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Abstract

Combination approaches in biometric identification systamsually consider only the matching
scores related to a single person in order to derive a combscere for that person. We present
the use of all scores received by all persons and explore diaantgages of such an approach when
enough training data is available. More fundamentally, eentify four types of classifier combinations
determined by the numbers of trained combining functiortstarir input parameters. We prove that the
improper choice of the combination type might result in osljpoptimal performance of identification
system. We investigate combinations, which consider aflilalvle matching scores and have only
single trainable combination function. We introduce a ipatar kind of such combinations utilizing
identification models, which account for dependencies betwscores output by any one classifier.
We present several experiments validating the advantagrioproposed combination algorithms for

problems dealing with large number of classes, in particllimmetric person identification systems.

Index Terms

Combination of classifiers, biometric identification syste

. INTRODUCTION

Biometric applications can be operated in two modes: vetiing1:1) mode and identification
(2:N) mode. Common approaches to combining biometrics foX)(identification applications
are actually a simple iterative use of the (1:1) verificateystem. The combined score for
matching a set of biometrics to a particular enrolled pensonsually obtained as a function
of the matching scores of all biometrics for the particulargon in either modes of operation.
However, identification systems possess additional inédion that can be utilized for deriving
the final score for a particular enrolled person. This adddl information is available from the
matching scores returned for other enrollees in the da¢abas

In this paper we consider a combination of matchers in thatifieation system. In such
systemM multiple biometric matchers are used to produdéV matching scores, wherd is
the number of enrolled persons. We assume fhiats small andNV is large. Each biometric
matcher in such setting is equivalent to the classifier agsggmatching scores to each of
classes or persons. And the combination of biometric magcire identification system can

be viewed as a classifier combination problem with a large bramof classes. We use terms
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'matcher’ to refer to a classifier which outputs class matgrgcores, and ’identification’ to refer
to the case dealing with large number of classes.

We assume the combination algorithm is producing a combswme for each class, and
final matched class corresponds to the best combined sceee Higure 1). The combined
score is determined by the combination functibmvhich takes as parameters potentially whole
set of match scores. Our categorization of the combinatigorighm is determined by the
construction properties of combined functions. In patdcucombination algorithm can have
only one combination function, and combined scores foedifit classes can be obtained by the
permutation of input match scores. On the other hand, eads can have its own combination
function, and combined scores are calculated differerdly different classes. We might call
the combination algorithm of first kind as class generic, aothbination algorithms of the
second kind as class specific. Another distinction betweesnbiation algorithms is based on
the number of input parameters to each combination funct®me combination functions
take as parameters only match scores related to a particular class to calculate ahwined
score of this class. We call the combination algorithms veittth combination functions as
reduced parameter set combination algorithms, or localbomation algorithms. Other types of
combination functions might consider the whole setMéfV match score to derive a combined
score for one class. The combination algorithms with suafctions could be called whole
parameter set, or global combination algorithms.

If classifiers deal with a small number of classes, then theedéencies between scores
assigned to different classes can be learned and used fdviaton purposes. For example,
Xu et al. [1] used class confusion matrices for deriving dfelalues and integrated these values
into combination algorithms in the digit classification plem. This algorithm has class specific
and global combination functions. This is most general tgpeombinations and ideally we
would use it for other problems. But learning class dependenequires significant number
of training samples of each class. Such data is not avaifablaentification problems, where
usually a single template is enrolled for each person. litiatd the database of enrolled persons
can be frequently changed, and this makes learning claaSorethips infeasible.

As a consequence, combination approaches in identificaystems usually consider only
matching scores related to the single person in order to@@rcombined score for that person.

Though allAM N matching scores are available, only scores are used for combination. In this
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paper we investigate the question of whether it is possiblanprove the performance of the
identification system by using a whole set of scores for degicombined matching score of
each person. We argue that combination algorithms usirgs ganeric and global combination
functions are well suited for combination problems in idiérdtion systems.

Some results of this work were presented in [2] and [3]. Iis {héper we provide additional
insights into combination problems in identification sys$g construct new example proving the
difference between local and global combination types, @edent a new global weighted sum
combination algorithm. In addition, this paper contains tasults of new experiments on bigger
datasets and comparison of proposed 'second best scongificiEtion model with identification
model resulting from T-normalization[4].

In the next section we present the four types of combinataesending on the number of
matching scores they consider and on the number of trair@btéination functions. Then we
give a review of the identification model concept. The modseatially keeps an information
about dependencies between matching scores assignedrgjearaatcher to all enrolled persons.
Using such models allows us to construct class generic aplohblcombination functions. In
the last sections we investigate the combinations in ifleation systems in detail, and show
both theoretically (using example) and experimentally #iwantages of combinations using

identification models.

[I. COMPLEXITY TYPES OFCLASSIFIER COMBINATIONS

The general scheme for classifier combination is shown imdiguThe final score for a class is
derived from the scores received from all the classifiergHat class. The combination functions
of such combination algorithms have reduced parameteasdtmany well known combination
methods (e.g. weighted sum of scores) fall into this catedbis also possible to consider a more
general form of combination where derivation of a final sdarea particular class includes all
classifier scores, for that class as well as for other cld4$g%]. For example, if the combination
algorithm in this figure consisted of fully connected artdlcneural network accepting/ N
input parameters and having output parameters, it would present an example of most ggner
class specific and global combination function algorithre Tisadvantage of this more general
approach is that it requires larger amount of training dathich might not be available in

identification systems. This section describes this andhanadhree types of combinations which
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Fig. 1. Classifier combination takes a set.séf— score for clasg by classifierj; and produces combination scorgsfor each

class:i.

might need smaller sets of training data. Ultimately, thebpgm characteristics and the size of

training set would determine the most appropriate comlminatype for a particular problem.

A. Complexity Based Combination Types

Combination algorithms can be separated into 4 differenésygepending on the number of
classifier’s scores they take into account and the numbesrobmation functions required to be
trained. As in Figure % is the index for theV classes and is the index for thel classifiers.

