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Abstract

If multiple face images are available for the creation of
person’s biometric template, some averaging method could
be used to combine the feature vectors extracted from each
image into a single template feature vector. Resulting av-
erage feature vector does not retain the information about
image feature vector distribution. In this paper we con-
sider the augmentation of such templates by the informa-
tion about diversity of constituent face images, e.g. sample
standard deviation of image feature vectors. We consider
the theoretical model describing the conditions of the use-
fulness of template diversity measure, and see if such con-
ditions hold in real life templates. We perform our experi-
ments using IARPA face image datasets and deep CNN face
recognizers.

1. Introduction
Traditionally, biometric template construction methods

consider a single image or a sensor scan for feature extrac-
tion. But for some biometric modalities a series of images
or scans could be readily available instead of a single image
or scan. This is the case for face recognition considered in
the current paper - both single images and video sequences
of a person can be utilized for the construction of biometric
template. Recent facial biometrics databases, e.g. IJB-A [9]
or YTF [19], include the video sequences of the facial im-
ages and stimulate future research into construction of bio-
metric templates from scan sequences.

It appears that there are two main directions of creating
templates from the sets of images. The first direction is the
feature vector averaging or aggregation [2, 21], where the
feature vectors extracted from single images are averaged
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by some algorithm to produce a single feature vector repre-
senting the template load; such feature vector is typically of
the same dimension as source image feature vectors. The
second direction is to keep separate feature vectors for each
image in the template, and during the matching perform set-
to-set feature vector comparisons; the final score is the ag-
gregate of the comparison scores between individual image
feature vectors in two templates [23]. Since the second ap-
proach was delivering worse performance than the first one
on considered data set in our preliminary experiments, we
concentrate on the first approach in current paper.

When the feature vectors of separate images are aggre-
gated into a single feature vector of the template, useful
matching information might be lost. In this paper we are
interested in the spread of original face feature vectors. For
example, the template might originate from a single face
image or from a video sequence of face images containing
essentially the same face with the same pose and light con-
ditions. Alternatively, the template might be constructed
from a variety of face images in different poses, illumina-
tions and facial expressions. Intuitively, the second case
contains more information than the first one, and we want
our template diversity to reflect this. Note that during tem-
plate construction and feature vector aggregation we end up
with a single feature vector in any case; we can assume that
in the second case our feature vector is more reliable and the
template diversity measure should reflect this information.

In addition to deriving the formulas for template diver-
sity (section 3) and determining their usefulness in the facial
recognition system (section 6), we conduct a series of exper-
iments on simulated model to find out the conditions under
which the diversity measures perform best (section 4), and
check if such conditions hold for real life facial templates
(section 5).

2. Prior Work
The template diversity measure can be viewed as one in

the category of biometric template quality measures, and
a significant number of works have been presented over



the years trying to improve the performance of biometric
matchers by incorporating some template quality informa-
tion. Typically, some measure of quality is extracted from
image or biometric scanner data, and it is subsequently
fused with original biometric comparison scores [18]. In-
stead of fusing quality measures with matching scores,
more detailed matching algorithm modifications could be
used, such as the modification of algorithm steps based on
quality measures [3] or selection of good quality images for
enrollment and matching [1].

The examples of more complex approaches to incorpo-
rating quality measures into biometric algorithms also ex-
ist. Kryszczuk and Drygajlo [10] present a framework for
building a classifier ensemble which incorporates the qual-
ity measures along with matching scores. Poh and Kit-
tler [15] perform clustering of biometric samples based on
the vector of quality measures, and each cluster gets its own
decision or classification parameters.

Some research also exists into deriving automatic mea-
sures of quality. For example, Grother and Tabassi [6] tried
to use the distributions of matching scores to derive quality
measures. Yang et al. [21] train neural network to perform
the aggregation of image-wise feature vectors into a single
template; it appears that the network is trained to implicitly
give bigger weights for better quality images.

