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We have investigated di®erent scenarios of combining pattern matchers. The combination

problem can be viewed as a construction of a postprocessing classi¯er operating on the

matching scores of the combined matchers. The optimal combination algorithm for veri¯ca-
tion systems corresponds to the likelihood ratio combination function. It can be implemented

by the direct reconstruction of this function with genuine and impostor score density ap-

proximations. However, the optimal combination algorithm for identi¯cation systems is dif-
¯cult to express analytically. We will show that this di±culty is caused by the dependencies

between matching scores assigned to di®erent classes by the same classi¯er. The experiments

on the large sets of scores from handwritten word recognizers operating on postal images and

biometric matchers (NIST biometric score set BSSR1) con¯rm the existence of such depen-
dencies and that the optimal combination functions for veri¯cation and identi¯cation systems

are di®erent.

Keywords: Combination of classi¯ers; biometric identi¯cation systems; likelihood ratio;

weighted sum.

1. Introduction

In this paper, we investigate the problem of combining the outputs of multiple

classi¯ers. Combined classi¯ers might use di®erent features or di®erent matching

algorithms, and as the large body of previous research shows, the combined algor-

ithm can have superior performance when compared to any single participating

classi¯er. We will assume that the set of classi¯ers being combined is ¯xed. Therefore

we do not consider the problem of classi¯er ensembles with dynamically generated

set of classi¯ers. In fact, in this study we will be only considering the combination of

two given classi¯ers. Thus our problem consists of learning the statistical properties

of each classi¯er's output and ¯nding the proper combination algorithm.

We will also assume that each classi¯er outputs a numerical matching score for

each class which re°ects the con¯dence that the input belongs to that class. We will

call such classi¯ers \matchers" to distinguish them from other types of classi¯ers
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which output only a single class label corresponding to the most probable class of the

input or class ranks. Xu et al.28 described three types of classi¯er combinations based

on the types of output produced by a single participating classi¯er. In this paper, we

deal with type III combinations which return a measurement level scores corre-

sponding to every class which can be used to rank the classes.

The applications considered in this paper include the combination of multimodal

biometric matchers and handwritten word recognizers. In both cases, two matchers

process the input and produce an output consisting of two matching scores for each

class. In the case of biometric matchers, the input consists of ¯ngerprint and face

templates, and the classes are the enrolled persons. The two matching ¯ngerprint

and face scores are used to obtain a single combined score for each person, and the

person corresponding to the best combined score is output as the system's classi¯-

cation result. In case of handwritten word recognizers, the input is an image of a

word, and the classes are the words in a lexicon. Two matchers are used to obtain two

matching scores for each lexical entry. The combination algorithms produce a single

combined score for each entry, and the lexical entry with best combined score is

taken as the classi¯cation result.

1.1. Problem description

LetM denote the number of combined classi¯ers and N denote the number of classes.

Each classi¯er j ¼ 1; . . . ;M produces sets of matching scores sji assigned to each of

i ¼ 1; . . . ;N classes. Our combination methods will operate on these scores. In both

the biometric and word recognition applications, a combination function f of scores is

used to combine M matching scores corresponding to each class, and the classi¯-

cation result C is determined by the corresponding combination rule:

C ¼ arg max
i¼1;...;N

fðs1i ; . . . ; sMi Þ ð1Þ

Note that the upper index of the score corresponds to the classi¯er which produced

the score, and the lower index corresponds to the class for which it was produced.

The sum function fðs1; . . . ; sMÞ ¼ s1 þ � � � þ sM corresponds to the sum rule, the

product function fðs1; . . . ; sMÞ ¼ s1 � � � sM corresponds to the product rule and so

on. Such combination functions commonly used by researchers are usually ¯xed (as

opposed to being learned from training data).17 Using these ¯xed combination rules

usually requires a processing step to normalize the matching scores. In general, these

ad hoc functions are not optimal. We are interested in deriving the optimal combi-

nation function f of Eq. (1) using training data and machine learning algorithms. We

illustrate with the help of arti¯cial examples the di±culty of this task even when a

su±cient number of training samples are available.

The set of matching scores available for the combination algorithm is shown

(Fig. 1) as a lattice with rows containing the scores produced by a classi¯er j and

columns containing the scores assigned to a class i. The combination function f
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accepts as parameters scores for class i (s1i ; . . . ; s
M
i ) and produces a combined

score Si.

1.2. Veri¯cation and identi¯cation modes

Note, that two modes of operation are usually considered for the matching system. In

the ¯rst, veri¯cation mode, the identity of the class i is provided as a hypothesis, and

the decision to accept or reject class i as a matching result is based on comparing the

combined score Si to some threshold. In the second, identi¯cation mode, no hy-

pothesis is provided and combined scores Si are calculated for all classes i. The ¯nal

classi¯cation decision is made by choosing the class with the greatest score returned

by Eq. (1). Our goal is to ¯nd the optimal combination function for the identi¯cation

system. The guiding intuition of our research is to compare the problem of ¯nding the

optimal combination function f of the identi¯cation system of Eq. (1) with the

problem of ¯nding the optimal combination function of the same system operating in

the veri¯cation mode.

