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1 Introduction

The efforts to automate the combination of expert opinions have been stud-
ied extensively in the second half of the twentieth century[8]. These stud-
ies have covered diverse application areas: economic and military decisions,
natural phenomena forecasts, technology applications. The combinations pre-
sented in these studies can be separated into mathematical and behavioral
approaches[6]. The mathematical combinations try to construct models and
derive combination rules using logic and statistics. The behavioral methods
assume discussions between experts, and direct human involvement in the
combination process. The mathematical approaches gained more attention
with the development of computer expert systems. Expert opinions could
be of different nature dependent on the considered applications: numbers,
functions, etc. For example, the work of R. Clemen contains combinations of
multiple types of data, and, in particular, considers combinations of experts’
estimations of probability density functions [6].

The pattern classification field developed around the end of the twentieth
century deals with the more specific problem of assigning input signals to two
or more classes. The combined experts are classifiers and the result of the
combination is also a classifier. The outputs of classifiers can be represented
as vectors of numbers where the dimension of vectors is equal to the number
of classes. As a result, the combination problem can be defined as a problem of
finding the combination function accepting N -dimensional score vectors from
M classifiers and outputting N final classification scores (Figure 1), where the
function is optimal in some sense, e.g. minimizing the misclassification cost.
In this chapter, we will deal exclusively with the mathematical methods for
classifier combination from a pattern classification perspective.

In the last ten years, we have seen a major boost of publications in optical
character recognition and biometrics. Pattern classification applications of
these two fields include image classification, e.g character recognition and word
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Fig. 1. Classifier combination takes a set of s
j

i - score for class i by classifier j and
produces combination scores Si for each class i.

recognition, speech recognition, person authentication by voice, face image,
fingerprints or other biometric characteristics. As a result, these two fields
are the most popular application targets for multiple classifier systems so
far [61, 17, 49, 58].

In this chapter, we will present different categorizations of classifier com-
bination methods. Our goal is to give a better understanding of the current
problems in this field. We will also provide descriptions of major classifier
combination methods and their applications in document analysis. We orga-
nized this chapter as follows: Section 2 introduces different categorizations
of classifier combination methods. Section 3 discusses ensemble techniques,
while Section 4 focuses on non-ensemble techniques. In Section 5, we address
additional issues important to classifier combination, such as retraining.

2 Defining the Classifier Combination Problem

In order to provide a more complete description of the classifier combination
field we attempt to categorize different types of classifier combinations in this
section.
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2.1 Score Combination Functions and Combination Decisions

Classifier combination techniques operate on the outputs of individual clas-
sifiers and usually fall into one of two categories. In the first approach the
outputs are treated as inputs to a generic classifier, and the combination al-
gorithm is created by training this, sometimes called ’secondary’, classifier.
For example, Dar-Shyang Lee [42] used a neural network to operate on the
outputs of the individual classifiers and to produce the combined matching
score. The advantage of using such a generic combinator is that it can learn the
combination algorithm and can automatically account for the strengths and
score ranges of the individual classifiers. In the second approach, a function
or a rule combines the classifier scores in a predetermined manner.

The final goal of classifier combination is to create a classifier which oper-
ates on the same type of input as the base classifiers and separates the same
types of classes. Using combination rules implies some final step of classifi-
cation decision. If we denote the score assigned to class i by base classifier
j as s

j
i , then the typical combination rule is some function f and the final

combined score for class i is Si = f({sj
i}j=1,...,M ). The sample is classified as

belonging to class arg maxi Si. Thus the combination rules can be viewed as
a classifier operating on base classifiers’ scores, involving some combination
function f and the arg max decision, showing that there is no real conceptual
difference between the categories mentioned above.

Generic classifiers used for combinations do not have to be necessarily
constructed following the above described scheme, but in practice we see this
theme commonly used. For example, in multilayer perceptron classifiers the
last layer has each node containing a final score for one class. These scores
are then compared and the maximum is chosen. Similarly, k-nearest neighbor
classifier can produce scores for all classes as ratios of the number of represen-
tatives of a particular class in a neighborhood to k. The class with the highest
ratio is then assigned to a sample.

In summary, combination rules can be considered as a special type of
classifier of particular arg max f form. Combination functions f are usually
simple functions, such as sum, weighted sum, max, etc. Generic classifiers
such as neural networks and k-nearest neighbor, on the other hand, imply
more complicated functions.

2.2 Combinations of Fixed Classifiers and Ensembles of Classifiers

One main categorization is based on whether the combination uses a fixed
(usually less than 10) set of classifiers, as opposed to a large pool of classifiers
(potentially infinite) from which one selects or generates new classifiers. The
first type of combinations assumes classifiers are trained on different features
or different sensor inputs. The advantage comes from the diversity of the
classifiers’ strengths on different input patterns. Each classifier might be an
expert on certain types of input patterns. The second type of combinations



4 Sergey Tulyakov, Stefan Jaeger, Venu Govindaraju, and David Doermann

assumes large number of classifiers, or ability to generate classifiers. In the
second type of combination the large number of classifiers are usually obtained
by selecting different subsets of training samples from one large training set, or
by selecting different subsets of features from the set of all available features,
and by training the classifiers with respect to selected training subset or subset
of features.

