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Abstract

Combination approaches in biometric identification systems usually consider only the matching

scores related to a single person in order to derive a combined score for that person. We present

the use of all scores received by all persons and explore the advantages of such an approach when

enough training data is available. More fundamentally, we identify four types of classifier combinations

determined by the numbers of trained combining functions and their input parameters. We prove that the

improper choice of the combination type might result in onlysuboptimal performance of identification

system. We investigate combinations, which consider all available matching scores and have only

single trainable combination function. We introduce a particular kind of such combinations utilizing

identification models, which account for dependencies between scores output by any one classifier.

We present several experiments validating the advantage ofour proposed combination algorithms for

problems dealing with large number of classes, in particular, biometric person identification systems.

Index Terms

Combination of classifiers, biometric identification systems.

I. I NTRODUCTION

Biometric applications can be operated in two modes: verification (1:1) mode and identification

(1:N) mode. Common approaches to combining biometrics for (1:N) identification applications

are actually a simple iterative use of the (1:1) verificationsystem. The combined score for

matching a set of biometrics to a particular enrolled personis usually obtained as a function

of the matching scores of all biometrics for the particular person in either modes of operation.

However, identification systems possess additional information that can be utilized for deriving

the final score for a particular enrolled person. This additional information is available from the

matching scores returned for other enrollees in the database.

In this paper we consider a combination of matchers in the identification system. In such

systemM multiple biometric matchers are used to produceMN matching scores, whereN is

the number of enrolled persons. We assume thatM is small andN is large. Each biometric

matcher in such setting is equivalent to the classifier assigning matching scores to each ofN

classes or persons. And the combination of biometric matchers in identification system can

be viewed as a classifier combination problem with a large number of classes. We use terms
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’matcher’ to refer to a classifier which outputs class matching scores, and ’identification’ to refer

to the case dealing with large number of classes.

We assume the combination algorithm is producing a combinedscore for each class, and

final matched class corresponds to the best combined score (see Figure 1). The combined

score is determined by the combination functionf which takes as parameters potentially whole

set of match scores. Our categorization of the combination algorithm is determined by the

construction properties of combined functions. In particular, combination algorithm can have

only one combination function, and combined scores for different classes can be obtained by the

permutation of input match scores. On the other hand, each class can have its own combination

function, and combined scores are calculated differently for different classes. We might call

the combination algorithm of first kind as class generic, andcombination algorithms of the

second kind as class specific. Another distinction between combination algorithms is based on

the number of input parameters to each combination function. Some combination functions

take as parameters onlyM match scores related to a particular class to calculate the combined

score of this class. We call the combination algorithms withsuch combination functions as

reduced parameter set combination algorithms, or local combination algorithms. Other types of

combination functions might consider the whole set ofMN match score to derive a combined

score for one class. The combination algorithms with such functions could be called whole

parameter set, or global combination algorithms.

If classifiers deal with a small number of classes, then the dependencies between scores

assigned to different classes can be learned and used for combination purposes. For example,

Xu et al. [1] used class confusion matrices for deriving belief values and integrated these values

into combination algorithms in the digit classification problem. This algorithm has class specific

and global combination functions. This is most general typeof combinations and ideally we

would use it for other problems. But learning class dependencies requires significant number

of training samples of each class. Such data is not availablefor identification problems, where

usually a single template is enrolled for each person. In addition, the database of enrolled persons

can be frequently changed, and this makes learning class relationships infeasible.

As a consequence, combination approaches in identificationsystems usually consider only

matching scores related to the single person in order to derive a combined score for that person.

Though allMN matching scores are available, onlyM scores are used for combination. In this
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paper we investigate the question of whether it is possible to improve the performance of the

identification system by using a whole set of scores for deriving combined matching score of

each person. We argue that combination algorithms using class generic and global combination

functions are well suited for combination problems in identification systems.

Some results of this work were presented in [2] and [3]. In this paper we provide additional

insights into combination problems in identification systems, construct new example proving the

difference between local and global combination types, andpresent a new global weighted sum

combination algorithm. In addition, this paper contains the results of new experiments on bigger

datasets and comparison of proposed ’second best score’ identification model with identification

model resulting from T-normalization[4].

In the next section we present the four types of combinationsdepending on the number of

matching scores they consider and on the number of trainablecombination functions. Then we

give a review of the identification model concept. The model essentially keeps an information

about dependencies between matching scores assigned by a single matcher to all enrolled persons.

Using such models allows us to construct class generic and global combination functions. In

the last sections we investigate the combinations in identification systems in detail, and show

both theoretically (using example) and experimentally theadvantages of combinations using

identification models.

II. COMPLEXITY TYPES OFCLASSIFIER COMBINATIONS

The general scheme for classifier combination is shown in figure 1. The final score for a class is

derived from the scores received from all the classifiers forthat class. The combination functions

of such combination algorithms have reduced parameter set,and many well known combination

methods (e.g. weighted sum of scores) fall into this category. It is also possible to consider a more

general form of combination where derivation of a final scorefor a particular class includes all

classifier scores, for that class as well as for other classes[1], [5]. For example, if the combination

algorithm in this figure consisted of fully connected artificial neural network acceptingMN

input parameters and havingN output parameters, it would present an example of most general,

class specific and global combination function algorithm. The disadvantage of this more general

approach is that it requires larger amount of training data,which might not be available in

identification systems. This section describes this and another three types of combinations which
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Fig. 1. Classifier combination takes a set ofs
j
i - score for classi by classifierj and produces combination scoresSi for each

classi.

might need smaller sets of training data. Ultimately, the problem characteristics and the size of

training set would determine the most appropriate combination type for a particular problem.

A. Complexity Based Combination Types

Combination algorithms can be separated into 4 different types depending on the number of

classifier’s scores they take into account and the number of combination functions required to be

trained. As in Figure 1i is the index for theN classes andj is the index for theM classifiers.