One common feature of most presented approaches is
that the quality measure relates to a particular image or
a biometric scan; in many cases, especially in fingerprint
matching research, a separate algorithm is developed to es-
timate the quality of the image. If template is composed of
a number of images, then the image qualities could be aver-
aged, or some images could be given more weight according
to quality measure. In contrast, in our work we are looking
at the templates composed of many images, and try to mea-
sure how well such sets reflect the variability of biometric
observations. Our current work derives diversity measures
directly from the feature vectors of images included into
template, but it could be possible to extend this work by de-
riving diversity measures directly from images by separate
algorithms.

The importance of diversity in images used for template
creation is frequently emphasized in another face recogni-
tion technique consisting in augmentation of the training
sets or original imagery by differently altered images [20].
Our approach does not change the diversity of the template
or training set, but only adds its measure to the matching
process.

Our work is also connected to the work on score fusion
methods incorporating user specific fusion functions [14]
or decision thresholds [8]. The methods presented in such
works either assume that there is a sufficient number of tem-
plates for a single user to estimate the user specific distribu-
tion of genuine comparison scores, or use some parametric

models to estimate the user specific changes in score distri-
butions from the set of impostor scores. In contrast to these
works, we derive diversity measures internally for a given
template using its images, and not performing comparisons
with other templates.

3. Diversity Measure Construction
Suppose the facial template is constructed usingN facial

images, and each facial image produces a feature vector fn.
We will assume that the template will be represented by the
mean of these feature vectors:

f̄ =
1

N

∑
n=1...N

fn (1)

We want the diversity measure to reflect the spread of in-
dividual image facial feature vectors around the mean, and
thus we will define the template diversity measure as

d =

√
1

N − 1

∑
n=1...N

||f̄ − fn||2 (2)

Note, that if fn were one-dimensional vectors, then this
definition would have coincided with the traditional defini-
tion of sample standard deviation. Although scatter matri-
ces represent a more straightforward extension of standard
deviation concept to multidimensional space, their use in
current problem might pose difficulty since number of im-
ages in the templates is usually less than the dimension of
feature vectors. Instead, we utilize eq. 2, which have been
used before in different applications and it is termed as ra-
dial standard deviation [7].

We hypothesize that the usefulness of particular diversity
measure will greatly depend on the statistical distribution of
face image feature vectors. Thus, for different data sets and
feature vector extraction methods other diversity measures
could perform better and should be used instead. In this
paper we also performed experiments using mean absolute
measure or Gini’s mean difference [22]:

d =
1

N(N − 1)

∑
k,n=1...N,k 6=n

||fk − fn|| (3)

Although such measure of diversity, along with related Gini
index, is more frequently used in different applications, it
performed a little worse than the diversity of eq. 2 in our
experiments.

4. Diversity Measure Simulations
In order to understand the impact of utilizing the diver-

sity measures on the performance of face matchers, we per-
formed a series of simulation experiments. Although, the



performance improvement on real life data sets is most im-
portant factor in utilizing diversity measures, the simula-
tions allow us to change the parameters of the model and
understand the conditions when improvements occur.

We employ the following model of face feature vec-
tor distributions. Suppose that the feature vectors are lo-
cated in L dimensional space. Let mi be the master fea-
ture vector of person i, and suppose that all feature vec-
tors of person i are generated using normal distribution
f i,n ∼ N (mi, σiI). Next, suppose that the master fea-
ture vectors of all persons are normally distributed around
origin: mi ∼ N (0, σI). Finally, we define the common
standard deviation σ = 1 and we make individual person’s
standard deviations randomly uniformly distributed on in-
terval σi ∼ U(.5− α, .5 + α).

