.

We can address several questions arising with regards to the above described problem:

1. How are thresholds θ1 and θ2 determined?

2. Is there a better way to combine s1 and s1 − s2 to obtain the classification

confidence?

3. Can we use s3, s4, . . . to improve confidence estimates?

4. How do the problem parameters (e.g. number of classes) influence the perfor-

mance gained by using interclass score relationships?

Expanding identification decision to include the second best score is intuitive and

commonly used. Brunelli and Falavigna[11] use the ratio of the normalized best and

second best scores in the decision on person identification based on speech and facial

features. Another recent paper[54] uses the best score and average of next N scores

CHAPTER 4. IDENTIFICATION MODEL 61

to decide on writer identification. However, a theoretical properties of the use of the

second-best scores have not been adequately studied. Grother and Phillips[23] use a

simple threshold condition of the first type while building the model of identification

performance.

The related idea of combining matching scores is to somehow use local neighborhood

information of the matched pattern. For example, the technique of score normal-

ization in speaker verification [50, 15, 47] uses matching scores of a set of similar

speakers (cohort) to improve the verification confidence. Also there are works where

this technique is successfully applied for speaker identification[35]. Using background

models[50] for speaker verification implies the use of distribution of non-matching

classes, and the normalized score rather approximates optimal identification score -

a Bayes posterior probability of matching input to particular class. This implicit

assumption about non-matching score distribution might explain the difficulty in de-

riving strict a mathematical framework for score normalization in the verification

problem.

In this chapter we will use artificial examples to illustrate the effects of using second-

best scores in the identification process. We will also give examples of using second-

best scores in real life applications.

4.2 Combining Matching Scores under Indepen-

dence Assumption

Let N be the number of classes in our identification problem, s1 > s2 > · · · > sN

are the scores produced during an identification attempt (index shows the order of

CHAPTER 4. IDENTIFICATION MODEL 62

scores and not class number). One of the scores si is produced by matching with

truth class, id(input) = id(i). Let pm and pn denote the densities of of matching and

non-matching scores. We fix the densities for our example as

pm(s) = cme
−

(1−s)2

2σ2
m

pn(s) = cne
− s2

2σ2
n

where s ∈ [0, 1], σm = .4, σn = .2 and cm and cn are normalizing constants. The

densities for matching and non-matching scores are shown in Figure 4.2.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Scores

D
en

si
ty

Impostors

Genuine

Figure 4.2.1: Chosen densities of matching(genuine) and non-matching(impostors)
scores.

The main assumption which we make in this example is that the scores si produced

during matching input pattern against all classes are independent random variables.

CHAPTER 4. IDENTIFICATION MODEL 63

One score from the truth class is sampled from pm and the remaining N − 1 scores

are sampled from pn. This assumption is rather restrictive and generally it is not

true. For example, frequently matching score includes some measure of input signal

quality. Since the quality of input is the same for all matching attempts, we expect

that scores s1, s2, . . . , sN will be dependent.

By using the independence assumption we are able to calculate the joint density of

best and second-best scores under two conditions: best score comes from match-

ing truth class and best score comes from matching non-truth class. These are the

formulas for densities in case N = 2:

p(s1, s2|id(input) = id(1)) = pm(s1) ∗ pn(s2)

p(s1, s2|id(input) 6= id(1)) = pn(s1) ∗ pm(s2)
(4.2.1)

Bayes decision theory holds that optimal decision surfaces are defined by the likelihood

ratio:

L =
p(s1, s2|id(input) = id(1))

p(s1, s2|id(input) 6= id(1))
=

pm(s1) ∗ pn(s2)

pn(s1) ∗ pm(s2)
(4.2.2)

Sample decision surfaces are shown in Figure 4.2.2. Note that if we use only the

best score s1 for making decisions, we will get vertical lines as decision boundaries.

Thus decisions involving second best score substantially differ from decisions based

solely on s1. In Figure 4.2.3 we show the ROC curves for decisions utilizing the

second-best score. Good reduction in false acceptance rate (FAR) is achieved when

false reject rate (FRR) is around 0.1 − 0.4. Second-best score is a good feature for

making decision about the following two cases: a) best matched class is the truth, b)

best matched class is not a truth.

CHAPTER 4. IDENTIFICATION MODEL 64

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

s1

s 2

Figure 4.2.2: Bayes decision boundaries for N=2 with contours drawn for
L=1,10,100,1000 and 10000.

4.3 Dependent Scores

The main assumption used in the previous example is the independence of matching

scores. But as we noted this is rarely the case in practice. Is it still beneficial to use

second-best score for making identification decision if scores are dependent?

Using the second-best score in addition to the best score amounts to simply adding

one more feature in the two-class classification problem. In the Bayes framework

which we consider in the artificial example adding more features can not make the

performance worse. Thus it is possible to only improve results by considering the

CHAPTER 4. IDENTIFICATION MODEL 65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

FRR

F
A

R
Using only s

1
Using s

1
 and s

2

Figure 4.2.3: ROC curves for optimal thresholding using and not using second-best
score.

second-best score, as well as all other scores. In practice, using the second-best or

other scores depends on the number of training samples. We can identify two extreme

cases of score dependency with regard to using the second-best score.

1. The worst case is where no improvement can be achieved. Consider a matcher

producing scores normalized to posterior probabilities of participating classes,

si = P (ωi|input). The score for best class is exactly the probability that this

class is genuine, and thresholding such probability coincides with the Bayesian

cost minimization. Specifically, the optimal Bayesian decision boundary is de-

termined by the ratio of genuine and impostor densities, and the posterior class

CHAPTER 4. IDENTIFICATION MODEL 66

probability can be expressed through such ratio. Hence, the curve correspond-

ing to constant posterior probability coincides with Bayesian decision boundary.

Thus it is sufficient to consider only the first score for optimal decision. For

N = 2 the scores will be connected by the equation s2 = 1 − s1, and later

discussion will alternatively prove that for such scores considering second best

score does not benefit decision process.

2. The best case is where combination of s1 and s2 achieves perfect separation

of successful and unsuccessful identification events. For example, suppose the

correct identifications (the best score belongs to genuine class) always have

s1 − s2 > .1, and incorrect identifications have s1 − s2 < .1. In this situation,

taking s1−s2 = .1 as decision boundary will give us FAR=0 and FRR=0. Using

only score s1 or independence assumption as in formula 4.2.1 will fail to give

such results.

Figure 4.3.1: Two extreme cases for utilizing second best score s2 for decision thresh-
olding.

CHAPTER 4. IDENTIFICATION MODEL 67

Figure 4.3.1 illustrates these two cases. In the first case, all scores lie on the line s2 =

1− s1 (note that we consider only region s1 ≥ s2). If we use traditional thresholding

of the score s1 only, the decision surfaces will be vertical lines. If we use any other

thresholding method, the decision surfaces will still somehow intersect this line. Thus

such thresholding will also produce a division of this line into two sets: ’accept’ and

’reject’. Clearly, any such division could be be produced by vertical decision surfaces

and by decision methods involving only the first score s1. Thus incorporating the

second score s2 into the decision algorithm will not give any additional benefits.

In the second case line s1−s2 = .1 will give a perfect decision separating identification

attempts with the first score s1 corresponding to the genuine class, and identification

attempts with the first score corresponding to the impostor class. The case with

independent scores will be similar to Figure 4.2.3, and utilizing the second best score

will give some improvement during the decision step.

Scores are frequently dependent. Scores were dependent to some extent in all the

applications we experimented with. We can point out at least two causes of such

dependence:

1. Recognizers usually incorporate some measure of input quality into matching

score. If quality of the input is low we can expect all matching score to be low,

and if quality is high, then matching scores also will be high.

2. We expect character images to belong to a definite set of classes, and if a

character is in one class, it will be quite different from characters in other

classes. When the distortion is small and the correct class is matched, the

distance to other classes will dictate low impostor scores. But if impostor class

is matched, the input sample probably lies somewhere in between classes, and

the second best score is comparable to the first one.

CHAPTER 4. IDENTIFICATION MODEL 68

Summarizing the above discussion, if matching scores are independent we expect to

achieve average performance improvement by combining the second-best score. If

scores are dependent, then any situation from no improvement to perfect decision is

possible. Scores are usually dependent and therefore considering second-best score in

decision is beneficial.