2.3 Operating Level of Classifiers

Combination methods can also be grouped based on the level at which they op-
erate. Combinations of the first type operate at the feature level. The features
of each classifier are combined to form a joint feature vector and classifica-
tion is subsequently performed in the new feature space. The advantage of
this approach is that using the features from two sets at the same time can
potentially provide additional information about the classes. For example, if
two digit recognizers are combined in such a fashion, and one recognizer uses
a feature indicating the enclosed area, and the other recognizer has a feature
indicating the number of contours, then the combination of these two fea-
tures in a single recognizer will allow class ’0’ to be easily separated from the
other classes. Note that individually, the first recognizer might have difficulty
separating ’0’ from ’8’, and the second recognizer might have difficulty sepa-
rating ’0’ from ’6’ or ’9’. However, the disadvantage of this approach is that
the increased number of feature vectors will require a large training set and
complex classification schemes. If the features used in the different classifiers
are not related, then there is no reason for combination at the feature level.

Combinations can also operate at the decision or score level, that is they
use outputs of the classifiers for combination. This is a popular approach be-
cause the knowledge of the internal structure of classifiers and their feature
vectors is not needed. Though there is a possibility that representational in-
formation is lost during such combinations, this is usually compensated by
the lower complexity of the combination method and superior training of the
final system. In the subsequent sections we will only consider classifier com-
binations at the decision level.

The following is an example of the application where feature level combina-
tion can improve a classifier’s performance. Bertolami and Bunke[3] compared
the combinations at the feature and the decision levels for handwriting recog-
nition. Their handwriting recognizer uses a sliding window to extract pixel
and geometrical features for HMM matching. The combination at the feature
level has a single HMM trained on the composite vector of these features. The
combination at the decision level has two HMMs trained on separate pixel and
geometrical feature vectors, and the recognition results, word matching scores,
are combined together with the language model. The combination at the fea-
ture level seems to achieve better results, and authors explain its effectiveness
by improved alignment of the HMM recognizer.
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Note that combination on the feature level is not conceptually different
from trying to incorporate different types of information into a single fea-
ture vector. For example, Favata[11] constructed handwritten word recogniz-
ers which utilized a character recognizer based on gradient, concavity and
structural features. Thus feature level combination rather delegates the com-
bination task to the base classifier (HMM in above example) instead of solving
it.

2.4 Output Types of Combined Classifiers

Another way to categorize classifier combination is by the outputs of the
classifiers used in the combination. Three types of classifier outputs are usually
considered[61]:

• Type I (abstract level): This is the lowest level since a classifier provides
the least amount of information on this level. Classifier output is merely
a single class label or an unordered set of candidate classes.

• Type II (rank level): Classifier output on the rank level is an ordered
sequence of candidate classes, the so-called n-best list. The candidate class
at the first position is the most likely class, while the class positioned at
the end of the list is the most unlikely. Note that there are no confidence
values attached to the class labels on rank level. Only their position in the
n-best list indicates their relative likelihood.

• Type III (measurement level): In addition to the ordered n-best lists of
candidate classes on the rank level, classifier output on the measurement
level has confidence values assigned to each entry of the n-best list. These
confidences, or scores, can be arbitrary real numbers, depending on the
classification architecture used. The measurement level contains therefore
the most information among all three output levels.

In principle, a combination method can operate on any of these levels. For
combinations based solely on label sets or rankings of class labels, i.e. output
on abstract and rank level, several voting techniques have been proposed and
experimentally investigated [23, 10, 33]. The advantage of classifier output
on abstract and rank level is that different confidence characteristics have
no negative impact on the final outcome, simply because confidence plays no
role in the decision process. Nevertheless, the confidence of a classifier in a
particular candidate class usually provides useful information that a simple
class ranking cannot reflect. This suggests the use of combination methods
that operate on the measurement level, and which can exploit the confidence
assigned to each candidate class. Nowadays most classifiers do provide infor-
mation on measurement level, so that applying combination schemes on the
measurement level should be possible for most practical applications. On mea-
surement level, however, we have to take into account that each classifier in a
multiple classifier system may output quite different confidence values, with
different ranges, scales, means etc. This may be a minor problem for classifier
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ensembles generated with Bagging and Boosting (see Section 3 since all clas-
sifiers in the ensemble are based on the same classification architecture, only
their training sets differ. Each classifier will therefore provide similar output.
However, for classifiers based on different classification architectures, this out-
put will in general be different. Since different architectures lead more likely
to complementary classifiers, which are especially promising for combination
purposes, we need effective methods for making outputs of different classifiers
comparable.

If the combination involves classifiers with different output types, the out-
put is usually converted to any one of the above: to type I[61], to type II[23],
or to type III[42]. Most existing classifier combination research deals with
classifier outputs of type III (measurement level), among which we can find
combinations with fixed structure, e.g. sum of scores [61, 34], or combinations
that can be trained using available training samples (weighted sum, logistic
regression[23], Dempster-Shafer rules [61], neural network[42], etc.).

2.5 Complexity Types of Classifier Combinations

In [51] we proposed a new framework for combining classifiers based on the
structure of combination functions. Though we applied it only to biometric
person authentication applications there, it can provide a useful insight into
other applications as well.

As Figure 1 shows, the combination algorithm is a map

{sj
k}j=1,...,M ;k=1,...,N ⇒ {Si}i=1,...,N (1)

of NM classifiers’ scores into the N -dimensional final score space, where N

is the number of classes. The complexity types define how such maps are
constructed. Specifically, the combination type is determined by whether all
classifiers’ scores participate in the derivation of each final combined score,
and whether only a single combination function is trained for all classes or
there is an individual combination function for each class.