1) Low complexity combinationss; = f({s{}jzl,m,M). Combinations of this type require

only one combination function to be trained, and the contimnafunction takes as input
scores for one particular class as parameters. These mnsaikedlass generic and reduced

parameter set (local) combination functions.
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separate score combining functions for each class and emthfgnction takes as input
parameters only the scores related to its class. These dsetise class specific and reduced
parameter set (local) combination functions.

3) Medium complexity Il combinationsS; = f({s?};=1. . {8.}j=1.. k1. Ngzi)- THIS
combination function takes as parameters not only the sa@lated to this class, but all
output scores of classifiers. Combination scores for eacts dae calculated using the
same function, but scores for classre given a special place as parameters. Applying
function f for different classes effectively means permutation offtlrection’s parameters.
These combination functions are class generic and use vpaodameter set (global).

4) High complexity combinationsS; = fi({s{;}jzle;k:l,m,N). Functions calculating final
scores are different for all classes, and they take as paeesnall output base classifier
scores. These are class specific and whole parameter sealjgbtombination functions.

In order to illustrate the different combination types wa cse a matrix score representation.
Each row corresponds to a set of scores output by a particlgasifier, and each column
has scores assigned by classifiers to a particular class.lllb&ation of each combination
type functions is given in Figure 2. In order to produce thenbmed scoreS; for class: low
complexity combinations (a) and medium | complexity (b) donations consider only classifier
scores assigned to clasgolumn i), and use local combination functions. Mediunc) §nd high
complexity (d) combinations consider all scores output lagsifiers for calculating a combined
scoreS; for classi, and their combination functions are global.

Low (a) and medium Il (c) complexity combinations have theealass generic combination
functions f irrespective of the class for which the score is calculatédte that medium Il
complexity type combinations have scores related to aquéati class in a special consideration
as indicated by the second ellipse around these scores. WVihick of these combinations as
taking two sets of parameters - scores for a particular ckass all other scores. The important
property is that combination functiofi is same for all classes, but the combined scdfgs
differ, since we effectively permute function inputs foffdrent classes. Medium | (b) and high
(d) complexity combinations have class specific combinimgcfions f; trained differently for

different classes.
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(c) Medium I (d) High

Fig. 2. The range of scores considered by each combination typecemiireation functions.

It is interesting to compare our combinations types withvjanes categorization of combination
methods by Kuncheva et al.[6]. In that work the score matdag hames 'decision profile’ and
'intermediate feature space’. It seems that using termrésgpace’ makes more sense here.
Kuncheva’s work also separates combinations into 'classcious’ set which corresponds to the
union of ’low’ and 'medium I’ complexity types, and 'clasadifferent’ set which corresponds to
the union of 'medium II' and ’high’ complexity types. Agaimése terms might not be suitable
since we can think of a combination method as being 'class@ous’ if each class has its
own combination function (class specific ‘'medium I’ and Tigomplexity types), and ’class-
indifferent’ if combination functions are same for all cdas (class generic 'low’ and 'medium

II' complexity types). The continuation of this work [7] gawan example of the weighted sum
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rule having three different numbers of trainable paransetend accepting different numbers of
input scores), which correspond to ’low’, 'medium I’ and dhi complexity types.

In contrast to Kuncheva’s work, our categorization of camaltion methods is more general
since we are not limiting ourselves to simple combinatiolesuike weighted sum rule. Also
we consider an additional category of ‘'medium II' type, whis missed there. An example of
'medium II' combinations are two step combination algamthwhere in the first step the scores
produced by a particular classifier are normalized (withspgae participation of all scores of
this classifier), and in the second step scores are combiedinction from 'low’ complexity
type. Thus scores in each row are combined first, and therethdts are combined columnwise
in the second step. Note, that it is still possible to havegiveid sum combination method of

medium Il complexity type, and we give an example of such doation later.

High

Fig. 3. The relationship diagram of different combination complexity types

Figure 3 illustrates the relationships between presentedptexity types of combinations.
Medium complexity types are subsets of high complexity cioraions, and the set of low com-
plexity combinations is exactly the intersection of setsnafdium | and medium Il combination
types. In order to avoid a confusion in terminology we wilhkeforth assume that a combination
method belongs to a particular type only if it belongs to tiyise and does not belong to the
more specific type.

In [8] we provided a stricter description of these complexitpes using the concept of VC
(Vapnik-Chervonenkis) dimension [9]. In particular, weided the formulas for VC dimensions
for each complexity type, and showed how complexity can lmkiced either by adopting a

lower complexity type combination, or by restricting the eétrainable combination functions.
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The ability to use VC dimension for characterization of eliéint combination types justifies our
usage of term ‘complexity types’.

Higher complexity combinations can potentially productédreclassification results since more
information is used. On the other hand the availability airtng samples will limit the types
of possible combinations. Thus the choice of combinatigmetyn any particular application
is a trade-off between classifying capabilities of combora functions and the availability
of sufficient training samples. In practice,we first see if atipular classifier combination
problem can be solved with high complexity combinations am@st general combination
type. If complexity is too big for the available training dasize, number of classe§ and
the complexities of chosen combination functions, we atgrsiower complexity combinations.
When the complexity is lowered it is important to see if anyfusaformation is lost. If such
loss happens, the combination algorithm should be modifiecbtnpensate for it.

Different generic classifiers such as neural networks, st@titrees, etc., can be used for
classifier combinations within each complexity class. Fribva perspective of this framework,
the main effort in solving classifier combination problemnmsists in a justification for a particular
chosen complexity type of combination and providing anycggdemodifications to generic
classifiers compensating for this chosen complexity type.aA example, the biometric person
authentication systems we experimented with in this papee ra high number of enrolled
classes (personsy and a small number of classifiers (biometric face and fingetrpnatchers)
M. As a result medium | and high complexity combinations woliddave high complexity (VC
dimension), and we will have problems training them. On theephand low and medium I
type combinations would have lower complexity (dependimgtioee complexity of the set of
trainable combination functiong), and we would be able to train them.

