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The integration of recognition algorithms into a single document processing
system might involve different available modules suitable for a single task.
For example, we might possess few character or word recognition algorithms
which all can be used in the system. One possible approach is to test these
algorithms and to choose the one with the best performance. But practice
shows that better approach is to try to use all available algorithms and to
combine their outputs in order to achieve a better performance than any
single algorithm. The combination problem consists in learning the behavior
of given algorithms and deriving best possible combination function.

We assume that both the combined algorithms and the result of combi-
nation are classifiers. Thus a finite number of classes are distinguished in the
problem, and the task is to find a class, which corresponds most to the input.
As examples, classes might be a character set, a word lexicon, a person list,
etc. Usually classifiers output the numeric matching scores corresponding to
each class, and we will assume that these scores are available for combination.
The combination algorithm is a function producing a final combined score for
each class, and the final classifier selects class with the best combined score.

The purpose of this chapter is to investigate the different scenarios of com-
bining classifiers, to show the difficulties in finding the optimal combination
algorithms, and to present few possible approaches to combination problems.
Generally, the classifier combination problem can be viewed as a construc-
tion of postprocessing classifier operating on the matching scores of combined
classifiers. For many classifier combination problems, though, the number of
classes or the number of classifiers and, consequently, the number of match-
ing scores is too big, and applying generic pattern classification algorithms is
difficult. Thus some scores are usually discarded from combination algorithm,
or simplifying assumptions on score distributions are made and used in the
combination algorithm. Though the dependency between classifiers is usually
learned by the combination algorithms, the dependency between scores as-
signed to different classes by the same classifier is discarded. In this work we
will show that accounting for score dependencies is essential for proper com-
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bination of classifiers. The theory will be complemented by the experiments
we perform on handwritten word recognizers and biometric person matchers.

1 Problem Description

Though the general theory presented in this chapter can be applied to any
classifier combination task, we will mostly focus on two particular applica-
tions: handwritten word recognition and biometric person authentication. As
a result, we are making few assumptions about combined classifiers. First we
assume that each classifier assigns a matching score for each class, and we
use these scores for combination. It would be convenient to call these classi-
fiers ’matchers’ or ’recognizers’, in contrast to the general notion of classifiers
making a decision and thus having selected class as their only output. Sec-
ond, we assume that we only combine a small number of given matchers; in
fact, for both applications we consider combinations of two matchers. Thus we
separate ourselves from the so called ’classifier ensembles’ having potentially
large number of dynamically generated classifiers. Finally, we assume that the
number of classes is large and may be variable. Indeed, the number of possi-
ble handwritten words defined by the corresponding lexicon or the number of
enrolled persons in biometric database can be both large and variable. To be
more specific, we describe both applications next.

1.1 Handwritten Word Recognizers

We consider the application of handwritten word recognizers in the automatic
processing of United Kingdom mail. The destination information of the mail
piece will usually contain the name of the postal town or county. After au-
tomatic segmentation of the mail piece image the goal of handwritten word
recognizer is to match hypothesized town or county word image against a
lexicon of possible names. Provided lexicon contains 1681 entries.

We use two handwritten word recognizers for this application: Character
Model Recognizer (CMR)[6] and Word Model Recognizer (WMR)[11]. Both
recognizers employ similar approaches to word recognition: they oversegment
the word images, match the combinations of segments to characters and de-
rive a final matching score for each lexicon word as a function of character
matching scores. Still, the experiments (see Table 1) reveal that these match-
ers produce somewhat complementary results and their combination might be
beneficial.

Our data consists of three sets of word images of approximately same
quality (the data was provided as these three subsets and we did not regroup
them). The images were manually truthed and only those images containing
any of the 1681 lexicon words were retained. The word recognizers were run
on these images and their match scores for all 1681 lexicon words were saved.
Note, that both recognizers reject some lexicon entries if, for example, the
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lexicon word is too short or too lengthy for presented image. We assume that
in real systems such rejects will be dealt with separately (it is possible that
the lexicon word corresponding to image truth will be rejected), but for our
combination experiments we only keep scores of those lexicon words which are
not rejected by any of the two recognizers. Thus for each image Ik we have a
variable number Nk of score pairs (scmr

i , swmr
i ), i = 1, . . . , Nk corresponding

to non-rejected lexicon words. One of these pairs corresponds to the true word
of the image and we will call these scores ’genuine’, and other ’impostor’ score
pairs correspond to non-truth words.

After discarding images with non-lexicon words, and images where truth
word was rejected by any recognizer, we are left with three sets of 2654, 1723
and 1770 images and related sets of score pairs. We will refer to the attempt
of recognizing word image as identification trial. Thus each identification trial
has a set score pairs (scmr

i , swmr
i ), i = 1, . . . , Nk with one genuine score pair

and Nk − 1 impostor pairs. The scores of each recognizer were also linearly
normalized so that each score is in the interval [0, 1] and bigger score means
better match.

In order to get the general picture of the performance of considered recog-
nizers we can count the numbers of identification trials where genuine score
is better than all impostor scores of that trial. We summarized these counts
in Table 1. The number of trials where first matcher (CMR) produced the
genuine score bigger than all impostor scores is 3366, and second matcher
(WMR) did the same 4744 times. Apparently, WMR has better performance,
but still there are some identification trials (5105− 4744 = 361), where CMR
is correct and WMR is not. Since there is such distinction between recogniz-
ers, we strongly hope that their combination might achieve higher recognition
rates.

Matchers Total # 1st matcher 2nd matcher Both are Either one
of trials is correct is correct correct is correct

CMR&WMR 6147 3366 4744 3005 5105

li&C 5982 4870 4856 3937 5789

li&G 5982 4870 4635 3774 5731

Table 1. Numbers of identification trials with any matcher having best score for
the correct class.

Since our data was already separated into three subsets, we used this struc-
ture for producing training and testing sets. Each experiment was repeated
three times, each time one subset is used as a training set, and two other
sets are used as test sets. Final results are derived as averages of these three
training/testing phases.
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1.2 Biometric Person Matchers

We used biometric matching score set BSSR1 distributed by NIST[1]. This set
contains matching scores for a fingerprint matcher and two face matchers ’C’
and ’G’. Fingerprint matching scores are given for left index ’li’ finger matches
and right index ’ri’ finger matches. In this work we used both face matching
scores and fingerprint ’li’ scores and we do two types of combinations: ’li’&’C’
and ’li’&’G’.