We separate combination algorithms into four different types depending
on the number of classifier’s scores they take into account and the number of
combination functions required to be trained:

1. Low complexity combinations: Si = f({sj
i}j=1,...,M ). Combinations of this

type require only one combination function to be trained, and the combi-
nation function takes as input scores for one particular class.

2. Medium complexity I combinations: Si = fi({s
j
i}j=1,...,M ). Combinations

of this type have separate score combining functions for each class and
each such function takes as input parameters only the scores related to
its class.

3. Medium complexity II combinations:

Si = f({sj
i}j=1,...,M , {sj

k}j=1,...,M ;k=1,...,N,k 6=i) (2)
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This function takes as parameters not only the scores related to one class,
but all output scores of classifiers. Combination scores for each class are
calculated using the same function, but scores for class i are given a special
place as parameters. Applying function f for different classes effectively
means permutation of the function’s parameters.

4. High complexity combinations: Si = fi({s
j
k}j=1,...,M ;k=1,...,N ). Functions

calculating final scores are different for all classes, and they take as para-
meters all output base classifier scores.

In order to illustrate the different combination types we can use a matrix
representation as shown in Figure 2. Each row corresponds to a set of scores
output by a particular classifier, and each column has scores assigned by
classifiers to a particular class.

Fig. 2. Output classifier scores arranged in a matrix; s
j

i - score for class i by classifier
j.

Figure 3 shows four complexity types of combinations using the score ma-
trix. The combinations of low and medium I complexity types use only scores
of one particular class to derive a final combined score for this class. Medium
II and high complexity combinations use scores related to all classes to derive
a final combined score of any single class. Low and medium II complexity
combinations have a single combination function f used for all classes, and
medium I and high complexity combinations might have different combination
functions fi for different classes i.

As an example, simple combination rules (sum, weighted sum, product,
etc.) typically produce combinations of low complexity type. Combinations
which try to find the separate combination function for each class [32, 12]
are of medium I complexity type. The rank-based combination methods (e.g.
Borda count in Section 4) represent the combinations of medium II com-
plexity type, since calculating rank requires comparing the original score with
other scores produced during the same identification trial. Behavior-knowledge
spaces (BKS, see Section 4) are an example of high complexity combination
type, since they are both rank-based and can have user-specific combination
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(a) Low (b) Medium I

(c) Medium II (d) High

Fig. 3. The range of scores considered by each combination type and combination
functions.

functions. One way to obtain combinations of different types is to use dif-
ferent score normalizations before combining normalized scores by a simple
combination rule of low complexity. For example, by using class-specific Z-
normalization or identification trial specific T-normalization [2], we are deal-
ing respectively with medium I or medium II complexity combination types.

Higher complexity combinations can potentially produce better classifica-
tion results since more information is used. On the other hand the availability
of training samples will limit the types of possible combinations. Thus the
choice of combination type in any particular application is a trade-off be-
tween classifying capabilities of combination functions and the availability of
sufficient training samples. When the complexity is lowered it is important
to see if any useful information is lost. If such loss happens, the combination
algorithm should be modified to compensate for it.

Different generic classifiers such as neural networks, decision trees, etc.,
can be used for classifier combinations within each complexity class. However,
the choice of the generic classifiers or combination functions is less important
than the choice of the complexity type.
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2.6 Classification and Combination

From Figure 1 and the discussion in Section 2.1 we can view the prob-
lem of combining classifiers as a classification problem in the score space
{sj

i}j=1,...,M ;i=1,...,N . Any generic pattern classification algorithm trained in
this score space can act as a combination algorithm. Does it make sense to
search for other, more specialized methods of combination? In other words,
does classifier combination field has anything new to offer with respect to
traditional pattern classification research?

One difference between the combination problem and the general pattern
classification problem is that in the combination problem features (scores)
have a specific meaning of being related to a particular class or being produced
by a particular classifier. In the general pattern classification problem we do
not assign such meaning to features. Thus intuitively we tend to construct
combination algorithms which take such meaning of scores into consideration.
The four combination complexity types presented in the previous section are
based on this intuition, as they pay special attention to the scores si of class
i while deriving a combined score Si for this class.

The meaning of the scores, though, does not provide any theoretical ba-
sis for choosing a particular combination method, and in fact can lead to
constructing suboptimal combination algorithms. For example, by construct-
ing combinations of low and medium I complexity types we effectively disre-
gard any interdependencies between scores related to different classes. As we
showed in [51] and [52] such dependencies can provide useful information for
the combination algorithm.

The following is a list of cases which might not be solved optimally in
traditional pattern classification algorithms. The task of classifier combination
can be defined as developing specialized combination algorithms for these
cases.

1. The situation of having to deal with a large number of classes arises fre-
quently in the pattern recognition field. For example, biometric person
identification, speech and handwriting recognition are applications with
very large number of classes. The number of samples of each class avail-
able for training can be small, such as in biometric applications where
a single person template is enrolled into the database, or even zero for
speech and handwriting recognition when the class is determined by the
lexicon word.

2. The number of classifiers M is large. For example, taking multiple training
sets in bagging and boosting techniques yields arbitrarily large number of
classifiers. The usual method of combination in these cases is to use some
a priori rule, e.g. sum rule.

3. Additional information about classifiers is available. For example, in the
case of multimodal biometrics combination it is safe to assume that clas-
sifiers act independently. This might be used to better estimate the joint
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score density of M classifiers as a product of M separately estimated score
densities of each classifier.