1) Low complexity combinations:Si = f({sj
i}j=1,...,M). Combinations of this type require

only one combination function to be trained, and the combination function takes as input

scores for one particular class as parameters. These methods use class generic and reduced

parameter set (local) combination functions.
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2) Medium complexity I combinations:Si = fi({s
j
i}j=1,...,M). Combinations of this type have

separate score combining functions for each class and each such function takes as input

parameters only the scores related to its class. These methods use class specific and reduced

parameter set (local) combination functions.

3) Medium complexity II combinations:Si = f({sj
i}j=1,...,M , {sj

k}j=1,...,M ;k=1,...,N,k 6=i). This

combination function takes as parameters not only the scores related to this class, but all

output scores of classifiers. Combination scores for each class are calculated using the

same function, but scores for classi are given a special place as parameters. Applying

functionf for different classes effectively means permutation of thefunction’s parameters.

These combination functions are class generic and use wholeparameter set (global).

4) High complexity combinations:Si = fi({s
j
k}j=1,...,M ;k=1,...,N). Functions calculating final

scores are different for all classes, and they take as parameters all output base classifier

scores. These are class specific and whole parameter set (global) combination functions.

In order to illustrate the different combination types we can use a matrix score representation.

Each row corresponds to a set of scores output by a particularclassifier, and each column

has scores assigned by classifiers to a particular class. Theillustration of each combination

type functions is given in Figure 2. In order to produce the combined scoreSi for classi low

complexity combinations (a) and medium I complexity (b) combinations consider only classifier

scores assigned to classi (column i), and use local combination functions. Medium II (c) and high

complexity (d) combinations consider all scores output by classifiers for calculating a combined

scoreSi for classi, and their combination functions are global.

Low (a) and medium II (c) complexity combinations have the same class generic combination

functions f irrespective of the class for which the score is calculated.Note that medium II

complexity type combinations have scores related to a particular class in a special consideration

as indicated by the second ellipse around these scores. We can think of these combinations as

taking two sets of parameters - scores for a particular class, and all other scores. The important

property is that combination functionf is same for all classes, but the combined scoresSi

differ, since we effectively permute function inputs for different classes. Medium I (b) and high

(d) complexity combinations have class specific combining functionsfi trained differently for

different classes.

March 8, 2007 DRAFT



7

(a) Low (b) Medium I

(c) Medium II (d) High

Fig. 2. The range of scores considered by each combination type and combination functions.

It is interesting to compare our combinations types with previous categorization of combination

methods by Kuncheva et al.[6]. In that work the score matrix has names ’decision profile’ and

’intermediate feature space’. It seems that using term ’score space’ makes more sense here.

Kuncheva’s work also separates combinations into ’class-conscious’ set which corresponds to the

union of ’low’ and ’medium I’ complexity types, and ’class-indifferent’ set which corresponds to

the union of ’medium II’ and ’high’ complexity types. Again these terms might not be suitable

since we can think of a combination method as being ’class-conscious’ if each class has its

own combination function (class specific ’medium I’ and ’high’ complexity types), and ’class-

indifferent’ if combination functions are same for all classes (class generic ’low’ and ’medium

II’ complexity types). The continuation of this work [7] gave an example of the weighted sum
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rule having three different numbers of trainable parameters (and accepting different numbers of

input scores), which correspond to ’low’, ’medium I’ and ’high’ complexity types.

In contrast to Kuncheva’s work, our categorization of combination methods is more general

since we are not limiting ourselves to simple combination rules like weighted sum rule. Also

we consider an additional category of ’medium II’ type, which is missed there. An example of

’medium II’ combinations are two step combination algorithms where in the first step the scores

produced by a particular classifier are normalized (with possible participation of all scores of

this classifier), and in the second step scores are combined by a function from ’low’ complexity

type. Thus scores in each row are combined first, and then the results are combined columnwise

in the second step. Note, that it is still possible to have weighted sum combination method of

medium II complexity type, and we give an example of such combination later.

Fig. 3. The relationship diagram of different combination complexity types.

Figure 3 illustrates the relationships between presented complexity types of combinations.

Medium complexity types are subsets of high complexity combinations, and the set of low com-

plexity combinations is exactly the intersection of sets ofmedium I and medium II combination

types. In order to avoid a confusion in terminology we will henceforth assume that a combination

method belongs to a particular type only if it belongs to thistype and does not belong to the

more specific type.

In [8] we provided a stricter description of these complexity types using the concept of VC

(Vapnik-Chervonenkis) dimension [9]. In particular, we derived the formulas for VC dimensions

for each complexity type, and showed how complexity can be reduced either by adopting a

lower complexity type combination, or by restricting the set of trainable combination functions.
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The ability to use VC dimension for characterization of different combination types justifies our

usage of term ’complexity types’.

Higher complexity combinations can potentially produce better classification results since more

information is used. On the other hand the availability of training samples will limit the types

of possible combinations. Thus the choice of combination type in any particular application

is a trade-off between classifying capabilities of combination functions and the availability

of sufficient training samples. In practice,we first see if a particular classifier combination

problem can be solved with high complexity combinations as amost general combination

type. If complexity is too big for the available training data size, number of classesN and

the complexities of chosen combination functions, we consider lower complexity combinations.

When the complexity is lowered it is important to see if any useful information is lost. If such

loss happens, the combination algorithm should be modified to compensate for it.

Different generic classifiers such as neural networks, decision trees, etc., can be used for

classifier combinations within each complexity class. Fromthe perspective of this framework,

the main effort in solving classifier combination problem consists in a justification for a particular

chosen complexity type of combination and providing any special modifications to generic

classifiers compensating for this chosen complexity type. As an example, the biometric person

authentication systems we experimented with in this paper have a high number of enrolled

classes (persons)N and a small number of classifiers (biometric face and fingerprint matchers)

M . As a result medium I and high complexity combinations wouldhave high complexity (VC

dimension), and we will have problems training them. On the other hand low and medium II

type combinations would have lower complexity (depending on the complexity of the set of

trainable combination functionsf ), and we would be able to train them.