Most combinations algorithms in biometric applicationg &f low complexity type. Com-
plexity framework suggests that it is possible to employ medll combinations as well in
these applications. In this work we are interested in deetp such combinations. The main
results presented here are the following. First, we progertiedium 1l complexity type is indeed
different from low complexity type and low complexity comiations might have only suboptimal
performance. Second, we investigate the reasons for tifiéesetice and suggest construction of so
called identification model, which contains informatioraga&ble to medium Il type combinations

and not available to low complexity type combinations. @hiwe derive combinations rules of
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medium Il complexity type which are analogous to the tradil likelihood ratio and weighted
sum combinations of low complexity type. Finally, the exp®@nts on large biometric score sets
confirm that suggested medium Il complexity combinationgehaetter performance than their

counterparts of low complexity.

B. Verification and ldentification Operating Modes

By our convention an identification system provides matclsogres forNV enrolled persons.
We define an identification system as operating in identiboatode if its purpose is to classify
an input as belonging to any of classes or persons. We assume that the classificationatecisi

is performed by applyingrg max operator to theV combined scores:

C = arg max S;
1<i<N

The correct identification rate, that is the frequency ofrectly finding the true class of the
input, is the natural measure of performance in this casgwanwill use it in our experiments.
Note, that there could be other performance measures fotifidation mode operation, such as
Rank Probability Mass, Cumulative Match Curve, etc.[10], betwill not use them here.

Conversely, we define an identification system as operatingrification mode if its purpose
is to decide whether an input belongs to some claimed pementity. In this case we can
distinguish two classes: genuine and impostor verificatittempts. The decision to accept is
based on comparing a combined score of a claimed persoritydéns;, to some threshold:

S; > 6. The common way to describe the system performance in sucitlygs problems is to
construct graphs showing the dependencies of errors oshibliced: ROC curve, DET curve,
etc.[10]. In our experiments we will use ROC curves.

Both identification and verification modes of operation caitizet combinations of all four
complexity types described above. Typically, biometristeyns operating in verification mode
produce matching scores only for the claimed person idematitd not for other enrolled persons.
The combinations using only such restricted sets of scareshecessarily of low or medium
| complexity types. If we want to use combinations of othemptexity types we have to

additionally produce matching scores for other enrollecsges as well.
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[11. PREVIOUSWORK IN IDENTIFICATION SYSTEM COMBINATIONS

If we have a combination algorithm for verification systeng gan use it sequentially for all
persons in identification system. Such algorithm will natizé dependencies between scores
output by a single matcher. Most of combination algorithresdiin biometric applications are
of this type. In our combination framework such combinasi@me of the low complexity type.
Combination functions can also be user specifi§ {11], [12] (medium | complexity type).
Below we present approaches which do utilize score deperetenctidentification trials: rank

based combinations and some score normalization techslique

A. Rank Based Combinations

The frequent approach to combination in identification exyst is to use rank information
of the scores. This approach transforms combination pnebleith measurement level output
classifiers to combination problems with ranking level attgplassifiers ([1]). T.K. Ho has
described classifier combinations on the ranks of the scostead of scores themselves by
arguing that ranks provide more reliable information abdass being genuine [13], [14]. Thus,
if the input image has low quality, then the genuine scoreywel$ as the impostor scores will
be low. Combining low score for genuine class with other ssm@uld confuse a combination
algorithm, but the rank of the genuine class remains to beod gtatistic, and combining this rank
with other ranks of this genuine class should result in tdassification. Brunelli and Falavigna
[15] considered a hybrid approach where traditional comtam of matching scores is fused
with rank information in order to achieve identification d&an. Hong and Jain [16] consider
ranks, not for combination, but for modeling or normalizidi@ssifier output score. Behavior-
Knowledge Space combination methods [17] are also base@rds.r Saranli and Demirekler
[18] provide additional references for rank based commnaénd a theoretical approach to such
combinations.

Rank-based methods do utilize the score dependencies itifickgion trials, and, as many
authors suggest, these methods provide a better perfoemandentification systems. The
problem with rank based methods, however, is that the sedoemation is somewhat lost.
Indeed, genuine score can be much better than second best ecdt could be only slightly
better, but score ranks do not reflect this difference. Itldidne desirable to have a combination

method which retains the score information as well as th& maformation.
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B. Score normalization approaches

Usually score normalization [19] means transformationocofres based on the classifier’s score
model learned during training, and each score is transforiméividually using such a model.
Thus the other scores output by a matcher during the saméfidation trial are not taken into
consideration. If these normalized scores are later combalass-wise, then score dependence
will not be accounted for by the combination algorithm.

Some score normalization techniques can use a set of idatith trial scores output by
classifier. For example, Kittler et al. [20] normalize eaclore by the sum of all other scores
before combination. Similar normalization techniques &¢eero)- and T(test)- normalizations
[4], [21]. Z- normalization uses impostor matching scoregptoduce a class specific normal-
ization. Z-normalization does not include the set of idi&gdtion trial scores, and thus does not
utilize score dependency. On the other hand, T-normatimatioes use a set scores produced
during single identification trial, and can be considered agnple form of identification model.
T-normalization uses statistics of mean and variance gaftifieation score set. Note that identi-
fication model implies some learning algorithm, but T-noliz@dion is a predetermined routine
with no training. Still, using this simple kind of score mdidg turns out to be quite useful; for
example, [22] argued for applying T-normalizations in fa@gification competition. There is
also an argument[23] that useful classification infornragets lost during such normalizations.