4. Additional information about classes is available. Consider the problem of
classifying word images into classes represented by a lexicon: The relation
between classes can be expressed through classifier independent methods,
for example, by using the string edit distance. Potentially classifier com-
bination methods could benefit from such additional information.

The cases listed above present situations where generic pattern classifi-
cation methods in score space are not sufficient or suboptimal. The first two
cases describe scenarios where the feature space has very large dimensions. By
adopting a combination of reduced complexity we are able to train combina-
tion algorithm and achieve performance improvement. If neither the number of
classifiers nor the number of classes is large, the generic pattern classification
algorithm operating in the score space can solve the combination problem.

When additional information besides training score vectors is available as
in scenarios 3 and 4 it should be possible to improve on the generic classifica-
tion algorithms which use only a sample of available score vectors for training,
but no other information.

3 Classifier Ensembles

The focus of this chapter is to explore the combinations on a fixed set of
classifiers. We assume that there are only few classifiers and we can collect
some statistical data about these classifiers using a training set. The purpose
of the combination algorithm is to learn the behavior of these classifiers and
produce an efficient combination function.

In this section, however, we shortly address another approach to combi-
nation that includes methods trying not only to find the best combination
algorithm, but also trying to find the best set of classifiers for the combi-
nation. This type of combination usually requires a method for generating
a large number of classifiers. Few methods for generating classifiers for such
combinations exist. One of the methods is based on bootstrapping the training
set in order to obtain a multitude of subsets and train a classifier on each of
these subsets. Another method is based on the random selection of the subsets
of features from one large feature set and training classifiers on these feature
subsets[41]. A third method applies different training conditions, e.g. choosing
random initial weights for neural network training or choosing dimensions for
decision trees [22]. The ultimate method for generating classifiers is a random
separation of feature space into the regions related to particular classes [36].

Simplest methods of combination apply some fixed functions to the outputs
of all the generated classifiers (majority voting, bagging [4]). More complex
methods, such as boosting [45, 13], stack generalization [59], attempt to select
only those classifiers which will contribute to the combination.
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Although there is substantial research on the classifier ensembles, very few
theoretical results exist. Most explanations use bias and variance framework
which is presented below. But such approaches can only give asymptotic expla-
nations of observed performance improvements. Ideally, the theoretical foun-
dation for classifier ensembles should use statistical learning theory [54, 55].
But it seems that such work will be quite difficult. For example, it is noted
in [46] that an unrestricted ensemble of classifiers has a higher complexity
than individual combined classifiers. The same paper presents an interesting
explanation of the performance improvements based on the classifier’s margin
- the statistical measure of the difference between scores given to correct and
incorrect classification attempts. Another theoretical approach to the classi-
fier ensemble problem was developed by Kleinberg in the theory of stochastic
discrimination[35, 36]. This approach considers very general type of classi-
fiers (which are determined by the regions in the feature space) and outlines
criteria on how these classifiers should participate in the combination.

3.1 Reductions of Trained Classifier Variances

One way to explain the improvements observed in ensemble combination
methods (bagging, boosting) is to decompose the added error of the clas-
sifiers into bias and variance components[37, 50, 4]. There are few definitions
of such decompositions[13]. Bias generally shows the difference between op-
timal Bayesian classification and average of trained classifiers, where average
means real averaging of scores or voting and average is taken over all possible
trained classifiers. The variance shows the difference between a typical trained
classifier and an average one.

The framework of Tumer and Ghosh[53] associates trained classifiers with
the approximated feature vector densities of each class. This framework has
been used in many papers on classifier combination recently[40, 38, 15, 16]. In
this framework, trained classifiers provide approximations to the true posterior
class probabilities or to the true class densities:

fm
i (x) = pi(x) + εm

i (x) (3)

where i is the class index and m is the index of a trained classifier. For a fixed
point x the error term can be represented as a random variable where ran-
domness is determined by the random choice of the classifier or used training
set. By representing it as a sum of mean β and zero-mean random variable η

we get
εm
i (x) = βi(x) + ηm

i (x) (4)

For simplicity, assume that the considered classifiers are unbiased, that is
βi(x) = 0 for any x, i. If point x is located on the decision boundary between
classes i and j then the added error of the classifier is proportional to the sum
of the variances of ηi and ηj :
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Em
add ∼ σ2

ηm
i

+ σ2
ηm

j
(5)

If we average M such trained classifiers and if the error random variables ηm
i

are independent and identically distributed as ηi, then we would expect the
added error to be reduced M times:

Eave
add ∼ σ2

ηave
i

+ σ2
ηave

j
=

σ2
ηi

+ σ2
ηj

M
(6)

The application of the described theory is very limited in practice since too
many assumptions about classifiers are required. Kuncheva[38] even compiles
a list of used assumptions. Besides independence assumption of errors, we
need to hypothesize about error distributions, that is the distributions of the
random variable ηi. The tricky part is that ηi is the difference between true
distribution pi(x) and our best guess about this distribution. If we knew what
the difference is, we would have been able to improve our guess in the first
place. Although there is some research [40, 1] into trying to make assumptions
about these estimation error distributions and seeing which combination rule
is better for a particular hypothesized distribution, the results are not proven
in practice.