Note that depending on the parameter α we would have
less or more variation in the individual person’s standard de-
viation of feature vectors. In turn, this will result in less or
more dispersion of the generated person’s feature vectors,
and thus in smaller or greater template diversity measure.
Therefore, this model would allow us to investigate the con-
nection between assumed person’s individual degree of face
variation, resulting changes in diversity measures, and the
benefits of utilizing diversity measures.

During the simulations we randomly generate the per-
son’s N feature vectors f i,n according to above formulas
and take the mean of these feature vectors as person’s tem-
plate (eq. 1), f̄ i. To calculate genuine matching scores,
we randomly generate one more feature vector of the same
person, f i,probe, and calculate a matching score as a dis-
tance: sgen = ||f̄ i − f i,probe||. To calculate impostor
score, we randomly generate a feature vector of some other
person, f j,probe, and get corresponding distance as score :
simp = ||f̄ i − f j,probe||. The diversity measure d for a
particular template is generated according to formula 2.

The performance of the simulated system without diver-
sity measure can be simply evaluated by generating the sets
of genuine and impostor matching scores and by construct-
ing ROC curves using these sets of scores. To observe the
effect of utilizing diversity measure, we generate genuine
and impostor samples as pairs {sgen, d} and {simp, d}, and
approximate likelihood ratios LR(s, d) =

pgen(s,d)
pimp(s,d)

in a
grid s × d by accumulating samples in corresponding grid
bins.

Tables 1 and 2 contain the results of simulation experi-
ments; each table cell contain EER value of original system
performance (without diversity measure) and performance
of the system fusing matching score with the diversity mea-
sure. The number of simulation samples for each run (109)
is chosen so that the EER is precise to approximately 10−5.
We performed the simulations using two most frequently
used in face recognition distance measures - Euclidean and
Cosine, and considered different values of N (number of

α N = 2 N = 3 N = 4 N = 5

α = 0
8.83 7.76 7.21 6.88
8.83 7.76 7.21 6.88

α = 0.1
9.35 8.27 7.72 7.38
9.31 8.19 7.61 7.25

α = 0.2
10.74 9.62 9.04 8.69
10.30 8.96 8.26 7.83

α = 0.3
12.49 11.31 10.69 10.31
11.25 9.70 8.94 8.48

α = 0.4
14.30 13.07 12.42 12.02
12.08 10.49 9.73 9.28

Table 1. Improvements from utilizing diversity measures in sim-
ulated systems with Euclidean distance based matching scores.
Each cell presents original matcher performance (top) and perfor-
mance of original score fused with diversity measures (bottom) (%
EER).

α N = 2 N = 3 N = 4 N = 5

α = 0
10.49 9.54 9.03 8.71
9.98 8.80 8.17 7.78

α = 0.1
10.62 9.66 9.15 8.84
10.05 8.85 8.21 7.82

α = 0.2
11.00 10.03 9.52 9.20
10.24 8.99 8.32 7.91

α = 0.3
11.59 10.61 10.08 9.75
10.52 9.18 8.49 8.07

α = 0.4
12.31 11.32 10.78 10.43
10.81 9.42 8.72 8.30

Table 2. Improvements from utilizing diversity measures in simu-
lated systems with Cosine distance based matching scores. Each
cell presents original matcher performance (top) and performance
of original score fused with diversity measures (bottom) (% EER).

images in the template) and α. Also we set the dimension
of feature space L = 5.

Some interesting properties could be observed from the
experiments. First, the performance improvement can exist
even if α = 0, i.e. if there is no variation in each per-
son’s feature vectors and each person’s face feature vectors
are distributed the same way around person’s master feature
vector. This is the case with cosine distance scores. At the
same time, Euclidean distance score simulations show that
diversity might have no effect if there is no variation in each
person’s feature vector distributions. Second, the effect of
utilizing template diversity measure seems to be bigger if
there is a variation in the distribution of feature vectors of
each person. For example, for N = 5 and Cosine distance
calculation we get improvement around 1% for α = .1,
and around 2% for α = .4. Finally, it appears that the di-
versity measure mitigates the effect of increasing variation
between person’s face feature vectors distributions. Thus if



α increases, then the error rate for system utilizing diversity
measure increases much slower than the error rate of the
original system.