Though the BSSR1 score set has a subset of scores obtained from same
physical individuals, this subset is rather small - 517 identification trials with
517 enrolled persons. In our previous experiments[18] we used this subset,
but the number of failed identification attempts for most experiments was
less than 10 and it is difficult to compare algorithms with so few negatives.
In this work we use bigger subsets of fingerprint and face matching scores of
BSSR1 by creating virtual persons; the fingerprint scores of a virtual person
come from one physical person and the face scores come from another physical
person. The scores are not reused, and thus we are limited to the maximum
number of identification trials - 6000 and the maximum number of classes,
or enrolled persons, - 3000. Some enrollees and some identification trials also
needed to be discarded since all corresponding matching scores were invalid
probably due to enrollment errors. In the end we split data in two equal parts
- 2991 identification trials with 2997 enrolled persons with each part used as
training and testing sets in two phases.

Table 1 shows the numbers of identification trials with genuine scores
bigger than all impostor scores of that trial. The matchers now are more
equal in strength and there is only a small number of trials where neither
matcher correctly identified the genuine person.

2 Verification and Identification Tasks

Above described applications might include different operating scenarios. In
one scenario the system generates a hypothesis of a true class of the input
beforehand, and the task of the matchers is to verify if the input indeed of
the hypothesized class. For example, a bank check recognition system might
hypothesize about the value of the check based on the legal field, and numeric
string recognition module must confirm that courtesy value coincides with the
legal amount[7]. In biometric person verification systems a person presents
a unique person identifier to the system, and biometric recognition module
verifies if person’s biometric scan matches the enrolled biometric template of
claimed person’s identity.

In another operating scenario a class of the input should be selected from
a set of possible classes. Each lexicon word can be associated with a class for
word recognition applications. In our considered application a set of UK postal
town and county names serves as a lexicon for word recognizers. For biometric
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person recognition a set of classes can coincide with the set of enrolled persons.
The task of recognizer in this scenario is to select the class, which is the true
class of input signal. We will assume that we deal with so called ’closed set
identification’, where the true class of input is included in the set of possible
classes; in contrast ’open set identification’ might not include true class in this
set, and input needs to be rejected in this case.

We will call the system operating in the verification mode as verification
system, and system operating in identification mode as identification system.
Correspondingly, the problem solved by matchers or their combinations in the
first case will be called verification task, and in the second case - identifica-
tion task. Note that there could also be other operating scenarios involving
considered matchers; as an example we have given open set identification.

2.1 Performance Measures

Different modes of operation demand different performance measures. For
verification systems the performance is traditionally measured by means of
Receiver Operating Characteristic (ROC) curves or by Detection Error Trade-
off (DET) curve. These curves are well suited for describing the performance
of two-class pattern classification problems. In such problems there are two
types of errors: the samples of first class are classified to belong to second class,
and samples of second class are classified to be in first class. The decision to
classify a sample to be in one of two classes is usually based on some threshold.
Both performance curves show the relationship between two error rates with
regards to a threshold (see [3] for precise definition of above performance
measures).

In our case we will use ROC curves for comparing algorithm performance.
If a matcher is used for verification task there are two classes: genuine if
input belongs to the same hypothesized class, and impostor otherwise. The
decision is traditionally based on the matching score of a recognizer assigned
for hypothesis class.

For measuring performance of identification systems we will use ranking
approach. In particular, we are interested in maximizing the rate of correctly
identifying the input, first-rank-correct rate. If we look at identification task
as a pattern classification problem, this performance measure will directly
correspond to the traditional minimization of the classification error. Note
that there are also other approaches to measure performance in identification
systems[3], e.g. Rank Probability Mass, Cumulative Match Curve, Recall-
Precision Curve. Though they might be useful for some applications, in our
case we will be more interested in correct identification rate.

3 Verification Systems

The problem of combining matchers in verification systems can be easily
solved with pattern classification approach. As we already noted, there are
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two classes: genuine verification attempts and impostor verification attempts.
The hypothesis class of the input is provided before matching. Each matcher
j outputs a score sj corresponding to a match confidence between input sam-
ple and hypothesis class. Assuming that we combine M classifiers, our task is
to perform two-class classification (genuine and impostor) in M -dimensional
score space {s1, . . . , sM}. If the number of combined classifiers M is small, we
will have no trouble in training pattern classification algorithm.

We employ the Bayesian risk minimization method as our classification
approach[17]. This method states that the optimal decision boundaries be-
tween two classes can be found by comparing the likelihood ratio

flr(s
1, . . . , sM ) =

pgen(s1, . . . , sM )

pimp(s1, . . . , sM )
(1)

to some threshold θ where pgen and pimp are M -dimensional densities of score
tuples {s1, . . . , sM} corresponding to two classes - genuine and impostor ver-
ification attempts. In order to use this method we have to estimate the den-
sities pgen and pimp from the training data. For our applications the number
of matchers M is 2 and the number of training samples is large (bigger than
1000), so we can successfully estimate these densities.

In our data each identification trial has one genuine and Nk − 1 impostor
score pairs, so the total number of genuine score pairs is T = K (K is the
number of identification trials in the training set) and the total number of

impostor score pairs is T =
∑K

k=1(Nk − 1). We approximate both densities as
the sums of 2-dimensional gaussian Parzen kernels

p̂(s1, s2) =
1

T

T∑

t=1

1

2πσ2
e−

(s1−s1t )2+(s2−s2t )2

2σ2

where {s1
t , s

2
t}t=1,...,T are the set of training score pairs. The window parame-

ter σ is estimated by the maximum likelihood method on the training set[16]
using leave-one-out technique. Note that σ is different for genuine and impos-
tor density approximations.

For a given threshold θ we calculate the number of misidentified sam-
ples from the test data set of each class. The genuine samples (s1, s2) are

misidentified as impostor samples if f̂lr(s
1, s2) =

p̂gen(s1,s2)
p̂imp(s1,s2) < θ (false re-

jects), and impostor samples misidentified as genuine if f̂lr(s
1, s2) ≥ θ (false

accepts). Thus for each θ we calculate false reject and false accept rates,
FRR(θ) and FAR(θ), and construct ROC curve, which is a graph of FRR(θ)
versus FAR(θ). The resulting ROC curves for original matchers and for their
combinations with likelihood ratio method are shown in Figures 1, 2 and 3.