Score normalization techniques have been well developtteiapeaker identification problem.
Cohort normalizing method [24], [25] considers a subset obked persons close to the current
test person in order to normalize the score for that persoa lmg-likelihood ratio of genuine
(current person) and impostor (cohort) score density nsod®lickenthaler et al.[4] separated
cohort normalization methods into cohorts found duringnegconstrained) and cohorts dynami-
cally formed during testing (unconstrained cohorts). Nalimation by constrained cohorts utilizes
only one matching score of each classifier and thus does mstider score dependencies. On
the other hand, normalization by unconstrained cohortentiatly uses all scores of classifiers,

and thus results in the construction of the identificatiordeto

V. I DENTIFICATION MODEL

Before describing in detail our combination method, we willegan overview of our previous

investigation into performance characteristics of id@dtion systems. It turns out that the
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traditional ways of describing the performance of verifimatsystems - densities of the genuine
and impostor scores, as well as ROC curve constructed wehh#ip of these densities, do
not fully represent the performance of identification systeDensities of genuine and impostor
scores disregard the fact that the scores produced by @& sifagsifier and assigned to different
classes are usually dependent. Thus, full description efidlentification system performance
requires reconstruction of the joint density of all scorelated to different classes.

Since the number of classes in identification systems canepg large or variable, such
reconstruction of joint density might not be possible. Thus introduced [26] a concept of
identification model - a model that represents identificaggstem properties and performance.
The identification system should be able to adequately septethe score distributions, and, in
particular, help us to derive the mapping of scores intograstclass probabilities. Generally, we
expect that any algorithm which works with classifier's &(such as decision thresholding or
classifier combination) should perform better if scoresrareapped using identification model.
Our previous research was using identification model foisiat making, and in this section

we summarize the results of this research.

A. Performance of identification systems

Suppose we have one matcher in the identification system/MWitlasses. Let; > sy > -+ >
sy be a set of matching scores we got in one identification att€bigger score means better
match, and for this example we index scores by their ranlerdtian by class). How should we
decide if the class corresponding to the best seoiig the true class of the input? One solution
is to compare best scorg to some threshold and if s; > 6 confirm identification success
and accept class correspondingsoas truth. But a little thought reveals that if the second-
best scores; is close to the best scorg then there is big chance that class corresponding
to s, might be a true class instead of class corresponding; torhus we definitely should
include considering second-best scesanto our decision about accepting identification results.
Similarly, considering third-best scorg or other scores might be beneficial as well.

In [26] and in [27] we investigated the benefits of utilizingetsecond best matching score
for accepting identification results. The main results afsth works:

« The performance improvements due to utilizing second beEsesfor identification system

decisions arise naturally, even if scores are statisyicatlependent.
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« The improvements can be bigger if matching scores are depénd
. Real-life identification systems usually have dependentes;dhat contributes favorably to
identification system performance.
The following section considers an example of utilizings®tbest score, to make a decision
on accepting a person corresponding to the best matchingg saobiometric identification

systems.

B. Identification Model for Acceptance Decision in Biometdentification Systems

We consider the problem of person identification by meansngfefiprint and face biometrics.
We use the NIST Biometric Score Set, release 1 (BSSR1 [28]). Weider three subsets of
scores: fingerprint li set which is produced for 6000 entblleft index fingerprints and 6000
user input fingerprints, face recognizer C set and face rezegG set which are produced for
3000 enrolled faces and 6000 user input faces. Thus all s&ts 6000 identification trials with
1 genuine scores and 5999 (for fingerprints) or 2999 (fordpoepostor match scores.

We ran all experiments using leave-one-out method, thairigdich identification trial we use
all other 5999 trials for training and perform testing on té# out trial. All 6000 test runs are
combined together in the ROC curve. For each test run we stiwant densities of scores for two
classes - genuine identification trials with the best scaiadthe genuine match and impostor
identification trials with the best score being impostor ¢chatA test run score is given as a ratio
of genuine density to the impostor density at a test triatesgmint (Bayesian classification).

Results of the experiments are shown in Figures 4 - 6. 1 toesboesholding means that we
consider only the top scores for reconstructing the desssiind 2 top score thresholding means
that we use both the best and second-best scores to reabrd#nsities. In all cases making
acceptance decision based on two scores has clear advavegdecisions based on just the
first score.

The application of the identification model clearly imprevhe identification system perfor-
mance. The biometric matching scores are dependent (sew Belc. VI), and this dependence
is mainly caused by the quality of matched templates. Fom@ka, if an input fingerprint has
small area, then it will contain small number of minutia, aswhsequently all minutia based
matchers will produce low scores. And if the input fingerptias many minutia, then not only

the genuine match will have many matching minutia and higitescbut impostor matches will
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BSSR1, fingerprint matching scores

0.2 T T T T T T T
1 top score thresholding
—— 2 top score thresholding
0.18 i
0.16 - i

0 I I I I I I I I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
FAR

Fig. 4. ROC curves for optimal thresholding using and not using sebestiscore. BSSR1 set, fingerprint li scores.

BSSR1, face matching scores, set C
0.4 T T T T T T T
1 top score thresholding
—— 2 top score thresholding

035 B

0 I I I I I I I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
FAR

Fig. 5. ROC curves for optimal thresholding using and not using sebestiscore. BSSR1 set, face recognizer C scores.
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BSSR1, face matching scores, set G

T
1 top score thresholding
—— 2 top score thresholding

FRR

0 0.05 0.1 0.15 0.2 0.25

FAR

Fig. 6. ROC curves for optimal thresholding using and not using sebestiscore. BSSR1 set, face recognizer G scores.

also get a chance to produce a higher score. The followingosegives an example clarifying
the connection between matching score dependence and tieditbeof utilizing second best

score.

C. Example of dependent scores

Suppose we have an identification system with one matcher fandsimplicity, N = 2
classes. Also suppose we collected a data on the distntsubd genuine and impostor scores
and reconstructed score densities as shown in Figure 7.

Consider three possible scenarios on how these densitielst in@ye originated from the
sample of the identification attempts:

1) In every observed identification attempt the score of #weuge class,,,, is chosen from
the distribution of genuine scores, and the score of the stypalasss;,,, is the additive
inverse ofsge,: Simp = 1 — Sgen. AS We proved in [8], using second best score in addition
to best score has no benefit for identification system pedaooga in this case.

2) Both scores;,.,, ands;,,, are sampled independently from genuine and impostor lokistri

utions. The experiments with artificial densities showé{ifthat utilizing the second best
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Fig. 7. Hypothetical densities of matching(genuine) and non-matchipggtors) scores.

score will give some improvement during the decision step.

