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Abstract— Combination functions typically used in biometric
identification systems consider as input parameters only those
matching scores which are related to a single person in order
to derive a combined score for that person. We discuss how
such methods can be extended to utilize the matching scores
corresponding to all persons. The proposed combination meth-
ods account for dependencies between scores output by any
single participating matcher. Our experiments demonstrate the
advantage of using such combination methods when dealing
with large number of classes, as is the case with biometric
person identification systems. The experiments are performed on
the NIST BSSR1 dataset and combination methods considered
include likelihood ratio, neural network and weighted sum.

Index Terms— Combination of classifiers, biometric identifica-
tion systems.

I. I NTRODUCTION

B IOMETRIC applications operate in two modes: verifica-
tion (1:1) mode and identification (1:N) mode. Common

approaches to combining biometrics for (1:N) identification
applications are usually a simple iterative use of the (1:1)ver-
ification system. The combined score assigned to a particular
enrolled person is obtained as a function of the scores assigned
to that person by all the biometric matchers in either modes
of operation. However, in the identification mode additional
information is available for deriving the combined score
for any person in the database of enrollees. This additional
information is available from the matching scores returnedfor
the enrollees other than the target person.

We considerM multiple biometric matchers used to pro-
duceMN matching scores (Figure 1), whereN is the number
of enrolled persons. We assume thatM is small andN is large.
Each biometric matcher in such a setting is equivalent to a
classifier assigning matching scores to each of theN classes
or persons. And the combination of biometric matchers can
be viewed as a classifier combination problem with a large
number of classes.

Combination methods can be categorized based on the
construction properties of the combination functionsf . When
methods use a single common combination function, they
are calledclass genericmethods. When each class has its
own combination function, so that the combined scores are
calculated differently for different classes, the methodsare
calledclass specific.

Local methodstake as parameters only theM match scores
related to a particular class (single column in Figure 1)

Manuscript received September 14, 2007, revised February 19, 2008
The authors are with the Center for Unified Biometrics and Sensors, State

University of New York at Buffalo, USA (email: tulyakov@cubs.buffalo.edu;
govind@cubs.buffalo.edu).

Fig. 1. The set of scores available for combinations in identification systems
includes allMN matching scores fromM matchers and assigned to allN
persons. The combination functionsf usually only utilize the set of scores
related to one personi in order to calculate the combined matching score for
this person.

whereas theglobal methodsconsider the whole set ofMN

match scores (all columns in Figure 1) to derive the combined
score for any one class. In this paper we exploreglobal
methodswhose combination functions use the additional in-
formation (all columns) when computing the integrated score
for each person.

When classifiers deal with a small number of classes,
the dependencies between the scores assigned to different
classes can be learned and used for combination purposes.
For example, Xu et al. [1] used class confusion matrices for
deriving belief values and integrated these values into com-
bination algorithms in the digit classification problem. This
algorithm has class specific and global combination functions.
It is the most general type of combination method allowing
optimal performance. However, learning class dependencies
requires significant number of training samples for each class.
Such data might not be available for 1:N identification mode
systems, where usually a single template is enrolled for each
person. In addition, the database of enrolled persons can
be frequently changed making learning class relationships
infeasible.

As a consequence, combination approaches in 1:N identifi-
cation systems have considered only the local methods even
when all the MN scores are available. In this paper we
investigate the question of whether it is possible to improve
the performance of the identification system by using all the
MN matching scores for deriving the combined score for each
person [2], [3].
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II. PREVIOUS WORK IN IDENTIFICATION SYSTEM

COMBINATIONS

Traditionally, two types of biometric person authentication
systems are defined - verification (1:1) and identification
(1:N) systems. It is usually implied that verification systems
have only the matching scores related to one enrolled person
available to the combination method. However, it is possible
that a verification system additionally uses matching scores
related to other persons. For example, in [4] authors performed
’identification based verification’ by utilizing matching scores
of other enrolled peoples while making verification decision
on a particular person.