As we expected, the combination has better performance than any of the
individual matchers. Biometric matchers are based on different modalities and
thus better complement each other than word recognizers. This is indicated
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Fig. 1. ROC curves for two handwritten word recognizers (WMR and CMR) and
their combinations by likelihood ratio and weighted sum methods.

by the performance graphs: the improvement is bigger in the case of biometric
matchers.

The likelihood ratio combination method is theoretically optimal for ver-
ification systems and its performance only limited by our ability to correctly
estimate score densities. The density estimation is known to be a difficult
task; working with many-dimensional data, having heavy tailed distributions
or discreteness in the data can lead to very poor density estimates. In our
experiments we had sufficient number of training samples in 2-dimensional
space and the task was relatively easy, but still we had to make adjustments
for the discreteness of fingerprint scores represented by the integer numbers
in the range 0 − 350.

Since our problem is the separation of genuine and impostor classes, we
could apply many existing pattern classification techniques. For example, sup-
port vector machines have shown good performance in many tasks, and can be
definitely used to improve the likelihood ratio method. In [20] we performed
some comparisons of likelihood ratio method with SVMs on an artificial task
and found that on average (over many random training sets) SVMs do have
slightly better performance, but for a particular training set it might not
be true. The difference in performance is quite small and decreases with the
increasing number of training samples. Also note that many pattern classifi-
cation algorithms provide only a single decision boundary (separating hyper-
plane in the kernel mapped space for SVMs), and this effectively results in
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Fig. 2. ROC curves for two biometric matchers (fingerprint ’li’ and face ’C’) and
their combinations by likelihood ratio and weighted sum methods.

the single point of FAR-FRR plane instead of ROC curve. The advantage of
likelihood ratio combination method is that we get the whole range of solu-
tions by varying threshold parameter θ and which are represented by ROC
curve.

4 Identification Systems

In identification systems a hypothesis of the input sample is not available
and we have to choose the input’s class among all possible classes. Denote N

as the number of classes. The total number of matching scores available for
combination now is MN : N matching scores for each class from each of M

combined classifiers. If numbers M and N are not big, then we can use generic
pattern classifiers in MN -dimensional score space to find the input’s class
among N classes. For some problems, e.g. digit or character recognition, this
is an acceptable approach; the number of classes is small and usually there is
a sufficient number of training samples to properly train pattern classification
algorithms operating in MN score space.

But for our applications in handwritten word recognition and biometric
person identification the number of classes is too big and the number of train-
ing samples is too small (there might be even no training samples at all for a
particular lexicon word), so the pattern classification in the MN -dimensional
score space seems to be out of the question. The traditional approach in this
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Fig. 3. ROC curves for two biometric matchers (fingerprint ’li’ and face ’G’) and
their combinations by likelihood ratio and weighted sum methods.

situation is to use some combination rules. The combination rule implies the
use of some combination function f operating only on M scores corresponding
to one class, f(s1, . . . , sM ), and it states that the decision class C is the one
which maximizes the value of a combination function:

C = arg max
i=1,...,N

f(s1
i , . . . , s

M
i ) (2)

Note that in our notation the upper index of the score corresponds to the
classifier, which produced this score, and lower index corresponds to the class
for which it was produced. The names of combination rules are usually di-
rectly derived from the names of used combination functions: the sum func-
tion f(s1, . . . , sM ) = s1 + · · · + sM corresponds to the sum rule, the product
function f(s1, . . . , sM ) = s1 . . . sM corresponds to the product rule and so on.

Many combination rules have been proposed so far, but there is no agree-
ment on the best one. It seems that different applications require different
combination rules for best performance. Anyone wishing to combine matchers
in real life has to test few of them and choose the one with best performance.
Combination rules are also frequently used for verification problems to find
the final score, which is compared with threshold and the decision is based on
this comparison. But there is no real need to do it - the plethora of pattern
classification algorithms is available for solving combinations in verification
problems.
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Our main interest in this chapter is to investigate the problem of finding
the optimal combination function for identification systems. This problem ap-
pears to be much more difficult in comparison to combinations in verification
systems.

4.1 Likelihood Ratio Combination Rule

As we already know, likelihood ratio function is the optimal combination func-
tion for verification systems. We want to investigate whether it will be optimal
for identification systems. Suppose we performed a match of the input sample
by all M matchers against all N classes and obtained MN matching scores
{sj

i}i=1,...,N ;j=1,...,M . Assuming equal prior class probabilities, the Bayes de-
cision theory states that in order to minimize the misclassification rate the
sample should be classified as one with highest value of likelihood function
p({sj

i}i=1,...,N ;j=1,...,M |ωi). Thus, for any two classes ω1 and ω2 we have to
classify input as ω1 rather than ω2 if

p({sj
i}i=1,...,N ;j=1,...,M |ω1) > p({sj

i}i=1,...,N ;j=1,...,M |ω2) (3)

Let us make an assumption that the scores assigned to each class are sampled
independently from scores assigned to other classes; scores assigned to gen-
uine class are sampled from M -dimensional genuine score density, and scores
assigned to impostor classes are sampled from M -dimensional impostor score
density:

p({sj
i}i=1,...,N ;j=1,...,M |ωi)

= p({s1
1, . . . , s

M
1 }, . . . , {s1

ωi
, . . . , sM

ωi
}, . . . , {s1

N , . . . , sM
N }|ωi)

= pimp(s
1
1, . . . , s

M
1 ) . . . pgen(s1

ωi
, . . . , sM

ωi
) . . . pimp(s

1
N , . . . , sM

N )

(4)

After substituting 4 into 3 and canceling out common factors we obtain
the following inequality for accepting class ω1 rather than ω2:

pgen(s1
ω1

, . . . , sM
ω1

)pimp(s
1
ω2

, . . . , sM
ω2

) > pimp(s
1
ω1

, . . . , sM
ω1

)pgen(s1
ω2

, . . . , sM
ω2

)

or
pgen(s1

ω1
, . . . , sM

ω1
)

pimp(s1
ω1

, . . . , sM
ω1

)
>

pgen(s1
ω2

, . . . , sM
ω2

)

pimp(s1
ω2

, . . . , sM
ω2

)
(5)

The terms in each part of the above inequality are exactly the values of the
likelihood ratio function flr taken at the sets of scores assigned to classes ω1

and ω2. Thus, the class maximizing the MN -dimensional likelihood function of
inequality 3 is the same as a class maximizing the M -dimensional likelihood
ratio function of inequality 5. The likelihood ratio combination rule is the
optimal combination rule under used assumptions.