3) In every observed identification attempts;;,,, = sg, — 1. Thus in this scenario the
identification system always correctly places genuine $amip top. Score distributions of
Figure 7 do not reflect this fact. By using appropriate idesdtion model (say, accepif
s; = max; s;) we can successfully separate all correct identificaticults from incorrect
ones.

Matching scores are frequently dependent. Scores werendepeto some extent in all the
applications we experimented with(see below Sec. VI). We maint out at least two causes of
such dependence:

1) Recognizers usually incorporate some measure of inpuityjuato matching score. If
quality of the input is low we can expect all matching scoré#low, and if quality is
high, then matching scores also will be high.

2) In some applications, like character recognition, weeexpmages to belong to a definite

set of classes, and if an image is in one class, it will be gdifferent from images in
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other classes. When the distortion is small and the corressds matched, the distance
to other classes will dictate low impostor scores. But if irsjoo class is matched, the
input sample probably lies somewhere in between classesirensecond best score is

comparable to the first one.

Summarizing the above discussion, if matching scores alependent we expect to achieve
average performance improvement by combining the secestidzore. If scores are dependent,
then any situation from no improvement to perfect decisierpossible. Scores are usually

dependent and therefore considering second-best scorxisiah is beneficial.

V. Low COMPLEXITY COMBINATIONS IN IDENTIFICATION SYSTEM

In this section we prove that the set of medium Il complexibynbinations is different from
the set of low complexity combinations. Though this fact banintuitively obvious, we present
a strict mathematical proof by constructing examples ohfiifieation systems in which optimal
low complexity combination performs worse than optimal med |l complexity combination.

As we discussed in [29] the optimal combination algorithme different for verification
and identification modes of system operation if there is seddpnce between matching scores
assigned to different classes. Thus we construct two ex@snphe for verification and another
for identification operating modes, to prove the differemceomplexity types for both operating
modes.

For verification mode of operation we consider an identiftcasystem with only one matcher
- the matcher described in the third scenario of the preveedion. Lets; and s, be two
matching scores assigned to two classes, one genuine aticeaimopostor. The low complexity
combination has to rely on only a single score of a claimesscl&uppose a class 1 is claimed and
the only decision we can make is by comparing scoreo some threshold: accept verification
attempt ifs; > 6. Clearly, there could be verification trials where class Iripastor, but its score
is bigger than the threshold and it is accepted, or trialsrevblass 1 is genuine, but it is rejected
since its score is less than thresholds. B&R(#) > 0 and FAR(f) > 0 for any#. On the other
hand, we can consider the following decision algorithm ofdim Il complexity type: accept
claimed identityi if s; > s3_;, and reject otherwise. Such algorithm will haV&k R = FAR = 0.

So we proved, that for verification mode of operation theraptilow complexity combination

is not able to achieve same performance as optimal mediurontptexity combination.
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For identification mode of operation we consider an ideratfan system with two match-
ers and two classes. Let these matchers be independenthd.ehdtching scores be only 0O
or 1 and let the probabilities of score outputs for first,¢3) and second £, s3) match-
ers in case first classv() is a genuine class be given in table |. Let also assume, that i
second classuf) is genuine, then corresponding score pairs probabildaiesthe same (with
permutation):P (s}, si|w, is genuing = P(s}, st|w; is genuing and P(s?, s3|w- is genuing =

P(s3, 52w is genuine.

st | s3 || P(s,s3|w: is genuing s7 | 83 || P(s?,s3|w is genuing
0] O 0.1 0] O 0.1
0 1 0.1 0 1 0.2
1 0 0.4 1 0 0.5
1 1 0.4 1 1 0.2

TABLE |

PROBABILITIES OF MATCHING SCORE OUTPUTS FOR CLASSIFIERS INDENTIFICATION OPERATING MODE EXAMPLE

Low complexity combination for such system operating innicfecation mode will be repre-
sented by the formula:

C = argmax f(s;, 5;)
1= b

and since scores/ are only of two values (0 and 1) we can enumerate all possitmebina-
tion functions as having valuef), 1, 2,3} on different pairs{0,0},{0,1},{1,0}, {1,1}. After
considering all such possible combination functions, wd fimat functionf shown in Table II
gives the best correct identification rate of 0.62.

Note, that due to the symmetry in original score distribugid® (s}, si|w; is genuine for
different genuine classes; and ws, we can not have class-specific combinations. Thus the
set of low complexity combinations coincides with the setneédium | combinations, and
the set of medium Il combinations coincides with the set @hhcomplexity combinations.
So, the optimal combination of medium Il complexity type isaetly the optimal combina-
tion of high complexity type, and which is the optimal cldissition algorithm on the set

of all scores(si, s?, s}, s2). Since we know distributions of scores assigned by our neasch
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si | s || f(si,sd)
0o 0
01 2
1|0 1
11 3
TABLE Il

OPTIMAL LOW COMPLEXITY COMBINATION FUNCTION FOR IDENTIFICATION OPERATING MODE EXAMPLE

using Bayes theorem and matcher independence assumptieh, £}, s?, s2|w; is genuing =
P(s1,si|w; is genuingP(s?, s2|w; is genuing), we can calculate posterior probabilities of both
classes for each combination of score outpit& is genuings!, sl s? s2)) and perform opti-
mal Bayesian classification. Such classification achievecbidentification rate of .65. Thus,
the medium Il complexity combination achieves better p@nfnce in identification operating
mode than optimal low complexity combination. Note, thatbioth cases we had the same
undecided rate of .15, where the value of combination foncis the same for both classes, or

the posterior class probability is the same for both classes

VI. COMBINATION COMPLEXITY FRAMEWORK AND IDENTIFICATION MODEL

The theoretical examples from the previous section showed we are better to consider
medium Il or high complexity combinations for identificatieystems if match scores assigned
by any classifier are dependent. Low complexity combinatiare not capable to account for
this dependence and might have suboptimal performancerder do verify the dependence
of match scores output by classifiers during identificatioald, we measured the correlation
between genuine score and different statistics of the $atspwstor scores. As table Ill shows,
the scores produced by real life classifiers indeed can bendiemnt.