5. Testing for Template Diversity

The simulation tests performed in section 4 show that the
impact of using template diversity measures is more pro-
nounced if there is a variation in the distribution of individ-
ual face image feature vectors around person’s master, or
mean, feature vector. Moreover, there could be no benefit of
using template diversity if there is no such variation. There-
fore, it would be interesting to verify the presence of such
variation in real face data before utilizing diversity measure
for score fusion.

The statistical tests on homogeneity of variance seek to
verify if the samples in different groups of population are
generated using same variance values, and we will use one
of such tests, Levene’s test [11], for our purpose. In our case
we define the groups as the face feature vectors of individual
persons. The test’s null hypothesis is that all groups have
samples generated with the same variance; for simulation
model of the previous section it would mean that all σi are
equal, and α = 0.

The test’s results are presented in table 3. In this table,
the test values are computed as [13]:

W =
(N − k)

(k − 1)

∑k
i=1Ni(Z̄i. − Z̄..)

2∑k
i=1

∑Ni

j=1(Zij − Z̄i.)2
(4)

where Ni is the number of images in the template of per-
son i, k is the number of considered templates, Zij =
||f̄ i − f i,j ||, f i,j is the j-th feature vector of the template
of person i, f̄ i is the mean of f i,j , Z̄i. is the mean of Zij

taken over feature vectors of template i, Z̄.. is the mean of
Zij taken over all feature vectors of all persons. The critical
values of F-distribution are calculated using the program on
https://www.waterlog.info/f-test.htm.

Our data set and face feature vector extractors are de-
scribed in section 6. Since there is a guideline for a mini-
mum number of samples in each group, we consider only
those facial templates, which contain at least M (M =
5, 10, 15) images or feature vectors. Additionally, since
used data set contains both single images and video se-
quences, and the frames from the same video will produce
similar feature vectors spoiling the test’s results, we left a
single random frame from each video in the templates. The
total number of resulting templates and feature vectors are
given table 3.

Since the test values in all cases are bigger than the cor-
responding critical values (at .01 significance level) of the
tests, the null hypothesis of equal variance is rejected in all
cases. According to the simulation analysis of section 4,

the use of diversity measures should be beneficial for our
system.

Note that the results presented in this section seem to
imply the existence of variation in the distributions, and in
particular, variance, of facial images for different persons.
Thus, for one person with bigger variance more diverse face
imagery could be generated, and for another person with
smaller variance less diverse imagery could only be gener-
ated. This property of facial images could potentially be
exploited not only for the definition of template diversity
measures, but for other face recognition related tasks, e.g.
creating facial models.

6. Experiments
Section 5 suggests that there is a variability in the distri-

butions of feature vectors for different persons in the con-
sidered face recognizers, and section 4 suggests that we
should see a performance increase in our systems when we
try combine the diversity measure with matching scores.
But, since the precise distribution of feature vector for real
life data is not known, the performance improvement is not
guaranteed and can only be verified by fusion experiments.

We conduct our experiments on the IARPA Janus
Benchmark-A (IJB-A) dataset [9], and on the later IARPA
Janus Benchmark-C (IJB-C) [12] dataset, which is a su-
perset of the original IJB-A. The testing protocols specify
gallery and probe templates with different numbers of con-
stituent face images and video frames (from 1 to more than
100). Thus, these sets suits well for our task of investigating
the proposed template diversity measures.

Three different deep CNN face recognizers are used
to extract feature vectors from each database face image:
CNN1 [2], CNN2 [17], and CNN3 [16]. All three recog-
nizers construct templates by averaging the image feature
vectors and calculate matching scores using cosine distance
between averaged feature vectors, and in this paper we do
it the same way. Note, that all three referenced method per-
form additional feature vector embedding (Joint Bayesian
Embedding for CNN1 and Triplet Probabilistic Embedding
for CNN2 and CNN3), which we omitted for the experi-
ments in this paper.