Most combinations algorithms in biometric applications are of low complexity type. Com-

plexity framework suggests that it is possible to employ medium II combinations as well in

these applications. In this work we are interested in developing such combinations. The main

results presented here are the following. First, we prove that medium II complexity type is indeed

different from low complexity type and low complexity combinations might have only suboptimal

performance. Second, we investigate the reasons for this difference and suggest construction of so

called identification model, which contains information available to medium II type combinations

and not available to low complexity type combinations. Third, we derive combinations rules of

March 8, 2007 DRAFT



10

medium II complexity type which are analogous to the traditional likelihood ratio and weighted

sum combinations of low complexity type. Finally, the experiments on large biometric score sets

confirm that suggested medium II complexity combinations have better performance than their

counterparts of low complexity.

B. Verification and Identification Operating Modes

By our convention an identification system provides matchingscores forN enrolled persons.

We define an identification system as operating in identification mode if its purpose is to classify

an input as belonging to any ofN classes or persons. We assume that the classification decision

is performed by applyingarg max operator to theN combined scores:

C = arg max
1≤i≤N

Si

The correct identification rate, that is the frequency of correctly finding the true class of the

input, is the natural measure of performance in this case, and we will use it in our experiments.

Note, that there could be other performance measures for identification mode operation, such as

Rank Probability Mass, Cumulative Match Curve, etc.[10], but we will not use them here.

Conversely, we define an identification system as operating inverification mode if its purpose

is to decide whether an input belongs to some claimed person identity. In this case we can

distinguish two classes: genuine and impostor verificationattempts. The decision to accept is

based on comparing a combined score of a claimed person identity i, Si, to some thresholdθ:

Si > θ. The common way to describe the system performance in such two-class problems is to

construct graphs showing the dependencies of errors on threshold θ: ROC curve, DET curve,

etc.[10]. In our experiments we will use ROC curves.

Both identification and verification modes of operation can utilize combinations of all four

complexity types described above. Typically, biometric systems operating in verification mode

produce matching scores only for the claimed person identity, and not for other enrolled persons.

The combinations using only such restricted sets of scores are necessarily of low or medium

I complexity types. If we want to use combinations of other complexity types we have to

additionally produce matching scores for other enrolled persons as well.
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III. PREVIOUS WORK IN IDENTIFICATION SYSTEM COMBINATIONS

If we have a combination algorithm for verification system, we can use it sequentially for all

persons in identification system. Such algorithm will not utilize dependencies between scores

output by a single matcher. Most of combination algorithms used in biometric applications are

of this type. In our combination framework such combinations are of the low complexity type.

Combination functions can also be user specific -fi [11], [12] (medium I complexity type).

Below we present approaches which do utilize score dependencies in identification trials: rank

based combinations and some score normalization techniques.

A. Rank Based Combinations

The frequent approach to combination in identification systems is to use rank information

of the scores. This approach transforms combination problems with measurement level output

classifiers to combination problems with ranking level output classifiers ([1]). T.K. Ho has

described classifier combinations on the ranks of the scoresinstead of scores themselves by

arguing that ranks provide more reliable information aboutclass being genuine [13], [14]. Thus,

if the input image has low quality, then the genuine score, aswell as the impostor scores will

be low. Combining low score for genuine class with other scores could confuse a combination

algorithm, but the rank of the genuine class remains to be a good statistic, and combining this rank

with other ranks of this genuine class should result in true classification. Brunelli and Falavigna

[15] considered a hybrid approach where traditional combination of matching scores is fused

with rank information in order to achieve identification decision. Hong and Jain [16] consider

ranks, not for combination, but for modeling or normalizingclassifier output score. Behavior-

Knowledge Space combination methods [17] are also based on ranks. Saranli and Demirekler

[18] provide additional references for rank based combination and a theoretical approach to such

combinations.

Rank-based methods do utilize the score dependencies in identification trials, and, as many

authors suggest, these methods provide a better performance in identification systems. The

problem with rank based methods, however, is that the score information is somewhat lost.

Indeed, genuine score can be much better than second best score, or it could be only slightly

better, but score ranks do not reflect this difference. It would be desirable to have a combination

method which retains the score information as well as the rank information.
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B. Score normalization approaches

Usually score normalization [19] means transformation of scores based on the classifier’s score

model learned during training, and each score is transformed individually using such a model.

Thus the other scores output by a matcher during the same identification trial are not taken into

consideration. If these normalized scores are later combined class-wise, then score dependence

will not be accounted for by the combination algorithm.

Some score normalization techniques can use a set of identification trial scores output by

classifier. For example, Kittler et al. [20] normalize each score by the sum of all other scores

before combination. Similar normalization techniques areZ(zero)- and T(test)- normalizations

[4], [21]. Z- normalization uses impostor matching scores to produce a class specific normal-

ization. Z-normalization does not include the set of identification trial scores, and thus does not

utilize score dependency. On the other hand, T-normalization does use a set scores produced

during single identification trial, and can be considered asa simple form of identification model.

T-normalization uses statistics of mean and variance of identification score set. Note that identi-

fication model implies some learning algorithm, but T-normalization is a predetermined routine

with no training. Still, using this simple kind of score modeling turns out to be quite useful; for

example, [22] argued for applying T-normalizations in faceverification competition. There is

also an argument[23] that useful classification information gets lost during such normalizations.

Score normalization techniques have been well developed inthe speaker identification problem.

Cohort normalizing method [24], [25] considers a subset of enrolled persons close to the current

test person in order to normalize the score for that person bya log-likelihood ratio of genuine

(current person) and impostor (cohort) score density models. Auckenthaler et al.[4] separated

cohort normalization methods into cohorts found during testing (constrained) and cohorts dynami-

cally formed during testing (unconstrained cohorts). Normalization by constrained cohorts utilizes

only one matching score of each classifier and thus does not consider score dependencies. On

the other hand, normalization by unconstrained cohorts potentially uses all scores of classifiers,

and thus results in the construction of the identification model.

IV. I DENTIFICATION MODEL

Before describing in detail our combination method, we will give an overview of our previous

investigation into performance characteristics of identification systems. It turns out that the

March 8, 2007 DRAFT



13

traditional ways of describing the performance of verification systems - densities of the genuine

and impostor scores, as well as ROC curve constructed with the help of these densities, do

not fully represent the performance of identification systems. Densities of genuine and impostor

scores disregard the fact that the scores produced by a single classifier and assigned to different

classes are usually dependent. Thus, full description of the identification system performance

requires reconstruction of the joint density of all scores related to different classes.