4.4 Different number of classes N

The interesting question for identification systems is what will be the performance

of the system for large number of classes, or, in the case of biometric identification

systems, a large number of enrolled persons. Previous research in this area has relied

on decision processes considering only the single best score [61, 23, 8]. It is assumed

that the matching scores assigned to different classes during the identification attempt

are statistically independent. Let FRR1 and FAR1 denote the false reject and false

accept rates for verification system where the decision to accept is determined by

some threshold θ:

FRR1(θ) =

∫ θ

−∞

pg(s)ds , FAR1(θ) =

∫ ∞

θ

pi(s)ds

where pg(s) and pi(s) are densities of genuine and impostor scores. Note, that we

assume (as in section 4.2) that the genuine scores are usually greater than impostor

scores, and verification is accepted if s ≥ θ and rejected if s < θ. Suppose we have

N enrolled persons and during an identification attempt we have one genuine score

and N − 1 impostor scores. The probability of false reject in the identification trial is

FRRN(θ) = FRR1(θ) and the probability that at least one of N − 1 will be accepted

CHAPTER 4. IDENTIFICATION MODEL 69

is

FARN(θ) = P (max si ≥ θ, i = 1, . . . , N − 1, si - impostor scores)

= 1 − P (max si < θ, i = 1, . . . , N − 1, si - impostor scores)

= 1 −
∏

i=1,...,N−1

P (si < θ, si - impostor scores)

= 1 −
∏

i=1,...,N−1

(1 − FAR1(θ)) = 1 − (1 − FAR1(θ))
N−1

(4.4.1)

The usual assumptions on this model are that scores are independent and impostor

scores have identical distributions. There is also an implicit assumption that the

threshold defining false accept and false reject rates is defined by using a single score.

For example, Wayman [61] considers different scenarios of decision policy, but all

scenarios have comparisons of individual scores to some thresholds. As we showed

in section 4.2, such type of thresholding is suboptimal, and we have to consider

more complex comparisons, e.g. a comparison of a linear combination of the first two

scores to the threshold. In this section we will consider more complex type of decision

making involving a combination of scores.

We will assume that the scores si produced during matching the input pattern against

all classes are independent random variables. One score from the truth class is sam-

pled from pg and the remaining N − 1 scores are sampled from pi. This assumption

is rather restrictive and generally not true, but it will be helpful for experiments we

conduct here. Using the independence assumptions we are able to calculate the joint

density of the best and second-best scores for the two classes: a class where best

score comes from genuine match and a class where best score comes from impostor

match. Let us denote these densities as pgen(s1, s2) and pimp(s1, s2), where s1 is the

CHAPTER 4. IDENTIFICATION MODEL 70

best score, and s2 is the second best score. Then

pgen(s1, s2) =pg(s1)pi(s2)F
i
N−2(s2)(N − 1)

pimp(s1, s2) =pi(s1)pi(s2)F
i
N−3(s2)(N − 2)(N − 1)F g(s2)

+ pi(s1) ∗ pg(s2) ∗ F i
N−2(s2) ∗ (N − 1)

(4.4.2)

where F i
n(s) denote probabilities of n impostor scores be less than s : F i

n(s) =
(

∫ s

−∞
pi(t)dt

)n

, and F g(s) denotes the probability of a genuine score to be less than s:

F g(s) =
∫ s

0
pg(t)dt. We do not provide strict derivation of these formulas, but instead

show how they can be interpreted. In the first formula the best score is sampled from

the genuine density and thus there is the term pg(s1). The second score is the impos-

tor score and hence we have term pi(s2). All other N−2 impostor scores are less than

s2, so there is a term F i
N−2(s2). Finally, term (N − 1) comes from N − 1 possibilities

of the best impostor score s2 to be from N − 1 different impostor classes. The second

formula could be explained similarly. Note that in this formula the probability of

impostor match having the best score, pimp(s1, s2), is the sum of probabilities of two

events: second match is the impostor match and second match is the genuine match,

each corresponding to two sum terms.

Formulas 4.4.2 allow us to calculate the joint best and second-best score densities

pgen(s1, s2) and pimp(s1, s2) for successful (genuine score is on top) and unsuccessful

(impostor score is on top) identification attempts if the densities of the genuine and

impostor scores are known. In order to investigate the performance of identification

systems for different number of enrolled persons N we again consider an artificial

example where pg(s) = cge
−

(1−s)2

2σ2
g and pi(s) = cie

− s2

2σ2
i , s ∈ [0, 1], σg = .3, σi = .2 and

cg and ci are normalizing constants. Figures 4.4.1 through 4.4.6 present the results

of these experiments.

Note that in these experiments we fixed the densities of the considered scores, and

CHAPTER 4. IDENTIFICATION MODEL 71

0 0.2 0.4 0.6 0.8 1
FRR

0

0.005

0.01

0.015

0.02

FA
R

New decision rule

Original thresholding

ROC curves, N=2

Figure 4.4.1: ROC curves for optimal thresholding using and not using second-best
score, N=2.

0.2 0.4 0.6
FRR

0

0.01

0.02

0.03

0.04

0.05

FA
R

New decision rule

Original thresholding

ROC curves, N=10

Figure 4.4.2: ROC curves for optimal thresholding using and not using second-best
score, N=10.

CHAPTER 4. IDENTIFICATION MODEL 72

0 0.2 0.4 0.6
FRR

0

0.05

0.1

FA
R

New decision rule

Original thresholding

ROC curves, N=100

Figure 4.4.3: ROC curves for optimal thresholding using and not using second-best
score, N=100.

0 0.1 0.2 0.3 0.4 0.5
FRR

0

0.1

0.2

FA
R

New decision rule

Original thresholding

ROC curves, N=1000

Figure 4.4.4: ROC curves for optimal thresholding using and not using second-best
score, N=1000.

CHAPTER 4. IDENTIFICATION MODEL 73

0 0.1 0.2 0.3 0.4 0.5
FRR

0

0.1

0.2

0.3

0.4

0.5
FA

R

New decision rule

Original thresholding

ROC curves, N=10,000

Figure 4.4.5: ROC curves for optimal thresholding using and not using second-best
score, N=10,000.

0 0.05 0.1 0.15 0.2 0.25
FRR

0

0.2

0.4

0.6

0.8

FA
R

New decision rule

Original thresholding

ROC curves, N=100,000

Figure 4.4.6: ROC curves for optimal thresholding using and not using second-best
score, N=100,000.

CHAPTER 4. IDENTIFICATION MODEL 74

formulas 4.4.2 allow direct calculations of joint densities for different number of en-

rolled classes N . Thus the presented results are exact and not statistical for assumed

densities and independence of scores.

As it is to be expected, larger number of enrolled persons results in worse system

performance: ROC curves are higher for bigger N . The benefit of using the second-

best score for acceptance decision is greater when the number of enrolled persons N is

small. If the number of enrollees increases, the benefit of using the second-best score

diminishes. Such trend is not necessarily true for matchers with dependent scores.

The next section presents an example of barcode recognition application where the

number of classes is 2106. Utilizing the second-best score is quite beneficial as it almost

halves the error rate.

4.5 Examples of Using Second-Best Matching Scores

In this section we present examples of incorporating the second-best matching score

for the identification problem in different real life applications. We will explore the

problems of identifying a handwritten word given a lexicon, barcode recognition and

biometric person identification.

4.5.1 Handwritten word recognition

We consider the recognition of handwritten street names in the address recognition

systems. The handwritten destination address is first automatically segmented and

recognition of zip codes and house numbers is performed. Based on these two num-

bers the database with street names is queried, and results of the query are used

CHAPTER 4. IDENTIFICATION MODEL 75

as the lexicon for the word recognizer [56]. The lexicon size varies from one to few

hundred phrases. The identification of street name by word recognizer serves as a

decision for accepting mail piece recognition. The truth phrase of the recognized

image is not always contained in the lexicon. Thus we are truly dealing with a mix-

ture of identification and verification. Nevertheless, assuming some probability that

this automatically generated lexicon contains truth, this reduces to the identification

problem. The word recognizer provides matching distances as output scores. The

score assigned to a particular class does not change when the lexicon is changed (but

still includes this particular class). Thus scores are not normalized to posterior class

probabilities, and incorporating the second-best score fits this application well.

We use logistic regression on (s1, s2) samples to incorporate second-best score and to

model posterior probability

P (correct identification|s1, s2) ∼ L(s1, s2) =
1

1 + eas1+bs2+c
(4.5.1)

We use total 7615 samples for both training (finding best values of a, b, c) and testing.

2427 samples are incorrectly identified as the best score does not correspond to the

truth class.

Figure 4.5.1 shows the ROC curves based on thresholding using only the first score s1

and on thresholding the value of the logistic function. We can see from the graph that

significant reduction in false acceptance rate can be achieved for (1-FRR) between

0.2 and 0.7.

Note that the this application has variable number of classes. As we showed in section

4.4 the distribution of the best impostor score changes with N and results in different

thresholding parameters. Thus it makes sense to use different decisions for different

values of N .

CHAPTER 4. IDENTIFICATION MODEL 76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1−FRR

F
A

R
Using only s

1
for thresholding

Using logistic regression of s
1
 and s

2

Figure 4.5.1: ROC curves for handwritten word recognition.