3.2 Bagging

Researchers have very often concentrated on improving single-classifier sys-
tems mainly because of their lack in sufficient resources for simultaneously
developing several different classifiers. A simple method for generating multi-
ple classifiers in those cases is to run several training sessions with the same
single-classifier system and different subsets of the training set, or slightly
modified classifier parameters. Each training session then creates an individ-
ual classifier. The first more systematic approach to this idea was proposed
in [4] and became popular under the name “Bagging.”This method draws the
training sets with replacement from the original training set, each set resulting
in a slightly different classifier after training. The technique used for generat-
ing the individual training sets is also known as bootstrap technique and aims
at reducing the error of statistical estimators. In practice, bagging has shown
good results. However, the performance gains are usually small when bagging
is applied to weak classifiers. In these cases, another intensively investigated
technique for generating multiple classifiers is more suitable: Boosting.

3.3 Boosting

Boosting has its root in a theoretical framework for studying machine learning,
and deals with the question whether an almost randomly guessing classifier
can be boosted into an arbitrarily accurate learning algorithm. Boosting at-
taches a weight to each instance in the training set [14, 13, 20]. The weights
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are updated after each training cycle according to the performance of the
classifier on the corresponding training samples. Initially, all weights are set
equally, but on each round, the weights of incorrectly classified samples are
increased so that the classifier is forced to focus on the hard examples in the
training set [14].

A very popular type of boosting is AdaBoost (Adaptive Boosting), which
was introduced by Freund and Schapire in 1995 to expand the boosting ap-
proach introduced by Schapire. The AdaBoost algorithm generates a set of
classifiers and votes them. It changes the weights of the training samples based
on classifiers previously built (trials). The goal is to force the final classifiers to
minimize expected error over different input distributions. The final classifier
is formed using a weighted voting scheme. Details of AdaBoost, in particular
the AdaBoost variant called AdaBoost.M1, can be found in [13].

Boosting has been successfully applied to a wide range of applications.
Nevertheless, we will not go more into the details of boosting and other en-
semble combinations in this paper. The reason is that the focus of classifier
ensembles techniques lies more on the generation of classifiers and less on their
actual combination.

4 Non-Ensemble Combinations

Non-ensemble combinations typically use a smaller number of classifiers than
ensemble-based classifier systems. Instead of combining a large number of au-
tomatically generated homogeneous classifiers, non-ensemble classifiers try to
combine heterogeneous classifiers complementing each other. The advantage
of complementary classifiers is that each classifier can concentrate on its own
small subproblem instead of trying to cope with the classification problem as
a whole, which may be too hard for a single classifier. Ideally, the expertise
of the specialized classifiers do not overlap. There are several ways to gener-
ate heterogeneous classifiers. The perhaps easiest method is to train the same
classifier with different feature sets and/or different training parameters. An-
other possibility is to use multiple classification architectures, which produce
different decision boundaries for the same feature set. However, this is not
only more expensive in the sense that it requires the development of indepen-
dent classifiers, but it also raises the question of how to combine the output
provided by multiple classifiers.

Many combination schemes have been proposed in the literature. As we
have already discussed, they range from simple schemes to relatively complex
combination strategies. This large number of proposed techniques shows the
uncertainty researchers still have in this field. Up till now, researchers have not
been able to show the general superiority of a particular combination scheme,
neither theoretically nor empirically. Though several researchers have come up
with theoretical explanations supporting one or more of the proposed schemes,
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a commonly accepted theoretical framework for classifier combination is still
missing.

4.1 Elementary Combination Schemes on Rank Level

The probably simplest way of combining classifiers are voting techniques on
rank level. Voting techniques do not consider the confidence values that may
have been attached to each class by the individual classifiers. This simplifica-
tion allows easy integration of all different kinds of classifier architectures.

Majority voting

A straightforward voting technique is majority voting. It considers only the
most likely class provided by each classifier and chooses the most frequent
class label among this crisp output set. In order to alleviate the problem
of ties, the number of classifiers used for voting is usually odd. A trainable
variant of majority voting is weighted majority voting, which multiplies each
vote by a weight before the actual voting. The weight for each classifier can
be obtained; e.g., by estimating the classifiers’ accuracies on a validation set.
Another voting technique that takes the entire n-best list of a classifier into
account, and not only the crisp 1-best candidate class, is Borda count.

Borda count

Borda count is a voting technique on rank level [10]. For every class, Borda
count adds the ranks in the n-best lists of each classifier, with the first entry
in the n-best list; i.e., the most likely class label, contributing the highest rank
number and the last entry having the lowest rank number. The final output
label for a given test pattern X is the class with highest overall rank sum. In
mathematical terms, this reads as follows: Let N be the number of classifiers,
and r

j
i the rank of class i in the n-best list of the j-th classifier. The overall

rank ri of class i is thus given by

ri =

N
∑

j=1

r
j
i (7)

The test pattern X is assigned the class i with the maximum overall rank
count ri.

Borda count is very simple to compute and requires no training. Similar to
majority vote, there is a trainable variant that associates weights to the ranks
of individual classifiers. The overall rank count for class i then computes as

ri =

N
∑

j=1

wjr
j
i (8)
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Again, the weights can be the performance of each individual classifier mea-
sured on a training or validation set.

While voting techniques provide a fast and easy method for improving
classification rates, they nevertheless leave the impression of not realizing the
full potential of classifier combination by throwing away valuable information
on measurement level. This has lead scientists to experiment with elementary
combination schemes on this level as well.