Since the number of classes in identification systems can be very large or variable, such

reconstruction of joint density might not be possible. Thuswe introduced [26] a concept of

identification model - a model that represents identification system properties and performance.

The identification system should be able to adequately represent the score distributions, and, in

particular, help us to derive the mapping of scores into posterior class probabilities. Generally, we

expect that any algorithm which works with classifier’s scores (such as decision thresholding or

classifier combination) should perform better if scores areremapped using identification model.

Our previous research was using identification model for decision making, and in this section

we summarize the results of this research.

A. Performance of identification systems

Suppose we have one matcher in the identification system withN classes. Lets1 > s2 > · · · >

sN be a set of matching scores we got in one identification attempt (bigger score means better

match, and for this example we index scores by their rank rather than by class). How should we

decide if the class corresponding to the best scores1 is the true class of the input? One solution

is to compare best scores1 to some thresholdθ and if s1 > θ confirm identification success

and accept class corresponding tos1 as truth. But a little thought reveals that if the second-

best scores2 is close to the best scores1 then there is big chance that class corresponding

to s2 might be a true class instead of class corresponding tos1. Thus we definitely should

include considering second-best scores2 into our decision about accepting identification results.

Similarly, considering third-best scores3 or other scores might be beneficial as well.

In [26] and in [27] we investigated the benefits of utilizing the second best matching score

for accepting identification results. The main results of those works:

• The performance improvements due to utilizing second best score for identification system

decisions arise naturally, even if scores are statistically independent.
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• The improvements can be bigger if matching scores are dependent.

• Real-life identification systems usually have dependent scores, that contributes favorably to

identification system performance.

The following section considers an example of utilizing second best scores2 to make a decision

on accepting a person corresponding to the best matching score in biometric identification

systems.

B. Identification Model for Acceptance Decision in Biometric Identification Systems

We consider the problem of person identification by means of fingerprint and face biometrics.

We use the NIST Biometric Score Set, release 1 (BSSR1 [28]). We consider three subsets of

scores: fingerprint li set which is produced for 6000 enrolled left index fingerprints and 6000

user input fingerprints, face recognizer C set and face recognizer G set which are produced for

3000 enrolled faces and 6000 user input faces. Thus all sets have 6000 identification trials with

1 genuine scores and 5999 (for fingerprints) or 2999 (for faces) impostor match scores.

We ran all experiments using leave-one-out method, that is for each identification trial we use

all other 5999 trials for training and perform testing on theleft out trial. All 6000 test runs are

combined together in the ROC curve. For each test run we reconstruct densities of scores for two

classes - genuine identification trials with the best score being the genuine match and impostor

identification trials with the best score being impostor match. A test run score is given as a ratio

of genuine density to the impostor density at a test trial score point (Bayesian classification).

Results of the experiments are shown in Figures 4 - 6. 1 top score thresholding means that we

consider only the top scores for reconstructing the densities, and 2 top score thresholding means

that we use both the best and second-best scores to reconstruct densities. In all cases making

acceptance decision based on two scores has clear advantageover decisions based on just the

first score.

The application of the identification model clearly improves the identification system perfor-

mance. The biometric matching scores are dependent (see below Sec. VI), and this dependence

is mainly caused by the quality of matched templates. For example, if an input fingerprint has

small area, then it will contain small number of minutia, andconsequently all minutia based

matchers will produce low scores. And if the input fingerprint has many minutia, then not only

the genuine match will have many matching minutia and high score, but impostor matches will
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Fig. 4. ROC curves for optimal thresholding using and not using second-best score. BSSR1 set, fingerprint li scores.
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Fig. 5. ROC curves for optimal thresholding using and not using second-best score. BSSR1 set, face recognizer C scores.
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Fig. 6. ROC curves for optimal thresholding using and not using second-best score. BSSR1 set, face recognizer G scores.

also get a chance to produce a higher score. The following section gives an example clarifying

the connection between matching score dependence and the benefits of utilizing second best

score.

C. Example of dependent scores

Suppose we have an identification system with one matcher and, for simplicity, N = 2

classes. Also suppose we collected a data on the distributions of genuine and impostor scores

and reconstructed score densities as shown in Figure 7.

Consider three possible scenarios on how these densities might have originated from the

sample of the identification attempts:

1) In every observed identification attempt the score of the genuine classsgen is chosen from

the distribution of genuine scores, and the score of the impostor classsimp is the additive

inverse ofsgen: simp = 1− sgen. As we proved in [8], using second best score in addition

to best score has no benefit for identification system performance in this case.

2) Both scoressgen andsimp are sampled independently from genuine and impostor distrib-

utions. The experiments with artificial densities showed[26] that utilizing the second best
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Fig. 7. Hypothetical densities of matching(genuine) and non-matching(impostors) scores.

score will give some improvement during the decision step.

3) In every observed identification attempt :simp = sgen − 1. Thus in this scenario the

identification system always correctly places genuine sample on top. Score distributions of

Figure 7 do not reflect this fact. By using appropriate identification model (say, accepti if

si = maxj sj) we can successfully separate all correct identification results from incorrect

ones.

Matching scores are frequently dependent. Scores were dependent to some extent in all the

applications we experimented with(see below Sec. VI). We can point out at least two causes of

such dependence:

1) Recognizers usually incorporate some measure of input quality into matching score. If

quality of the input is low we can expect all matching score tobe low, and if quality is

high, then matching scores also will be high.

2) In some applications, like character recognition, we expect images to belong to a definite

set of classes, and if an image is in one class, it will be quitedifferent from images in
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other classes. When the distortion is small and the correct class is matched, the distance

to other classes will dictate low impostor scores. But if impostor class is matched, the

input sample probably lies somewhere in between classes, and the second best score is

comparable to the first one.