In order to avoid confusion, we define an identification
system as a system which provides matching scores for all
N enrolled persons. As in [4], such systems can operate in
verification mode also. An identification system is operating
in identification mode if its purpose is to classify an input as
belonging to any ofN classes or persons. We assume that the
classification decision is performed by applying thearg max
operator to theN combined scores:

C = arg max
1≤i≤N

Si

The correct identification rate, that is the frequency of correctly
finding the true class of the input, is the natural measure of
performance in this case, and we will use it in our experiments.
Note, that there could be other performance measures for
identification mode operation, such as Rank Probability Mass,
Cumulative Match Curve [5].

When an identification system operates in verification mode
we can distinguish two classes: genuine and impostor verifi-
cation attempts. The decision to accept is based on comparing
a combined score of a claimed person identityi, Si, to some
thresholdθ: Si > θ. The common way to describe the system
performance in such two-class problems is to construct ROC
curves showing the dependencies of errors on thresholdθ (or
DET curve [5]).

If we have a combination algorithm for verification systems,
it can be sequentially applied for all persons to operate in
the identification mode [6]. However, this approach does
not utilize dependencies between scores output by a single
matcher, i.e. the dependencies between the scores along the
rows in the score matrix of Figure 1. It is essentially a local
method which considers only a single column of scores as
input parameters to combination functions. Most combination
algorithms used in biometric applications are of this type and
sometimes are also user specific [7], [8].

We present here previous approaches which utilize score
dependencies in the identification mode.

A. Rank Based Combinations

T.K. Ho has used classifier combinations on the ranks of
the scores instead of scores themselves by arguing that ranks
provide more reliable information about a class being genuine
[9], [10]. Thus, if the input image has low quality, then the
genuine score, as well as the impostor scores will be low.
Combining low score for genuine class with other scores
could confuse a combination algorithm, but the rank of the

genuine class remains to be a stable statistic, and combining
this rank with other ranks of the genuine class should result
in true classification. Brunelli and Falavigna [11] considered
a hybrid approach where traditional combination of matching
scores is fused with the rank information in order to achieve
identification decision. Hong and Jain [12] consider ranks,not
for combination, but for modeling or normalizing the output
score of a classifier. Behavior-Knowledge Space combination
methods [13] are also based on ranks. Saranli and Demirekler
[14] provide additional references for rank based combination
methods.

The problem with rank based methods is that the score
information is lost. Indeed, the best score can be much better
than second best score, or it could be only slightly better,
but score ranks do not reflect this difference. It would be
desirable to have a combination method which retains the score
information as well as the rank information.

B. Score normalization approaches

Usually score normalization [15] refers to transformation
of scores based on a classifier’s score model learned during
training, and each score is transformed individually using
such a model. Thus the other scores output by a matcher
during the same identification trial (rows in the score matrix of
Figure 1) are not taken into consideration. If these normalized
scores are later combined class-wise (column-wise), then score
dependence is not accounted for by the combination algorithm.

Some score normalization techniques can use a set of
identification trial scores output by the classifier. For example,
Kittler et al. [16] normalize each score by the sum of all
the other scores before combination. Similar normalization
techniques are used in Z(zero)- and T(test)- normalizations
[17], [18]. Z- normalization uses impostor matching scores
to produce a class specific normalization. Z-normalization
does not include the set of identification trial scores (rowsin
Figure1), and thus does not utilize the score dependency. On
the other hand, T-normalization uses a set of scores produced
during a single identification trial by utilizing statistics of
mean and variance of the identification score set. Note that T-
normalization is a predetermined routine with no training.Still,
using this simple kind of score modeling turns out to be quite
useful; for example, [19] argued for applying T-normalizations
in face verification. There is also a counterargument [20]
that useful classification information gets lost during such
normalizations.