Table 2 shows the performance of this rule on our data sets. Whereas the
combinations of biometric matchers have significantly higher correct identi-
fication rates than single matchers, the combination of word recognizers has
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Matchers 1st matcher 2nd matcher Either one Likelihood Weighted
is correct is correct is correct Ratio Rule Sum Rule

CMR&WMR 3366 4744 5105 4293 5015

li&C 4870 4856 5789 5817 5816

li&G 4870 4635 5731 5737 5711

Table 2. Correct identification rate for likelihood ratio and weighted sum combi-
nation rules.

lower correct identification rate than a single WMR matcher. This fact is
rather surprising: the calculation of the combined scores by the likelihood
ratio is exactly the same as we did for combinations in verification systems
which gave us significant improvements in all cases ( Figures 1, 2 and 3).

Few questions arise after reviewing the results of these experiments:

• If likelihood ratio combination rule was not able to improve correct identi-
fication rate of word recognizers, is there any other rule which will succeed?

• What are the reasons for the failure of seemingly optimal combination
rule?

• What is the true optimal combination rule, and can we devise an algorithm
of learning it from the training data?

In the rest of this chapter we will investigate these questions.

4.2 Weighted Sum Combination Rule

One of the frequently used rules in classifier combination problems is the
weighted sum rule with combination function f(s1, . . . , sM ) = w1s

1 + · · · +
wMsM . The weights wj can be chosen heuristically with the idea that better
performing matchers should have bigger weight, or they can be trained to
optimize some criteria. In our case we train the weights so that the number of
successful identification trials on the training set is maximized. Since we have
two matchers in all configurations we use brute-force method: we calculate the
correct identification rate of combination function f(s1, s2) = ws1 +(1−w)s2

for different values of w ∈ [0, 1], and find w corresponding to highest rate.
The numbers of successful identification trials on the test sets is presented

in Table 2. In all cases we see an improvement over the performances of single
matchers. The combination of word recognizers is now successful and is in line
with the performance of other combinations of matchers.

We also investigated the performance of this method in the verification
task. Figures 1, 2 and 3 contain ROC curves of the weighted sum rule used
in verification task with the same weights as in identification experiments. In
all cases we get slightly worse performance from the weighted sum rule than
from the likelihood ratio rule. This confirms our assertion that the likelihood
ratio is the optimal combination method for verification systems.
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4.3 Explaining Identification System Behavior

The main assumption that we made while deriving likelihood ratio combina-
tion rule in section 4.1 is that the score samples in each identification trial
are independent. That is, genuine score is sampled from genuine score distri-
bution and is independent from impostor scores which are independent and
identically distributed according to impostor score distribution. We can verify
if this assumption is true for our matchers.

Matchers firstimp secondimp thirdimp meanimp

CMR 0.4359 0.4755 0.4771 0.1145

WMR 0.7885 0.7825 0.7663 0.5685

li 0.3164 0.3400 0.3389 0.2961

C 0.1419 0.1513 0.1562 0.1440

G 0.1339 0.1800 0.1827 0.1593

Table 3. Correlations between sgen and different statistics of the impostor score
sets produced during identification trials for considered matchers.

Table 3 shows correlations between genuine score and some functions of
the impostor scores obtained in the same identification trial. firstimp column
has correlations between genuine and the best impostor score, secondimp and
thirdimp consider second-best and third-best impostor scores, and meanimp

has correlations between the mean of all impostor scores obtained in an iden-
tification trial and a genuine score. Non-zero correlations indicate that the
scores are dependent. The correlations are especially high for word recogniz-
ers, and this might be the reason why the likelihood ratio combination rule
performed poorly there.

The dependence of matching scores obtained during a single identification
trial is usually not taken into account. One of the reasons might be that as a
rule all matching scores are derived independently from each other: the same
matching process is applied repeatedly to all enrolled biometric templates or
all lexicon words, and the matching score for one class is not influenced by the
presence of other classes or the matching scores assigned to other classes. So
it might seem that the matching scores are independent, but it is rarely true.
The main reason for this is that all matching scores produced during identifi-
cation trial are derived using the same input signal. For example, a fingerprint
matcher, whose matching score is derived from the number of matched minu-
tia in enrolled and input fingerprint, will produce low scores for all enrolled
fingerprints if the input fingerprint has only few minutias.

The next three examples will illustrate the effect of score dependences
on the performance of identification systems. In particular, second example
confirms that if identification system uses likelihood ratio combination, then
its performance can be worse than the performance of a single matcher.
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Example 1

Suppose we have an identification system with one matcher and, for simplicity,
N = 2 classes. During each identification attempt a matcher produces two
scores corresponding to two classes, and, since by our assumption the input
is one of these two classes (closed set identification), one of these scores will
be genuine match score, and another will be impostor match score. Suppose
we collected a data on the distributions of genuine and impostor scores and
reconstructed score densities (let them be gaussian) as shown in Figure 4.
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Fig. 4. Hypothetical densities of matching(genuine) and non-matching(impostors)
scores.

Consider two possible scenarios on how these densities might have origi-
nated from the sample of the identification attempts:

1. Both scores sgen and simp are sampled independently from genuine and
impostor distributions.

2. In every observed identification attempt : simp = sgen − 1. Thus in this
scenario the identification system always correctly places genuine sample
on top. There is a strong dependency between scores given to two classes,
and score distributions of Figure 4 do not reflect this fact.

If a system works in verification mode and we have only one match score
to make a decision on accepting or rejecting input, we can only compare
this score to some threshold. By doing so both scenarios would have same
performance: the rate of false accepts (impostor samples having match score
higher than threshold) and the rate of false rejects (genuine samples having
match score lower than threshold) will be determined by integrating impostor
and genuine densities of Figure 4 no matter what scenario we have. If system
works in identification mode, the recognizer of the second scenario will be
a clear winner: it is always correct while the recognizer of first scenario can
make mistakes and place impostor samples on top.
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This example shows that the performance of the matcher in the verification
system might not predict its performance in the identification system. Given
two matchers, one might be better for verification systems, and another for
identification systems.