Di®erent modes of operation require di®erent measures of performance. Whereas

ROC or DET curves are useful for measuring performance in veri¯cation systems,

the performance in identi¯cation systems is usually measured by the correct

identi¯cation rate or cumulative match curve (CMC). In this paper, we use correct

identi¯cation (classi¯cation) rate, that is the frequency of correctly identifying the

class by Eq. (1).

One very important notion that we explore in this paper is the notion of score

dependence. Note, that there could be two types of score dependencies in a matching

system (Fig. 1). The ¯rst type of dependence is that between matchers — between

the scores assigned by di®erent matchers to a single class. This is the dependence

between scores in a column (s 1
i ; . . . ; s

M
i ). The second type of dependence is that

between scores produced by a single matcher and assigned to di®erent classes.

One can view it as a dependence between scores located in a single row (sj1; . . . ; s
j
N).

The ¯rst type of dependence has been the focus of researchers thus far and is ade-

quately addressed in the construction of the combination function f. However, the

main focus of our research in this paper is in the second type of dependence.

Fig. 1. The set of matching scores available for the combination algorithms in identi¯cation systems.
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Understanding this dependence is a necessary step in constructing optimal combi-

nation function for identi¯cation systems.

1.3. Paper outline

In the next section, we review some of the previous research in classi¯er combination

¯eld. In Sec. 3, we show that the optimal combination function for veri¯cation

systems will be also optimal for equivalent identi¯cation systems only if an additional

condition of independence of matching scores assigned to di®erent classes is satis¯ed.

Section 4 presents two important examples to illustrate that if this independence

condition is not satis¯ed, then the optimal combination functions of the two systems

are necessarily di®erent. This is a fundamental ¯nding in the classi¯er combination

¯eld based on our assessment and literature review.

Section 5 provides experiments con¯rming the di®erence in the optimal combi-

nation functions for veri¯cation and identi¯cation systems. First, we introduce the

handwritten word recognizers (Sec. 5.1) and biometric matchers (Sec. 5.2) which are

used in the experiments. The dependence between scores returned by a single

matcher for di®erent classes is presented in Sec. 5.3. In Sec. 5.5, we compare the use

of likelihood ratio and weighted sum functions for combination.

2. Previous Work

Although research in the classi¯er combination ¯eld has produced several new

combination algorithms, a theoretical underpinning for this research area is still

missing. Jain et al.15 stated that methods claiming optimality actually make rather

strict assumptions on the properties of the classi¯ers being combined. For example,

Kittler et al.17 assumed that the matching scores produced by the classi¯ers parti-

cipating in the combination correspond to posterior class probabilities, thus justi-

fying their use of product or sum combination rules depending on some additional

assumptions. In the applications we have considered in this paper, the matching

scores re°ect distance measures between the biometric templates or between the

handwritten word image and a lexicon word. These distances can be converted to

probabilities,6,9,14 but this conversion is nontrivial and prone to errors.3

Snelick et al.20 investigated the combination of three ¯ngerprint and one face

biometric matchers. Five combination methods and ¯ve score normalization func-

tions are tested to construct the combination algorithm. Since only a limited number

of combination algorithms are tested, there is no guarantee that the method ¯nally

chosen is optimal or even close to optimal.

Bayesian and Dempster-Shafer combination methods in Ref. 28 required learning

confusion matrices for each classi¯er participating in the combination. The Behavior-

Knowledge Space combination method in Ref. 13 requires learning a decision space of

a set of classi¯ers participating in the combination. Although these approaches can

be considered to be optimal in some sense, their utility is restricted to applications
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with a few classes. However, in our applications of biometrics and handwritten word

recognition, the number of classes N is of the order of thousands.

The goal of combination methods proposed in this paper is to perform combi-

nations in identi¯cation systems [Eq. (1)] with a large number of classes N. We show

that optimal combinations in identi¯cation and veri¯cation systems need not be the

same. Our primary interest is in approximating the optimal combination functions

for identi¯cation systems. Previous work in classi¯er combination has actually failed

to address this di®erentiation, and the performance of generic combination methods

has been evaluated without paying attention to whether they are designed for

identi¯cation systems or veri¯cation systems. For example, Lee et al.18 explicitly

reduced the problem of combining matchers in a biometric identi¯cation system to

the task of applying a classi¯er (SVM) trained for an equivalent veri¯cation system.

We show in this paper, by means of arti¯cial examples (Sec. 4), that such an

approach may not produce an optimal combination algorithm for identi¯cation

systems.

Some researchers5,12 have tried to predict the performance of an identi¯cation

system given data about the performance of an equivalent veri¯cation system. The

necessary condition used in these predictions is the independence of matching

scores assigned to di®erent classes. Our experiments show that this condition is

unrealistic and the scores are usually dependent. Therefore, the predictions of

performance of identi¯cation systems based on observations made in veri¯cation

systems might not be valid. In fact, the score dependence is precisely the reason

why veri¯cation and identi¯cation systems require di®erent classi¯er combination

algorithms.

