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Abstract

Stratified biometric system can be defined as a system in
which the subjects, their templates or matching scores can
be separated into two or more categories, or strata, and the
matching decisions can be made separately for each stra-
tum. In this paper we investigate the properties of the strat-
ified biometric system and, in particular, possible strata cre-
ation strategies, score normalization and acceptance deci-
sions, expected performance improvements due to stratifi-
cation. We perform our experiments on face recognition
matching scores from IARPA Janus CS2 dataset.

1. Introduction

A single biometric system typically contains biometric
templates of different origin. For example, enrolled persons
possess certain demographic characteristics (gender, age,
race), which result in different physical appearances and
consequently, invariability of templates. As another exam-
ple, the biometric template data can be collected by differ-
ent sensors or in different environments, which could also
affect the collected templates. Finally, the template feature
vectors or comparison scores could be calculated by differ-
ent algorithms, e.g. trained to better deal with the specific
nature of sensor data.

In many of these situations encountered by biometric
systems, the data describing the template origin and charac-
teristics, themetadata, may be available to the system en-
gineers, and can be leveraged for system performance im-
provements. The metadata typically represents additional
information separate from the template feature vectors -
whereas template feature vectors are customarily derived
using only sensor scanned data, the metadata are obtained
either by user’s input, or as sensor or biometric system pa-
rameters. Thus, integration of metadata into a biometric
system is a sensible approach to achieve better performance.

In this paper we will define the termstratumto designate
a particular subset of biometric templates. For example, we

Figure 1. Operating scenario of our system.

can define the male/female strata, as enrolled templates cor-
responding to males and females. As another example, we
will use face image yaw based strata, where the stratum,
frontal or profile, is defined by the angle of face yaw in
the image. We will also use the termstratumto designate
the comparison scores obtained from templates of particular
stratum. In general, we will assume that there is only a finite
number of strata defined for a particular biometric system
and such strata include all system templates, or comparison
scores.

The general approach for integrating the strata informa-
tion used in our paper, is illustrated in Fig. 1.G andP

denote gallery and probe biometric templates. In order to
calculate a biometric comparison score, we first determine
the stratum for these templates. Then, we perform stratum
specific comparison score calculations, and/or stratum spe-
cific score normalization. Finally, the normalized score is
output by the system and effectively, scores from different
strata are merged to make a single match decision.

Note, that generally we can define strata for both gallery
and probe templates in our scenario. For example, both
gallery and probe face images can be frontal or profile,
and in combination we can have four strata of comparison
scores defined for two strata of gallery and two strata of
probe templates. Also, in general, considering more strata
has the potential of resulting in bigger improvements, but
we would have to make sure that sufficient data is available
for each considered stratum to train matching or score nor-
malization algorithms.

In our current work, we look at scenarios with only two
comparison score strata, defined by the corresponding two



strata of either gallery or probe templates. In some situ-
ations, this is the only possible scenario; for example, we
might have information about the gender of the enrolled
person (gallery template), but not about the probe template.
We will also restrict ourselves to investigating strata specific
score normalizations, and will assume that the matching al-
gorithm is the same for both strata.

2. Previous Work

A number of previously published works tried to analyze
the biometric system performance on different categories of
templates. Klareet al. [10] analyzed the performance of
six face recognition algorithms with respect to gender, race
and age. Even larger number of metadata, or covariates,
are considered in [2, 5]. However, demographic informa-
tion was not used to improve the performance of the whole
system in these works, although separate training for differ-
ent strata of users was suggested. O’Tooleet al. [13] con-
sidered the condition of matching demographic fields for
gallery probe templates, but no additional score processing
was performed. In contrast, we focus on strata defined by a
single, either gallery or probe, metadata attribute.

