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Abstract. The problem of combining biometric matchers for person verification
can be viewed as a pattern classification problem, and any trainable patternclas-
sification algorithm can be used for score combination. But biometric matchers
of different modalities possess a property of the statistical independence of their
output scores. In this work we investigate if utilizing this independence knowl-
edge results in the improvement of the combination algorithm. We show both
theoretically and experimentally that utilizing independence provides better ap-
proximation of score density functions, and results in combination improvement.

1 Introduction

The biometric verification problem can be approached as a classification problem with
2 classes: claimed identity is the true identity of the matched person (genuine event) and
claimed identity is different from the true identity of the person (impostor event). During
matching attempt usually a single matching score is available, and some thresholding is
used to decide whether matching is a genuine or an impostor event.

If M biometric matchers are used, then a set ofM matching scores is available to
make a decision about match validity. This set of scores can be readily visualized as a
point inM -dimensional score space. Consequently, the combination task is reduced to
a 2-class classification problem with points inM -dimensional score space. Thus any
generic pattern classification algorithm can be used to makedecisions on whether the
match is genuine or impostor. Neural networks, decision trees, SVMs were all success-
fully used for the purpose of combining matching scores.

If we use biometric matchers of different modalities (e.g. fingerprint and face rec-
ognizers) then we possess an important information about independence of match-
ing scores. If generic pattern classification algorithms are used subsequently on these
scores, the independence information is simply discarded.Is it possible to use the
knowledge about score independence in combination and whatbenefits would be gained?

In this paper we will explore the utilization of the classifier independence infor-
mation in the combination process. We assume that classifiers output a set of scores
reflecting the confidences of input belonging to the corresponding class.

2 Previous Work

The assumption of classifiers independence is quite restrictive for pattern recognition
field since the combined classifiers usually operate on the same input. Even when using



completely different features for different classifiers the scores can be dependent. For
example, features can be similar and thus dependent, or image quality characteristic
can influence the scores of the combined classifiers. Much of the effort in the classifier
combination field has been devoted to dependent classifiers and most of the algorithms
do not make any assumptions about classifier independence. Though independence as-
sumption was used to justify some combination methods[1], such methods were mostly
used to combine dependent classifiers.

One recent application where independence assumption holds is the combination
of biometric matchers of different modalities. In the case of multimodal biometrics the
inputs to different sensors are indeed independent (for example, there is no connection
of fingerprint features to face features). The growth of biometric applications resulted
in some works, e.g. [2], where independence assumption is used properly to combine
multimodal biometric data.

We approach classifier combination problem from the perspective of machine learn-
ing. Biometric scores usually correspond to some distance measure between matched
templates. In order to utilize the independence knowledge the scores should be some-
how normalized before combination to correspond to some statistical variables, e.g.
posterior class probability. Such normalization should beconsidered as a part of the
combination algorithm, and the training of the normalization algorithm as a part of the
training of the combination itself. Thus combination rule assuming classifier indepen-
dence (such as product rule in [1]) requires training similar to any classification algo-
rithm used as a combinator. The question is whether the use ofindependence assump-
tion in combination rule gave us any advantage over using generic pattern classifier in
a score space.

Our knowledge about classifier independence can be mathematically expressed in
the following definition:

Definition 1. Let indexj, 1 ≤ j ≤ M represent the index of classifier, andi, 1 ≤ i ≤

N represent the index of class. ClassifiersCj1 andCj2 are independent if for any classi
the output scoressj1

i ands
j2
i assigned by these classifiers to the classi are independent

random variables. Specifically, the joint density of the classifiers’ scores is the product
of the densities of the scores of individual classifiers:

p(sj1
i , s

j2
i ) = p(sj1

i ) ∗ p(sj2
i )

Above formula represents an additional knowledge about classifiers, which can be used
together with our training set.

Our goal is to investigate how combination methods can effectively use the indepen-
dence information, and what performance gains can be achieved. In particular we inves-
tigate the performance of Bayesian classification rule using approximated score densi-
ties. If we did not have any knowledge about classifier independence, we would have
performed the approximation ofM -dimensional score densities by, say,M -dimensional
kernels. The independence knowledge allows us to reconstruct 1-dimensional score
densities of each classifier, and set the approximatedM -dimensional density as a prod-
uct of1-dimensional ones. So, the question is how much benefit do we gain by consider-
ing the product of reconstructed1-dimensional densities instead of direct reconstruction
of M -dimensional score density.