The presence of the dependence between match scores suthgesive might want to use
medium Il or high complexity combinations. High complexitpmbinations, though, require
training a separate combination function for each persoa tlaus they need a significant amount
of training data. On the other hand, medium Il combinatiorithmds need only one combination

function to be trained, and training data set can be quitdlsiftaus combination methods of
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Matchers || firstimp | secondimp | meanimp

li 0.3164 0.3400 0.2961

ri 0.3536 0.3714 0.3626

C 0.1419 0.1513 0.1440

G 0.1339 0.1800 0.1593
TABLE 1lI

CORRELATIONS BETWEENSgen, AND DIFFERENT STATISTICS OF THE IMPOSTOR SCORE SETS PRODUZBURING

IDENTIFICATION TRIALS IN NIST BSSRI1DATA.

medium Il complexity type seem to be a good choice for ideraiion problems.

As we discussed before, the previous combination apprseafdikng into medium Il com-
plexity type are rank based combination methods and cortibmenethods involving particular
normalizations of match scores followed by a simple comtimnafunction. The problem with
rank based methods is that the score information is sim@gadded. It is easy to construct an
example where small difference in scores will result in bifledence in ranks and will confuse
the combination algorithm. Altincay and Demirekler [23ppented one such example.

Score normalization methods, which utilize the whole sesaafres obtained during a current
identification trial in order to normalize a score relatedatparticular class, followed by some
combination algorithm, remain a viable approach to contimnan identification systems. The
guestion is, of course, what is the proper way to do such nirat@ons. The same paper by
Altincay and Demirekler gives examples where normalizapoocedures frequently used result
in a loss of information contained in a classifier's scored wield suboptimal classification.

Identification systems produce matching scores for allgexydn the database (we assume
simple identification systems with no indexing). Experinselbased on utilizing the second-best
score for accepting identification results were presemtegction V. Our results show significant
benefits resulting from using both the best and the secostisberes in order to accept or reject
a class corresponding to the best score. Thus second bestadaoe can provide good amount of
information for the identification model construction. Weed similar statistic for identification
models in our experiments. Additional advantage of usinghsstatistic is that it is sometimes

impossible to obtain all identification match score, but #esond best match score will be
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usually available from the implementation of identificatisystem.

VIl. DERIVATION OF COMBINATION RULES USING IDENTIFICATION MODEL

In this section we present different combination methodsieflium 1l complexity type utiliz-
ing identification model. The goal is to theoretically derioptimal combination algorithm with
the assumption that the joint densities of the scores anck s&i statistics are known. We will
also discuss the application of so called 'background nmiaahl its relation to the identification
model. Score normalization methods developed in the speddmtification research use the term
'background model’ to describe the probabilities assedatith the event that a considered class
is an impostor class during the current identification ager®ur term ’identification model’
has a different meaning and describes the dependenciegdretscores output for all classes

during any one identification attempt.

A. Likelihoods with Identification Model

Suppose that we combine independent classifiers, and each classifier outputiependent
scores. The optimal combination algorithm is the Bayesiassifier which accepts thegén
scores and chooses the class which maximizes the post&ags robability. Thus the goal of

optimal combination is to find

and since the denominator is the same for all classes, olirggtafind
arg mgXp({Sf}izl ..... Nij=1,.., m|Cr)P(Cr)
or, assuming all classes have the same prior probability,

arg mgXp({sf}izl ..... N;j=1,..., M|Ck)

By our current assumption, classifiers are independent,hahigans that any subset of scores

produced by one classifier is statistically independennfemy other subset of scores produced
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by another classifier. Hence, our problem is to find
arg mgXHP({Sf}i:L...,NWk) 1)
J

The problem now is to reliably estimate the densitji@s{}i:l“,,,]vyck), which is a rather
hard task given that the numbar of classes is large and we do not have many samples of each
class for training. The last problem is solved by noticingtttve do not construct class specific
combination, and thus class indexes can be permuted. Thisiaing samples pertaining to
different genuine classes can be used to train only one tgepss;, {s{}izl,_,,N#MCk). Now
si is a score belonging to genuine match, and all other SC{)Srfé}szz,..,,N are from impostor
matches. Since there are many impostor scores partiojpetithis density, we might somehow
try to eliminate them. Recall, that when considering idesdiion models for decision, we relied
on the second best score output by the classifier. Could weinmmlarsconsideration and rely
only on one or two impostor scores?

Indeed, instead o (s, {5} }iz1..nizk|Ck) We can considep(s,,t.|Cy), wheret] is some
statistics of all other scores besid§§ In all subsequent experiments we were using statistics
"second best score besides current score”, sbs(s). Mocesphg ti = sbs(sf;) means the second
best score among current identification trial scofes},—; . not includings;. The final
combination rule for this method is to find

J 4J
arg m]?XHp(Sk7tk|Ck) (2)

J

As our previous experiments showed[3] this algorithm dassperform as well as traditional

likelihood ratio combination:

reg max p—(si\Ck) 3
skl Vorrren )

J
It seems that the score set statistit®f our identification model does not fully reflect the back-
ground information for score], whereas the term(s]|C}.) indeed contains such information.
As an example, the genuine matching scw!@s:an be very strong, but located in the region
of low probability (bothp(s,|Cy) and p(s},, .|Cy) are small), whereas(s.|C.) could be even
smaller, and likelihood ratio can still succeed. In the raedtion we try to derive a combination

rule which combines information from both identification ded and background models.
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B. Likelihood Ratios with Identification Model

As above we consider posterior class probability, apply Bdgemula, but now use indepen-
dence of classifiers to decompose the denominator:
p({sg}izl,;..,N;j:I ..... M’Ck>P(Ck)
({Sj'}i—l ..... N;j=1,..., M)
_ H p({sj}i 1,..N|Cr) P(Cy . Hp {S i=1,..., N|Ok)
- H p({s]}i=1,... ) N

P(Ck‘{sg}izl ..... N;j=1,..., M):

(4)

»( {Sj}z 1,..5|Cr)
argmaXH ({5 }1 NN (5)

In comparison with decision 1 of the previous section we haveadditional density
p({s]}i=1...~|Cx). Such density can be viewed as a background of impostorshéogenuine
classCy. As research in speaker identification suggests, utiliZdogh background model is
beneficial for the system performance.