One way to account for the dependence of scores assigned to di®erent classes is to

use not only single scores assigned to one class by combined classi¯ers, but some

additional information derived from scores assigned to other classes. Such infor-

mation might include the rank of the current score, the di®erence between this score

and the best assigned score, or any other statistic of the score set produced by the

same classi¯er. The combination methods based on ranks, e.g. Behavior-Knowledge

Space,13 might be e±cient in using this information, but the original score gets

discarded. More complex schemes, such as in Ref. 2, consider the weighting of in-

formation (e.g. di®erence between scores) and can provide better performance than

combinations using ranks only. But, as we discussed in Ref. 22, such combinations

belong to more complex type of combinations not de¯ned by Eq. (1). We restrict our

attention in the current paper to seeking proper combination functions of Eq. (1),

though investigating more complex combinations explicitly including the depen-

dence information should be one of future research directions.

We have presented the initial results of our investigation into the properties of

optimal combination functions in identi¯cation systems in Refs. 25 and 26. In this

paper, we provide a deeper discussion on the relationship between dependence of

matching scores and the construction of optimal combination function. In particular,
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two illustrative examples in Sec. 4 give an insight to the di±culty of ¯nding the

optimal combination function for identi¯cation systems.

3. Likelihood Ratio Based Combination Rule

In both applications of biometrics and handwriting recognition, we encounter ver-

i¯cation and identi¯cation modes of operation. We have already described in Sec. 1.2

the two modes in the context of biometrics. The veri¯cation mode of operation occurs

in handwriting recognition applications such as a bank check recognition system

where the recognizers have to verify the hypothesis generated by the numeric string

in the courtesy ¯eld.11 The identi¯cation mode is precisely how handwritten word

recognizers operate in postal applications where the task is to recognize the city and

street names.

3.1. Veri¯cation systems

Veri¯cation systems separate two classes: genuine and impostor veri¯cation

attempts. By considering the combination task as a pattern classi¯cation problem in

the M-dimensional space, Bayesian minimization of the misclassi¯cation cost results

in the likelihood ratio combination function25:

flrðs1; . . . ; sMÞ ¼ pgenðs1; . . . ; sMÞ
pimpðs1; . . . ; sMÞ ð2Þ

pgen and pimp are M-dimensional densities of score tuples fs1; . . . ; sMg corresponding

to the two classes — genuine and impostor veri¯cation attempts. We can estimate

the densities pgen and pimp from the training data and use the above formula to

calculate the combined score and threshold it. Alternatively, generic classi¯cation

methods such as neural networks or SVMs can be used for direct classi¯cation of

genuine and impostor classes.

3.2. Identi¯cation systems

We wish to investigate whether the likelihood ratio function found to be optimal for

veri¯cation systems will be also optimal for identi¯cation systems. Suppose we

performed a match of the input sample by all M matchers against all N classes and

obtained MN matching scores fsj
igi¼1;...;N ;j¼1;...;M . Assuming equal prior class prob-

abilities, the Bayes decision theory states that in order to minimize the misclassi¯-

cation rate, the sample should be classi¯ed as the one with the highest value of the

likelihood function pðfsjigi¼1;...;N ;j¼1;...;M j!iÞ. Thus, for any two classes !1 and !2 we

can classify the input as !1 rather than !2 if

pðfsjigi¼1;...;N ;j¼1;...;M j!1Þ > pðfsjigi¼1;...;N;j¼1;...;M j!2Þ ð3Þ
Let us make an assumption that the scores assigned to each class are sampled

independently from scores assigned to other classes; scores assigned to genuine class
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are sampled from the M-dimensional genuine score density, and scores assigned to

impostor classes are sampled from the M-dimensional impostor score density:

pðfsjigi¼1;...;N;j¼1;...;M j!iÞ
¼ pðfs 1

1; . . . ; s
M
1 g; . . . ; fs 1

!i
; . . . ; sM!i

g; . . . ; fs 1
N ; . . . ; s

M
N gj!iÞ

¼ pimpðs11; . . . ; sM
1 Þ . . . pgenðs1!i

; . . . ; sM!i
Þ . . . pimpðs1N ; . . . ; sMN Þ ð4Þ

After substituting (4) in (3) and canceling out the common factors we obtain the

following inequality for accepting class !1 (rather than !2):

pgenðs 1
!1
; . . . ; sM!1

Þpimpðs1!2
; . . . ; sM!2

Þ > pimpðs 1
!1
; . . . ; sM!1

Þpgenðs 1
!2
; . . . ; sM!2

Þ ð5Þ
or

pgenðs 1
!1
; . . . ; sM!1

Þ
pimpðs1!1

; . . . ; sM
!1
Þ >

pgenðs 1
!2
; . . . ; sM!2

Þ
pimpðs1!2

; . . . ; sM!2
Þ ð6Þ

The terms in each part of the above inequality are exactly the values of the likelihood

ratio function flr calculated for classes !1 and !2. Thus, the class maximizing the

MN-dimensional likelihood function of inequality (3) is the same as the class max-

imizing the M-dimensional likelihood ratio function of inequality (6). Thus the

likelihood ratio combination rule is optimal under the assumption of score inde-

pendence. Our goal is to show that this assumption does not generally hold for

real-life matchers, and, as a result, likelihood ratio combination method might be

detrimental for the performance of the matching system.