In [4] we presented the results of utilizing independence information on assumed
gaussian distributions of classifiers’ scores. This paper repeats main results of those
experiments in Section 4. The new developments presented inthis paper are the the-
oretical analysis of the benefits of utilizing independenceinformation with regards to
Bayesian combination of classifiers (Section 3), and experiments with output scores of
real biometric matchers (Section 5).

3 Combining Independent Classifiers with Density Functions

As we noted above, we are solving a combination problem withM independent 2-
class classifiers. Each classifierj outputs a single scorexj representing the classifier’s
confidence of input being in class 1 rather than in class 2. Letus denote the density
function of scores produced by thej-th classifier for elements of classi aspij(xj),
the joint density of scores of all classifiers for elements ofclassi aspi(x), and the
prior probability of classi asPi. Let us denote the cost associated with misclassifying
elements of classi asλi. Bayesian cost minimization rule results in the decision surface

f(λ1, λ2,x) = λ2P2p2(x) − λ1P1p1(x) = 0 (1)

In order to use this rule we have to learnM -dimensional score densitiesp1(x), p2(x)
from the training data. In case of independent classifierspi(x) =

∏

j pij(xj) and deci-
sion surfaces are described by the equation

λ2P2

M
∏

j=1

p2j(xj) − λ1P1

M
∏

j=1

p1j(xj) = 0 (2)

To use the equation 2 for combining classifiers we need to learn 2M 1-dimensional
probability density functionspij(xj) from the training samples. So, the question is
whether we get any performance improvements when we use equation 2 for combina-
tion instead of equation 1. Below we will provide a theoretical justification for utilizing
equation 2 instead of 1 and following sections will present some experimental results
comparing both methods.

3.1 Asymptotic Properties of Density Reconstruction

Let us denote true one-dimensional densities asf1 andf2 and their approximations by
Parzen kernel method aŝf1 andf̂2. Let us denote the approximation error functions as
ǫ1 = f̂1 − f1 andǫ2 = f̂2 − f2. Also letf12, f̂12 andǫ12 denote true two-dimensional
density, its approximation and approximation error:ǫ12 = f̂12 − f12.

We will use the mean integrated squared error in current investigation:

MISE(f̂) = E

(
∫

∞

−∞

(f̂ − f)2(x)dx

)

where expectation is taken over all possible training sets resulting in approximation̂f .
It is noted in [3] that ford-dimensional density approximations by kernel methods

MISE(f̂) ∼ n−
2p

2p+d



where n is the number of training samples used to obtainf̂ , p is the number of deriva-
tives off used in kernel approximations (f should bep times differentiable), and win-
dow size of the kernel is chosen optimally to minimizeMISE(f̂).

Thus approximating densityf12 by two-dimensional kernel method results in asymp-
totic MISE estimate

MISE(f̂12) ∼ n−
2p

2p+2

But for independent classifiers the true two-dimensional density f12 is the product of
one-dimensional densities of each score:f12 = f1 ∗ f2 and our algorithm presented
in the previous sections approximatedf12 as a product of approximations of one-
dimensional approximations:̂f1 ∗ f̂2. MISE of this approximations can be estimated
as

MISE(f̂1 ∗ f̂2) = E

(
∫

∞

−∞

∫

∞

−∞

(

f̂1(x) ∗ f̂2(y) − f1(x) ∗ f2(y)
)2

dxdy

)

=

E

(
∫

∞

−∞

∫

∞

−∞

(

(f1(x) + ǫ1(x)) ∗ (f2(y) + ǫ2(y)) − f1(x) ∗ f2(y)
)2

dxdy

)

=

E

(
∫

∞

−∞

∫

∞

−∞

(

f1(x)ǫ2(y) + f2(y)ǫ1(x) + ǫ1(x)ǫ2(y)
)2

dxdy

)

(3)

By expanding power2 under integral we get6 terms and evaluate each one sepa-
rately below. We additionally assume that

∫

∞

−∞
f2

i (x)dx is finite, which is satisfied
if, for example,fi are bounded (fi are true score density functions). Also, note that

MISE(f̂i) = E

(

∫

∞

−∞
(f̂i − fi)

2(x)dx

)

= E

(

∫

∞

−∞
(ǫi)

2(x)dx

)

∼ n−
2p

2p+1 .