The main effort of our paper is on the development of
score normalization methods. Typically, the score normal-
ization in biometric systems is performed before fusion of
scores from multiple matchers [7, 12]. Correspondingly, the
effectiveness of score normalization methods is judged by
the performance of the final fused biometric system. A sin-
gle score normalization function is trained for each matcher
with the objective of transformed scores falling into some
range or having particular statistical distribution parame-
ters, and simple aggregation functions, such as sum, min,
max, etc., are used for fusion. Such approaches might not
give the objective evaluation of score normalization meth-
ods, since one can argue, that a proper fusion function, non-
parametric and having universal approximation properties,
would account for non-normalized scores. Since in our ap-
proach, there is no additional score processing after score
normalization, the improvements in system performance
serve as a more objective measure of the effectiveness of
different score normalization methods.

The benefits of the normalization are limited if all the
matching scores are subjected to the same normalization
function. For example, min-max normalization will not
change the ROC curve or the order of scores during iden-
tification trials. But, if we allow the normalization method
to change for different sets of comparison scores, then we
might expect to see the performance improvements for the
system represented by such normalized scores. One way
of achieving this is to try to learn user specific parameters
of score normalization or fusion algorithms [8, 17]. Since
the number of genuine match samples for each user is usu-
ally small, only parametric learning methods could be used

in such scenarios. A more straightforward approach is to
not to use the user specific genuine scores at all, and rely
on a set of user specific impostor scores exclusively. T-
normalization [1] and more general methods [15, 19] use
parameters derived from a set of comparison scores related
to a particular gallery or probe template. In all of the above
methods the scores are transformed by differently trained
functions, and the performance of the system changes with-
out further fusion application. But the usual drawback is
the limited number of training scores; only a set of corre-
sponding impostor scores produced by a given gallery or
probe template might be used for derivation of score nor-
malization function. In this paper, we consider larger sets
of scores available in strata for training, and derive score
normalization functions using both impostor and genuine
samples.

Some of our strata are defined by template quality based
metadata parameters. The existing methods on incorporat-
ing template quality into biometric system [18, 9, 6] usually
utilize fusion based approach as in section 3.1. In this paper,
we explore alternative methods based on explicit stratifica-
tion of templates and comparison score sets.

Poh and Kittler [14] considered separating matching
scores into groups based on clusters of template quality
measures. Such cluster based splitting is analogous to our
stratification based on quality measures. In [14] genera-
tive approaches, i.e. likelihood ratio of section 3.3, decrease
the baseline performance, and, as a result, only discrimina-
tive approach, i.e. fusion method of section 3.1, is used
in experiments. In contrast to this paper, our strata contain
more samples available for training and generative approach
to score normalization, i.e. likelihood ratio, does improve
baseline performance. Due to larger training genuine sam-
ple size, we were also able to consider score normalization
methods based on strata ROC data, and, in particular, pro-
pose a new method of cost based score normalization of
section 3.4.

3. Stratification based approaches to score nor-
malization

The score normalization can be defined as a transforma-
tion of the original matching scores into some normalized
scoreS: S = F (s). The normalization functionF is typ-
ically learned from some training data. The usual goal of
normalization is to obtain a matching score with predefined
distribution parameters. For example, min-max normaliza-
tion linearly scales the score to the interval[0, 1]; the mini-
mum and maximum score values used in the algorithm can
be derived from training set. We use traditional z-score nor-
malization method as baseline [7]:

F (s) =
s− µi

σi

(1)



where the normalization parametersµi andσi are derived
from the training set for stratumi. Even though we use all
available scores in training sets, these parameters are mostly
defined by the impostor score majority.

3.1. Fusion of Strata Information

Let us associate strata with some numeric valuest. Then
the score normalization can take a form:

S = F (s, t) (2)

wheres is the original matching score,S is the normalized
matching score, andF is some function, fusing score and
strata identifier. FunctionF can be trained using specified
optimization criterion.