4.2 Elementary Combination Schemes on Measurement Level

Elementary combination schemes on measurement level apply simple rules for
combination, such as sum-rule, product-rule, and max-rule. Sum-rule simply
adds the score provided by each classifier of a classifier ensemble for every class,
and assigns the class label with the maximum score to the given input pattern.
Analogously, product-rule multiplies the score for every class and then outputs
the class with the maximum score. Interesting theoretical results, including
error estimations, have been derived for those simple combination schemes.
For instance, Kittler et al. showed that sum-rule is less sensitive to noise than
other rules [34]. Despite their simplicity, simple combination schemes have
resulted in high recognition rates, and it is by no means obvious that more
complex methods are superior to simpler ones, such as sum-rule.

The main problem with elementary combination schemes is the incom-
patibility of confidence values. As discussed in Subsection 2.4, the output of
classifiers can be of different type. Even for classifier output on measurement
level (Type III), the output can be of different nature; e.g., similarity mea-
sures, likelihoods in the statistical sense, or distances to hyperplanes. In fact,
this is why many researchers prefer using the name “score,” instead of the
names “confidence” or “likelihood,” for the values assigned to each class on
measurement level. This general name should emphasize the fact that those
values are not the correct a posteriori class probabilities and have, in general,
neither the same range and scale nor the same distribution. In other words,
scores need to be normalized before they can be combined in a meaningful
way with elementary combination schemes.

Similar to the situation for combination schemes, there is no commonly
accepted method for normalizing scores of different classifiers. A couple of
normalization techniques have been proposed. According to Jain et al., a good
normalization scheme must be robust and efficient [25, 31]. In this context,
robustness refers to insensitivity to score outliers and efficiency refers to the
proximity of the normalized values to the optimal values when the distribution
of scores is known.

The perhaps easiest normalization technique is the min-max normaliza-
tion. For a given set of matching scores {sk}, k = 1, 2, . . . , n, the min-max
normalized scores {s′k} are given by

s′k =
sk − min

max − min
, (9)
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where max and min are the maximum and minimum estimated from the
given set of matching scores {sk}, respectively. This simple type of normal-
ization retains the original distribution of scores except for a scaling factor,
transforming all the scores into a common range [0 ; 1]. The obvious disadvan-
tage of min-max normalization is its sensitivity to outliers in the data used
for estimation of min and max. Another simple normalization method, which
is, however, sensitive to outliers as well, is the so-called z-score. The z-score
computes the arithmetic mean µ and the standard deviation σ on the set of
scores {sk}, and normalizes each score with

s′k =
sk − µ

σ
(10)

It is biased towards Gaussian distributions and does not guarantee a common
numerical range for the normalized scores. A normalization scheme that is
insensitive to outliers, but also does not guarantee a common numerical range,
is MAD. This stands for “median absolute deviation,” and is defined as follows:

s′k =
sk − median

MAD
, (11)

with MAD = median(|sk − median|). Note that the median makes this
normalization robust against extreme points. However, MAD normalization
does a poor job in retaining the distribution of the original scores. In [31], Jain
et al. list two more normalization methods, namely a technique based on a
double sigmoid function suggested by Cappelli et al. [5], and a technique called
“tanh normalization” proposed by Hampel et al. [21]. The latter technique is
both robust and efficient.

Instead of going into the details of these two normalization methods, we
suggest an alternative normalization technique that we have successfully ap-
plied to document processing applications, in particular handwriting recog-
nition and script identification. This technique was first proposed in [56]
and [57]. Its basic idea is to perform a warping on the set of scores, align-
ing the nominal progress of score values with the progress in recognition rate.
In mathematical terms, we can state this as follows:

s′k =

k
∑

i=0

ncorrect(si)

N
(12)

The help function ncorrect(si) computes the number of patterns that were
correctly classified with the original score s′k on an evaluation set with N pat-
terns. The new normalized scores s′k thus describe a monotonously increasing
partial sum, with the increments depending on the progress in recognition
rate. We can easily see that the normalized scores fall all into the same nu-
merical range [0 ; 1]. In addition, the normalized scores also show robustness
against outliers because the partial sums are computed over a range of original
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scores, thus averaging the effect of outliers. Using the normalization scheme
in (12), we were able to clearly improve the recognition rate of a combined
on-line/off-line handwriting recognizer in [56, 57]. Combination of off-line and
on-line handwriting recognition is an especially fruitful application domain
of classifier combination. It allows combination of the advantages of off-line
recognition with the benefits of on-line recognition, namely the independence
from stroke order and stroke number in off-line data, such as scanned hand-
written documents, and the useful dynamic information contained in on-line
data, such as data captured by a Tablet PC or graphic tablet. Especially
on-line handwriting recognition can benefit from a combined recognition ap-
proach because off-line images can easily be generated from on-line data.

In a later work, we elaborated the idea into an information-theoretical
approach to sensor fusion, identifying the partial sum in (12) with an expo-
nential distribution [28, 29, 30]. In this information-theoretical context, the
normalized scores read as follows:

s′k = −E ∗ ln (1 − p(sk)) (13)

The function p(sk) is an exponential distribution with an expectation value E

that also appears as a scaler upfront the logarithmic expression. The func-
tion p(sk) thus describes an exponential distribution defining the partial sums
in (12). Note that the new normalized scores, which we refer to as “infor-
mational confidence,” are information defined in the Shannon sense as the
negative logarithm of a probability [48]. With the normalized scores being in-
formation, sum-rule now becomes the natural combination scheme. For more
details on this information-theoretical technique, including practical experi-
ments, we refer readers to the references [28, 29, 30] and to another chapter
in this book.