Example 2

Consider a combination of two matchers in two class identification system: one
matcher is from the first scenario, and the other is from the second scenario.
Assume that these matchers are independent. Let the upper score index refer
to the matcher producing this score; s

j
i is the score for class i assigned by the

classifier j. From our construction we know that the second matcher always
outputs genuine score on the top. So the optimal combination rule for identi-
fication system will simply discard scores of first matcher and retain scores of
the second matcher:

f(s1, s2) = s2 (6)

The input will always be correctly classified as arg maxi s2
i .

Let us now use the likelihood ratio combination rule for this system.
Since we assumed that matchers are independent, the densities of genuine
pgen(s1, s2) and impostor pimp(s

1, s2) scores are obtained by multiplying cor-
responding one-dimensional score densities of two matchers. In our example,
impostor scores are distributed as a Gaussian centered at (0, 0), and genuine
scores are distributed as a Gaussian centered at (1, 1). Figure 5(a) contains
the contours of function |pgen − pimp| which allows us to see the relative posi-
tion of these gaussians. The gaussians have same covariance matrix, and thus
the optimal decision contours are hyperplanes[17] - lines s1 + s2 = c. Cor-
respondingly, the likelihood ratio combination function is equivalent to the
combination function f = s1 + s2 (note, that true likelihood ratio function
will be different, but if two functions have same contours, then their combi-
nation rules will be the same). Such combination improves the performance
of the verification system relative to any single matcher; Figure 5(b) shows
corresponding ROC curves for any single matchers and their combination.

Suppose that (s1
1, s

2
1) and (s1

2, s
2
2) are two score pairs obtained during one

identification trial. The likelihood ratio combination rule classifies the input
as a class maximizing likelihood ratio function:

arg max
i=1,2

pgen(s1
i , s

2
i )

pimp(s1
i , s

2
i )

= arg max
i=1,2

s1
i + s2

i (7)

Let the test sample be (s1
1, s

2
1) = (−0.1, 1.0), (s1

2, s
2
2) = (1.1, 0). We know from

our construction that class 1 is the genuine class, since the second matcher
assigned score 1.0 to it and 0 to the second class. But the class 2 with scores
(1.1, 0), has combined score s1

2 + s2
2 = 1.1 + 0 = 1.1, which is bigger than

combined score for class 1, s1
1 + s2

1 = −0.1 + 1.0 + 0 = 0.9. Hence class 2 has
bigger ratio of genuine to impostor densities than class 1, and the likelihood
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Fig. 5. (a) Two-dimensional distributions of genuine and impostor scores for exam-
ples 2 and 3 (b) ROC curves for single matchers and their likelihood ratio combina-
tion.

ratio combination method would incorrectly classify class 2 as the genuine
class.

Thus the optimal for verification system likelihood ratio combination rule
(7) has worse performance than a single second matcher. On the other hand,
the optimal for identification system rule (6) does not improve the perfor-
mance of the verification system. Recall, that in section 4.1 we showed that
if scores assigned by matchers to different classes are independent, then like-
lihood ratio combination rule is optimal for identification systems, as well
as for verification systems. Current example shows that if there is a depen-
dency between scores, this is no longer a case, and the optimal combination
for identification systems can be different from the optimal combination for
verification systems.

It seems that this example is analogous to our experiments with the com-
bination of word recognizers. Our better performing word recognizer, WMR,
has strong dependence between scores assigned to different classes (Table 3),
and the resulting combination by likelihood ratio rule has worse performance
than WMR’s.

Example 3

The problem of finding optimal combination function for verification systems
was a relatively easy task: we needed to approximate the densities of genuine
and impostor scores and take their ratio. It turns out that the problem of
finding optimal combination function for identification systems is considerably
more difficult - we are not able to express it in such simple form. In fact, it
is even difficult to construct an artificial example where we would know what
this function is. Here we consider one such example.

Let Xgen, Ximp and Y be independent two-dimensional random variables,
and suppose that genuine scores in our identification system are sampled as
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a sum of Xgen and Y : sgen = xgen +y, and impostor scores are sampled as a
sum of Ximp and Y : simp = ximp+y, xgen ∼ Xgen, ximp ∼ Ximp and y ∼ Y ,
bold symbols here denote two-dimensional vector in the space (s1, s2). The
variable Y provides the dependence between scores in identification trials; we
assume that its value y is the same for all scores in one identification trial.

Let Xgen and Ximp have gaussian densities pXgen
(s1, s2) and pXimp

(s1, s2)
as in the previous example and in the Figure 5(a). For any value of y con-
ditional densities of genuine and impostor scores pXgen+Y |Y =y(s1, s2) and
pXimp+Y |Y =y(s1, s2) are also gaussian and independent. As we discussed in
the previous example, the likelihood ratio combination rule results in the com-
bination function f(s1, s2) = s1 + s2, and this rule will be optimal for every
identification trial and its associated value y. The rule itself does not depend
on the value of y, so we can use it for every identification trial, and this is our
optimal combination rule for identification system.

On the other hand, this rule might not be optimal for the verification sys-
tem defined by the above score distributions. For example, if Y is uniformly
distributed on the interval 0 × [−1, 1], then the distributions of genuine and
impostor scores Xgen+Y and Ximp+Y will be as shown in the Figure 6(a) and
the optimal combination rule separating them will be as shown in the Figure
6(b). By changing the distribution of Y and thus the character of dependence
between genuine and impostor scores we will also be changing optimal combi-
nation rule for verification system. At the same time, the optimal combination
rule for identification system will stay the same - f(s1, s2) = s1 + s2.
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Fig. 6. (a) Two-dimensional distributions of genuine and impostor scores for exam-
ple 3 (b) Contours of the likelihood ratio combination function.

If we knew only the overall score distributions as in the Figure 6(a) we
would not have enough information to find the optimal combination function
for identification system. If score vectors having distributions of Figure 6(a)
are in its own turn are independent, then likelihood ratio combination of
Figure 6(b) will be optimal for identification system. Or, if scores are generated
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by the initial construction, linear combination function is the optimal one.
Thus, there could be different optimal combination functions for identification
systems with scores distributed as in the Figure 6(a), and the difference is
determined by the nature of the score dependencies in identification trials.

5 Estimating Optimal Combination Function for

Identification Systems

As we saw in the example 3 of the previous section, it is rather difficult to
say from the training samples what is the optimal combination function for
the identification system. The densities of genuine and impostor matching
scores are of little help, and might be useful only if the scores in identification
trials are independent. For dependent scores we have to consider the scores in
each identification trial as a single training sample, and train the combination
function on these samples.