This approach is quite general and easily adaptable to
many problems, and have been used in many papers try-
ing to combine some template auxiliary data and matching
scores (e.g. [14]). Moreover, it is applicable not only to the
problems with discretely defined strata, but also to prob-
lems with a continuously varying parametert. For exam-
ple, t can just represent the numeric value of a person’s age
avoiding the need for separate strata based on age ranges.
As another example, instead of defining some quality strata,
such as ”‘good”’, ”‘normal”’ or ”‘bad”’, we can directly uti-
lize a numeric value representing the quality of templates.
However, this approach has disadvantages as well. First,
the strata identifiers might not have a natural numeric rep-
resentation (e.g. person’s race), and attempting to introduce
such a representation would imply that there is some order
in strata (when there is no inherent order with a character-
istic such as race). Second, we might introduce too much
complexity into the fusion function, which will be difficult
to train. Considering separate strata can thus help avoid dif-
ficulties in training. Finally, it might be difficult to analyze
the constructed fusion function and guarantee its optimality.

3.2. Error rate based normalization

Suppose we consider a biometric verification system and
our decision criteria is based on the comparison of match-
ing score with some thresholdi.e. if matching scores be-
longs to stratumi, then we accept ifs ≥ θi, and reject
otherwise. If we perform score normalization in each stra-
tum separately and aggregate the normalized scores, then
we would base our decision on comparing the transformed
scores with some thresholdS ≥ θ. Thus, the stratum spe-
cific thresholdsθi are mapped to a single system thresh-
old θ by the normalization functions. Consequently, one of
the considerations for constructing stratum specific normal-
ization functions would be to ensure that the thresholdsθi
mapped to the same valueθ, have similar properties.

One way of doing this would be to look at the error
rates for each stratum associated with these thresholds:
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Figure 2. FAR and FRR of the two face yaw quality based strata.

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Original Score

N
or

m
al

iz
ed

 S
co

re

 

 
Normalization function of stratum 1
Normalization function of stratum 2

Figure 3. Score normalization functions for the two face yaw qual-
ity based strata.

FRRi(θi) andFARi(θi), and have our score normaliza-
tion function include these error rates in some manner. For
example, we can simply define the score normalization to
depend only on false accept rateS = 1 − FARi(s). Such
normalization needs only the samples of impostor scores for
construction, and can be a sensible approach in biometric
systems, where the number of genuine score samples might
be small. But, in order to incorporate both impostor and
genuine score distributions, we can propose a ratio based
approach to combine error rates:

S =
FRRi(s)

FARi(s) + FRRi(s)
(3)

Such a score normalization function appears to improve
performance in our experiments. The advantage of this
function is its monotonicity and ease of construction. Note



that there exist other similar published approaches to score
normalization(e.g. [15]). However, it might not be the op-
timal, i.e. leading to the minima of error rates in the final
system. We consider theoretically optimal score normaliza-
tion functions in the next section.

3.3. Likelihood Ratio

Suppose we consider a biometric verification system,
whose performance is determined by the trade-off between
false accept and false reject rates. Let the prior probability
for the samples of stratumi bePi. Then the total cost of
operating the system is

Cost =
∑
i

PiCosti (4)

and the cost of operating system on stratumi is

Costi = CFR∗Pi,gen∗FRRi(θi)+CFA∗Pi,imp∗FARi(θi)
(5)

wherePi,gen is the prior probability of genuine samples in
stratumi, Pi,imp is the prior probability of impostor sam-
ples in stratumi, CFR is the cost of false rejection of gen-
uine samples andCFA is the cost of false acceptance of
impostor samples.

The optimal decisions to accept or reject samples min-
imizing the cost in the above equation are defined by the
likelihood ratios of genuine and impostor scores [16]:

lri(s) =
pi,gen(s)

pi,imp(s)
≶

CFA ∗ Pi,imp

CFR ∗ Pi,gen

(6)

Here pi,gen is the density of genuine scores in stratumi,
pi,imp is the density of impostor scores in stratumi. Effec-
tively, θi is such that the Eq. 6 becomes equality ifs = θi.
Note, that this optimal acceptance decision is made sepa-
rately for each stratum; since the total cost of the biometric
system is the summation of costs for each stratum (Eq. 4),
this acceptance decision optimizes the cost for each stratum
and, consequently, for the whole system.