Score normalization techniques have been well developed
in the speaker identification literature. Cohort normalizing
method [21], [22] considers a subset of enrolled persons
close to the current test person in order to normalize the
score for that person by a log-likelihood ratio of the genuine
(current person) and impostor (cohort) score density mod-
els. Auckenthaler et al.[17] separated cohort normalization
methods into cohorts found during training (constrained) and
cohorts dynamically formed during testing (unconstrained
cohorts). Normalization by constrained cohorts utilizes only
one matching score of each classifier and thus does not
consider score dependencies. On the other hand, normalization
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by unconstrained cohorts potentially uses all scores of all
classifiers.

III. C OMPLEXITY TYPES OFCLASSIFIER COMBINATIONS

This section describes four types of combination methods
and their requirements of training data. Ultimately, the prob-
lem characteristics and the availability of training scores de-
termine the type of combination method which is appropriate
for a particular problem.
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Fig. 2. Classifier combination takes a set ofs
j

i
- score for classi by classifier

j and produces combination scoresSi for each classi. i is the index for the
N classes andj is the index for theM classifiers

Figure 2 gives a different view of the problem of integrating
scores in identification systems, for the purpose of formally
categorizing the combination methods. The combination func-
tions of local methods have a reduced parameter set (as con-
nections in Figure 2 show), and many well known combination
methods (e.g. weighted sum of scores) fall into this category. A
fully connected artificial neural network acceptingMN input
parameters and havingN output parameters would present
an example of the most general, class specific and global
combination function algorithm[1], [23]. The disadvantage
of this more general approach is that it requires very large
amount of training data, which might not be always available
in identification systems.

A. Types of Combination Methods

We develop here a formal framework for combination
methods further categorizing thelocal andglobal combination
functions that are required to be trained. The first two cate-
gories correspond tolocal and the remaining two correspond
to global methods.

1) Low complexity methods:Si = f({sj
i}j=1,...,M ). Meth-

ods of this type require only one combination function
to be trained, and the combination function takes as
input scores for one particular class as parameters.
It represents class generic and reduced parameter set
combination functions.

2) Medium complexity I methods:Si = fi({s
j
i}j=1,...,M ).

Methods of this type have separate score combining
functions for each class and each such function takes,
as input parameters, only the scores related to its class.

(a) Low (b) Medium I

(c) Medium II (d) High

Fig. 3. The range of scores considered by each combination type and
combination functions.

It represents class specific and reduced parameter set
combination functions.

3) Medium complexity II methods:
Si = f({sj

i}j=1,...,M , {sj
k}j=1,...,M ;k=1,...,N,k 6=i).

Methods of this type take as parameters not only the
scores related to the same class, but all output scores
of classifiers. Combination scores for each class are
calculated using the same function, but scores for
classi are given a special place in the parameter list.
Applying function f for different classes effectively
means permutation of the function’s parameters. These
combination functions are class generic and use the
whole parameter set.

4) High complexity methods:
Si = fi({s

j
k}j=1,...,M ;k=1,...,N ). Functions calculating

final scores are different for all classes, and they take as
parameters all the scores output by the base classifiers.
This represents class specific and whole parameter set
combination functions.

We can illustrate the different combination types using
the matrix score representation (Figure 1) as well. Each
row corresponds to a set of scores output by a particular
classifier, and each column corresponds to scores assigned
by classifiers to a particular class. The illustration of each
combination type functions is given in Figure 3. In order to
produce the combined scoreSi for class i, low complexity
methods (Figure 3a) and medium I complexity (Figure 3b)
combinations consider only those classifier scores which are
assigned to classi (column i), reflecting the property of
local combination functions. Medium II (Figure 3c) and high
complexity (Figure 3d) methods consider all the scores output
by classifiers for calculating a combined scoreSi for classi,
reflecting the property of global combination functions.

Low (Figure 3a) and medium II (Figure 3c) complexity
methods have the sameclass genericcombination functionsf
irrespective of the class for which the score is calculated.Note
that medium II complexity type methods have scores related
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to a particular class in a special consideration as indicated
by the second ellipse around these scores. We can think of
these combinations as taking two sets of parameters - scores
for a particular class, and all other scores. The important
property in these methods is that the combination functionf

is the same for all classes, but the combined scoresSi differ,
since we effectively permute function inputs for different
classes. Medium I (Figure 3b) and high (Figure 3d) complexity
methods haveclass specificcombination functionsfi trained
differently for different classes.