4.5.2 Barcode Recognition

In this section we deal with automated recognition of barcodes on mail pieces. We

consider 4-state type barcodes with 65 bars. Each bar can be represented by a pair of

bits (b1, b2), bi ∈ {0, 1} indicating the presence (bi = 1) or absence (bi = 0) of upper

(b1) or lower (b2) part of the bar. Thus the whole barcode can be represented by a

sequence of 65*2=130 bits B = (b1, b2, . . . , b130).

Barcode employs error correction using Reed-Solomon encoding [48] with symbols

over Galois field GF(64). It takes 6 bits to encode one symbol, thus a barcode can be

represented as d130
6
e = 22 symbols (one symbol is shorted). Out of these 22 symbols

CHAPTER 4. IDENTIFICATION MODEL 77

we have 4 error-correction symbols. The property of the Reed-Solomon encoding

is that minimum distance between two codewords is the number of error-correction

symbols plus 1. Thus in our case the minimum distance is 4 + 1 = 5. This means

that given one valid barcode we have to change at least 5 symbols (6-bit sequences)

to get another valid barcode. Correspondingly, at least 5 bits should be flipped to

change one valid barcode into another valid barcode.

The noise model is introduced where it is assumed that any bit can be corrupted

and have a new float value in the interval [0, 1]. Let us denote the corrupted barcode

as a sequence of 130 float numbers F = (f1, f2, . . . , f130). The problem of barcode

recognition is given a corrupted barcode F we must find some valid barcode B which

is closest to F in some sense. Reed-Solomon decoding algorithm operating on binary

strings is able to correct 2 corrupted symbols. Decoding of barcode F with float

numbers reflecting the probability of upper or lower part of the bar presence involves

making hypothesis about proper binary form of the barcode, and combining it with

binary Reed-Solomon decoding. In fact, by means of accepting a multitude of hy-

pothesis on what bars are and which bars are corrupted, we are searching through a

set of close valid binary barcodes and find the closest one. We do not present noise

model and particular distance function dist(B,F) used, since they are irrelevant for

current paper.

The performance of the decoding algorithm is measured by the cost function Cost

which is a linear combination of the cost of rejecting recognition results, RejectRate,

and the cost of accepting incorrectly recognized barcode, MisreadRate. Three cost

functions were considered: Cost = RejectRate + k ∗ MisreadRate, k = 2, 10, 100.

To minimize the cost of barcode recognition we need to find the best possible decision

algorithm on whether barcode with the best score will be accepted as a recognition

CHAPTER 4. IDENTIFICATION MODEL 78

result or not. One of the decisions is based on the comparison of this best score s1 with

some preset threshold. Another decision is based on finding two closest valid barcodes

and comparing linear combination of corresponding scores α1s1 + α2s2 with preset

threshold. The thresholds and parameters αi were found so that Cost is minimized.

Table 4.5.1 presents the results of the experiments. The numbers in the table show

minimum values of Cost (expressed in %) given optimal parameters minimizing that

cost.

Cost model Using s1 Using s1 and s2

k=2 0.3261 0.1998
k=10 0.5287 0.2449
k=100 0.9271 0.5194

Table 4.5.1: Costs of barcode recognition are significantly reduced when s2 is used
for thresholding.

Incorporating the score of the second-best matched barcode allows reducing the recog-

nition cost in half. This is a significant improvement given that the recognition al-

gorithm is only slightly modified. Barcode recognition is exactly the identification

problem, since we know all the classes - all valid barcodes (2106 total), and we are

certain during recognition that the corrupted barcode has its truth among all these

barcodes. By the linearity property, each valid barcode has a similar neighborhood

and impostors are separated from a genuine barcode by some minimum distance. The

matching scores s1 and s2 are dependent mostly due to the second cause (section 4.3):

if corruption is small, then genuine score is high and other scores are low. In case of

major corruption, all scores are low. The score dependence seems to have a positive

effect on identification model improvement in this situation.

CHAPTER 4. IDENTIFICATION MODEL 79

4.5.3 Biometric Person Identification

We consider the problem of person identification by means of fingerprint and face

biometrics. We use the NIST Biometric Score Set, release 1 (BSSR1 [1]). We consider

three subsets of scores: fingerprint li set which is produced for 6000 enrolled left index

fingerprints and 6000 user input fingerprints, face recognizer C set and face recognizer

G set which are produced for 3000 enrolled faces and 6000 user input faces. Thus all

sets have 6000 identification trials with 1 genuine scores and 5999 (for fingerprints)

or 2999 (for faces) impostor match scores.

We ran all experiments using leave-one-out method, that is for each identification

trial we use all other 5999 trials for training and perform testing on the left out trial.

All 6000 test runs are combined together in the ROC curve. For each test run we

reconstruct densities of scores for two classes - genuine identification trials with the

best score being the genuine match and impostor identification trials with the best

score being impostor match. A test run score is given as a ratio of genuine density to

the impostor density at a test trial score point (Bayesian classification).

Results of the experiments are shown in Figures 4.5.2 - 4.5.4. 1 top score thresholding

means that we consider only the top scores for reconstructing the densities, and 2

top score thresholding means that we use both the best and second-best scores to

reconstruct densities. In all cases making acceptance decision based on two scores

has clear advantage over decisions based on just the first score.

The causes for score dependence in biometric person identification are mostly different

from those considered in the barcode recognition application. There is no enforced

requirement of minimum distance between biometric templates. Thus biometric tem-

plates could be close to each other, and even small corruption of any one template

CHAPTER 4. IDENTIFICATION MODEL 80

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
BSSR1, fingerprint matching scores

FAR

F
R

R

1 top score thresholding
2 top score thresholding

Figure 4.5.2: ROC curves for optimal thresholding using and not using second-best
score. BSSR1 set, fingerprint li scores.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
BSSR1, face matching scores, set C

FAR

F
R

R

1 top score thresholding
2 top score thresholding

Figure 4.5.3: ROC curves for optimal thresholding using and not using second-best
score. BSSR1 set, face recognizer C scores.

CHAPTER 4. IDENTIFICATION MODEL 81

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

BSSR1, face matching scores, set G

FAR

F
R

R

1 top score thresholding
2 top score thresholding

Figure 4.5.4: ROC curves for optimal thresholding using and not using second-best
score. BSSR1 set, face recognizer G scores.

could result in impostor match. It seems that the quality of input produces most

score dependence in this case. For example, if an input fingerprint has small area,

then it will contain small number of minutia, and consequently all minutia based

matchers will produce low scores. And if the input fingerprint has many minutia,

then not only the genuine match will have many matching minutia and high score,

but impostor matches will also get a chance to produce a higher score.

4.6 Conclusion

The purpose of artificial examples relying on matching scores independence assump-

tion explored in sections 4.2 and 4.4 was to reveal that the benefit from using a

CHAPTER 4. IDENTIFICATION MODEL 82

combination of scores, instead of only one best score, comes naturally. The improve-

ment is explained by explicitly stating that we deal with the identification process -

the true class is one among N matched classes. In case of dependent scores, the total

improvement of using score combination can be considered as composite of two parts:

improvement due to identification process assumption and improvement due to score

dependency. As real life applications show, improvements due to score dependency

can be significant.

The score normalization technique is widely used in speaker verification and identifi-

cation by making implicit assumptions on matching and non-matching score distribu-

tions. These assumptions result in implicitly accepting the identification model. Con-

sequently, improvements from using score normalizations techniques can be explained

directly by utilizing benefits of the identification process. Part of the improvements

can also be explained by utilizing score dependencies.

The questions which is not addressed in this work is whether it helps to use scores

s3, s4, . . . in combination. Though the idea of utilizing additional scores is valid and

could improve identification, it requires significant increase in the number of training

samples.

Chapter 5

Combinations Utilizing

Identification Model

In this chapter we consider a combination of matchers in the identification system.

A typical application is that of biometric person identification, where M multiple

biometric matchers are used to produce MN matching scores, and N is the number

of enrolled persons. We assume that M is small and N is large. This problem is

the same the classifier combination problem with large number of classes where each

classifier outputs N matching scores related to all classes. We use terms ’matcher’ to

refer to a classifier which outputs class matching scores, and ’identification’ to refer

to the case dealing with large number of classes.

We investigate combination approaches of the medium II complexity type. As we

will show by means of an artificial example, such approaches can result in better

performance than traditional low complexity combination approaches. We will also

describe methods of combining matching scores to retain information about individual

83

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 84

matchers.

5.1 Previous Work

The most frequent approach to combinations in identification systems is the use of

some combination function f to produce combined score for each class from classifiers’

scores assigned to the same class. In our combination framework such combinations

are of the low complexity type (section 2.2.2). Combination functions can also be

user specific - fi [34, 19] (medium I complexity type). These are in fact the same

combination methods which are used in biometric verification problems where person

claims his or her identity and the system only matches against enrolled templates of

that identity. Thus in verification applications only scores related to one person are

available for combination.