Since cosine distance is used for matching these tem-
plates (it performs better than Euclidean distance), we also
used cosine distance for calculating template diversity mea-
sures (||.|| of eqs. 2 and 3). Also, since cosine distance cd
is not truly a distance, but rather a confidence value and
has a range from −1 to 1, we replaced it by 1 − cd while
calculating diversity measures. After calculating diversity
measures and face recognition scores we employ a tradi-
tional backpropagation neural network to fuse them. Thus,
our fusion is represented as a function F (s1, s2, s3, dg, dp),
where si is the comparison score output by CNN i, dg is
the diversity measure computed for gallery template, and



Min # Total Total Critical Test Value Test Value Test Value
of images Templates Samples Value CNN1 CNN2 CNN3

15 26 595 1.81 10.53 2.05 5.24
10 60 973 2.30 6.53 4.38 5.81
5 365 2754 1.20 3.95 3.23 4.20

Table 3. Result of Levene’s test on homogeneity of variances.

dp is the diversity measure computed for probe template.
For baseline performance with no diversity measures we do
not include any diversity measure into neural network in-
puts: F (s1, s2, s3). And in order to separately judge the
benefits of gallery and probe diversity measures, we train
fusion networks accepting corresponding sets of parame-
ters: F (s1, s2, s3, dg) and F (s1, s2, s3, dp). In all cases,
we used same training sets and same network architecture
(3 layer fully connected perceptron) with the exception of
the number of input parameters.

It might be possible to further increase the impact of uti-
lizing template diversity by deploying more complicated fu-
sion architectures, as it is done in other works utilizing tem-
plate quality measures [5]. But in our work we deployed
such rather straightforward fusion approach possibly pro-
viding a more objective comparison on the benefits of uti-
lizing different diversity measures.

Table 4 contains the results of experiments on IJB-C
dataset fusing all three CNN recognizer scores with the
diversity measures calculated from either gallery or probe
templates, or both of them. Since IJB-C dataset does not
have separate training subset, we employ bootstrap training
and testing procedure. Thus, in each bootstrap iteration we
randomly select about a half gallery and a half probe tem-
plates for training and other halves for testing. After making
sure that there is no intersection between training and test-
ing sets (no same person), we obtain sets of approximately
5000 probe and 900 gallery templates. The bootstrap pro-
cedure is repeated 100 times and the mean and 95% confi-
dence interval results are reported in the table.

Table 5 contains the results of experiments on IJB-A
dataset. We follow the IJB-A testing protocol defining 10
splits of dataset into training, testing gallery and testing
probe subsets. Since we need the samples of genuine and
impostor training scores to train the fusion networks, and
IJB-A protocol does not provide training gallery and train-
ing probe subsets, we perform random selection of such
subsets from training set, and perform training/testing boot-
strap experiments 10 times for each split. The means and
95% confidence interval of all 100 (10 splits * 10 boot-
straps) experimental performance measures are reported in
the table.

Our diversity measures for the experiments are calcu-
lated using eqs. 2 and 3 with the following modifications.
First, we average the feature vectors of images or frames

having the same media identifier (the database metadata
contains this information) and obtain media ID based clus-
ters. At the second step, we use these clusters as feature
vectors fn to calculate diversity measures by eqs. 2 and 3.
This approach is consistent with the reference methods of
template averaging in [2, 17, 16]. Otherwise, if we treat
the video frames and separate images of the template with
equal weights, then diversity measures give only very small
improvements over baseline methods. We hypothesized that
in this case the video frames produce large numbers of close
feature vectors, which influences the calculation of proper
template diversity measures. Also note, that the diversity
measures derived using different CNNs are highly corre-
lated, and give approximately the same benefits during fu-
sion. Thus, the fusion experiments presented in this sec-
tion utilized only the diversity measures derived a single
CNN3 [16].