E

(
∫

∞

−∞

∫

∞

−∞

f2

1
(x)ǫ2

2
(y)dxdy

)

=

∫

∞

−∞

f2

1
(x)dx∗E

(
∫

∞

−∞

ǫ2
2
(y)dy

)

∼ n−
2p

2p+1

(4)

E

(
∫

∞

−∞

∫

∞

−∞

f2

2
(y)ǫ2

1
(x)dxdy

)

=

∫

∞

−∞

f2

2
(y)dy∗E

(
∫

∞

−∞

ǫ2
1
(x)dx

)

∼ n−
2p

2p+1

(5)

E

(
∫

∞

−∞

∫

∞

−∞

f1(x)ǫ1(x)f2(y)ǫ2(y)dxdy

)

=

E

(
∫

∞

−∞

f1(x)ǫ1(x)dx

)

∗ E

(
∫

∞

−∞

f2(y)ǫ2(y)dy

)

≤

√

∫

∞

−∞

f2

1
(x)dx

√

E

(
∫

∞

−∞

ǫ2
1
(x)dx

)

×

√

∫

∞

−∞

f2

2
(y)dy

√

E

(
∫

∞

−∞

ǫ2
2
(y)dy

)

∼

√

n−
2p

2p+1

√

n−
2p

2p+1 = n−
2p

2p+1

(6)



E

(
∫

∞

−∞

∫

∞

−∞

f1(x)ǫ1(x)ǫ2
2
(y)dxdy

)

=

E

(
∫

∞

−∞

f1(x)ǫ1(x)dx

)

∗ E

(
∫

∞

−∞

ǫ2
2
(y)dy

)

≤

√

∫

∞

−∞

f2

1
(x)dx

√

E

(
∫

∞

−∞

ǫ2
1
(x)dx

)

E

(
∫

∞

−∞

ǫ2
2
(y)dy

)

∼

√

n−
2p

2p+1 n−
2p

2p+1 = o
(

n−
2p

2p+1

)

(7)

Similarly,

E

(
∫

∞

−∞

∫

∞

−∞

ǫ2
1
(x)f1(x)ǫ2(y)dxdy

)

= o
(

n−
2p

2p+1

)

(8)

E

(
∫

∞

−∞

∫

∞

−∞

ǫ2
1
(x)ǫ2

2
(y)dxdy

)

=

E

(
∫

∞

−∞

ǫ2
1
(x)dx

)

E

(
∫

∞

−∞

ǫ2
2
(y)dy

)

= o
(

n−
2p

2p+1

)

(9)

Thus we proved the following theorem:

Theorem1 If score densities of two independent classifiersf1 andf2 arep times differ-
entiable and bounded, then the mean integrated squared error of their product approx-
imation obtained by means of product of their separate approximationsMISE(f̂1 ∗

f̂2) ∼ n−
2p

2p+1 , whereas mean integrated squared error of their product approximation
obtained by direct approximation of two-dimensional density f12(x, y) = f1(x)∗f2(y)

MISE(f̂12) ∼ n−
2p

2p+2 .

Since asymptoticallyn−
2p

2p+1 < n−
2p

2p+2 , the theorem states that under specified con-
ditions it is more beneficial to approximate one-dimensional densities for independent
classifiers and use a product of approximations, instead of approximating two or more
dimensional joint density by multi-dimensional kernels. This theorem partly explains
our experimental results of the next section, where we show that 1d pdf method (den-
sity product) of classifier combination is superior to multi-dimensional Parzen kernel
method of classifier combination. This theorem applies onlyto independent classifiers,
where knowledge of independence is supplied separately from the training samples.

4 Experiment with Artificial Score Densities

In this section we summarize the experimental results previously presented in [4]. The
experiments are performed for two normally distributed classes with means at (0,0) and
(1,1) and different variance values (same for both classes). We used a relative combina-
tion added error, which is defined as a combination added error divided by the Bayesian
error, as a performance measure. For example, table entry of0.1 indicates that the com-
bination added error is 10 times smaller than the Bayesian error. The combination added



error is defined as an added error of the classification algorithm used during combina-
tion [4].

The product of densities method is denoted here as ’1d pdf’. The kernel density esti-
mation method with normal kernel densities [5] is used for estimating one-dimensional
score densities. We chose the least-square cross-validation method for finding a smooth-
ing parameter. We employ kernel density estimation Matlab toolbox [6] for implementa-
tion of this method. For comparison we used generic classifiers provided in PRTools[7]
toolbox. ’2d pdf’ is a method of direct approximation of2-dimensional score densi-
ties by2-dimensional Parzen kernels. SVM is a support vector machine with second
order polynomial kernels, and NN is back-propagation trained feed-forward neural net
classifier with one hidden layer of 3 nodes. For each setting we average results of 100
simulation runs and take it as the average added error. Theseaverage added errors are
reported in the tables.