However, identification systems produce more scores, namely matching scores for all

persons in the database (we assume simple identification systems with no indexing).

These additional scores can be used to create an improved combination algorithm.

Experiments based on utilizing the second-best score for accepting identification re-

sults were presented in the previous chapter. Our results show significant benefits

resulting from using both the best and the second-best scores in order to accept or

reject a class corresponding to the best score. Is it possible to apply similar techniques

to improve the performance of the combination algorithm? This chapter addresses

this question and proposes methods of combination involving these additional output

scores.

Another type of approach to combination in identification systems is to use rank in-

formation of the scores. This approach transforms combination problems with output

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 85

type III classifiers to combination problems with output type II classifiers (see section

1.1.3 for the definition of these types). T.K. Ho has described classifier combinations

on the ranks of the scores instead of scores themselves by arguing that ranks provide

more reliable information about class being genuine [25]. Thus, if the input image

has low quality, then the genuine score, as well as the impostor scores will be low.

Combining low score for genuine class with other scores could confuse a combina-

tion algorithm, but the rank of the genuine class remains to be a good statistic, and

combining this rank with other ranks of this genuine class should result in true classi-

fication. Brunelli and Falavigna [11] considered a hybrid approach where traditional

combination of matching scores is fused with rank information in order to achieve

identification decision. Hong and Jain [29] consider ranks, not for combination, but

for modeling or normalizing classifier output score. Saranli and Demirekler [51] pro-

vide additional references for rank based combination and a theoretical approach to

such combinations.

Rank-based methods are examples of the medium II complexity type combinations.

Recall from section 2.2.2 that combinations of these type consider possibly all output

classifiers’ scores, and use the same combination function irrespective of the class.

Indeed, rank based methods take into account all scores output by each classifier in

order to calculate ranks. The ranks are combined at the second stage using some non-

class specific combination functions (e.g. Borda count). Thus combination functions

are indeed independent of the class, and there is only one combination function applied

to all classes.

Despite the apparent simplicity of rank based combination methods, they are placed

in the higher complexity type than previously mentioned low complexity combina-

tions. As many authors suggest, these methods do provide a better performance in

identification systems. The problem with rank based methods, however, is that the

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 86

score information is somewhat lost. It would be desirable to have a combination

method which retains the score information as well as the rank information.

Ranking of the matching scores is somewhat similar to the score normalization. Usu-

ally score normalization [33] means transformation of scores based on the classifier’s

score model learned during training, and each score is transformed individually using

such a model. Thus the other scores output by a classifier during the same identi-

fication trial are not taken into consideration. If these normalized scores are later

combined by low complexity combination, then the resulting total combination algo-

rithm will still be of low complexity. On the other hand, rank based normalization

considers all scores of a classifier in order to derive a normalized score for a particular

class, and thus results in higher complexity combinations.

Score normalization techniques have been well developed in the speaker identification

problem. For example, cohort normalizing method [50, 15] considers a subset of

enrolled persons close to the current test person in order to normalize the score for

that person by a log-likelihood ratio of genuine (current person) and impostor (cohort)

score density models. are T- and Z- normalization techniques are similar[47]. One of

our approaches also relies on a similar likelihood ratio. However, we consider such

normalizations in the context of combinations.

5.2 Low Complexity Combinations in Identifica-

tion System

In this section we show an artificial example of an identification system where low

complexity combinations can only provide suboptimal solutions. The example proves

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 87

that it is preferable to consider at least medium II complexity combinations for iden-

tification systems.

We repeat an example from section 4.3 where we considered different cases of the

dependencies in identification model. Suppose we have an identification system with

one matcher and, for simplicity, N = 2 classes. Also suppose we collected data on the

distributions of the genuine and impostor scores and reconstructed the score densities

as shown in figure 5.2.1. Is it possible to deduce from these densities the performance

of our identification system?

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

scores

impostor scores
genuine scores

Figure 5.2.1: Hypothetical densities of matching(genuine) and non-
matching(impostors) scores.

As in section 4.3, we look at three possible scenarios on how these densities might

have originated from the sample of the identification attempts:

1. In every observed identification attempt the score of the genuine class sgen is

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 88

chosen from the distribution of genuine scores, and the score of the impostor

class simp is the additive inverse of sgen: simp = 1 − sgen.

2. Both scores sgen and simp are sampled independently from genuine and impostor

distributions.

3. In every observed identification attempt : simp = sgen − 1. Note, this scenario

is a little different now, since the best score always corresponds to the genuine

class, and previously it was not so.

Let the score index mean the class to which this score was assigned. We previously

showed (section 4.3) that in the first scenario, considering both scores s1 and s2 for

thresholding has no advantages over considering the single best score max(s1, s2). In

the second scenario we have some advantage, and in third scenario we have perfect

decision. Thus, even though in all three cases the distributions of the individual

score densities are the same, the performances of the identification systems based on

these three scenarios are quite different. The difference could be discerned only by

considering the joint distribution of scores (s1, s2) obtained during each identification

trial instead of considering them separately.

So, how does this difference in performance translate into the combination of classi-

fiers? Consider a combination of two matchers in our two class identification system:

one matcher is from the second scenario, and the other is from the third scenario.

Assume that these matchers are independent. Let the upper score index refer to

the matcher producing this score; sj
i is the score for class i assigned by the classifier

j. From our construction we know that the second matcher always outputs genuine

score on the top. So the optimal combination algorithm simply look at scores s2
1

and s2
2 output by the second matcher and classifies the input as arg maxi s

2
i . Such a

combination considers the whole set of scores produced by the second matcher, and

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 89

thus belongs to the medium II complexity type.

Now suppose we can only use combinations of the low complexity type. These com-

binations use some function f to combine scores assigned to the same class and

classify the input as a class producing the best combined score: arg maxi f(s1
i , s

2
i).

The training of the combination function f can be performed only by taking sample

pairs of scores (s1
i , s

2
i), with some pairs belonging to the genuine matching scores and

other pairs belonging to impostor matching scores. Even though we might have our

scores originating from identification trials {(s1
1, s

2
1), (s

1
2, s

2
2)}, we still have to sepa-

rate them into genuine and impostor score pairs and use them separately for training.

The information about the dependence of scores output by any classifier during one

identification trial is simply discarded.

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

s1

s2

Figure 5.2.2: Optimal decision surfaces for low complexity combinations.

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 90

Pairs of scores (s1
i , s

2
i) belonging to genuine and impostor matchings could be dis-

played in the s1 × s2 score space. In our example, impostor scores are distributed

as a Gaussian centered at (0, 0), and genuine scores are distributed as a Gaussian

centered at (1, 1). Figure 5.2.2 shows the decision contours for optimal classification

of genuine and impostor matches. The optimal classification decision in this space

looks at the ratios of genuine and impostor densities at points (s1
1, s

2
1) and (s1

2, s
2
2) and

classify the sample as the class giving the bigger ratio (the proof of this is similar to

the derivation of likelihood ratio rule we give in the next section). The contours in

Figure 5.2.2 are exactly the curves where such ratio is constant.

Now, suppose we conduct a testing of this combination method, and the test sample

is (s1
1, s

2
1) = (−0.1, 1.0), (s1

2, s
2
2) = (1.1, 0). We know from our construction that

class 1 is the genuine class, since the second matcher assigned score 1.0 to it and

0 to the second class. But its score pair (1.1, 0) is located just above the diagonal

s1 + s2 = 1, and the score pair (−0.1, 1.0) corresponding to class 1 is located just

below this diagonal. Hence class 2 has bigger ratio of genuine to impostor densities

than class 1, and the optimal low complexity method would incorrectly classify class

2 as the genuine class.

We can also show that this sample will be incorrectly classified by the following

reasoning. Combination function f should be symmetrical in its arguments since

distributions of genuine and impostor scores s1 and s2 are identical. We also know

that the genuine scores are generally higher than impostor scores, thus function f

should be increasing in its arguments (higher score should result in higher combined

score output by f). So, for the first class f(−0.1, 1.0) = f(1.0,−0.1), which should

be smaller than the value for second class f(1.1, 0).

We have presented an example of the identification system with two matchers, which

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 91

has optimal performance by utilizing combinations from the medium II complexity

type, and suboptimal performance if combinations from low complexity type are

used. If at the beginning we considered an identification system with only the second

matcher (having the optimal performance) and added another matcher (suboptimal),

and used only combinations of the low complexity type, we would have decreased the

performance of this identification system.

This somewhat contradicts the generally accepted rule that incorporating additional

classifiers into the recognition system should not decrease system performance (at

least theoretically). If combination decreases system performance, it is usually ex-

plained by the small training set and training errors or by incorrectly chosen com-

bination function. It does not matter what low complexity combination function is

chosen in our example, the performance will still be worse than before combination.

As our example shows, such decrease in performance can be caused by the improper

choice of the combination complexity type.