4.3 Dempster-Shafer Theory of Evidence

Among the first more complex approaches for classifier combination was the
Dempster-Shafer theory of evidence [9, 47]. As its name already suggests, this
theory was developed by Arthur P. Dempster and Glenn Shafer in the sixties
and seventies. It was first adopted by researchers in Artificial Intelligence in
order to process probabilities in expert systems, but has soon been adopted
for other application areas, such as sensor fusion and classifier combination.
Dempster-Shafer theory is a generalization of the Bayesian theory of probabil-
ity and differs in several aspects: First, Dempster-Shafer’s theory introduces
degrees of belief that do not necessarily meet the mathematical properties
of probabilities. Second, it assigns probabilities to sets of possible outcomes
rather than single events only. Third, it considers probability intervals that
contain the precise probability for sets of possible outcomes. The two main
ideas of Dempster-Shafer’s theory, as they are usually presented in textbooks,
are to obtain degrees of belief for one question from subjective probabilities
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for a related question, and Dempster’s rule for combining such degrees of be-
lief when they are based on independent items of evidence [Glenn Shafer].
Dempster’s rule of combination is a generalization of Bayes’ rule. It operates
on masses assigning probabilities to sets of outcomes. For two sets of masses
m1 and m2, Dempster’s rule defines the joint mass m1,2(X) for an outcome
set X as follows:

m1,2(X) =

{

0 if X = ∅
1

1−K

∑

Ai∩Bj=X

m1(Ai)m2(Bj) if X 6= ∅ (14)

where
K =

∑

Ai∩Bj=∅

m1(Ai)m2(Bj) (15)

The Dempster-Shafer approach has produced good results in document process-
ing and its still used today, notwithstanding its higher complexity compared
to other approaches [43].

4.4 Behavior Knowledge Space

An equally complex, but perhaps more popular approach is the Behavior-
Knowledge Space (BKS) method introduced in [24]. The BKS method is a
trainable combination scheme on abstract level, requiring neither measure-
ments nor ordered sets of candidate classes. It tries to estimate the a posteri-
ori probabilities by computing the frequency of each class for every possible
set of classifier decisions, based on a given training set. The result is a lookup
table that associates the final classification result with each combination of
classifier outputs; i.e., each combination of outputs in the lookup table is rep-
resented by its most often encountered class label. Given a specific classifier
decision S1, . . . , SN from N individual classifiers, the a posteriori probability
P̂ (ci|S1, . . . , SN ) of class ci is estimated as follows

P̂ (ci|S1, . . . , SN ) =
N(ci|S1, . . . , SN )

∑

i

N(ci|S1, . . . , SN )
(16)

where N(ci|S1, . . . , SN ) counts the frequency of class ci for each possible com-
bination of crisp classifier outputs.

In order to provide reasonable performance, the BKS method needs to be
trained with large datasets so that meaningful statistics can be computed for
each combination in the lookup table. If k is the number of classes and N is
the number of combined classifiers, then BKS requires estimates of kN+1 a
posteriori probabilities. This can pose problems when this number is high but
the available set of training patterns is only small.

In addition to the methods presented in this section, several other tech-
niques have been proposed in the recent past [22, 26]. They have gained some
importance, but are out of the scope of this paper.
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5 Additional Issues in Classifier Combinations

5.1 The Retraining Effect

The combined classifiers usually produce complementary results and combina-
tion algorithms utilize this property. But there is another reason why combina-
tions might produce the performance improvement. The improvement might
be the result of the combination algorithm retraining the imperfect matching
score outputs of combined classifiers on new training data.

Fig. 4. Using additional training samples in the region of incorrectly classified
samples might result in the correction of classification errors

Suppose we have two classes with equal prior probability and equal mis-
classification cost as in Figure 4. The optimal classification algorithm should
make a decision based on whether the probability density function (pdf) of
one class is bigger or less than that of the other class: p1(x) <> p2(x). Suppose
we have one classifier and it outputs a matching scores s1(x) and s2(x) for
two classes approximating the pdfs of the corresponding classes. The decision
of this classifier will be based on its scores: s1(x) <> s2(x). The difference
between these two decisions produces an area in which classification decisions
are different from ideal optimal decisions (”Incorrectly classified samples” area
of Figure 4). The classification performance can be improved if the decisions
in this area are reversed.

The range of matching scores can be separated into regions of the type
c ≤ s1(x) ≤ a, or b ≤ s2(x) ≤ d or the intersections of those (”Score retrain-
ing area” of Figure 4). By using an additional set of training samples, the
postprocessing algorithm can calculate the frequencies of training samples of
each class belonging to these regions, say F1 and F2. If the number of training
samples falling in these regions is large, then the frequencies will approximate
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the original class pdfs: F1 ∼ p1(x) and F2 ∼ p2(x). Consequently, the scores
s1(x) and s2(x) could be replaced by new scores corresponding to frequencies
F1 and F2, respectively. It is quite possible that the classification based on
new scores will be correct in previously incorrectly classified regions.

This technique was implemented in [27] for the problem of classifying hand-
written digits. The algorithm was able to improve the correctness of a classifier
with 97% recognition rate by around 0.5% and of a classifier with 90% recog-
nition rate by around 1.5%. Approximately 30,000 digit images were used for
retraining and no information about the original training sets was provided.