This was precisely the technique we used to train the weighted sum rule
for identification systems in section 4.2. For each training identification trial
we checked whether the genuine score pair produced bigger combined scores
than all impostor score pairs. By counting the numbers of successful trials we
were able to choose the proper weights.

Though the weighted sum rule provides a reasonable performance in our
applications, its decision surfaces are linear and might not completely sepa-
rate generally non-linear score distributions. We might want our combination
function to be more complex, trained with available training set and possi-
bly approaching ideal optimal function when the size of the training set is
increased. In this section we present two ideas on learning such combination
functions. Since we do not know the exact analytical form of optimal combi-
nation function, the presented combination methods are rather heuristic.

5.1 Learning Best Impostor Distribution

The likelihood ratio combination function of section 4.1 separates the set of
genuine score pairs from the set of all impostor score pairs. But we might
think that for identification systems it is more important to separate genuine
score pairs from the best impostor score pairs obtained in each identification
trial. There is a problem, though, that we do not know which score pair is the
best impostor in each identification trial. The best impostor score pair can be
defined as one having biggest combined score, but the combination function
is unknown.

To deal with this problem we implemented an iterative algorithm, where
the combination function is first randomly initialized and then updated de-
pending on found best impostor score pairs. The combination rule is based on
the likelihood ratio function with the impostor density trained only on the set
of found best impostor score pairs. The exact algorithm is presented below:
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1. Make initialization of f(s1, s2) =
p̂gen(s1,s2)
p̂imp(s1,s2) by selecting random impostor

score pairs from each training identification trial for training p̂imp(s
1, s2).

2. For each training identification trial find the impostor score pair with
biggest value of combined score according to currently trained f(s1, s2).

3. Update f(s1, s2) by replacing impostor score pair of this training identi-
fication trail with found best impostor score pair.

4. Repeat steps 2-3 for all training identification trials.
5. Repeat steps 2-4 for predetermined number of training epochs.

The algorithm converges fast - after 2-3 training epochs, and found best
impostor score pairs change little in the subsequent iterations. The trained
combination function subsequently gets tested using a separate testing set.
Table 4 (Best Impostor Likelihood Ratio method) provides the results of the
experiments.

Matchers Likelihood Weighted Best Impostor Logistic Weighted Sum
Ratio Rule Sum Rule Likelihood Ratio Sum Rule + Ident Model

CMR&WMR 4293 5015 4922 5005.5 5025.5

li&C 5817 5816 5803 5823 5826

li&G 5737 5711 5742 5753 5760

Table 4. Correct identification rate for all considered combination methods.

The method seems to perform well, but weighted sum combination rule is
still better for word recognizers and biometric li&C matchers. This method is
not able to fully account for the dependence of scores in identification trials,
and the learning of the optimal combination function will not be probably
achieved with it.

5.2 Sum of Logistic Functions

Generally, the matching score reflects the confidence of the match, and we
can assume that if the score is bigger, then the confidence of the match
is higher. When the scores are combined, the higher score should result in
higher combination score. Thus, the combination function f(s1, s2) should be
monotonically nondecreasing in both of its arguments. One type of monotonic
functions, which are frequently used in many areas, are logistic functions:

l(s1, s2) =
1

1 + e−(α1s1+α2s2+α3)

If α1 ≥ 0 and α2 ≥ 0, then l(s1, s2) is monotonically nondecreasing in both of
its arguments. Our goal is to approximate the optimal combination function
as a sum of such logistic functions. The sum of monotonically nondecreasing
functions will also be monotonically nondecreasing.
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Suppose we have one identification trial and s1 = (s1
1, s

2
1) and s2 = (s1

2, s
2
2)

are two score pairs of this trial. Let s1 be a genuine score pair, and s2 be an
impostor score pair. Suppose also that we have some initial sum of logistic
functions as our combination function. If both matchers gave a higher score
to the genuine class and s1

1 > s1
2 and s2

1 > s2
2, then by our construction the

combination score for genuine class will be higher than the combination score
for impostor class. There is no need to do any modifications to our current
combination function. If both matchers gave a lower score to the genuine class
and s1

1 < s1
2 and s2

1 < s2
2, then we can not do anything - any monotonically

nondecreasing function will give a lower combination score to the genuine
class.

If one matcher gave a higher score to the genuine class and another matcher
gave a higher score to the impostor class, we can adjust our combination
function by adding corresponding logistic function to the current sum. For
example, if s1

1 > s1
2 and s2

1 < s2
2 logistic function l(s1, s2) = 1

1+e−(α1s1+α3)
will

be increasing with respect to the first argument and constant with respect to
the second argument. The input sample will be assigned genuine class since
first matcher correctly identified it. We choose parameters α1 and α3 relative
to the training sample:

l(s1, s2) =
1

1 + e−
1
h

1
a−b

(s1− a+b
2 )

(8)

where a = s1
1 and b = s1

2, and h is the smoothing parameter. If a and b are
close to each other, we get a steeper logistic function, which will allow us
better separate genuine and impostor score pair. Similar logistic function is
added to the current sum if second matcher is correct, and first is not: we
replace s1 by s2 in equation (8), and a = s2

1,b = s2
2.

The overall training algorithm is similar to the training we did for best
impostor likelihood ratio in the previous section:

1. Make initialization f(s1, s2) = s1 + s2, n = 1.
2. For each training identification trial and for each impostor score pair in

this trial check if its combined score is higher than combined score of the
genuine pair.

3. Update f(s1, s2) by adding described above logistic function: f(s1, s2) =
1

n+1 (nf(s1, s2) + l(s1, s2)), n = n + 1.
4. Repeat steps 2-3 for all training identification trials.
5. Repeat steps 2-4 for predetermined number of training epochs.

The smoothing parameter h is chosen so that the performance of the al-
gorithm is maximized on the training set. The convergence of this algorithm
is even faster than the convergence of the best impostor likelihood ratio algo-
rithm. Table 4 (Logistic Sum method) presents correct identification rate for
this method.

The method outperforms weighted sum method for both biometric combi-
nations, but not for the combination of word recognizers. This suggests that
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our heuristic was quite good, but still can be improved somehow. We can
also see that the advantage of this method for second biometric combination
outweighs its disadvantage for the combination of word recognizers, and thus
we can consider it as the best combination rule so far.