Note also that medium I complexity type combinations would also discard score de-

pendencies, and a similar example can be constructed to prove that such combinations

lead to suboptimal system performance.

5.3 Combinations Using Identification Model

The example from the previous section showed that we really have to consider medium

II or high complexity combinations for identification systems. Also in the chapter

describing the combination framework, we noted that high complexity combination

might not be appropriate for system with large number of classes. Thus medium II

complexity type seems to be the best choice of combination type for identification

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 92

problems.

As we noted before, rank based combination methods belong to the medium II com-

plexity type. The problem with rank based methods, however, is that the score

information is simply discarded. It is easy to construct an example where small dif-

ference in scores will result in big difference in ranks and will confuse the combination

algorithm. Altincay and Demirekler [4] presented one such example.

Score normalization methods, which utilize the whole set of scores obtained during a

current identification trial in order to normalize a score related to a particular class,

followed by some combination algorithm, remain a viable approach to combination in

identification systems. The question is, of course, what is the proper way to do such

normalizations. The same paper by Altincay and Demirekler gives examples where

normalization procedures frequently used result in a loss of information contained in

a classifier’s scores and yield suboptimal classification.

Next, we present different combination methods of medium II complexity type. Score

normalization methods developed in the speaker identification research use the term

’background model’ to describe the probabilities associated with the event that a

considered class is an impostor class during the current identification attempt. Our

term ’identification model’ has a different meaning and describes the dependencies

between scores output for all classes during any one identification attempt.

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 93

5.3.1 Combinations by Modeling Score Densities

Suppose that we combine M independent classifiers, and each classifier outputs de-

pendent scores. We need to use normalization by identification model for each out-

put score. The identification system is essentially the classifier combination problem,

classifier combination is itself a classifier, and the Bayesian classifier chooses the class

which maximizes the posterior class probability. An input is a whole set of scores

output by all the M combined classifiers. Thus the goal of classification is to find

arg max
k

P (Ck|{s
j
i}i=1,...,N ;j=1,...,M)

Term Ck refers to the fact that the class k is the genuine class. By the Bayes theorem

P (Ck|{s
j
i}i=1,...,N ;j=1,...,M) =

p({sj
i}i=1,...,N ;j=1,...,M |Ck)P (Ck)

p({sj
i}i=1,...,N ;j=1,...,M)

and since the denominator is the same for all classes, our goal is to find

arg max
k

p({sj
i}i=1,...,N ;j=1,...,M |Ck)P (Ck)

or, assuming all classes have the same prior probability,

arg max
k

p({sj
i}i=1,...,N ;j=1,...,M |Ck)

By our current assumption, classifiers are independent, which means that any subset

of scores produced by one classifier is statistically independent from any other subset

of scores produced by another classifier. Hence, our problem is to find

arg max
k

∏

j

p({sj
i}i=1,...,N |Ck) (5.3.1)

The problem now is to reliably estimate the densities p({sj
i}i=1,...,N |Ck), which is a

rather hard task given that the number N of classes is large and we do not have many

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 94

samples of each class for training. The last problem is solved by noticing that we do

not construct class specific combination, and thus class indexes can be permuted.

Thus all training samples pertaining to different genuine classes can be used to train

only one density, p(sk, {s
j
i}i=1,...,N,i 6=k|Ck). Now sj

k is a score belonging to genuine

match, and all other scores {sj
i}i=2,...,N are from impostor matches. Since there are

many impostor scores participating in this density, we might somehow try to eliminate

them. Recall, that when considering identification models for decision, we relied on

the second best score output by the classifier. Could we use similar consideration and

rely only on one or two impostor scores?

Indeed, instead of p(sk, {s
j
i}i=1,...,N,i 6=k|Ck) we can consider p(sj

k, t
j
k|Ck), where tjk is a

best impostor score for classifier j, given that the genuine class is k. Note that if sk is

the best matching score, then tjk is the second best score, and if sk is the best score,

then tjk is the best score. Thus the combination rule is the following:

arg max
k

∏

j

p(sj
k, t

j
k|Ck) (5.3.2)

5.3.2 Combinations by Modeling Posterior Class Probabili-

ties

As above we consider posterior class probability, apply Bayes formula, but now use

independence of classifiers to decompose the denominator:

P (Ck|{s
j
i}i=1,...,N ;j=1,...,M) =

p({sj
i}i=1,...,N ;j=1,...,M |Ck)P (Ck)

p({sj
i}i=1,...,N ;j=1,...,M)

=

∏

j p({sj
i}i=1,...,N |Ck)P (Ck)

∏

j p({sj
i}i=1,...,N)

= P (Ck)
∏

j

p({sj
i}i=1,...,N |Ck)

p({sj
i}i=1,...,N)

(5.3.3)

The next step is similar to the step in deriving the algorithm for background speaker

model [47]. We consider class Ck meaning some other class is genuine, and decompose

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 95

p({sj
i}i=1,...,N) = P (Ck)p({sj

i}i=1,...,N |Ck)+P (Ck)p({sj
i}i=1,...,N |Ck). By assuming that

N is large and P (Ck) � P (Ck), we can discard the first term and get the following

classifier decision:

arg max
k

∏

j

p({sj
i}i=1,...,N |Ck)

p({sj
i}i=1,...,N |Ck)

(5.3.4)

In comparison with decision 5.3.1 of the previous section we have have additional

density p({sj
i}i=1,...,N |Ck). Such density can be viewed as a background of impostors

for the genuine class Ck. As research in speaker identification suggests, utilizing such

background model is helpful.

One way to model these ratios could be a direct reconstruction of the posterior class

probabilities (ratios in equation 5.3.3 are exactly these probabilities without priors).

The other way is by additional modeling of p({sj
i}i=1,...,N |Ck). We used an approach

similar to the previous section to estimate this density as p(sk, t
j
k|Ck), but tjk now is

not the best impostor (we do not know what score is genuine, and thus can not know

the best impostor), but simply the second best score.

The technique described in this section can be characterized as a composition of identi-

fication model and background model. The identification model considers p(sk, t
j
k|Ck)

and p(sk, , t
j
k|Ck) instead of p(sk|Ck) and p(sk|Ck), and background model considers

p(sk, , t
j
k|Ck) or p(sk|Ck) in addition to p(sk, t

j
k|Ck) or p(sk|Ck). The background

model makes score normalization under the assumption of the independence of scores

assigned to different classes, and identification model accounts for dependencies of

scores.

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 96

5.3.3 Combinations of Dependent Classifiers

The combination algorithms presented in the previous two sections deal with inde-

pendent classifiers. How should we address dependent classifiers?

By looking at the combination formulas 5.3.1 and 5.3.4 we can see that each clas-

sifier contributes terms p({sj
i}i=1,...,N |Ck) and

p({sj
i}i=1,...,N |Ck)

p({sj
i}i=1,...,N |Ck)

correspondingly to the

combination algorithm. Thus one can conclude that it is possible to model the same

terms for each classifier, and then combine them by some other trainable function.

Note that any relationships between scores sj1
i1

and sj2
i2

where i1 6= i2 and j1 6= j2 will

be essentially discarded. This seems to be inevitable for the current complexity type

of combinations - medium II. If we wanted to account for such relationships, we would

need class-specific combination functions, and thus higher complexity combinations.

5.3.4 Normalizations Followed by Combinations and Single

Step Combinations

Figure 5.3.1 represents in graphical form the type of combinations we have presented

thus far. All these combinations consist of two steps. In the first step, each score

is normalized by using other scores output by the same matcher. In the second

step, normalized scores are combined using a predetermined or trained combination

function.

However, it is not necessary to have these two steps for combinations. For each

normalization happening in the first step we use the same identification model statistic

and the same trained density estimates. Thus the contribution of the particular

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 97

Figure 5.3.1: 2-step combination method utilizing identification model.

classifier j to the whole combination algorithm’s output for class i is calculated only

from score sj
i and statistic tj (statistic though could vary for a class; in first case

it was best or second best score; thus in fact two values are used). Figure 5.3.2

presents a diagram on how scores and statistics from all participating classifiers could

be combined in a single combination step.

In the algorithm presented by this diagram the statistics tj are extracted for each

classifier j using its output scores by a predetermined and non-trainable algorithm.

The scores related to a particular class and statistics are combined together by a

trainable function. This combination function is not class-specific and is easily train-

able. This type of combinations are of medium II complexity type. In comparison,

in low complexity type combinations only scores for a particular class are combined,

and not statistics from identification models of classifiers.

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 98

Figure 5.3.2: 1-step combination method utilizing identification model.

5.4 Experiments

We conducted experiments using NIST BSSR1 biometric score database [1]. We used

subsets of left fingerprint (li) and two subsets of face scores from two face matchers

C and G. Since we wanted to consider first the case of independent matchers we per-

formed two sets of experiments on combining fingerprint and face scores : li combined

with C, and li combined with G.