We can convert the decisions of Eq. 6 into the following
optimal stratum score normalization function

F (s, i) =
pi,gen(s)

pi,imp(s)
×

Pi,gen

Pi,imp

(7)

After such normalization, the scores from different strata
will be compared to the same thresholdCFR

CFA
to achieve the

optimal verification decision.
If we assume that the ratios of prior class probabilities

are the same for different strata:

Pi,gen

Pi,imp

=
Pj,gen

Pj,imp

(8)

then our normalization is simply the likelihood ratio:

F (s, i) =
pi,gen(s)

pi,imp(s)
(9)

Even though the likelihood ratio score normalization of
Eq. 7 is the theoretically optimal normalization method for
a stratified biometric system, it has some training related
drawbacks. Indeed, the approximation of likelihoods can
be a hard task, even in the one dimensional score space con-
sidered here. Since our goal is to train a single score nor-
malization function per stratum, this method requires ap-
proximating two density functions and might result in poor
approximation of the normalization function. Another con-
cern is the possible non-monotonicity of the approximated
normalization function. For example, if we use mixtures
of Gaussians or Parzen windows method for approximat-
ing likelihoods, then their ratio in Eq. 7 will most surely
be non-motonic. The non-monotonic score normalization
function might be not optimal for many biometric matchers,
whose scores represent either distances between templates
or similarities, and whose monotonic nature is implied dur-
ing training.

3.4. Cost based normalization

In order to avoid the difficulties associated with the ap-
proximation of likelihoods in Eq. 7, we can try to use error
rate functionsFARi(s) andFRRi(s) directly for the ap-
proximation of the score normalization function. The previ-
ous section suggests that normalization functionF (s, i)will
be optimal if for thresholdθi optimizing the total stratum
cost for particular costs of false rejects and false accepts,
CFR andCFA, we will have the mapping

F (θi, i) =
CFR

CFA

(10)

Given FARi(s) and FRRi(s) and particularCFR and
CFA, we can simply iterate over all possible threshold val-
uesθi, and find which value optimizes stratum performance.
This step can be repeated for the range of values ofCFR

andCFA; in our experiments we considered iterations with
small step over the range:0 ≤ CFR ≤ 1, 0 ≤ CFA ≤ 1
andCFR+CFA = 1. In addition, instead of map of Eq. 10,
we consider an equivalent normalization function of Eq. 11:

F (θi, i) =
CFA

CFA + CFR

(11)

This function has range of values between 0 and 1, and maps
more confident scores closer to 1 (where false accept costs
are higher than false reject costs).

However, there is a problem with the above definition of
the score normalization function. It is possible that same
values of thresholdθi will optimize the total stratum cost
for different ratios ofCFR

CFA
, and the function of Eq. 11 will

not be well defined. In fact, this is a typical situation since
FARi(s) andFRRi(s) are approximated as step functions
from training data, and the calculated cost is a step func-
tion of threshold as well. Moreover, due to variations in
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Figure 4. ROC curve and its convex hull; vertices of convex hull
determine optimal thresholds for cost minimization.

the training score sample set distribution, the ROC curves
reconstructed with the help of these samples have inherent
concavities, and the optimal thresholds determined for dif-
ferent values of cost ratios do not cover the whole range
of scores, but rather belong to the discrete set of convex
hull vertices. Figure 4 presents an example from our exper-
iments - we can see that the convex hull of ROC curve has
only a small number of vertices, and the cost minimization
method searching for tangent lines in ROC curve will find
the optimal thresholds located exclusively at these vertices
of convex hull.