Table 5 contains also the results of augmenting the tem-
plate adaptation method of comparison score calculation [4]
with our template diversity measures. For a given template
consisting of a set of person’s images, the template adap-
tation method constructs a linear SVM separating this set
from a large set of negative samples, or a reference set
of face images disjoint from that person’s images. The
comparison score between that template and unknown tem-
plate is calculated as a margin of unknown template’s av-
eraged feature vector calculated with the trained template’s
SVM. Separate SVMs are trained for both gallery and probe
templates, and the final comparison score is an average
of gallery’s SVM evaluated at probe’s feature vector, and
probe’s SVM evaluated at gallery’s feature vector. Consis-
tent with the results of [4], the template adaptation method
did provide the improvement over our baseline cosine dis-
tance based score calculation, with the biggest improve-
ments observed at relatively big FAR values. Since the tem-
plate adaptation method utilizes the sets of images of par-
ticular template to build template specific linear SVMs, and
incorporates SVM margins into score calculations, we spec-
ulated that template adaptation method implicitly incorpo-
rates the characteristics of template’s image distributions,
i.e. template diversity. But in our experiments, we saw that
the addition of diversity measures to the template adapta-
tion comparison scores still has significant benefits to the
system performance.

Overall, the experiments of this section suggest that per-



Diversity Method FAR No Diversity Gallery d Probe d Probe& Gallery d

Mean Ave Dist .1% 95.33± .09 95.52± .08 95.50± .09 95.60± .08
.01% 90.42± .15 90.70± .13 90.54± .15 90.96± .12

Radial SD .1% 95.33± .09 95.58± .08 95.49± .09 95.76± .09
.01% 90.42± .15 90.95± .14 90.88± .14 91.18± .14

Table 4. Performance (% TAR at FAR=.1% and at FAR=.01%) of systems merging three considered CNN face recognizers and different
template diversity measures on IJB-C dataset.

Matching method FAR No Diversity Mean Ave Dist Radial SD
Cosine .1% 93.40± 0.19 93.75± 0.17 93.58± 0.15

Distance .01% 88.82± 0.53 89.71± 0.45 89.60± 0.41
Template .1% 94.37± 0.18 94.94± 0.11 94.78± 0.12

Adaptation .01% 88.91± 0.92 91.23± 0.28 91.67± 0.33

Table 5. Performance (% TAR at FAR=.1% and at FAR=.01%) of systems merging three considered CNN face recognizers and different
template diversity measures on IJB-A dataset.

formance improvements from using template diversity mea-
sures are somewhat limited, but consistent and agree with
the theoretical analysis showing that improvements are very
likely. Moreover, some crafting and accounting for data pe-
culiarities might help to construct better performing diver-
sity measures. Radial standard deviation method of eq. 2
seems to perform better than mean average distance method
of eq. 3 for media id cluster based diversity measures.

7. Conclusion

In this paper we achieved the following goals:

• We presented two possible ways to define the diversity
of facial templates.

• We conducted simulation tests showing the impact of
variation in person’s feature vector distributions on the
effectiveness of diversity measure utilization.

• We showed that real life facial images have such vari-
ation (inhomogeneity of variances of feature vectors
belonging to different persons).

• We presented the results of fusing the diversity mea-
sures with original deep CNN matching scores.

The performed experiments showed that the improve-
ments are consistent, and some experimentation with the
diversity calculation formula might be needed to achieve
best benefits. The template diversity measure can also read-
ily complement other traditional template quality measures
to achieve superior system performance.

Future research directions could include the construction
of template diversity measures by using some auxiliary in-
formation, either extracted by separate algorithms or given

as a an image metadata, e.g. face pose information, or con-
structing a trainable algorithm for calculating diversity mea-
sures.
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