It must be noted, that the score independence assumption refers to scores assigned

to di®erent classes by the same matcher (fsjigi¼1;...;N : rows in Fig. 1), but not to the

scores assigned to the same class by di®erent matchers. The latter score dependence

has been investigated a number of times in classi¯er combination research with

respect to the concept of classi¯er diversity (e.g. Ref. 7). We are interested in the

former dependence,23 which has received little attention thus far in the research

community.8,19

The dependence of the matching scores obtained during a single identi¯cation

trial is usually not taken into account by practitioners.5,12,18 Apparently, all

matching scores are derived independently from each other: the same matching

process is applied repeatedly to all enrolled biometric templates or all lexicon words,

and the matching score for one class is not in°uenced by the presence of other classes

or the matching scores assigned to other classes. So it might seem that the matching

scores are independent, but this is rarely true in practice. The main reason for the

assumption to not hold is that all the matching scores produced during an identi¯-

cation trial are derived using the same input signal. For example, a ¯ngerprint

matcher, whose matching scores are derived from the number of matched minutia in

enrolled and input ¯ngerprint, will produce low scores for all enrolled ¯ngerprints if

the input ¯ngerprint has only a few minutiae. Similarly, if the quality of the sensor is

poor, all enrollees may receive a low score.
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In our experiments, we measured the correlations between genuine scores and

impostor scores produced in the same identi¯cation trials (Sec. 5.3), and obtained

signi¯cant correlation values, especially for the considered word recognizers. The

existence of such dependence between genuine and impostor scores increases the

chances of the diminished performance of the likelihood ratio combination rule and

its nonoptimality.

4. Illustrative Examples

In order to further prove our claim, we present two examples that show that optimal

combination functions for veri¯cation and identi¯cation systems are not necessarily

the same. The examples also show that the derivation of the optimal combination

function for identi¯cation systems is actually a nontrivial task.

4.1. Example 1

Let Xgen, Ximp and Y be independent two-dimensional random variables, and sup-

pose that genuine scores in our identi¯cation system are sampled as a sum of Xgen

and Y: sgen ¼ xgen þ y, and impostor scores are sampled as a sum of Ximp and Y:

simp ¼ ximp þ y, xgen � Xgen, ximp � Ximp and y � Y . Bold symbols here denote two-

dimensional vector in the space ðs1; s2Þ. The variable Y provides the dependence

between scores in identi¯cation trials. We assume that its value y is the same for all

scores in any one identi¯cation trial.

Let Xgen and Ximp have gaussian densities pXgen
ðs1; s2Þ and pXimp

ðs1; s2Þ with unit

covariance matrices. For any value of y, conditional densities of genuine and

impostor scores pXgenþY jY¼yðs1; s2Þ and pXimpþY jY¼yðs1; s2Þ are also gaussian and

independent. Since these gaussians have the same covariance matrices, the optimal

decision surfaces separating these two classes coincide with the contours of

s1 þ s2 ¼ c.21 The optimal combination rule for such conditional distributions co-

incides with the likelihood ratio combination function fðs1; s2Þ ¼ s1 þ s2, and this

rule will be optimal for every identi¯cation trial and its associated value y. The rule

itself does not depend on the value of y, so we can use it for every identi¯cation trial,

and this is our optimal combination rule for the identi¯cation system. Figure 2(b)

shows the contours of the optimal combination function in this identi¯cation system.

On the other hand, this rule might not be optimal for the veri¯cation system

de¯ned by the above score distributions. For example, if Y is uniformly distributed

on the interval 0� ½�1; 1�, then the distributions of genuine and impostor scores

Xgen þ Y and Ximp þ Y will be as shown in Fig. 2(a) and the optimal combination

rule separating them will be as shown in Fig. 2(c). By changing the distribution of Y

and thus the character of dependence between genuine and impostor scores, we will

also be changing the optimal combination rule for the veri¯cation system. At the

same time, the optimal combination rule for identi¯cation system will stay the

same — fðs1; s2Þ ¼ s1 þ s2.
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If all that we know is the overall score distributions [Fig. 2(a)], then we do not

have enough information to ¯nd the optimal combination function for the identi¯-

cation system case. If the scores are generated by the initial construction, linear

combination function in Fig. 2(b) is the optimal combination function. If the score

vectors having distributions in Fig. 2(a) are independent on their own, then the

likelihood ratio combination in Fig. 2(c) is optimal for the identi¯cation system.

Thus, there could be di®erent optimal combination functions for identi¯cation sys-

tems with scores distributed as in Fig. 2(a), and the di®erence is determined by the

nature of the score dependencies in identi¯cation trials.

Figures 2(b) and 2(c) show the possible optimal combination functions for

identi¯cation and veri¯cation systems. This example illustrates that when searching

for the optimal combination function one must take into account the mode (ver-

i¯cation or identi¯cation) of the system.