This type of score postprocessing can be considered as a classifier com-
bination function f which works only with one classifier and transforms the
scores of this classifier s1, s2 into the combined scores S1, S2:

c ≤ s1 ≤ a & b ≤ s2 ≤ d =⇒ (S1, S2) = f(s1, s2) = (F1, F2)

This combination function is trained on newly supplied training samples and
achieves improvement only due to the extraneous training data. Similarly,
if we consider traditional combinations utilizing two or more classifiers, then
some of the performance improvement might be attributed to using additional
training data.

As far as we know, the retraining effect on classifier combinations has not
been investigated so far. In particular, it would be interesting to know for each
practical application, what part of the improvement is due to the retraining.

5.2 Locality Based Combination Methods

The retraining algorithm of the previous section implied the ability to sepa-
rate training samples based on their class matching scores. The score for the
test sample can be corrected if we are able to find a reference subset of train-
ing samples having similar performance. There exist few attempts to explore
similar ideas in classifier combinations.

Behavior-knowledge spaces [24] can be considered as one of such locality
based methods. The reference set is the subset of the training samples having
same ranks assigned by all classifiers as a test sample. The choice of such
reference sets might seem not very efficient - their number is large, and even
single rank change places training sample in a different reference set. But ex-
perimental results seem to confirm the validity of such reference sets. Though
the full technique is applicable only in cases with small number of classes and
classifiers (two classifiers of ten digit classes in [24]), it can be extended to
other cases by grouping together relevant subsets, e.g. subsets having same
ranks for first few classes. Note, that rank information implicitly accounts for
the dependence between scores assigned to different classes. By incorporat-
ing this information into the combination algorithm we effectively perform
medium II or high complexity combinations.

Another type of forming reference sets is to use some additional informa-
tion about classes. In the method of local accuracy estimates [60] the reference
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set for each test sample is found by applying the k-nearest neighbor algorithm
to the original feature space. Subsequently, the strength of each classifier is
determined on this reference set, and the classification decision is made by the
classifier with highest performance. Clearly, the method could be extended to
not only selecting the best performing classifier for the current test sample,
but to combine the scores of classifiers according to their strengths. In any
case, the important information about the test sample and its relationships
with training samples is supplied by the k-nearest neighbor method. In a sense,
the k-nearest neighbor method can be viewed as an additional classifier, which
is combined with other classifiers. Similar approaches are also investigated in
[18, 39].

Opposite to the presentation of the retraining effect in the previous sub-
section, the methods of finding reference sets discussed here do not rely exclu-
sively on the matching scores of classifiers. Thus, by using additional informa-
tion these methods can potentially perform better than the generic classifier
operating in the score space. But, due to the similarity with retraining meth-
ods, it might be that a significant part of the performance improvement is
caused by the retraining effect.

5.3 Locality Based Methods with Large Number of Classes

The interesting problem of finding the reference set for the test sample arises
in the situations with large or variable number of classes. As we discussed in
Subsection 2.6, such problems are not easily solvable with traditional pattern
classification algorithms. For example, the recognition of handwritten words
might include a large word lexicon, and the training data might simply not
include all these words. In biometric person authentication only a small num-
ber of training samples, e.g. a single sample, per person is available. How can
a reference set of training data be found in these cases?

The string edit distance might provide a valuable neighborhood informa-
tion for the handwritten word application in order to find a reference set. In a
more complicated approach we introduced the concept of local lexicon density
in [19]. The lexicon density is determined not only by the lexicon itself, but
also by the strength of the word recognizer using this lexicon. In addition to
finding a reference set, the presented algorithm could be used to estimate the
strength of each recognizer in the neighborhood of the test sample. Though
the method of estimating lexicon density seems to have good performance, it
has not been applied to problem of combining word recognizers yet.

The problem of finding a reference set for biometric person authentica-
tion has been investigated before in speaker identification research [7, 44].
The set of persons having similar biometrics to the queried person (cohort) is
found using training samples of all enrolled persons. During testing, a match-
ing score for the query person is judged against the matching scores of the
cohort persons. These research was mostly used for making decisions on the
matching scores, and not in combining different matchers. Some research has
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appeared recently [32, 12] trying to find user specific combinations of biomet-
ric matchers. But these methods use locality information only implicitly by
estimating performance on the whole set of enrolled persons, and not on the
cohort set. As far as we know, the cohort method has not been applied to
classifier combinations so far.

The local neighborhood in cohorts is determined by the matching distances
among enrolled templates. These distances can be used in constructing so
called ’background models’ [44]. In our research we used the set of matching
scores between input template and enrolled templates to construct so called
’identification models’ [52]. Both models can be used for finding reference sets
in classifier combination algorithms. In addition, both models can be user-
generic or user-specific, and both models can be used in a single combination
method.

6 Conclusion

This chapter presented an overview of classifier combination methods. We
categorized these methods according to complexity type, output type, ensem-
ble vs non-ensemble combinations, etc. We also tried to define the classifier
combination field by specifying cases, e.g. the presence of a large number of
classes, which can not be readily solved by traditional pattern classification al-
gorithms. We briefly presented main research directions in ensemble classifier
combinations (Section 3) and non-ensemble classifier combinations (Section
4). In the last section, we discussed the retraining effect and issues of local-
ity in classifier combinations. This section also presented some potential new
research topics.

Overall, our goal was to show the current state of the art in classifier
combination. Though significant progress has been made so far in devising new
combination methods, the research is still mostly limited to the low complexity
type of combinations. Exploring other complexity types of combinations and
understanding locality properties of classifiers can be a fertile ground for future
research.
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