It is interesting to compare our combinations types with pre-
vious categorization of combination methods by Kuncheva et
al.[24], who refer to the score matrix as ‘decision profile’ and
‘intermediate feature space’. Kuncheva’s work also separates
combinations into ‘class-conscious’ set which corresponds
to the union of ‘low’ and ‘medium I’ complexity types,
and ‘class-indifferent’ set which corresponds to the unionof
‘medium II’ and ‘high’ complexity types. The continuation
of this work [25] gave an example of the weighted sum rule
having three different numbers of trainable parameters (and
accepting different numbers of input scores), which correspond
to ‘low’, ‘medium I’ and ‘high’ complexity types.

In contrast to Kuncheva’s work, our categorization of com-
bination methods is more general since we are not limiting
ourselves to simple combination rules like the weighted sum
rule. Further, we consider an additional category of ‘medium
II’ type. An example of ‘medium II’ combination is the
two step combination algorithm where in the first step the
scores produced by a particular classifier are normalized (with
possible participation of all scores of this classifier), and in the
second step, scores are combined by a function from the ‘low’
complexity type. Thus scores in each row are combined first,
and then the results are combined columnwise in the second
step.

Fig. 4. The relationship diagram of different combination complexity types.

Figure 4 illustrates the relationships between the types of
combination methods. Medium complexity types are subsets of
high complexity type, and the set of low complexity methods
is exactly the intersection of sets of medium I and medium
II combination methods. In order to avoid a confusion in
terminology we will henceforth assume that a combination
method belongs to a particular type only if it belongs to this
type and does not belong to the more specific type.

In [26] we provide a description of these complexity
types using the concept of VC (Vapnik-Chervonenkis) dimen-
sion [27]. The ability to use VC dimension for characterization

of different combination types justifies our usage of term
‘complexity types’.

Higher complexity methods can potentially produce better
classification results since more information is used. However,
the availability of training samples limits the types of possible
combinations to choose from. Thus the choice of combination
method in any particular application is a trade-off between
classifying capabilities of the combination functions andthe
availability of sufficient training samples. Different generic
classifiers such as neural networks, decision trees, etc., can
be used for combination within each complexity class. From
the perspective of our framework, the main effort in solving
the classifier combination problem consists of identifying
the complexity type and modifying the generic classifiers (if
needed) to compensate for a mismatched function complexity
type for reasons of inadequate training data.

The biometric person authentication systems we experi-
mented with in this research have a high number of enrolled
classes (persons)N and a small number of classifiers (bio-
metric face and fingerprint matchers)M . Most combinations
methods described in the literature for biometric applications
are of low complexity type. In this work we are interested
in exploiting higher complexity combinations. We will derive
combinations rules of medium II complexity type which are
analogous to the traditional likelihood ratio, neural network
and weighted sum combinations of the low complexity type.
Our experiments on large biometric score sets confirm that the
medium II complexity combinations have better performance
than their counterparts of low complexity.

Both identification and verification modes of operation can
utilize combinations of all four complexity types. In our
experiments we compare combination methods of low and
medium II complexity types and report performance for both,
verification and identification, modes of operation.

IV. D ERIVATION OF COMBINATION RULES USING

IDENTIFICATION TRIAL STATISTICS

In this section we present different combination methods of
medium II complexity type utilizing the statistics of the identi-
fication trial score set for normalization purposes. Our goal is
to theoretically derive an optimal combination algorithm with
the assumption that the joint densities of the scores and score
set statistics are known. We will also discuss the application of
the ‘background model’ (used in speaker identification [18])
and its relation to our approach.