Summarizing the above discussion, if matching scores are independent we expect to achieve

average performance improvement by combining the second-best score. If scores are dependent,

then any situation from no improvement to perfect decision is possible. Scores are usually

dependent and therefore considering second-best score in decision is beneficial.

V. L OW COMPLEXITY COMBINATIONS IN IDENTIFICATION SYSTEM

In this section we prove that the set of medium II complexity combinations is different from

the set of low complexity combinations. Though this fact canbe intuitively obvious, we present

a strict mathematical proof by constructing examples of identification systems in which optimal

low complexity combination performs worse than optimal medium II complexity combination.

As we discussed in [29] the optimal combination algorithms are different for verification

and identification modes of system operation if there is a dependence between matching scores

assigned to different classes. Thus we construct two examples, one for verification and another

for identification operating modes, to prove the differencein complexity types for both operating

modes.

For verification mode of operation we consider an identification system with only one matcher

- the matcher described in the third scenario of the previoussection. Lets1 and s2 be two

matching scores assigned to two classes, one genuine and another impostor. The low complexity

combination has to rely on only a single score of a claimed class. Suppose a class 1 is claimed and

the only decision we can make is by comparing scores1 to some thresholdθ: accept verification

attempt ifs1 > θ. Clearly, there could be verification trials where class 1 is impostor, but its score

is bigger than the threshold and it is accepted, or trials where class 1 is genuine, but it is rejected

since its score is less than thresholds. So,FRR(θ) > 0 andFAR(θ) > 0 for anyθ. On the other

hand, we can consider the following decision algorithm of medium II complexity type: accept

claimed identityi if si > s3−i, and reject otherwise. Such algorithm will haveFRR = FAR = 0.

So we proved, that for verification mode of operation the optimal low complexity combination

is not able to achieve same performance as optimal medium II complexity combination.
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For identification mode of operation we consider an identification system with two match-

ers and two classes. Let these matchers be independent. Let the matching scores be only 0

or 1 and let the probabilities of score outputs for first (s1
1, s

1
2) and second (s2

1, s
2
2) match-

ers in case first class (ω1) is a genuine class be given in table I. Let also assume, that if

second class (ω2) is genuine, then corresponding score pairs probabilitiesare the same (with

permutation):P (s1
1, s

1
2|ω2 is genuine) = P (s1

2, s
1
1|ω1 is genuine) and P (s2

1, s
2
2|ω2 is genuine) =

P (s2
2, s

2
1|ω1 is genuine).

s1

1 s1

2 P (s1

1, s
1

2|ω1 is genuine)

0 0 0.1

0 1 0.1

1 0 0.4

1 1 0.4

s2

1 s2

2 P (s2

1, s
2

2|ω1 is genuine)

0 0 0.1

0 1 0.2

1 0 0.5

1 1 0.2

TABLE I

PROBABILITIES OF MATCHING SCORE OUTPUTS FOR CLASSIFIERS IN IDENTIFICATION OPERATING MODE EXAMPLE.

Low complexity combination for such system operating in identification mode will be repre-

sented by the formula:

C = arg max
i=1,2

f(s1
i , s

2
i )

and since scoressj
i are only of two values (0 and 1) we can enumerate all possible combina-

tion functions as having values{0, 1, 2, 3} on different pairs{0, 0}, {0, 1}, {1, 0}, {1, 1}. After

considering all such possible combination functions, we find that functionf shown in Table II

gives the best correct identification rate of 0.62.

Note, that due to the symmetry in original score distributions P (s1
1, s

1
2|ω1 is genuine) for

different genuine classesω1 and ω2, we can not have class-specific combinations. Thus the

set of low complexity combinations coincides with the set ofmedium I combinations, and

the set of medium II combinations coincides with the set of high complexity combinations.

So, the optimal combination of medium II complexity type is exactly the optimal combina-

tion of high complexity type, and which is the optimal classification algorithm on the set

of all scores(s1
1, s

2
1, s

1
2, s

2
2). Since we know distributions of scores assigned by our matchers,
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s1

i s2

i f(s1

i , s
2

i )

0 0 0

0 1 2

1 0 1

1 1 3

TABLE II

OPTIMAL LOW COMPLEXITY COMBINATION FUNCTION FOR IDENTIFICATION OPERATING MODE EXAMPLE.

using Bayes theorem and matcher independence assumption (P (s1
1, s

1
2, s

2
1, s

2
2|ω1 is genuine) =

P (s1
1, s

1
2|ω1 is genuine)P (s2

1, s
2
2|ω1 is genuine)), we can calculate posterior probabilities of both

classes for each combination of score outputs (P (ωi is genuine|s1
1, s

1
2, s

2
1, s

2
2)) and perform opti-

mal Bayesian classification. Such classification achieves correct identification rate of .65. Thus,

the medium II complexity combination achieves better performance in identification operating

mode than optimal low complexity combination. Note, that inboth cases we had the same

undecided rate of .15, where the value of combination function is the same for both classes, or

the posterior class probability is the same for both classes.

VI. COMBINATION COMPLEXITY FRAMEWORK AND IDENTIFICATION MODEL

The theoretical examples from the previous section showed that we are better to consider

medium II or high complexity combinations for identification systems if match scores assigned

by any classifier are dependent. Low complexity combinations are not capable to account for

this dependence and might have suboptimal performance. In order to verify the dependence

of match scores output by classifiers during identification trials, we measured the correlation

between genuine score and different statistics of the sets of impostor scores. As table III shows,

the scores produced by real life classifiers indeed can be dependent.

The presence of the dependence between match scores suggests that we might want to use

medium II or high complexity combinations. High complexitycombinations, though, require

training a separate combination function for each person, and thus they need a significant amount

of training data. On the other hand, medium II combination methods need only one combination

function to be trained, and training data set can be quite small. Thus combination methods of
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Matchers firstimp secondimp meanimp

li 0.3164 0.3400 0.2961

ri 0.3536 0.3714 0.3626

C 0.1419 0.1513 0.1440

G 0.1339 0.1800 0.1593

TABLE III

CORRELATIONS BETWEENsgen AND DIFFERENT STATISTICS OF THE IMPOSTOR SCORE SETS PRODUCED DURING

IDENTIFICATION TRIALS IN NIST BSSR1DATA .

medium II complexity type seem to be a good choice for identification problems.