4.2. Example 2

In this example, we are combining the scores of two matchers in an identi¯cation

system with the number of classes, N, equal to 2. Thus matcher j, j ¼ 0 or 1, outputs

two scores sj1 and sj
2, with one of these scores being genuine, sj

gen, and the other score

being impostor, sjimp. Suppose, that the scores of matchers are sampled from

bivariate normal distribution: fsjgen; sjimpg � Nðf1; 0g;�jÞ, with

�1 ¼
1 0

0 1

� �
and �2 ¼

1 �

� 1

� �

Thus the two scores of matcher 1 are independent and the two scores of matcher 2 are

dependent if � 6¼ 0. The marginal distributions of genuine scores of both matchers

are normal N(1,1), and the marginal distributions of impostor scores of both

matchers are normal N(0,1). Further, we will assume that the scores related to two

matchers are independent; so the joint distribution of two genuine scores is normal

fs1gen; s2geng � Nðf1; 1g; IÞ and the joint distribution of two impostor scores is normal

fs1imp; s
2
impg � Nðf0; 0g; IÞ, I is unit matrix.

1. 5 1 0. 5 0 0.5 1 1.5 2 2.5

1. 5

1

0. 5
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(b)
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1.5

2

2.5
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(c)

Fig. 2. (a) Two-dimensional distributions of genuine and impostor scores, for example, (b) Contours of

optimal combination rule in identi¯cation system, (c) Contours of the likelihood ratio combination
function.
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If this system operates in veri¯cation mode, then the optimal score combination

function, likelihood ratio, has same contours as s1 þ s2 ¼ c, and therefore, we can

take flrðs1; s2Þ ¼ s1 þ s2 as our optimal combination function for the veri¯cation

system. The distributions of genuine, fs1gen; s2geng, and impostor, fs 1
imp; s

2
impg, score

pairs do not depend on �, and optimal combination function for veri¯cation system,

flrðs1; s2Þ, is the same for any choice of �. But, as we show next, for the identi¯cation

system the situation is di®erent: optimal combination function and the performance

of the combined system will depend on �.

First, we can measure the identi¯cation system performance of the single second

matcher for di®erent values of �. Table 1 presents some performance numbers de-

rived by numerically integrating joint density of scores pðs2gen; s2impÞ ¼ Nðf1; 0g;�2Þ
over the area s2gen > s2imp. The identi¯cation system performance increases with the

increase of �. Intuitively this can be explained as following: if we have a positive

correlation between genuine and impostor scores, for a high impostor score we have

bigger probability that genuine will also be high, and the identi¯cation attempt will

still succeed; similarly for low genuine scores we have bigger probability of even lower

impostor scores. For negatively correlated scores (� < 0) we observe a decrease in

performance.

In order to calculate the identi¯cation system performance of combination

function f, we numerically integrate pðs 1
gen; s

2
gen; s

1
imp; s

2
impÞ ¼ pðs 1

gen; s
1
impÞpðs2gen; s 2

impÞ
over the region fðs 1

gen; s
2
genÞ > fðs1imp; s

2
impÞ. The performance of the likelihood ratio

combination function f ¼ flr is given in the fourth row in Table 1. Its performance

re°ects the change in performance of matcher 2: the better matcher 2 performs, the

better is the performance of likelihood ratio combination. But notice that for large

values of � (e.g. � ¼ 0:7) the performance of likelihood ratio gets worse than the

performance of the single matcher 2. The decrease in performance clearly indicates

that likelihood ratio might not be an optimal combination function for identi¯cation

systems. It is also possible to perform simple experiments by considering weighted

sum combination functions fwðs1; s2Þ ¼ ws1 þ ð1� wÞs2, with bigger weight assigned
to matcher 2 (with better performance in identi¯cation mode); by the proper choice

of w it is easy to achieve better performance than using flr.

It turns out that it is possible to exactly derive the optimal combination function

for the identi¯cation system in our example. Suppose that in one identi¯cation trial,

we obtained the following scores from both matchers: fs11; s 1
2g from matcher 1 and

Table 1. Identi¯cation system performance (the frequency of top score being
genuine) of single matchers and their combinations for Example 2.

� 0 0.3 0.5 0.7 −0.5

Matcher 1 76.01% 76.01% 76.01% 76.01% 76.01%

Matcher 2 76.01% 80.08% 84.11% 90.13% 71.81%
Likelihood Ratio 84.13% 86.09% 87.58% 89.25% 81.44%

Optimal Combination s1 þ s2 s1 þ 10
7 s2 s1 þ 2s2 s1 þ 10

3 s2 s1 þ 2
3 s2

Optimal Performance 84.13% 86.47% 88.96% 92.95% 81.93%
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fs21; s22g from matcher 2. The combination function f produces combined scores S1 ¼
fðs11; s 2

1Þ and S2 ¼ fðs12; s22Þ. By comparing S1 and S2, we decide which of two classes,

1 or 2, is genuine or impostor. In order to minimize the classi¯cation error, we have to

use optimal Bayesian classi¯cation: classify the sample as class 1 instead of class 2, if

and only if

pðfs11; s 1
2g; fs21; s22gjclass 1 is genuineÞ

> pðfs11; s12g; fs 2
1; s

2
2gjclass 2 is genuineÞ: ð7Þ

So, the optimal combination function f should be such that fðs11; s 2
1Þ > fðs12; s22Þ if

and only if Eq. (7) holds. After utilizing the independence of matchers (pðfs11; s12g;
fs21; s22gj � � � Þ ¼ pðfs11; s 1