A. Likelihoods With the Use of Identification Trial Score Set
Statistics

Suppose we combineM independent classifiers, and each
classifier outputsN dependent scores. The optimal com-
bination algorithm is the Bayesian classifier which accepts
theseNM scores and chooses the class which maximizes
the posterior class probability. Thus the goal of the optimal
combination method is to find

arg max
k

P (Ck|{s
j
i}i=1,...,N ;j=1,...,M )
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TermCk refers to the fact that the classk is the genuine class.
By Bayes theorem

P (Ck|{s
j
i}i=1,...,N ;j=1,...,M ) =

p({sj
i}i=1,...,N ;j=1,...,M |Ck)P (Ck)

p({sj
i}i=1,...,N ;j=1,...,M )

and since the denominator is the same for all classes, our goal
is to find

arg max
k

p({sj
i}i=1,...,N ;j=1,...,M |Ck)P (Ck)

or, assuming all classes have the same prior probability,

arg max
k

p({sj
i}i=1,...,N ;j=1,...,M |Ck)

Given the assumption that classifiers are independent, which
means that any subset of scores produced by one classifier
is statistically independent from any other subset of scores
produced by another classifier, our problem is to find

arg max
k

∏

j

p({sj
i}i=1,...,N |Ck) (1)

The goal is to reliably estimate the densities
p({sj

i}i=1,...,N |Ck), which is a hard task given that the
number N of classes is large and we do not have many
samples of each class for training. Since we do not want
to construct a class specific combination method, the class
indexes can be permuted. Thus all the training samples
pertaining to different genuine classes can be used to train
only one density,p(sj

k, {sj
i}i=1,...,N,i 6=k|Ck). Now s

j
k is a

score belonging to a genuine match, and all other scores
{sj

i}i=2,...,N are from impostor matches. In order to keep the
problem tractable, instead ofp(sk, {sj

i}i=1,...,N,i 6=k|Ck) we
can considerp(sj

k, t
j
k|Ck), where t

j
k is some statistics of all

the other scores besidessj
k. The final combination rule for

this method is to find

arg max
k

∏

j

p(sj
k, t

j
k|Ck) (2)

As our previous experiments have shown [3] this algorithm
does not perform as well as the traditional likelihood ratio
combination:

arg max
k

∏

j

p(sj
k|Ck)

p(sj
k|Ck)

(3)

One reason for the lower performance could be that the
score set statisticstjk does not fully reflect the background
information for scoresj

k, whereas the termp(sj
k|Ck) contains

such information. For example, the genuine matching scores
s

j
k can be very strong, but located in the region of low prob-

ability (both p(sj
k|Ck) and p(sj

k, t
j
k|Ck) are small), whereas

p(sj
k|Ck) could be even smaller, and the likelihood ratio can

still succeed. In the next section we will derive a combination
rule which combines the use of the score set statistics and
background models [21].

B. Likelihood Ratios with the Use of Identification Trial Score
Set Statistics

We consider the posterior class probability, apply Bayes
formula as before, but now use the independence of classifiers
to decompose the denominator:

P (Ck|{s
j
i}i=1,...,N ;j=1,...,M )

=
p({sj

i}i=1,...,N ;j=1,...,M |Ck)P (Ck)

p({sj
i}i=1,...,N ;j=1,...,M )

=

∏
j p({sj

i}i=1,...,N |Ck)P (Ck)
∏

j p({sj
i}i=1,...,N )

= P (Ck)
∏

j

p({sj
i}i=1,...,N |Ck)

p({sj
i}i=1,...,N )

(4)

The next step is similar to the step in deriving the algorithm
for the background speaker model [18]. We consider the
class Ck to mean that some other class is genuine, and
decomposep({sj

i}i=1,...,N ) = P (Ck)p({sj
i}i=1,...,N |Ck) +

P (Ck)p({sj
i}i=1,...,N |Ck). By assuming thatN is large and

P (Ck) ≫ P (Ck), we can discard the first term and represent
4 as:

P (Ck)

P (Ck)
M

∏

j

p({sj
i}i=1,...,N |Ck)

p({sj
i}i=1,...,N |Ck)

Assuming that all classes have the same probability of occur-
ring (P (Ck) = P (Ci) and P (Ck) = P (Ci)) we obtain the
following classifier decision:

arg max
k

∏

j

p({sj
i}i=1,...,N |Ck)

p({sj
i}i=1,...,N |Ck)

(5)

In comparison with decision 1 of the previous section we
have an additional densityp({sj

i}i=1,...,N |Ck). This density
can be viewed as a background of impostors for the genuine
classCk. As research in speaker identification suggests [21],
utilizing such a background model is beneficial for system
performance.