Results are presented in Table 5.4.1. The columns represent the combination method.

’Low Complexity’ is the method of reconstructing densities of genuine and impostor

score pairs, and performing Bayesian classification using this densities. This approach

discards score dependencies, and it is of low complexity type. ’Density’ is the method

outlined in section 5.3.1. ’Posterior Probability’ is the method from section 5.3.2. All

the densities are reconstructed using original scores linearly normalized to interval

[0, 1], and the kernel sizes are derived using the maximum likelihood method.

All experiments were performed in leave-one-out framework. The numbers in the

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 99

Matchers Number of tests Low Complexity Density Posterior Probability
li & C 516 5 7 4
li & G 517 9 11 6

Table 5.4.1: Experiments on combinations in identification systems. Entries are the
numbers of failed test identification trials.

tables are the numbers of failed tests, and total number of tests is also given. Failed

test means that the impostor got the best combination score in this particular iden-

tification attempt.

The algorithm for low complexity combinations is exactly the same as was presented

in section 3.5. For each pair of scores the combined score is derived as a ratio of

genuine and impostor density function approximations at this score pair. Thus, this

combination method automatically deals with the background model - the density of

impostors participates in the combined score. This might explain why low complexity

combinations got better results than combinations based on genuine score density

approximation as section 5.3.1 (’Density’ method in table 5.4.1). But if identification

model is combined with background model as in section 5.3.2 (’Posterior Probability’

method), then we are able to obtain better combination than the low complexity

method.

5.5 Identification Model for Verification Systems

Although there are examples where score normalization techniques with background

models are used for speaker identification tasks[11], even more applications use such

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 100

techniques for speaker verification systems [50, 54, 47]. We also applied the combi-

nations utilizing identification models for biometric person verification tasks. The

drawback of using either the background models or the identification models in ver-

ification tasks is that we have to produce not only one match per person and per

matcher, but also some set of matching scores for other persons enrolled in the sys-

tem, or some artificially modeled persons.

In our experiments for each test person we performed match of input biometric with

biometric templates of all enrolled persons. All these scores were used to derive a score

normalized by identification and background models as in section 5.3.2 (’Posterior

Probability’ method). The ROC curves were obtined by means of thresholding these

normalized scores for both genuine and impostor verification attempts. These curves

are drawn in Figures 5.5.1 and 5.5.2 together with corresponding ROC curves taken

from section 3.5 corresponding to traditional low complexity combinations.

We distinguish two possible cases with respect to impostors in such verification sys-

tems: impostor is enrolled in the database, and impostor is not enrolled in the data-

base. If the impostor is in the database, and impostor attempts to be verified as

another person, we expect that match score to the true impostor’s identity will be

higher than impostor’s match score to the claimed identity. Thus a verification sys-

tem utilizing the identification model (and hence all matching scores) is more likely

to reject this impostor’s matching attempt. Experimental results in Figures 5.5.1 and

5.5.2 show that the performance of verification system is better if impostor is enrolled

in the database than when the impostor is not in the database. But this difference

in performance is small, and both cases have better performance than traditional

combination of low complexity type. The small difference in performance can be ex-

plained by the fact that our identification model algorithm uses second-best impostor

statistics instead of best impostor statistics (section 5.3.2).

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 101

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

FRR

F
A

R

traditional combination
identification model, impostor is enrolled
identification model, impostor is not enrolled

Figure 5.5.1: ROC curves for traditional low complexity combinations and combi-
nations utilizing identification models in verification tasks. BSSR1 set, fingerprint li
and face C scores.

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 102

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.05

0.1

0.15

0.2

0.25

FRR

F
A

R

traditional combination
identification model, impostor is enrolled
identification model, impostor is not enrolled

Figure 5.5.2: ROC curves for traditional low complexity combinations and combi-
nations utilizing identification models in verification tasks. BSSR1 set, fingerprint li
and face G scores.

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 103

Figures 5.5.1 and 5.5.2 show that we were able to achieve significant improvement

in the performance of verification systems. These improvements seem to be similar

to the improvements achieved by using identification models for making acceptance

decisions in biometric person identification in section 4.5.3.

5.6 Conclusion

In this chapter we presented an example of the combination problem which is opti-

mally solved by the combinations of medium II complexity type, and is not solved

adequately by the combinations of low or medium I complexity types. Our example

underscores the necessity for considering this type of combinations in identification

systems. The example also shows that the addition of another classifier into combina-

tion can worsen the performance (even if an optimal combination algorithm is used)

when the combination algorithm belongs to non-suitable complexity type.

The main contribution of this chapter is a presentation of combination methods of

medium II complexity type utilizing the identification models of involved classifiers.

The experiments performed with the sets of biometric matching scores confirm the

advantage of the proposed combination methods over low complexity combination

methods.

Considered biometric score sets (BSSR1 set, fingerprint and face C and G recognizers)

produce slightly dependent scores during each identification attempt (not the scores

from different recognizers, but scores from same recognizer). Observed correlation

between genuine and best impostor scores for these recognizers is about 0.10−0.15. It

is still not clear whether the improvements mostly come naturally from identification

model (as in artificial example with independent scores considered in section 4.2) or

CHAPTER 5. COMBINATIONS UTILIZING IDENTIFICATION MODEL 104

from score dependencies which are accounted for by identification models.

Chapter 6

Conclusions

The contributions of this thesis are:

• Categorization of 4 combinations types based on the complexity of combining

functions and the development of a combination framework using these types.

• Investigation of the benefits of using external information about classifiers in the

combination process, in particular, knowledge of the independence of classifiers.

• Development of an identification model which can be used for decision making

and combinations in identification systems.

Four complexity combination types described in chapter 2 characterize classifier com-

binations. These types originate naturally from the structure of the combination

parameters - each score corresponds to some class and classifier, and the output of

the combinator corresponds to some class. If each classifier in the combination pro-

duces N confidence scores for N ≥ 2 classes, then the combination is one of the

105

CHAPTER 6. CONCLUSIONS 106

four type. In case of 2 classes and classifiers outputting only one matching score, for

example, where score 0 corresponds to one class and score 1 corresponds to another

class, the score matrix of Figure 2.2.2 will only have one column, and all combination

types degenerate to a single low complexity combination.

The combination framework prompts the user to choose the combination complexity

type first based on the numbers of classes and classifiers, and the number of training

samples. Within a chosen complexity type one can use any generic classifier for com-

bination. Finally, a generic classifier used for combination can be modified to account

for a chosen complexity type and for any extraneous information about classifiers.

By viewing existing combination approaches from the positions of developed frame-

work, it might be possible to predict if the used combination algorithm can be im-

proved in some way. For example, if we know that classifiers are independent, as

in the case of multimodal biometric matchers, the combination algorithm can utilize

this information. In chapter 3 we investigated the performance of Bayesian classi-

fiers utilizing and not utilizing this information, and we saw both experimentally and

theoretically that such utilization can be quite beneficial. Clearly, if some existing

combination algorithm, say SVM or neural network, is not utilizing such informa-

tion, we can state that such algorithm can be somehow modified to produce better

combination results.

As another application of our combination framework, we observe that frequently

the algorithms, employed for combining matchers in biometric identification systems,

only use the scores related to one class to produce a final combination score. Such

algorithms simply discard the dependency information between scores assigned to all

classes by one classifier. We gave an example, that if such information is discarded

and low complexity type combinations are used instead of medium II complexity

CHAPTER 6. CONCLUSIONS 107

type combinations, then the combination can result in a worse performance than the

performance of the single involved classifier. Interestingly, Rao [49] proved that the

fusion performance can not be worse than the performance of any involved classifier,

if the system possesses the so called isolation property, that is, single classifiers are

included in a set of possible combinations. In our example (section 5.2) low complex-

ity combinations possess the isolation property, but performance of the combination

is worse than the performance of a single classifier. However, our example does not

contradict Rao’s work. Rao considered two class classifiers outputting a single score

differentiating two classes, and for such combinations all the complexity types degen-

erate into one low complexity type. In our case, we assume that classifiers output

at least two scores each, and we truly have these 4 different combination types. The

performance decrease comes from the inability of low complexity combinations to

properly model the score relationships.

In order to reflect the relationships between scores assigned by one classifier to differ-

ent classes, we introduced the concept of the identification model. The identification

model application is a score normalization algorithm where normalization depends

on all scores output by a classifier in one identification trial, and the algorithm is the

same for all classes. Thus our identification model has less complexity than similar

attempts to normalization [9, 31]. In these previous attempts normalizations were

class specific and required huge amount of training data. The combinations utilizing

such normalizations will be similar to behavior-knowledge space combination [44], and

they belong to high complexity combination type. Biometric identification problems

can have large number of enrolled persons, and such combinations are not feasible

due to the lack of training data. By restricting ourselves to non-class-specific nor-

malizations of the identification model we are able to concentrate on combinations of

medium II complexity type. Such combinations have significantly lower complexity,

CHAPTER 6. CONCLUSIONS 108

and result in efficient algorithms for identification systems.