6 Utilizing Identification Model

The previous two section investigated the usage of the so called combination
rules in identification systems. We defined the combination rules by equation
(2) and mentioned that such combination rules are a specific type of a classi-
fiers operating in MN -dimensional score space and separating N classes, M

is the number of classifiers. By considering the combinations of this restricted
type we are able to significantly reduce the difficulty of training combination
function, but at the same we might not get the best possible performance
from our system.

We discussed this topic in length in [18] (see also the chapter on the re-
view of combination methods). It turns out that besides two already men-
tioned types of combinations (combination rules of equation (2), low complex-

ity combinations, and all possible N -class pattern classification methods in
MN -dimensional score space, high complexity combinations) we can distin-
guish two additional types of classifier combinations in between. Medium I

complexity combinations make the combination function class-specific:

C = arg max
i=1,...,N

fi(s
1
i , . . . , s

M
i ) (9)

while medium II complexity combinations remain class-generic and derive the
combination score for each class not only from M scores assigned to this class
but from potentially all available MN scores:

C = arg max
i=1,...,N

f(s1
i , . . . , s

M
i ; {sj

k}j=1,...,M ;k=1,...,N ;k 6=i) (10)

Generally, it is possible to use both medium I and medium II complexity
type combinations for our applications, but we will concentrate on medium II
complexity type. Since the combination functions of this type consider scores
for all classes in order to derive a combined score for a particular type, we
have a fair chance to properly learn the dependency between scores assigned
to different classes, and train the combination function with this dependency
in mind.

6.1 Identification Models

The goal of constructing an identification model is to somehow model the
distributions of scores in identification trials. Better model will provide more
information to the combination algorithm and result in better performance.
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We can use different heuristics in order to decide on which identification model
might work best in a given application. For example, we might want the
identification model to provide a good estimate for posterior class probability
for a score from a current set of identification scores.

Consider our third example from the section 4.3. Recall, that genuine
and impostor distributions are represented as sums of two random variables:
Xgen + Y and Ximp + Y . If each identification trial has many impostor sam-
ples, we can estimate the current value of Y as sum of all scores in this trial:
ŷ =

∑
i=1,...,N si (note, that the mean of Ximp is 0). The identification model

in this case could state that instead of scores si, we have to take their trans-
formations: s′i = si − ŷ. If the combination rule is trained to use s′i instead of
si, we will achieve near-optimal combination.

The identification model produced for this example is non-trainable, and
it is only justified by the assumption that genuine and impostor scores are the
sums of two random variables. If the assumption is not true, then the iden-
tification model might not perform well. In our research we are interested in
designing general identification models which can be learned from the training
data and which perform well for any applications.

There might be two approaches on using identification models as repre-
sented in Figures 7 and 8. In the first approach the identification model is
applied to each score before the actual combination. Thus the score is nor-
malized using identification model and the other identification trial scores.
In the second approach identification model provides some statistics about
current identification trial, and these statistics are used together with the
scores in a single combination step. For our example, we can normalize scores
s′i = si − ŷ and use normalized score s′i in subsequent combination. This will
be a two step combination approach. Alternatively, we can use both si and ŷ

as an input to the 1-step combination algorithm.

6.2 Related Research

We can list two general approaches in classifier combination research, which
implicitly use the concept of identification model. These are the combina-
tion approaches based on rank information and combinations utilizing score
normalization with current identification trial scores.

Rank based approaches replace the matching scores output by classifiers
by their rank among all scores obtained in the current identification trial.
Such transformation is performed for each classifier separately, and the ranks
are combined afterward. T.K. Ho has described classifier combinations on
the ranks of the scores instead of scores themselves by arguing that ranks
provide more reliable information about class being genuine [9]. If there is a
dependence between identification trial scores as for second matcher in our
first example of section 4.3 (where the top score always belongs to the genuine
class), then the rank of the class will be a perfect indicator if the class is
genuine or not. Combining low score for genuine class with other scores as
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Fig. 7. 2-step combination method utilizing identification model.

Fig. 8. 1-step combination method utilizing identification model.

in the second example could confuse a combination algorithm, but the rank
of the genuine class is still good, and using this rank should result in true
classification. Brunelli and Falavigna [4] considered a hybrid approach where
traditional combination of matching scores is fused with rank information in
order to achieve identification decision. Saranli and Demirekler [15] provide
additional references for rank based combination and a theoretical approach
to such combinations.

Another approach for combinations, which might use the identification
model, is a score normalization followed by some combination rule. Usually
score normalization [10] means transformation of scores based on the clas-
sifier’s score model learned during training, and each score is transformed
individually using such a model. Such normalizations do not use the informa-
tion about scores in identification trial, and the combinations using them can
still be represented as a combination rule of equation (2). But some score nor-
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malization techniques indeed use a dynamic set of identification trial scores.
For example, Kittler et al. [12] normalize each score by the sum of all other
scores before combination. The combinations employing such normalizations
are medium II complexity type combinations and can be considered as im-
plicitly using an identification model.

Score normalization techniques have been well developed in the speaker
identification problem. Cohort normalizing method [14, 5] considers a sub-
set of enrolled persons close to the current test person in order to normalize
the score for that person by a log-likelihood ratio of genuine (current person)
and impostor (cohort) score density models. [2] separated cohort normaliza-
tion methods into cohorts found during training (constrained) and cohorts
dynamically formed during testing (unconstrained cohorts). Normalization
by constrained cohorts followed by low complexity combination amounts to
medium I combination types, since whole combination method becomes class-
specific, but only one matching score of each classifier is utilized. On the
other hand, normalization by unconstrained cohorts followed by low complex-
ity combination amounts to medium II or high complexity combinations, since
now potentially all scores of classifiers are used, and combination function can
be class-specific or non-specific.

The related normalization techniques are Z(zero)- and T(test)- normaliza-
tions [2, 13]. Z- normalization is similar to constrained cohort normalization,
since it uses impostor matching scores to produce a class specific normaliza-
tion. Thus Z-normalization used together with low complexity combination
rule results in medium I combination. T-normalization uses a set scores pro-
duced during single identification trial, and used together with low complexity
combination rule results in medium II combination (note that this normaliza-
tion is not class-specific).

Medium II combinations seem to be the most appropriate type of combi-
nations for identification systems with large number of classes. Indeed, it is
usually hard to train class-specific combination types of medium I and high
complexity since the number of training samples for each class can be too
small. As an example justifying medium II combinations in biometrics, [8]
argued for applying T-normalizations in face verification competition. Ranks,
T-normalization and many other investigated score normalization approaches
are usually non-trainable. The concept of identification model implies that
there is some training involved.