2gj � � � Þpðfs21; s22gj � � � Þ), we substitute the given normal

densities of score pairs produced by each matcher:

pðfsj1; sj2gjclass 1 is genuineÞ ¼ N
sj
1

sj
2

 !
;

1

0

� �
;�j

 !
ð8Þ

pðfsj1; sj2gjclass 2 is genuineÞ ¼ N
sj
2

sj
1

 !
;

1

0

� �
;�j

 !
ð9Þ

After substitution, we can transform Eq. (7) into the following inequality:

s11 þ s 2
1 �

1

1� �
> s12 þ s 2

2 �
1

1� �
ð10Þ

Therefore, we can take the following function as the optimal combination function

for the identi¯cation system in our example:

fidðs1; s2Þ ¼ s1 þ s2 � 1

1� �
ð11Þ

The combination based on fid coincides with the combination based on flr only when

� ¼ 0. In other cases, fid performs better than flr in the identi¯cation operating

mode. The last two rows in Table 1 contain samples of optimal combination function

fid for the identi¯cation mode and the corresponding correct identi¯cation rates. In

all cases, fid performs better than any single matching participating in combination.

4.3. Discussion

The examples presented in this section underline the complexity of the task of ¯nding

an optimal combination function for identi¯cation systems. Given su±cient number

of training genuine and impostor score samples, we might be able to approximate the

genuine and impostor score densities (e.g. Fig. 2(a)). Given such density approxi-

mations, we can deduce the optimal combination function for veri¯cation systems

(Fig. 2(c)). But we would still not have a good method to derive the optimal com-

bination function for identi¯cation systems (Fig. 2(b)). It is possible that the like-

lihood ratio combination rule of Fig. 2(c) is the optimal combination function in
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identi¯cation system. It will certainly be the case if the identi¯cation trial scores are

independent.

Suppose that score dependence had to be accounted for between di®erent classes

and an optimal combination function had to be derived for identi¯cation systems as

in the second example. The ¯rst problem that we would have faced is to properly

represent the joint density of a set of scores produced by a single matcher, e.g.

pðs11; s 1
2; . . . ; s

1
NÞ. If the number of classes, N, is large, we might want to reduce the

number of variables by considering score set statistics. The second problem would be

the construction of the combination function fid given the reconstructed joint den-

sities. Note, that in order to derive a combination function from Eq. (7), scores are to

be separated related to di®erent classes, so that the combination function would

operate only on the scores related to a single class: fðs11; s 2
1Þ > fðs12; s22Þ. We were

successful in doing so in Example 2 only due to a particular form of score densities

(gaussian). In the general case, such derivation might be di±cult to achieve.

As an additional consequence of our examples, we can assert that any score

normalization based on reconstructed genuine and impostor score densities does not

provide an answer to ¯nding optimal combination function in identi¯cation systems.

The only normalizations which might be bene¯cial for combinations in identi¯cation

systems (assuming that we have a trainable combination algorithm able to take care

of simple score translation normalizations) will be based on considering sets of

identi¯cation trial scores similar to T-normalization.4 Our paper23 contains a deeper

discussion on such normalizations.

A ¯nal corollary of the examples is that the training of optimal combination

function for identi¯cation systems requires simultaneous consideration of the genuine

and impostor scores from the same identi¯cation trials. In particular, we cannot

simply take a set of all impostor scores and mix them. By doing so, the training will

take place on the genuine and impostor densities, giving a combination algorithm

trained for veri¯cation rather than for identi¯cation systems.

5. Experiments

In this section, we present the experimental results to support the claims made in this

paper. First, in Secs. 5.1 and 5.2, we introduce the considered identi¯cation systems,

handwritten word recognition and biometric person identi¯cation, and de¯ne the

testing procedures. The next section presents the analysis of the dependence between

scores assigned to di®erent classes in all considered matchers. Section 5.5 presents the

results on likelihood ratio and the weighted sum combination methods.

5.1. Handwritten word recognizers

We consider the application of handwritten word recognizers in the automatic

processing of United Kingdom mail. The destination information of the mail piece

contains the name of the postal town or county. After automatic segmentation of the
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mail piece image, the goal of the handwritten word recognizer is to match the hy-

pothesized town or county word image against a lexicon of possible names, which

contains 1681 entries.

We use two handwritten word recognizers for this application: Character Model

Recognizer (CMR)10 and Word Model Recognizer (WMR).16 Both recognizers

employ similar approaches to word recognition: they oversegment the word images,

match the combinations of segments to characters and derive a ¯nal matching score

for each lexicon word as a function of the character matching scores.

Our data consists of three sets of word images of approximately the same quality.