As we discussed before, the previous combination approaches falling into medium II com-

plexity type are rank based combination methods and combination methods involving particular

normalizations of match scores followed by a simple combination function. The problem with

rank based methods is that the score information is simply discarded. It is easy to construct an

example where small difference in scores will result in big difference in ranks and will confuse

the combination algorithm. Altincay and Demirekler [23] presented one such example.

Score normalization methods, which utilize the whole set ofscores obtained during a current

identification trial in order to normalize a score related toa particular class, followed by some

combination algorithm, remain a viable approach to combination in identification systems. The

question is, of course, what is the proper way to do such normalizations. The same paper by

Altincay and Demirekler gives examples where normalization procedures frequently used result

in a loss of information contained in a classifier’s scores and yield suboptimal classification.

Identification systems produce matching scores for all persons in the database (we assume

simple identification systems with no indexing). Experiments based on utilizing the second-best

score for accepting identification results were presented in section IV. Our results show significant

benefits resulting from using both the best and the second-best scores in order to accept or reject

a class corresponding to the best score. Thus second best score alone can provide good amount of

information for the identification model construction. We used similar statistic for identification

models in our experiments. Additional advantage of using such statistic is that it is sometimes

impossible to obtain all identification match score, but thesecond best match score will be
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usually available from the implementation of identification system.

VII. D ERIVATION OF COMBINATION RULES USING IDENTIFICATION MODEL

In this section we present different combination methods ofmedium II complexity type utiliz-

ing identification model. The goal is to theoretically derive optimal combination algorithm with

the assumption that the joint densities of the scores and score set statistics are known. We will

also discuss the application of so called ’background model’ and its relation to the identification

model. Score normalization methods developed in the speaker identification research use the term

’background model’ to describe the probabilities associated with the event that a considered class

is an impostor class during the current identification attempt. Our term ’identification model’

has a different meaning and describes the dependencies between scores output for all classes

during any one identification attempt.

A. Likelihoods with Identification Model

Suppose that we combineM independent classifiers, and each classifier outputsN dependent

scores. The optimal combination algorithm is the Bayesian classifier which accepts theseNM

scores and chooses the class which maximizes the posterior class probability. Thus the goal of

optimal combination is to find

arg max
k

P (Ck|{s
j
i}i=1,...,N ;j=1,...,M)

Term Ck refers to the fact that the classk is the genuine class. By the Bayes theorem

P (Ck|{s
j
i}i=1,...,N ;j=1,...,M) =

p({sj
i}i=1,...,N ;j=1,...,M |Ck)P (Ck)

p({sj
i}i=1,...,N ;j=1,...,M)

and since the denominator is the same for all classes, our goal is to find

arg max
k

p({sj
i}i=1,...,N ;j=1,...,M |Ck)P (Ck)

or, assuming all classes have the same prior probability,

arg max
k

p({sj
i}i=1,...,N ;j=1,...,M |Ck)

By our current assumption, classifiers are independent, which means that any subset of scores

produced by one classifier is statistically independent from any other subset of scores produced
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by another classifier. Hence, our problem is to find

arg max
k

∏

j

p({sj
i}i=1,...,N |Ck) (1)

The problem now is to reliably estimate the densitiesp({sj
i}i=1,...,N |Ck), which is a rather

hard task given that the numberN of classes is large and we do not have many samples of each

class for training. The last problem is solved by noticing that we do not construct class specific

combination, and thus class indexes can be permuted. Thus all training samples pertaining to

different genuine classes can be used to train only one density, p(sk, {s
j
i}i=1,...,N,i 6=k|Ck). Now

s
j
k is a score belonging to genuine match, and all other scores{sj

i}i=2,...,N are from impostor

matches. Since there are many impostor scores participating in this density, we might somehow

try to eliminate them. Recall, that when considering identification models for decision, we relied

on the second best score output by the classifier. Could we use similar consideration and rely

only on one or two impostor scores?

Indeed, instead ofp(sk, {s
j
i}i=1,...,N,i 6=k|Ck) we can considerp(sj

k, t
j
k|Ck), where t

j
k is some

statistics of all other scores besidess
j
k. In all subsequent experiments we were using statistics

”second best score besides current score”, sbs(s). More precisely,tjk = sbs(sj
k) means the second

best score among current identification trial scores{sj
i}i=1,...,N,i 6=k not includings

j
k. The final

combination rule for this method is to find

arg max
k

∏

j

p(sj
k, t

j
k|Ck) (2)

As our previous experiments showed[3] this algorithm does not perform as well as traditional

likelihood ratio combination:

arg max
k

∏

j

p(sj
k|Ck)

p(sj
k|Ck)

(3)

It seems that the score set statisticst
j
k of our identification model does not fully reflect the back-

ground information for scoresj
k, whereas the termp(sj

k|Ck) indeed contains such information.

As an example, the genuine matching scoress
j
k can be very strong, but located in the region

of low probability (bothp(sj
k|Ck) andp(sj

k, t
j
k|Ck) are small), whereasp(sj

k|Ck) could be even

smaller, and likelihood ratio can still succeed. In the nextsection we try to derive a combination

rule which combines information from both identification model and background models.
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B. Likelihood Ratios with Identification Model

As above we consider posterior class probability, apply Bayes formula, but now use indepen-

dence of classifiers to decompose the denominator:

P (Ck|{s
j
i}i=1,...,N ;j=1,...,M) =

p({sj
i}i=1,...,N ;j=1,...,M |Ck)P (Ck)

p({sj
i}i=1,...,N ;j=1,...,M)

=

∏
j p({sj

i}i=1,...,N |Ck)P (Ck)
∏

j p({sj
i}i=1,...,N)

= P (Ck)
∏

j

p({sj
i}i=1,...,N |Ck)

p({sj
i}i=1,...,N)

(4)

The next step is similar to the step in deriving the algorithmfor background speaker model [21].