In chapter 4 we have showed how the identification model can be used in order

to improve the performance of decision making in identification systems, and chap-

ter 5 contains examples of combination algorithms utilizing identification models of

each involved classifier. The experiments show significant benefits in using identi-

fication models, as opposed to less efficient low complexity type combinations, and

non-feasible high complexity combinations.

Appendix A

Complexity of Functions with

N-dimensional Outputs

Consider the definition of VC dimension using concept of function set shattering a

set of points. Using notation of [60] consider a set of points z1, . . . , zl and a set of

indicator functions Q(z, α), α ∈ Λ. Let NΛ(z1, . . . , zl) denote the number of different

separations of set z1, . . . , zl by functions Q(z, α), α ∈ Λ. The main theorem related

to the definition of VC dimension states that either supz1,...,zl
NΛ(z1, . . . , zl) = 2l for

any l, or there is some integer h such that supz1,...,zl
NΛ(z1, . . . , zl) = 2l for l ≤ h and

supz1,...,zl
NΛ(z1, . . . , zl) ≤

∑h

i=0 Ci
l ≤

(

el
h

)h
for l > h. The VC dimension of a function

set Q(z, α), α ∈ Λ equals infinity in the first case, and equals h in the second case.

For simplicity consider a case of two classes in the classifier combination framework

(N=2) first. Thus there are two output scores S1 and S2 where Si was calculated

by some function from the set Q(z, αi), αi ∈ Λi, i = 1, 2. Generally, function sets

109

APPENDIX A. COMPLEXITY OF FUNCTIONS WITH N -DIMENSIONAL OUTPUTS110

Q(z, αi), αi ∈ Λi are different for different i and training (search for functions calcu-

lating S1 and S2) can be performed separately.

If we have a set of points z1, . . . , zl and two indicator functions Q(z, αi), αi ∈ Λi, i =

1, 2 defined on this set, then all possible values of these functions are (0, 0), (0, 1), (1, 0)

and (1, 1). So the set of points z1, . . . , zl is separated into 4 subsets corresponding

values of two indicator functions. In general, for functions having outputs in N -

dimensional space, the point set will be split into 2N subsets.

Definition A.1 Define NΛ1,...,ΛN (z1, . . . , zl) as the number of different separations of

a point set z1, . . . , zl into 2N subsets by all possible combinations of indicator functions

Q(z, αi), αi ∈ Λi, i = 1, . . . , N .

If functions Q(z, α1), α1 ∈ Λ1 and Q(z, α2), α2 ∈ Λ2 separate set Z = {z1, . . . , zl} into

corresponding subsets Z1
1

⋃

Z2
1 = Z and Z1

2

⋃

Z2
2 = Z then together they separate

Z into subsets Z1
1

⋂

Z1
2 , Z1

1

⋂

Z2
2 , Z2

1

⋂

Z1
2 and Z2

1

⋂

Z2
2 . Reverse is also true: any

separation of Z into four subsets by functions Q(z, αi), αi ∈ Λi, i = 1, 2 corresponds to

two separations of set Z by functions Q(z, α1), α1 ∈ Λ1 and Q(z, α2), α2 ∈ Λ2 individ-

ually. Thus it is easy to see that NΛ1,Λ2(z1, . . . , zl) ≤ NΛ1(z1, . . . , zl)N
Λ2(z1, . . . , zl).

In general, for N-dimensional case we will have

NΛ1,...,ΛN (z1, . . . , zl) ≤
N
∏

i=1

NΛi(z1, . . . , zl) (A.0.1)

Since VC dimension characterizes the growth of function NΛ(z1, . . . , zl), let us investi-

gate the growth of function NΛ1,...,ΛN (z1, . . . , zl). Maximum number of all separations

of l points into 2N subsets is (2N)l. Thus NΛ1,...,ΛN (z1, . . . , zl) ≤ (2N)l. If for all

i, i = 1, . . . , N function sets Q(z, αi), αi ∈ Λi completely separate points z1, . . . , zl,

that is NΛi(z1, . . . , zl) = 2l, then it is possible that NΛ1,...,ΛN (z1, . . . , zl) = (2N)l. Note

APPENDIX A. COMPLEXITY OF FUNCTIONS WITH N -DIMENSIONAL OUTPUTS111

that such equality is possible if functions Q(z, αi) can be chosen independently for dif-

ferent dimensions i. If functions Q(z, αi) are dependent on each other in combination,

the growth of function NΛ1,...,ΛN (z1, . . . , zl) can be significantly smaller. For example,

for 2-dimensional case, if Q(z, α1) = 1−Q(z, α2), NΛ1,Λ2(z1, . . . , zl) = NΛ1(z1, . . . , zl).

Further properties of the growth of function NΛ1,...,ΛN (z1, . . . , zl) are summarized in

the following theorem.

Theorem A.1 If any of the function sets Q(z, αi), αi ∈ Λi, i = 1, . . . , N has infinite

VC dimension then

ln sup
z1,...,zl

NΛ1,...,ΛN (z1, . . . , zl) = θ(l)

If all function sets Q(z, αi), αi ∈ Λi, i = 1, . . . , N have finite VC dimensions h1, . . . , hN

then for l > maxi hi

ln sup
z1,...,zl

NΛ1,...,ΛN (z1, . . . , zl) ≤ ln

(

H
∑

i=0

Ci
Nl

)

≤ H

(

1 + ln N + ln
l

H

)

(A.0.2)

where H = h1 + · · · + hN .

Proof: If any of the function sets Q(z, αi), αi ∈ Λi, i = 1, . . . , N has infinite VC

dimension, for example Q(z, α1), α1 ∈ Λ1, then for any l there is a set of points

z1, . . . , zl such that Q(z, α1), α1 ∈ Λ1 separates it into all 2l combinations of 2 subsets.

Then for this set of points NΛ1,...,ΛN (z1, . . . , zl) ≥ NΛ1(z1, . . . , zl) = 2l. Thus 2l ≤

supz1,...,zl
NΛ1,...,ΛN (z1, . . . , zl) ≤ (2N)l and ln supz1,...,zl

NΛ1,...,ΛN (z1, . . . , zl) = θ(l).

If all function sets Q(z, αi), αi ∈ Λi, i = 1, . . . , N have finite VC dimensions h1, . . . , hN

then for l > maxi hi due to A.0.1 and properties of VC dimension for one-dimensional

functions:

NΛ1,...,ΛN (z1, . . . , zl) ≤
N
∏

i=1

(

hi
∑

ji=0

Cji

l

)

APPENDIX A. COMPLEXITY OF FUNCTIONS WITH N -DIMENSIONAL OUTPUTS112

After expansion and regrouping binomial terms and applying Vandermonde’s convo-

lution formula we get:

N
∏

i=1

(

hi
∑

ji=0

Cji

l

)

≤

H
∑

k=0

(

∑

j1+···+jN=k

Cj1
l . . . CjN

l

)

=
H
∑

k=0

Ck
Nl

The rest of inequality A.0.2 follows from the corresponding part of the proof for

one-dimensional VC dimension[60].

Based on this theorem we can introduce a definition of VC dimension for indicator

functions with N -dimensional outputs.

Definition A.2 If for a set of indicator functions Q(z, αi), αi ∈ Λi, i = 1, . . . , N

the number of different separations of a point set z1, . . . , zl into 2N subsets is more or

equal to 2l for any l (NΛ1,...,ΛN (z1, . . . , zl) ≥ 2l) , then this set of functions has infinite

VC dimension. Otherwise VC dimension of the set of functions is a smallest H which

makes inequality A.0.2 true for all l bigger than maximum of the VC dimensions of

individual function sets Q(z, αi), αi ∈ Λi.

Bibliography

[1] Nist biometric scores set. http://www.nist.gov/biometricscores/.

[2] L. A. Alexandre, A. C. Campilho, and M. Kamel. On combining classifiers using

sum and product rules. Pattern Recognition Letters, 22(12):1283–1289, 2001.

[3] F. M. Alkoot and J. Kittler. Experimental evaluation of expert fusion strategies.

Pattern Recognition Letters, 20(11-13):1361–1369, 1999.

[4] H. Altincay and M. Demirekler. Undesirable effects of output normalization

in multiple classifier systems. Pattern Recognition Letters, 24(9-10):1163–1170,

2003.

[5] P. A. Andersen. Handbook of communication and emotion. Academic Press,

1998.

[6] C. C. Beardah and M. Baxter. The archaeological use of kernel density estimates.

Internet Archaeology, (1), 1996.