The data was initially provided as these three subsets and therefore, we did not

regroup them. The images were manually truthed and only those images containing

any of the 1681 lexicon words were retained. The word recognizers were run on these

images and their match scores for all 1681 lexicon words were saved. Note, that both

recognizers reject some lexicon entries if, for example, the lexicon word is too short or

too long for the presented image. We assume that in real systems, such rejects will be

dealt with separately (it is possible that the lexicon word corresponding to image

truth will be rejected), but for our combination experiments we keep only the scores

of those lexicon words which are not rejected by either of the recognizers. Thus for

each image Ik we have a variable number Nk of score pairs ðs cmr
i ; swmr

i Þ, i ¼ 1; . . . ;Nk

corresponding to nonrejected lexicon words. One of these pairs corresponds to the

true word of the image which we refer to as \genuine" scores, and the other

\impostor" score pairs correspond to nontruth words.

After discarding images with nonlexicon words, and images where the truth word

was rejected by either recognizer, we are left with three sets of 2654, 1723 and 1770

images and related sets of score pairs. We will refer to the attempt of recognizing a

word image as an identi¯cation trial. Thus each identi¯cation trial has a set of score

pairs ðs cmr
i ; swmr

i Þ, i ¼ 1; . . . ;Nk with one genuine score pair and Nk � 1 impostor

pairs. The scores of each recognizer were also linearly normalized so that each score is

in the interval [0,1] and the bigger score implies a better match.

Since our data was already separated into three subsets, we used this structure for

producing the training and testing sets. Each experiment was repeated three times.

Each time one subset was used as a training set, and the other two sets were used as test

sets. The ¯nal results are derived as averages of these three training/testing phases.

5.2. Biometric person matchers

We used biometric matching score set BSSR1 distributed by NIST.1 This set con-

tains matching scores for a ¯ngerprint matcher and two face matchers \C" and \G".

Fingerprint matching scores are given for left index \li" ¯nger matches and right

index \ri" ¯nger matches. For experiments, we used four combinations involving

both ¯ngerprint and face score subsets: \li&C", \li&G", \ri&C" and \ri&G"

Though the BSSR1 score set has a subset of scores obtained from the same

physical individuals, this subset is rather small — 517 identi¯cation trials with 517
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enrolled persons. In our previous experiments22 we used this subset, but the number

of failed identi¯cation attempts for most experiments was less than 10 and it is

di±cult to compare algorithms with those few negatives. Therefore, we used larger

subsets of ¯ngerprint and face matching scores of BSSR1 by creating virtual persons.

The ¯ngerprint scores of a virtual person come from a physical person and the face

scores come from a di®erent individual. The scores are not reused, and thus we are

limited to a maximum of 6000 identi¯cation trials and a maximum of 3000 classes (or

enrolled persons). Some enrollees and some identi¯cation trials are also required to be

discarded since the corresponding matching scores were invalid probably due to

enrollment errors. Finally, we split the data into two parts — 2991 identi¯cation

trials with 2997 enrolled persons, with each part used as training and testing sets in

two phases.

5.3. Dependence of matching scores assigned to di®erent classes

We have made a key observation in Sec. 3 that the likelihood ratio combination rule

might be optimal for identi¯cation systems if the matching scores assigned to the

di®erent classes by the same classi¯er are statistically independent. In order to test

the score independence assumption we calculated the correlations between the

matching scores assigned to the di®erent classes: between genuine and impostor

scores, and between two impostor scores obtained in the same identi¯cation trial.

The results are presented in Fig. 2 for all matchers on our datasets.

The calculation of correlation values was performed using a subset of 2654

identi¯cation trials for word recognizers and one subset of 2991 identi¯cation trials

for biometric matchers. In each trial, 50 random impostor scores were selected for

calculating correlations. As a result, the calculation of corðsgen; simp;iÞ involves

averaging of 2654 � 50 terms and the calculation of corðsimp;i; simp;jÞ involves aver-
aging of 2654 � (50 � 49/2) terms for word recognizers, and correspondingly 2991 �
50 and 2991 � (50 � 49/2) terms for biometric matchers. Nonzero correlation values

con¯rm our hypothesis that the score independence assumption does not hold.

In addition, Ref. 25 contains calculations of correlation values between genuine

scores and some functions of the impostor scores in the identi¯cation trials, for

example, the correlation between the genuine score and the maximum of impostor

scores obtained in the same trial. Those correlations were greater than what is

Table 2. Correlations between scores assigned to

di®erent classes during same identi¯cation trials.