In the first experiment (Figure 1(a)) we tried to see what added errors different
methods of classifier combination have relative to the properties of score distributions.
Thus we varied the variances of the normal distributions (σ) which varied the minimum
Bayesian error of classifiers. All classifiers in this experiment were trained on 300 train-
ing samples. In the second experiment (Figure 1(b)) we wanted to see the dependency
of combination added error on the size of the training data. We fixed the variance to
be 0.5 and performed training/error evaluating simulations for 30, 100 and 300 training
samples.

σ 1d pdf 2d pdf SVM NN
0.2 1.09331.25540.20193.1569
0.3 0.13990.17430.05130.1415
0.4 0.06420.07940.02940.0648
0.5 0.02000.05150.02130.0967

(a)

Training size 1d pdf 2d pdf SVM NN
30 0.21580.20530.12030.1971
100 0.06210.07880.04860.0548
300 0.02000.05150.02130.0967

(b)

Fig. 1. The dependence of combination added error on the variance of scoredistributions (a) and
the dependence of combination added error on the training data size (b).

As expected, the added error diminishes with increased training data size. It seems
that the 1d pdf method improves faster than other methods with increased training data
size. This correlates with the asymptotic properties of density approximations of Sec-
tion 3.1.

These experiments provide valuable observations on the impact of utilizing the
knowledge of the score independence of two classifiers. The reported numbers are aver-
ages over 100 simulations of generating training data, training classifiers and combining
them. Caution should be exercised when applying any conclusions to real life problems.
The variation of performances of different combination methods over these simulations
is quite large. There are many simulations where ’worse in average method’ performed
better than all other methods for a particular training set.Thus, in practice it is likely



that the method, we find best in terms of average error, is outperformed by some other
method on a particular training set.

5 Experiment with Biometric Matching Scores

We performed experiments comparing performances of density approximation based
combination algorithms (as in example 1) on biometric matching scores from BSSR1
set [8]. The results of these experiments are presented in Figure 2.
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Fig. 2. ROC curves for BSSR1 fingerprint and face score combinations utilizing(’1d pdf recon-
struction’) and not utilizing (’2d pdf reconstruction’) score independence assumption: (a), (b)
BSSR1 fingerprint (li set) and face (C set); (c), (d) BSSR1 fingerprint (li set) and face (G set) .

In the graphs (a) and (b) we combine scores from the left indexfingerprint matching
(set li) and face (set C) matching. In graphs (c) and (d) we combine the same set of
fingerprint scores and different set of face scores (set G). In both cases we have 517
pairs of genuine matching scores and 517*516 pairs of impostor matching scores. The
experiments are conducted using leave-one-out procedure.For each user all scores for



this user (one identification attempt - 1 genuine and 516 impostor scores) are left out for
testing and all other scores are used for training the combination algorithm (estimating
densities of genuine and impostor matching scores). The scores of ’left out’ user are
then evaluated on the ratio of impostor and genuine densities providing test combination
scores. All test combination scores (separately genuine and impostor) for all users are
used to create the ROC curves. We use two graphs for each ROC curve in order to show
more detail. The apparent ’jaggedness’ of graphs is caused by individual genuine test
samples - there are only 517 of them and most are in the region of low FAR and high
FRR.

Graphs show we can not assert the superiority of any one combination method. Al-
though the experiment with artificial densities shows that reconstructing one-dimensional
densities and multiplying them instead of reconstructing two-dimensional densities re-
sults in better performing combination method on average, on this particular training set
the performance of two methods is roughly the same. The asymptotic bound of Section
3 suggests that combining three or more independent classifiers might make utilizing
independence information more valuable, but provided dataset had only match scores
for two independent classifiers.

6 Conclusion

The method for combining independent classifiers by multiplying one-dimensional den-
sities shows slightly better performance than a comparableclassification with approx-
imated two-dimensional densities. Thus using the independence information can be
beneficial for density based classifiers. The experimental results are justified by the
asymptotic estimate of the density approximation error.

The knowledge about independence of the combined classifiers can also be incor-
porated into other generic classification methods used for combination, such as neural
networks or SVMs. We expect that their performance can be similarly improved on
multimodal biometric problems.
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