We consider classCk meaning some other class is genuine, and decomposep({sj
i}i=1,...,N) =

P (Ck)p({sj
i}i=1,...,N |Ck) +P (Ck)p({sj

i}i=1,...,N |Ck). By assuming thatN is large andP (Ck) �

P (Ck), we can discard the first term and get the following classifierdecision:

arg max
k

∏

j

p({sj
i}i=1,...,N |Ck)

p({sj
i}i=1,...,N |Ck)

(5)

In comparison with decision 1 of the previous section we havean additional density

p({sj
i}i=1,...,N |Ck). Such density can be viewed as a background of impostors for the genuine

classCk. As research in speaker identification suggests, utilizingsuch background model is

beneficial for the system performance.

We estimated the ratios of equation 6 by additional modelingof p({sj
i}i=1,...,N |Ck). We used an

approach similar to the previous section to estimate this density asp(sj
k, t

j
k|Ck) with t

j
k = sbs(sj

k)

- the joint density of impostor scoressj
k and corresponding identification trial statisticst

j
k. The

final combination rule is

arg max
k

∏

j

p(sj
k, t

j
k|Ck)

p(sj
k, t

j
k|Ck)

(6)

The technique described in this section can be characterized as a composition of identification

model and background model. The identification model considersp(sk, t
j
k|Ck) andp(sk, t

j
k|Ck)

instead ofp(sk|Ck) and p(sk|Ck), and background model considersp(sk, t
j
k|Ck) or p(sk|Ck)

in addition top(sk, t
j
k|Ck) or p(sk|Ck). Thus, the identification model differs from background

model by accounting for dependencies of scores in identification trials by using some statistic

t
j
k.

Note, that traditional likelihood ratio (Eq. 3) is the optimal combination method for low

complexity combinations operating in verification mode (see [29]). Thus, its extension by iden-

tification model (Eq. 6) should provide a good combination method of medium II complexity type
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for verification mode operations. Due to the derivation of 6 it also should provide a reasonable

performance in identification mode. So, we will be testing this method for both verification and

identification modes of operation of identification system.

C. Combinations of Dependent Classifiers

The combination algorithms presented in the previous two sections deal with independent

classifiers. How should we address dependent classifiers?

By looking at the combination formulas 1 and 6 we can see that each classifier contributes

termsp({sj
i}i=1,...,N |Ck) and p({sj

i}i=1,...,N |Ck)

p({sj
i}i=1,...,N |Ck)

correspondingly to the combination algorithm. Thus

one can conclude that it is possible to model the same terms for each classifier, and then combine

them by some other trainable function.

Note that any relationships between scoress
j1
i1

and s
j2
i2

where i1 6= i2 and j1 6= j2 will be

essentially discarded. This seems to be inevitable for the current complexity type of combinations

- medium II. If we wanted to account for such relationships, we would need class-specific

combination functions, and thus higher complexity combinations.

D. Normalizations Followed by Combinations and Single Step Combinations

Figure 8 represents in graphical form the type of combinations we have presented thus far.

All these combinations consist of two steps. In the first step, each score is normalized by using

other scores output by the same matcher. In the second step, normalized scores are combined

using a predetermined or trained combination function.

However, it is not necessary to have these two steps for combinations. For each normalization

happening in the first step we use the same identification model statistic and the same trained

density estimates. Thus the contribution of the particularclassifierj to the whole combination

algorithm’s output for classi is calculated only from scoresj
i and statistictj (statistic though

could vary for a class; in first case it was best or second best score; thus in fact two values are

used). Figure 9 presents a diagram on how scores and statistics from all participating classifiers

could be combined in a single combination step. The example of this combination is the weighted

sum rule utilizing identification model described in the next section.

In the algorithm presented by this diagram the statisticstj are extracted for each classifierj

using its output scores by a predetermined and non-trainable algorithm. The scores related to a
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Fig. 8. 2-step combination method utilizing identification model.

particular class and statistics are combined together by a trainable function. This combination

function is not class-specific and is easily trainable. Thistype of combinations are of medium II

complexity type. In comparison, in low complexity type combinations only scores for a particular

class are combined, and not statistics from identification models of classifiers.

E. Identification Model for Weighted Sum Combination

As an example of a single step combinations, we consider a weighted sum rule utilizing

our second best score identification model. Weighted sum rule can be specifically trained to

maximize correct identification rate for identification mode of operation, and it provides good

performance in this case[29]. It is not optimal for verification mode though. Thus, we will test

the performance of weighted sum rule with and without identification model modification in

identification mode operation only.

The traditional weighted sum combination without identification model (’weighted sum local’)

is a low complexity combination which combinesM scores fromM biometric matchers assigned

to a particular classi:

Si = w1s
1
i + · · · + wMsM

i (7)
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Fig. 9. 1-step combination method utilizing identification model.

The weighted sum rule with identification model (’weighted sum global’) combines scores as

well as statistics of score sets:

Si = w1s
1
i + w2sbs(s

1
i ) + · · · + w2M−1s

M
i + w2Msbs(sM

i ) (8)

Note, that we use second best score statistics which showed good performance in decision

making applications IV-B before. In both cases we train the weights so that the number of failed

identification attempts is minimized.

VIII. E XPERIMENTS

We used biometric matching score set BSSR1 distributed by NIST[28]. This set contains

matching scores for a fingerprint matcher and two face matchers ’C’ and ’G’. Fingerprint

matching scores are given for left index ’li’ finger matches and right index ’ri’ finger matches.

Since we wanted to consider the case of independent matcherswe performed four sets of

experiments on combining fingerprint and face scores : ’li’ &’C’, ’li’ & ’G’, ’ri’ & ’C’, and

’ri’ & ’G’.

Though the BSSR1 score set has a subset of scores obtained from same physical individuals,

this subset is rather small -517 identification trials with517 enrolled persons. In our previous

experiments[2] we used this subset, but the number of failedidentification attempts for most

experiments was less than10 and it is difficult to compare algorithms with so few negatives. In
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this work we use bigger subsets of fingerprint and face matching scores of BSSR1 by creating

virtual persons; the fingerprint scores of a virtual person come from one physical person and

the face scores come from another physical person. The scores are not reused, and thus we are

limited to the maximum number of identification trials -6000 and the maximum number of

classes, or enrolled persons, -3000. Some enrollees and some identification trials also needed to

be discarded since all corresponding matching scores were invalid probably due to enrollment

errors. In the end we split data in two equal parts -2991 identification trials with2997 enrolled

persons with each part used as training and testing sets in two phases. The results for these two

phases are added up later.