We estimate the ratios of equation 5 by additional modeling
of p({sj

i}i=1,...,N |Ck). We use an approach similar to the
previous section to estimate this density asp(sj

k, t
j
k|Ck) with

t
j
k - the joint density of impostor scoressj

k and corresponding
identification trial statisticstjk. The final combination rule is
then,

arg max
k

∏

j

p(sj
k, t

j
k|Ck)

p(sj
k, t

j
k|Ck)

(6)

The use of the identification trial score set statistics con-
sidersp(sj

k, t
j
k|Ck) andp(sj

k, t
j
k|Ck) instead ofp(sj

k|Ck) and
p(sj

k|Ck), and the background model considersp(sj
k, t

j
k|Ck)

or p(sj
k|Ck) in addition top(sj

k, t
j
k|Ck) or p(sj

k|Ck). Thus, the
use of the identification trial score statistics differs from the
background model in being able to account for dependencies
of scores in identification trials by using the statistict

j
k.

Note, that traditional likelihood ratio (Eq. 3) is the optimal
combination method for low complexity combinations operat-
ing in verification mode (see [28]). Thus, its extension by Eq.
6 should provide a good combination method of medium II
complexity type for verification mode operations.
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C. Statistics of Identification Trial Scores

The important question which we have to decide is what
particular identification trial score statisticstjk will be most
suitable to replace the set of scores{sj

i}i=1,...,N,i 6=k. The
likelihood ratio incorporating score statistics (Eq. 6) will be
more discriminating than the traditional likelihood ratio(Eq.
3) if t

j
k provides an information on whether the scores

j
k is

genuine or impostor. We use the term ”‘identification model”’
to denote a particular way of choosing identification trial score
set statisticstjk and using this statistics together with scores
s

j
k.
One of the identification models we previously presented is

the second best score model [29], where statisticst
j
k = sbs(sj

k)
is calculated as the best score in the set{sj

i}i=1,...,N,i 6=k

(”‘second best”’ aftersj
k). We can reason that if second best

score is big (e.g. bigger than current scores
j
k, sos

j
k is not the

best score), then we have less confidence thats
j
k is a genuine

score, and more confidence that this is impostor score. And ifit
is small (sosj

k is big relative to all other scores), we have more
confidence thatsj

k is a genuine. Originally, we usedsbs(sj
k)

for accepting first-choice decisions in open-set identification
systems [29]. In this case,sbs(sj

k) exactly coincides with
second best score of the identification trial score set.

T-normalization can be considered as another identification
model. It is expressed as a transformation of all matching
scoressj

k by the formula

s
j
k(l) →

s
j
k(l) − µj(l)

σj(l)

whereµj(l) andσj(l) are correspondingly the mean and the
standard deviation of the set of scores produced by matcher
j during the identification triall. In contrast to second best
score model, T-normalization uses different statistics -µj

and σj which are the same for all scoressj
k in the current

identification trial, and it does predetermined transformation
using these statistics.

Clearly, there might be many variations on calculating
statistics t

j
k - it may or may not be dependent onk, it

might include mean, variance, n-th ranked score or any other
statistics of a score set. It seems that for different applications
the most useful statistics will be different, and it would be
desirable to have an automatic way of determining useful
score statistics. In our experiments we limited ourselves to
only using second best score statistics and T-normalization.