We estimated the ratios of equation 6 by additional modeding {s’ },—; . ~|C). We used an

approach similar to the previous section to estimate thisiteasp (s, t1|Cy,) with ¢ = sbs(s)
- the joint density of impostor scores% and corresponding identification trial statist'zés The

final combination rule is

p(sh t4]C
argmaxH#f;Ck; (6)
j ks k

The technique described in this section can be charaaleaige@ composition of identification
model and background model. The identification model catsig(sy, t1|Cy) and p(s, t1|Cy)
instead ofp(s;|Cy) and p(sx|Ck), and background model considessy, t|Cy) or p(si|Ch)
in addition top(sk, t1|Ci) or p(sx|Ci). Thus, the identification model differs from background
model by accounting for dependencies of scores in ideniificdrials by using some statistic
tl.

Note, that traditional likelihood ratio (Eq. 3) is the optimcombination method for low
complexity combinations operating in verification modee(§29]). Thus, its extension by iden-

tification model (Eq. 6) should provide a good combinatiorthnd of medium Il complexity type
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for verification mode operations. Due to the derivation ot @lso should provide a reasonable
performance in identification mode. So, we will be testinig thethod for both verification and

identification modes of operation of identification system.

C. Combinations of Dependent Classifiers

The combination algorithms presented in the previous twai@es deal with independent
classifiers. How should we address dependent classifiers?
By looking at the combination formulas 1 and 6 we can see thelt ekassifier contributes
i p({s{}izl ..... ~N|C%)
termsp({s; }iz1,...v|Ck) and == e

one can conclude that it is possible to model the same temeafth classifier, and then combine

correspondingly to the combination algorithm. Thus

them by some other trainable function.

Note that any relationships between scogg.%}sand sﬁj wherei; # i, andj; # jo will be
essentially discarded. This seems to be inevitable fordineent complexity type of combinations
- medium II. If we wanted to account for such relationshipg would need class-specific

combination functions, and thus higher complexity comtiomes.

D. Normalizations Followed by Combinations and Single Step Quatibns

Figure 8 represents in graphical form the type of combimgtizve have presented thus far.
All these combinations consist of two steps. In the first segzh score is normalized by using
other scores output by the same matcher. In the second siapalizved scores are combined
using a predetermined or trained combination function.

However, it is not necessary to have these two steps for gatibns. For each normalization
happening in the first step we use the same identification hsid#stic and the same trained
density estimates. Thus the contribution of the particualassifierj to the whole combination
algorithm’s output for class is calculated only from score/ and statistict/ (statistic though
could vary for a class; in first case it was best or second lwesesthus in fact two values are
used). Figure 9 presents a diagram on how scores and stfistin all participating classifiers
could be combined in a single combination step. The exanfgl@ocombination is the weighted
sum rule utilizing identification model described in the ns&ction.

In the algorithm presented by this diagram the statisticare extracted for each classifigr

using its output scores by a predetermined and non-tranagbrithm. The scores related to a
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Fig. 8. 2-step combination method utilizing identification model.

particular class and statistics are combined together bgiaable function. This combination
function is not class-specific and is easily trainable. Ty of combinations are of medium I
complexity type. In comparison, in low complexity type camdtions only scores for a particular

class are combined, and not statistics from identificatiaul@hs of classifiers.

E. Identification Model for Weighted Sum Combination

As an example of a single step combinations, we consider ghied sum rule utilizing
our second best score identification model. Weighted sum cah be specifically trained to
maximize correct identification rate for identification neodf operation, and it provides good
performance in this case[29]. It is not optimal for verifioat mode though. Thus, we will test
the performance of weighted sum rule with and without ideraiion model modification in
identification mode operation only.

The traditional weighted sum combination without idenéfion model ('weighted sum local’)
is a low complexity combination which combiné$ scores from\/ biometric matchers assigned
to a particular class:

Si = wys; + - +wysM (7)

i
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Fig. 9. 1-step combination method utilizing identification model.

The weighted sum rule with identification model (‘'weightagrsglobal’) combines scores as

well as statistics of score sets:
Si = w1} + wysbs(s]) + + -+ + wans_15;" + wanrsbs(s!) (8)

Note, that we use second best score statistics which showed gerformance in decision
making applications IV-B before. In both cases we train tlggghts so that the number of failed

identification attempts is minimized.

VIIl. EXPERIMENTS

We used biometric matching score set BSSR1 distributed by [REBT This set contains
matching scores for a fingerprint matcher and two face match® and 'G’. Fingerprint
matching scores are given for left index ’Ii’ finger matchesl aight index 'ri’ finger matches.
Since we wanted to consider the case of independent mateveergerformed four sets of
experiments on combining fingerprint and face scores : '&, 'l & 'G’, ri’ & 'C’, and
& 'G.

Though the BSSR1 score set has a subset of scores obtainedanoenphysical individuals,
this subset is rather small>17 identification trials with517 enrolled persons. In our previous
experiments[2] we used this subset, but the number of fadedtification attempts for most

experiments was less thdn and it is difficult to compare algorithms with so few negasivén
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this work we use bigger subsets of fingerprint and face magchcores of BSSR1 by creating
virtual persons; the fingerprint scores of a virtual persome from one physical person and
the face scores come from another physical person. Thessaoegenot reused, and thus we are
limited to the maximum number of identification trials6600 and the maximum number of
classes, or enrolled persons3000. Some enrollees and some identification trials also neealed t
be discarded since all corresponding matching scores weatid probably due to enrollment
errors. In the end we split data in two equal par291 identification trials with2997 enrolled
persons with each part used as training and testing setsoiptases. The results for these two
phases are added up later.