[7] S. Ben-Yacoub, Y. Abdeljaoued, and E. Mayoraz. Fusion of face and speech

data for person identity verification. Neural Networks, IEEE Transactions on,

10(5):1065–1074, 1999.

113

BIBLIOGRAPHY 114

[8] R. Bolle, J. Connell, S. Panakanti, N. Ratha, and A. Senior. The relation between

the roc curve and the cmc. In Auto-ID, 2005.

[9] D. Bouchaffra, V. Govindaraju, and S. Srihari. A methodology for mapping

scores to probabilities. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 21(9), September 1999.

[10] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[11] R. Brunelli and D. Falavigna. Person identification using multiple cues. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 17(10):955–966, 1995.

[12] R. Caruana, A. Niculescu, G. Crew, and A. Ksikes. Ensemble selection from

libraries of models. In The International Conference on Machine Learning

(ICML’04), 2004.

[13] S. B. Cho and J. H. Kim. ”Combining multiple neural networks by fuzzy integral

for robust classification”. IEEE Transactions on Systems, Man, and Cybernetics,

25(2):380–384, 1995.

[14] R. Clemen and R. Winkler. Combining probability distributions from experts in

risk analysis. Risk Analysis, 19:187–203, 1999.

[15] J. Colombi, J. Reider, and J. Campbell. Allowing good impostors to test. In Sig-

nals, Systems & Computers, 1997. Conference Record of the Thirty-First Asilo-

mar Conference on, volume 1, pages 296–300 vol.1, 1997.

[16] R. M. Cooke. Experts in Uncertainty: Opinion and Subjective Probability in

Science. Oxford University Press, 1991.

[17] R. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. d. Ridder, and D. Tax. Prtools4,

a matlab toolbox for pattern recognition, 2004.

BIBLIOGRAPHY 115

[18] R. P. W. Duin and D. M. J. Tax. Classifier conditional posterior probabilities.

Lecture Notes in Computer Science, 1451:611–619, 1998.

[19] J. Fierrez-Aguilar, D. Garcia-Romero, J. Ortega-Garcia, and J. Gonzalez-

Rodriguez. Bayesian adaptation for user-dependent multimodal biometric au-

thentication. Pattern Recognition, 38(8):1317–1319, 2005.

[20] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In

International Conference on Machine Learning, pages 148–156, 1996.

[21] G. Fumera and F. Roli. Performance analysis and comparison of linear combiners

for classifier fusion. In SSPR/SPR, pages 424–432, 2002.

[22] G. Fumera and F. Roli. Analysis of error-reject trade-off in linearly combined

multiple classifiers. Pattern Recognition, 37(6):1245–1265, 2004.

[23] P. Grother and P. Phillips. Models of large population recognition performance.

In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of

the 2004 IEEE Computer Society Conference on, volume 2, pages II–68–II–75

Vol.2, 2004.

[24] W. Hardle. Smoothing Techniques with Implementation in S. Springer-Verlag,

1990.

[25] T. K. Ho. A Theory of Multiple Classifier Systems And Its Application to Visual

Word Recognition. Ph.d thesis, SUNY Buffalo, 1992.

[26] T. K. Ho. The random subspace method for constructing decision forests. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 20(8):832–844, 1998.

[27] T. K. Ho. Multiple classifier combination: Lessons and next steps. In A. Kandel

and H. Bunke, editors, Hybrid Methods in Pattern Recognition, pages 171–198.

World Scientific, 2002.

BIBLIOGRAPHY 116

[28] T. K. Ho, J. J. Hull, and S. N. Srihari. Decision combination in multiple classi-

fier systems. IEEE Transactions on Pattern Analysis and Machine Intelligence,

16(1):66–75, 1994.

[29] L. Hong and A. Jain. Integrating faces and fingerprints for personal identification.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(12):1295–

1307, 1998.

[30] Y. S. Huang and C. Y. Suen. ”A method of combining multiple experts for

the recognition of unconstrained handwritten numerals”. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 17(1):90–94, 1995.

[31] K. Ianakiev. Organizing Multiple Experts for Efficient Pattern Recognition. Ph.D

Thesis, SUNY at Buffalo, 2000.

[32] A. Jain, L. Hong, and Y. Kulkarni. A multimodal biometric system using fin-

gerprint, face and speech. In AVBPA, 1999.

[33] A. Jain, K. Nandakumar, and A. Ross. Score normalization in multimodal bio-

metric systems. Pattern Recognition, 38(12):2270–2285, 2005.

[34] A. Jain and A. Ross. Learning user-specific parameters in a multibiometric

system. In Image Processing. 2002. Proceedings. 2002 International Conference

on, volume 1, pages I–57–I–60 vol.1, 2002.

[35] J.-H. Kim, G.-J. Jang, S.-J. Yun, and Y. H. Oh. Candidate selection based on

significance testing and its use in normalisation and scoring. In 5th International

Conference on Spoken Language Processing (ICSLP-1998), 1998.

[36] F. Kimura and M. Shridhar. ”Handwritten numerical recognition based on mul-

tiple algorithms”. Pattern Recognition, 24(10):969–983, 1991.

BIBLIOGRAPHY 117

[37] J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining classifiers. IEEE

Transactions on Pattern Analysis and Machine Intelligence, pages 226–239,

March 1998.

[38] E. M. Kleinberg. Stochastic discrimination. Annals of Mathematics and Artificial

Intelligence, 1, 1990.

[39] E. M. Kleinberg. On the algorithmic implementation of stochastic discrimination.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(5):473–

490, 2000.

[40] E. Kong and T. Dietterich. Error-correcting output coding corrects bias and

variance. In 12th International Conference on Machine Learning, pages 313–

321, 1995.

[41] L. Kuncheva. A theoretical study on six classifier fusion strategies. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 24(2):281–286, 2002.

[42] L. I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley

InterScience, 2004.

[43] L. I. Kuncheva, J. C. Bezdek, and R. P. W. Duin. Decision templates for multiple

classifier fusion: an experimental comparison. Pattern Recognition, 34(2):299–

314, 2001.

[44] L. Lam and C. Y. Suen. Optimal combinations of pattern classifiers. Pattern

Recognition Letters, 16(9):945–954, 1995.

[45] M. Last, H. Bunke, and A. Kandel. A feature-based serial approach to classifier

combination. Pattern Analysis and Applications, 5(4):385–398, 2002.

[46] D.-S. Lee. Theory of Classifier Combination: The Neural Network Approach.

Ph.D Thesis, SUNY at Buffalo, 1995.

BIBLIOGRAPHY 118

[47] J. Mariethoz and S. Bengio. A unified framework for score normalization tech-

niques applied to text independent speaker verification. IEEE Signal Processing

Letters, 12, 2005.

[48] W. Peterson and E. Weldon. Error-Correcting Codes. MIT Press, Cambridge,

USA, 2nd edition, 1972.

[49] N. Rao. On fusers that perform better than best sensor. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 23(8):904–909, 2001.

[50] A. Rosenberg and S. Parthasarathy. Speaker background models for connected

digit password speaker verification. In Acoustics, Speech, and Signal Processing,

1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Confer-

ence on, volume 1, pages 81–84 vol. 1, 1996.

[51] A. Saranli and M. Demirekler. A statistical unified framework for rank-based

multiple classifier decision combination. Pattern Recognition, 34(4):865–884,

2001.

[52] R. E. Schapire. The strength of weak learnability. Machine Learning, 5:197–227,

1990.

[53] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A

new explanation for the effectiveness of voting methods. The Annals of Statistics,

26(5):1651–1686, 1998.

[54] A. Schlapbach and H. Bunke. Using hmm based recognizers for writer iden-

tification and verification. In 9th Intl Workshop on Frontiers in Handwriting

Recognition (IWFHR-9 2004), 2004.

[55] B. W. Silverman. Density estimation for statistics and data analysis. Chapman

and Hall, London, 1986.

BIBLIOGRAPHY 119

[56] P. Slavik and V. Govindaraju. An overview of run-length encoding of handwritten

word images. Technical Report 2000-09, State University of New York at Buffalo,

August 2000.

[57] R. Tibshirani. Bias, variance and prediction error for classification rules. Tech-

nical Report 41, Department of Statistics, University of Toronto, 1996.

[58] K. Tumer and J. Ghosh. Linear and order statistics combiners for pattern clas-

sification. In A. J. Sharkey, editor, Combining Artificial Neural Nets: Ensembles

and Multi-Net Systems, pages 127–162. Springer-Verlag, London, 1999.

[59] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New

York, 1995.

[60] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[61] J. Wayman. Error rate equations for the general biometric system. Robotics &

Automation Magazine, IEEE, 6(1):35–48, 1999.

[62] D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–260, 1992.

[63] L. Xu, A. Krzyzak, and C. Y. Suen. Methods for combining multiple classifiers

and their applications to handwriting recognition. IEEE transactions on System,

Man, and Cybernetics, 23(3):418–435, 1992.