Matchers corðsgen; simp;iÞ corðsimp;i; simp;jÞ
CMR 0.043941 0.102119

WMR 0.364168 0.409941

li 0.106033 0.125387
ri 0.138155 0.149010

C 0.039175 0.094667

G 0.067829 0.125417
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currently presented in Fig. 2. This indicates that the dependence between scores

might be complex. Modeling these dependences constitutes a part of our work on

classi¯er combinations utilizing identi¯cation models.23

5.4. Description of combination algorithms

We have explored two combination methods in this paper: likelihood ratio and the

weighted sum. For the likelihood ratio combination, we reconstructed the densities

using the Parzen window method with Gaussian kernels. The window widths are

found by maximum likelihood leave-one-out cross validation method on a training

set. Note that the reconstructed densities pgenðs1; s2Þ and pimpðs1; s2Þ of the like-

lihood ratio combination function 2 are two-dimensional. Given a large number of

training samples, using two-dimensional kernels in the Parzen method results in a

good approximation of the densities.24

We have compared the performance of the likelihood ratio rule with the weighted

sum combination rule, which is one of the most frequently used rules in classi¯er

combination tasks. The weighted sum rule is expressed by the combination function

fðs1; . . . ; sMÞ ¼ w1s
1 þ � � � þ wMsM . The weights wj are usually 20 chosen heur-

istically so that the better performing matchers have a bigger weight. The optimal

weights can also be estimated for linear combinations of classi¯ers subject to the

minimization of classi¯cation error.27

In our experiments, we have trained the weights so that the number of successful

identi¯cation trials on the training set is maximized. The previously proposed

methods of training resulting in the minimization of classi¯cation error 27 are not

directly applicable due to much bigger number of classes in our case. Since we have

only two matchers in all our con¯gurations, it was possible to utilize a brute-force

approach: we calculate the correct identi¯cation rate of the combination function

fðs1; s2Þ ¼ ws1 þ ð1� wÞs2 for di®erent values of w 2 ½0; 1�, and ¯nd w corre-

sponding to the highest recognition rate. Despite being brute-force, due to simplicity

of weighted sum method, this approach was faster to train than likelihood ratio.

Note, that for the weighted sum method, as well as for likelihood ratio, we have

separate training and testing subsets; the performance of this rule on test sets is

slightly lower than the performance on training sets.

5.5. Combination results

The results of the combination using the likelihood ratio and the weighted sum are

shown in Table 3. The numbers in the table refer to the correct identi¯cation rates,

that is, the percentage of trials in which the genuine score receives the best score

compared to all impostor scores of the same identi¯cation trial. For comparison, we

also present the performance of single matchers used in combination.

Although for biometric combinations, the likelihood ratio combination method

provided similar or better performance than the weighted sum rule, it performed very
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poorly in the combination of handwritten word recognizers. In fact, it resulted in a

performance lower than the performance of a single word recognizer. This would

clearly imply that the likelihood ratio combination method might not be an optimal

combination method for identi¯cation systems.

In order to verify that likelihood ratio combination for word recognizers was

implemented correctly, we measured its performance in veri¯cation operating mode.

Figure 3 presents ROC curves for likelihood ratio, as well as for weighted sum

combination. As we expected, the likelihood ratio outperforms weighted sum and has

superior performance with respect to single matchers.

Example 2 in Sec. 4.2 explains why the combination based on likelihood ratio

function performs worse than a single matcher WMR. As in example, WMR

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

FRR

F
A

R

CMR recognizer
WMR recognizer
Likelihood Ratio
Weighted Sum

Fig. 3. The veri¯cation system performance of word recognizers and their combinations by likelihood

ratio and weighted sum.

Table 3. Correct identi¯cation rates for single matchers and their

combinations by likelihood ratio and weighted sum.

Matchers
1st Matcher 2nd Matcher Likelihood Weighted
is Correct is Correct Ratio Sum

CMR&WMR 54.76% 77.18% 69.84% 81.58%

li&C 81.41% 81.18% 97.24% 97.23%

li&G 81.41% 77.48% 95.90% 95.47%

ri&C 88.53% 81.18% 98.23% 98.09%
ri&G 88.53% 77.48% 97.14% 96.82%
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produces strongly dependent matching scores and has better identi¯cation system

performance, than another combined matcher, CMR. The likelihood ratio fails to

take the score dependence of WMR into account.

Though the likelihood ratio method seems to perform well for identi¯cation sys-

tem with biometric matchers, this might not be the optimal combination method. In

our previous work26 we have presented some combination methods for identi¯cation

systems (involving considered NIST BSSR1 datasets) which are able to outperform

both likelihood ratio and weighted sum. But we still do not know if the proposed

methods are optimal for identi¯cation system combinations.

6. Summary

In this paper, we show that for di®erent operating scenarios of multiclassi¯er sys-

tems, namely veri¯cation and identi¯cation, we need to construct di®erent combi-

nation algorithms to achieve optimal performance. This is due to the frequent

dependence among the scores produced by each matcher during a single identi¯-

cation trial. The optimal combination algorithm for veri¯cation systems corresponds

to the likelihood ratio combination function. It can be implemented by the direct

reconstruction of this function with genuine and impostor score density approxi-

mations. Alternatively, many generic pattern classi¯cation algorithms can be used to

separate the genuine and impostor scores in the M-dimensional score space, where M

is the number of combined matchers.

The optimal combination algorithm for the identi¯cation systems is more di±cult

to realize. With the help of arti¯cial examples we have shown that it is di±cult to

express the optimal combination function analytically. The experiments with

existing score sets con¯rm the nonoptimality of likelihood ratio combination method

for identi¯cation system. Though the weighted sum combination method can be

trained for best identi¯cation system performance, due to the limited representation

ability, it also might not achieve the optimal performance.
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