One approach to choose a best statistics of identification trial
score sets is to look at the dependence between genuine and
impostor scores. In order to verify the dependence of match
scores we measured the correlation between the genuine score
and different statistics of the sets of impostor scores. Table I
contains a small part of measured correlations corresponding
to firstimp - 1st ranked impostor score,secondimp - 2nd
ranked impostor score, andmeanimp - the mean of impostor
scores. As results of Table I show, the scores produced by real
life classifiers are indeed dependent.

The correlations between genuine and impostor set statistics
indicate the usefulness of a given statistics - bigger correlation
means that this statistics is better able to predict whetherthe

Matchers firstimp secondimp meanimp

li 0.3164 0.3400 0.2961
ri 0.3536 0.3714 0.3626
C 0.1419 0.1513 0.1440
G 0.1339 0.1800 0.1593

TABLE I

CORRELATIONS BETWEENsgen AND DIFFERENT STATISTICS OF THE

IMPOSTOR SCORE SETS PRODUCED DURING IDENTIFICATION TRIALSIN

NIST BSSR1DATA .

score is genuine or not. So we might want to calculate such
correlations for many different statistics and choose statistics
with bigger correlations. Second best score statistics seems to
provide a good prediction on the strength of genuine score, and
this is additional reason we used it in our experiments. Note,
thatsbs(sj

k) used in our experiments is calculated with respect
to s

j
k and if s

j
k is an impostor score it might not befirstimp

or secondimp. During testing we do not know what the exact
set of impostors is, so instead offirstimp or secondimp we
are forced to usesbs(sj

k).

D. Combinations of Dependent Classifiers

The combination algorithms presented in the previous two
sections deal with independent classifiers. How should we
address dependent classifiers?

By looking at the combination equations 1 and 6 we can
see that each classifier contributes termsp({sj

i}i=1,...,N |Ck)

and p({s
j

i
}i=1,...,N |Ck)

p({s
j

i
}i=1,...,N |Ck)

correspondingly to the combination al-
gorithm. Thus one can conclude that it is possible to model the
same terms for each classifier with the help of identification

trial score statistics,p(sj
k, t

j
k|Ck) and p(sj

k
,t

j

k
|Ck)

p(sj

k
,t

j

k
|Ck)

, and then

combine them by some other trainable function.
Note that any relationships between scoress

j1
i1

and s
j2
i2

where i1 6= i2 and j1 6= j2 will be essentially discarded.
This seems to be inevitable for the current complexity type
of combinations - medium II. If we wanted to account for
such relationships, we would need class-specific combination
functions, and thus higher complexity combination methods.

Another way to construct combinations of medium II com-
plexity type for dependent classifiers is presented in the next
section.

E. Normalizations Followed by Combinations and Single Step
Combinations

Figure 5 represents in graphical form the type of combina-
tions we have presented thus far. All these combinations con-
sist of two steps. In the first step, each score is normalized by
using other scores output by the same matcher. In the second
step, normalized scores are combined using a predetermined
or trained combination function.

Score normalization based on modeling the joint densi-

ties of scores and statistics,p(sj
k, t

j
k|Ck) and p(sj

k
,t

j

k
|Ck)

p(sj

k
,t

j

k
|Ck)

,

might not correctly represent original terms of Eqs. 1 and

5, p({sj
i}i=1,...,N |Ck) and p({s

j

i
}i=1,...,N |Ck)

p({s
j

i
}i=1,...,N |Ck)

). Approximating
densities might also be unreliable if few statistics are used.
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Fig. 5. 2-step combination method utilizing identification model.

However, it is not necessary to have the two steps for
combinations. The contribution of the particular classifier j

to the whole combination algorithm’s output for classi is
calculated only from scoresj

i and statistict
j
i . Figure 6

illustrates how scores and statistics from all the participating
classifiers could be combined in a single combination step.

Fig. 6. 1-step combination method utilizing identification model.

In the algorithm described by Figure 6 the statisticstj are
extracted for each classifierj using its output scores by a
predetermined and non-trainable algorithm. The scores related
to a particular class and statistics are combined together by
a trainable function. This combination function is not class-
specific and is easily trainable. This type of combinations are
of medium II complexity type. In comparison, for the low
complexity type combinations only the scores for a particular
class are combined, and statistics from other classes are not
considered.