Two types of combinations are used in experiments - likelthoatio and weighted sum.
For likelihood ratio combinations we estimate score deéssitising Parzen window method
with gaussian kernels. The kernel width is determined by rtteximum likelihood method.
For the weighted sum methods we employ a brute force apprmatind the optimal weights
maximizing the number of correct identification trials or ttnaining sets. It is possible to use
brute force search in this case since the maximum number wfhigeis 4. In both likelihood
ratio and weighted sum experiments we used separate sdtaifuing the combination method

and testing it.

A. Performance in Identification Operating Mode

Table IV shows the numbers of failed identification trialscarg the total number df991x«2 =
5982 trials. ‘LR’ is the traditional likelihood ratio combinatiomethod of Eq. 3. 'LR+sbs’ is the
likelihood ratio augmented with second best score ideatiim model of Eq. 6. 'WSum'’ is the
traditional weighted sum combination of Eq. 7. 'WSum+sbsthe weighted sum combination
augmented with second best score identification model of8E¢or comparison we also used
traditional likelihood ratio and weighted sum combinatimethods with scores preprocessed by
previously mentioned (Sec. Ill) T-normalization:

s — 00
Wheresg(l) denotes a matching score given by classifido class: during identification trial
[, /(1) and o’ (1) are correspondingly the mean and the standard deviatioheo$ét of scores

produced by matcher during identification trial. T-normalization, as well as second best score
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identification model, makes our combinations of medium Iinptexity type, but, in contrast to

second best score model, T-normalization is an untrainaeéhod.

Matchers|| LR | LR+T-norm | LR+sbs| WSum | WSum+T-norm| WSum-+sbs
li&C 165 175 163 166 165 156
li& G 245 268 220 271 269 222
rn&cC 106 126 112 114 116 107
n&G 171 181 152 190 183 158
TABLE IV

EXPERIMENTS ON COMBINATIONS IN IDENTIFICATION SYSTEMS ENTRIES ARE THE NUMBERS OF FAILED TEST

IDENTIFICATION TRIALS.

We can see that in all cases except one the addition of se@sidtore identification model
into corresponding low complexity algorithm resulted infpemance improvement. The addition
of T-normalization was detrimental for likelihood ratio mbination method, and marginally

positive for weighted sum combinations.

B. Performance in Verification Operating Mode

Although there are examples where score normalizatiomtqabs with background models
are used for identification tasks[15], even more applicetiose such techniques for identification
systems operating in verification mode[24], [30], [21]. Weoaapplied the combinations utilizing
identification models for biometric person verificationk®sThe drawback of using either the
background models or the identification models in verifmatiasks is that we have to produce
not only one match per person and per matcher, but also sanué s&tching scores for other
persons enrolled in the system, or some artificially modekedons.

Figure 10 contains the results of experiments of our systparating in verification mode.
The ROC performance curves were constructed using conrmsadf 2991 genuine and®991 x
(2997 — 1) impostor score sets (note that in contrast to identificatmule experiments we only
considered one training and one testing sets for each cartito).

The results show that we were able to achieve significantasgment in the verification task

performance by utilizing second best score identificatiamdeh of Eq. 6. These improvements
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Fig. 10. ROC curves for likelihood ratio combinations utilizing and not utilizingniification models in verification mode.

seem to be similar to the improvements achieved by usingtifaeztion models for making
acceptance decisions in biometric person identificatiogeiction 1V-B. The T-normalization is
also beneficial to the smaller extent in these experiments.

IX. CONCLUSION

Presented four complexity combination types originateuradlty from the structure of the
combination parameters - each score corresponds to sose atal classifier, and the output
of the combination algorithm corresponds to some class. Godatyp combination types form
a foundation for the classifier combination framework. Tloenbination framework prompts
the user to choose the combination complexity type first dasethe numbers of classes and

classifiers, and the number of training samples. Within asehccomplexity type one can use
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any generic classifier for combination. Finally, a genetassifier used for combination can be
modified to account for a chosen complexity type and for anyaeeous information about
classifiers.

The problem of classifier combination in identification gyss can be treated as an applica-
tion of the combination framework. We observe that freglyetite algorithms, employed for
combining matchers in biometric identification systemdy arse the scores related to one class
to produce a final combination score. Instead of using lowmerity combination algorithms
in identification systems, we attempt to use medium |l coxiptetype combinations, which
utilize all available scores and require training only $gngombination function. Combination
algorithms of low complexity type discard the dependendgrimation between scores assigned
to all classes by any single classifier. We gave examplesifthach information is discarded and
low complexity type combinations are used instead of mediutomplexity type combinations,
then the combination is suboptimal.

In order to reflect the relationships between scores assitpyeone classifier to different
classes, we introduced the concept of the identificationahothe identification model appli-
cation is a score normalization algorithm where normaliratiepends on all scores output by
a classifier in one identification trial, and the algorithmthe same for all classes. Thus our
identification model has less complexity than similar afiesio normalization [31], [32]. In these
previous attempts normalizations were class specific amuinexl huge amount of training data.
The combinations utilizing such normalizations will be Banto Behavior Knowledge Space
combination [33], and they belong to high complexity conattion type. Biometric identification
problems can have large number of enrolled persons, and guobinations are not feasible
due to the lack of training data. By restricting ourselves @a-olass-specific normalizations of
the identification model we are able to concentrate on coatioins of medium Il complexity
type. Such combinations have significantly lower compigxaind result in efficient algorithms
for identification systems.

In section IV we have shown how the identification model cam$ed in order to improve the
performance of decision making in identification systenmg] section VII contains examples of
combination algorithms, likelihood ratio and weighted scombination rules, utilizing identifi-
cation models . The experiments show significant advantage®mbinations of medium Il type

utilizing identification models, as opposed to less effitiemw complexity type combinations,
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and non-feasible high complexity combinations.
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