To further illustrate this situation, Fig. 5 displays a map-
ping from the found discrete set of thresholds to the values
of cost ratio (Eq. 11); a single threshold value will corre-
spond to the interval of cost ratios, i.e. the vertical line
interval in the graph. In order to create a valid score nor-
malization function, which should be defined for all possi-
ble scores and have single values, we need to apply some
kind of smoothing to that map. In our experiments, we use
simple linear interpolations to connect the middle points of
consecutive vertical intervals; the tails of the function are
defined as the tails of the exponents approaching either 0 or
1. An example of such a smoothing is given in Fig. 5.

4. Estimating performance improvements

Even though the template metadata may be readily avail-
able, allowing the stratification of matching scores and the
stratum specific normalization according to the methods
of previous section, the performance improvement is not
guaranteed. For example, if scores are already normalized
according to strata, then repeated normalization will fail.
Thus, it might be helpful to know the expected performance
improvement from stratificationapriori, i.e. given only
training data.
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Figure 5. Map of optimal threshold values to cost ratios and corre-
sponding approximation of the score normalization function.

We can modify the strata score normalization method
of section 3.4 to derive a method of estimating the per-
formance improvements due to stratified score normaliza-
tion. Suppose, for a particular cost ratior = CFR

CFA
, we find

thresholdsθi(r) minimizing the total costCosti for each of
two stratai (Eq. 5). Let us denoteCost′i as the system’s
cost on stratumi, if threshold for a different stratum,θ1−i,
is used instead of the optimal thresholdθi. The difference
Cost′i − Costi will be the additional cost if a non-optimal
threshold is used for stratai. We integrate this additional
cost over the range of possible cost ratiosr to get the esti-
mate of the possible performance improvement due to the
stratification method:

D(i) =

∫
r

(Cost′i(r)− Costi(r))p(θi(r))dr (12)

Here, the integration is weighted by the average of gen-
uine and impostor score sample distributions:p(θ) =
pi,gen(θ) + pi,imp(θ). Equation 12 estimates the perfor-
mance improvement for stratumi; we repeat the calcula-
tions for other strata and average the results to get the final
average estimate of performance improvement.

5. Experiments

We perform our experiments on the set of comparison
scores of face recognition algorithm by Chenet al. [4]. The
algorithm extracts face features from images using a deep
convolutional neural network. The joint Bayesian metric
learning method is used to derive the face recognition scores
between template feature vectors. We conduct our experi-
ments on face recognition scores obtained on IARPA Janus
Challenge Set 2 (CS2) dataset, which is a superset of IJB-A
dataset [11]; the comparison between CS2 and IJB-A sets is
given in [4].



Strata method Stratum 1 Stratum 2 EstimatedD Actual Improvement
1 88.01± 3.60 87.41± 2.00 0.11± 0.05 −0.03
2 89.00± 2.38 86.70± 2.27 0.10± 0.04 0.06
3 87.39± 2.58 87.53± 2.62 0.11± 0.05 0.03
4 83.97± 2.25 94.00± 1.54 0.29± 0.14 0.41
5 82.87± 2.26 93.76± 1.52 0.37± 0.19 0.72

Table 1. Characteristics of the considered stratification methods: performance of individual strata (% TAR at FAR=1%), estimated per-
formance improvement using only training set (section 4) and actual improvement (% TAR at FAR=1%) of the best performing method
measured on test set.

Although CS2 dataset has 10 splits and there is a sep-
arate image subset designated for training in each of those
splits, the training set does not have a separation into gallery
and probe subsets, and, as a result, we do not have proper
comparison score training sets for our experiments. Thus, in
order to have proper training and testing comparison score
subsets, we use bootstrap testing technique [3]. In each step
of the bootstrap, the gallery and probe templates are ran-
domly divided into training and testing parts (the divisionis
performed with respect to identities, and since each person
can be used to derive multiple templates, the numbers of
templates in each part is variable). The training gallery and
probe sets are used for creating training comparison score
set, and the same is done for the testing set. In total, each
testing and training set has either 83 or 84 gallery templates,
and around 900 probe templates; correspondingly we have
around 900 genuine and 73,000 impostor scores. We per-
form 10 bootstrap experiments for every split, and, thus, the
total number of experiments is 100. The results for these
100 experiments are averaged to obtain a mean performance
value (EER) and its standard deviation.