6.3 Identification Model for Weighted Sum

We will use the following idea for our identification model in this section. The
confidence of a matching score is determined by the score itself and by the
other scores in the same identification trial. If for a given score of a classifier
there is another score in the same trial which is higher, then we have less
confidence that the score belongs to the genuine class. Conversely, if all other
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scores are lower than a given score, we have more confidence that the score
belongs to the genuine class.

The identification model in this case will consists in considering the follow-
ing function of the identification trial scores: sbs(sj

i ) - the best score besides

score s
j
i in set of the current identification trial scores {sj

i}i=1,...,N of classifier
j:

sbs(sj
i ) = max

k=1,...,N ;k 6=i
s

j
k (11)

We use the 1-step identification model combination with weighted sum com-
bination function. It means that instead of using only matching scores s

j
i ,

j = 1, . . . ,M for producing combined score Si of class i, we will be using
both s

j
i and sbs(sj

i ). For two classifiers in our applications we will have the
following combination function:

Si = w1s
1
i + w2sbs(s

1
i ) + w3s

2
i + w4sbs(s

2
i ) (12)

The number of considered input parameters for this method is two times
bigger than the number of input parameters to the original weighted sum
rule. We can still use the brute force approach to train the corresponding
weights. Note, that though the number of weights is increased, the increase is
rather small in comparison to the total number of classes (thousands). Thus
we achieved the good trade-off between taking into consideration all scores
produced by classifiers and the simplicity of training combination function.

The results of the experiments are presented in the Table 4 (Weighted
Sum + Ident Model). The method outperforms all other methods for identifi-
cation tasks. Note, that as in all our experiments, we used separate data sets
for training weights and testing the trained method; thus the performance
improvement is due not to more possibilities for training, but due to more
complex combination function.

6.4 Identification Model for Verification Systems

Although most verification systems use only matching scores for one given
class to make combinations and decisions on whether the class is genuine
or impostor, there is an idea that the performance can be improved if the
matching scores for other classes are taken into consideration. In fact, most of
the cohort score normalization methods, which we referenced above, employ
a superfluous set of matching scores for a cohort of a given class in order
to make verification decision. These scores might be available naturally in
identification system, but the verification system has to do additional matches
to create these scores.

If the scores for other classes are available in addition to the score for a
given class, they can provide significant amount of information to the com-
bination algorithm. Indeed, as we discussed before, the matching scores are
usually dependent and the dependence is caused by the quality of the in-
put sample. Scores for other classes can implicitly provide us the information
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about the input sample quality. Consequently, we can view the application of
identification model as score normalization with respect to the input sample.

The information supplied by the identification model can be considered
as a predictor about the given score we consider in the verification task. We
imply that this score is genuine, and the goal of the identification model is to
check if this score is reasonable in comparison with scores we get for other,
impostor, scores. Thus we can check the correlations of the genuine score with
different functions of the impostor scores in order to find the statistics, which
best predict the genuine score. Table 3 contains the correlation measurements
for our matchers, and these measurements can be used to determine which
statistics of impostor scores the identification model should include. In our
experiments we considered first and second best impostor statistics. They seem
to be good predictors according to Table 3, and, as an additional advantage,
first few best scores are usually available due to the utilizing indexing methods
in identification systems.

The application of the identification model in verification system is clear
now. Instead of taking a single match score for a given class from a particular
matcher, take few additional match scores for other class, and calculate some
statistics from them. Then use these statistics together with a match score
for a designated class in the combination. Since the likelihood ratio method
is optimal for verification tasks, we use it here. If we employ the statistic of
second best score from the previous section, our combination method will be
written as

flr(s
1
i , . . . , s

M
i ; {sj

k}j=1,...,M ;k=1,...,N ;k 6=i) =
pgen(s1

i , sbs(s
1
i ), . . . , s

M
i , sbs(sM

i ))

pimp(s1
i , sbs(s

1
i ), . . . , s

M
i , sbs(sM

i ))
(13)

Note that we are dealing with the verification task, so we only produce the
combined score for thresholding, and do not select among classes with arg max.
Also, during our experiments we used a little different statistics than the
statistics sbs = maxk=1,...,N ;k 6=i s

j
k from the previous section - we selected the

second ranked score from {sj
k, k = 1, . . . , N ; k 6= i}.

Figure 9 contains the resulting ROC curve from utilizing identification
model by equation 13 in the combination of word recognizers. Note, that
this method performs significantly better than the original likelihood ratio
method. We have also reported similar improvements for the biometric match-
ers before[19].

If we look at the verification task as the two class pattern classification
problem in the M -dimensional score-feature space, then using identification
model corresponds to expanding the feature space by the statistics of iden-
tification trials. The achieved improvements confirm the usefulness of these
additional features.
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Fig. 9. The effect of utilizing identification model in the likelihood ratio combination
function for handwritten word recognizers.

7 Summary

In this work we considered combinations of handwritten word recognizers
and biometric matchers. There can be different operating scenarios for the
applications involving these matchers, and we considered two of them - ver-
ification and closed set identification. Different operating scenarios require
different performance measures: ROC curves for verification problems, and
correct identification rate for identification problems.

It turns out that for different scenarios we need to construct different
combination algorithms in order to achieve optimal performance. This need is
caused by the frequent dependence among scores produced by each matcher
during a single identification trial. The optimal combination algorithm for
verification systems corresponds to the likelihood ratio combination function.
It can be implemented by the direct reconstruction of this function with gen-
uine and impostor score density approximations. Alternatively, many generic
pattern classification algorithms can be used to separate genuine and impos-
tor scores in the M -dimensional score space, M is the number of combined
matchers.

The optimal combination algorithm for the identification systems is more
difficult to realize. We do not know how to express analytically the optimal
combination function, and can only speculate on the heuristics leading to its
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construction. We described two possible approaches for approximating the
optimal combination function in identification systems and compared them
with traditionally used weighted sum combination method. The results are
promising, but it is clear, that further development is needed in this area.

The concept of identification model provides a different point of view on
the combinations in identification systems. The score dependence in iden-
tification trials can be explicitly learned in these models. The combination
algorithm utilizing identification model uses more information about identifi-
cation trial scores than traditional combination methods relying on a single
match score for designated class. As a result it is possible to achieve significant
improvements using these models.
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