Two types of combinations are used in experiments - likelihood ratio and weighted sum.

For likelihood ratio combinations we estimate score densities using Parzen window method

with gaussian kernels. The kernel width is determined by themaximum likelihood method.

For the weighted sum methods we employ a brute force approachto find the optimal weights

maximizing the number of correct identification trials on the training sets. It is possible to use

brute force search in this case since the maximum number of weights is 4. In both likelihood

ratio and weighted sum experiments we used separate sets fortraining the combination method

and testing it.

A. Performance in Identification Operating Mode

Table IV shows the numbers of failed identification trials among the total number of2991∗2 =

5982 trials. ’LR’ is the traditional likelihood ratio combination method of Eq. 3. ’LR+sbs’ is the

likelihood ratio augmented with second best score identification model of Eq. 6. ’WSum’ is the

traditional weighted sum combination of Eq. 7. ’WSum+sbs’ isthe weighted sum combination

augmented with second best score identification model of Eq.8. For comparison we also used

traditional likelihood ratio and weighted sum combinationmethods with scores preprocessed by

previously mentioned (Sec. III) T-normalization:

s
j
i (l) →

s
j
i (l) − µj(l)

σj(l)

wheres
j
i (l) denotes a matching score given by classifierj to classi during identification trial

l, µj(l) andσj(l) are correspondingly the mean and the standard deviation of the set of scores

produced by matcherj during identification triall. T-normalization, as well as second best score
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identification model, makes our combinations of medium II complexity type, but, in contrast to

second best score model, T-normalization is an untrainablemethod.

Matchers LR LR+T-norm LR+sbs WSum WSum+T-norm WSum+sbs

li & C 165 175 163 166 165 156

li & G 245 268 220 271 269 222

ri & C 106 126 112 114 116 107

ri & G 171 181 152 190 183 158

TABLE IV

EXPERIMENTS ON COMBINATIONS IN IDENTIFICATION SYSTEMS. ENTRIES ARE THE NUMBERS OF FAILED TEST

IDENTIFICATION TRIALS .

We can see that in all cases except one the addition of second best score identification model

into corresponding low complexity algorithm resulted in performance improvement. The addition

of T-normalization was detrimental for likelihood ratio combination method, and marginally

positive for weighted sum combinations.

B. Performance in Verification Operating Mode

Although there are examples where score normalization techniques with background models

are used for identification tasks[15], even more applications use such techniques for identification

systems operating in verification mode[24], [30], [21]. We also applied the combinations utilizing

identification models for biometric person verification tasks. The drawback of using either the

background models or the identification models in verification tasks is that we have to produce

not only one match per person and per matcher, but also some set of matching scores for other

persons enrolled in the system, or some artificially modeledpersons.

Figure 10 contains the results of experiments of our system operating in verification mode.

The ROC performance curves were constructed using combinations of 2991 genuine and2991 ∗

(2997− 1) impostor score sets (note that in contrast to identificationmode experiments we only

considered one training and one testing sets for each combination).

The results show that we were able to achieve significant improvement in the verification task

performance by utilizing second best score identification model of Eq. 6. These improvements
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Fig. 10. ROC curves for likelihood ratio combinations utilizing and not utilizing identification models in verification mode.

seem to be similar to the improvements achieved by using identification models for making

acceptance decisions in biometric person identification insection IV-B. The T-normalization is

also beneficial to the smaller extent in these experiments.

IX. CONCLUSION

Presented four complexity combination types originate naturally from the structure of the

combination parameters - each score corresponds to some class and classifier, and the output

of the combination algorithm corresponds to some class. Complexity combination types form

a foundation for the classifier combination framework. The combination framework prompts

the user to choose the combination complexity type first based on the numbers of classes and

classifiers, and the number of training samples. Within a chosen complexity type one can use
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any generic classifier for combination. Finally, a generic classifier used for combination can be

modified to account for a chosen complexity type and for any extraneous information about

classifiers.

The problem of classifier combination in identification systems can be treated as an applica-

tion of the combination framework. We observe that frequently the algorithms, employed for

combining matchers in biometric identification systems, only use the scores related to one class

to produce a final combination score. Instead of using low complexity combination algorithms

in identification systems, we attempt to use medium II complexity type combinations, which

utilize all available scores and require training only single combination function. Combination

algorithms of low complexity type discard the dependency information between scores assigned

to all classes by any single classifier. We gave examples, that if such information is discarded and

low complexity type combinations are used instead of mediumII complexity type combinations,

then the combination is suboptimal.

In order to reflect the relationships between scores assigned by one classifier to different

classes, we introduced the concept of the identification model. The identification model appli-

cation is a score normalization algorithm where normalization depends on all scores output by

a classifier in one identification trial, and the algorithm isthe same for all classes. Thus our

identification model has less complexity than similar attempts to normalization [31], [32]. In these

previous attempts normalizations were class specific and required huge amount of training data.

The combinations utilizing such normalizations will be similar to Behavior Knowledge Space

combination [33], and they belong to high complexity combination type. Biometric identification

problems can have large number of enrolled persons, and suchcombinations are not feasible

due to the lack of training data. By restricting ourselves to non-class-specific normalizations of

the identification model we are able to concentrate on combinations of medium II complexity

type. Such combinations have significantly lower complexity, and result in efficient algorithms

for identification systems.

In section IV we have shown how the identification model can beused in order to improve the

performance of decision making in identification systems, and section VII contains examples of

combination algorithms, likelihood ratio and weighted sumcombination rules, utilizing identifi-

cation models . The experiments show significant advantagesfor combinations of medium II type

utilizing identification models, as opposed to less efficient low complexity type combinations,
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and non-feasible high complexity combinations.
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