We explore five stratification methods (three based on
demographics and two on template quality)in our experi-
ments based on the available metadata in the CS2 dataset:

1. Female/male strata (0=female, 1=male).

2. Age strata (0=young, 1=old).

3. Skin color strata (0=light, 1=dark).

4. Face yaw strata (0=side view, 1=frontal).

5. Number of images based strata (0=small, 1=large).

The templates in this dataset consist of variable numbers of
images, and the metadata information is provided for sepa-
rate images. Thus, we average the image metadata to obtain
the stratum number. All metadata except gender have nu-
meric values with particular ranges; after averaging these
numeric values, we choose a threshold separating two strata
so that the number of templates in both strata would be sim-
ilar. In the first three methods, the stratification is done with
respect to gallery templates assuming that the demographic

metadata is more likely to be available for the gallery tem-
plates. In the last two methods, we perform stratification
with respect to probe templates; the gallery templates in
CS2 dataset have more images resulting in more uniform
quality, and subsequently, a small difference in strata. Note,
that we do not perform a match between demographic data
of gallery and probe templates, but only split the data based
on the value of demographic data of a single gallery tem-
plate. Matching demographic data would most probably
further improve the performance, but this is not a focus of
this paper.

Table 1 provides the performance characteristics of in-
dividual strata, the estimated performance improvement of
the system due to stratification and observed actual perfor-
mance improvements from the best score normalization ap-
proach (relative to baseline87.79% TAR). Although the dif-
ference between strata performance is present in all cases,
the estimate of possible performance improvement reveals
that the benefits will be rather modest. This is confirmed by
the reported performance of presented score normalization
methods on test set in Table 2.

In general, the two optimal methods viz. likelihood ratio
and cost based normalization, perform slightly worse than
fusion based normalization, but as we noted, they might be
superior for strata defined by non-numeric attributes. The
cost based normalization seems to perform consistently bet-
ter than likelihood ratio, which is explained by the mono-
tonicity of normalization function. Finally, all presented
methods seem to perform better than traditional Z-score
normalization.

6. Conclusions

In this paper we have achieved the following goals:

• We have presented a general framework for creating a
stratified biometric system.

• We have demonstrated how score normalization meth-
ods can be evaluated in such a system.

• We have derived four score normalization methods and
discussed their optimality. The last method, cost based



Strata method Z-score Fusion FAR/FRR LR Cost
1 −.21± .39 −.03± .50 −.03± .41 −.16± .60 −.08± .49
2 −.04± .32 .02± .43 .04± .40 −.02± .47 .06± .48
3 .03± .27 −.18± .57 −.05± .44 −.16± .55 −.07± .42
4 .21± .26 .41± .45 .41± .54 .28± .51 .40± .54
5 .41± .34 .72± .53 .68± .57 .50± .56 .68± .57

Table 2. Changes in TAR(%) & FAR=1% for different strata selection andscore normalization methods.

score normalization, appears to be a new, well per-
forming, method of score normalization.

• We have derived a method to estimate the magnitude
of possible performance improvements due to stratifi-
cation.

Even though the observed performance improvements
were not significant for all considered stratification meth-
ods, the derived measure of estimated performance im-
provement explains this result. Note that this does not mea-
sure the difference in performance of different strata, but
rather the difference in optimal thresholds, and thus directly
indicates the magnitude of possible performance improve-
ment.

The proposed score normalization method of section 3.4
could be applied not only to stratified, but to arbitrary bio-
metric systems. Since the meaning of normalized scores in
terms of error costs is well defined, it would be easy for
system users and administrators to set the threshold param-
eters, or integrate them with other security devices.
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