F. Neural Network and Weighted Sum Combinations Using
Second-Best Score

As an example of single step combinations, we consider
two combination methods incorporating the second best score
statistics: the neural network and the weighted sum rule.

Traditional neural network corresponding to low complexity
combination type can be represented as a functionSi =
f(s1

i , . . . , s
M
i ). Following the diagram of Figure 6, the neural

network combination of medium II complexity type will have
the form Si = f(s1

i , sbs(s
1
i ), . . . , s

M
i , sbs(sM

i )). We used
multilayer perceptron trained by a traditional backpropagation
method and optimizing MSE.

The traditional weighted sum combination without the use
of second-best score (‘weighted sum local’) is a low complex-
ity combination which combinesM scores fromM biometric

matchers assigned to a particular classi:

Si = w1s
1
i + · · · + wMsM

i (7)

The weighted sum rule with the sbs model (‘weighted sum
global’) combines scores as well as statistics of score sets:

Si = w1s
1
i +w2sbs(s

1
i )+· · ·+w2M−1s

M
i +w2Msbs(sM

i ) (8)

Weighted sum rule can be specifically trained to maxi-
mize the correct identification rate in identification mode of
operation[28]. However, it is not optimal for the verification
mode. Thus, we will test the performance of the weighted
sum rule with and without the second-best score model
modification for the identification mode operation only. The
neural network, on the other hand, might not be optimal for
identification mode due to MSE minimization criteria, but
gives an output approximating likelihood ratio. We give the
performance of neural network method for both identification
and verification modes.

V. EXPERIMENTS

We have used the biometric matching score set BSSR1
distributed by NIST[30]. This set contains matching scores
for a fingerprint matcher and two face matchers ‘C’ and ‘G’.
Fingerprint matching scores are given for the left index ‘li’
finger matches and right index ‘ri’ finger matches. For each
combination method we performed six sets of experiments on
combining any two pairs of scores : ‘C’ & ‘G’, ‘li’ & ‘ri’, ‘li’
& ‘C’, ‘li’ & ‘G’, ‘ri’ & ‘C’, and ‘ri’ & ‘G’.

Although the BSSR1 score set has a subset of scores ob-
tained from the same physical individuals, this subset is rather
small -517 identification trials with517 enrolled persons. We
use bigger subsets of fingerprint and face matching scores of
BSSR1 by creating virtual persons; the fingerprint scores of
a virtual person come from one physical person and the face
scores come from a different physical person. Note, that for
pairs of face scores and for pairs of fingerprint scores, we
retain the correspondence of scores to real persons as specified
in the database. The scores are not reused, and thus we are
limited to the maximum number of identification trials -6000
and the maximum number of classes, or enrolled persons, -
3000. Some enrollees and some identification trials had to be
discarded due to enrollment errors.We use a bootstrap testing
procedure: for 100 iterations, we randomly split the data intwo
parts -2991 identification trials with2991 enrolled persons in
each part used as separate training and testing sets. The results
of 100 training/testing iterations are averaged at the end.

In order to achieve good performance of training algo-
rithms all the scores were normalized using simple min-max
algorithm to interval [0,1]. When we used T-normalization,
additional min-max normalization was performed after it.

A. Description of Used Algorithms

The goal of our experiments is to compare three gen-
eral architectures for classifier combination - traditional low
complexity combinations which do not use any identification
model, medium II complexity combinations based on T-
normalized scores and medium II complexity combinations
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using second best score model. Three types of learning algo-
rithms are used in the experiments - likelihood ratio, neural
network and weighted sum. In order to make the comparison
objective we utilize each learning algorithm in each of three
architectures. Each classifier in traditional and T-normalization
methods supply only a single score and the learning function
depends on two input parameters:f(s1, s2). On the other hand,
second best score model has additional score statisticssbs(s1)
and sbs(s2) and the learning function depends on four input
parameters:f(s1, sbs(s1), s2, sbs(s2)).

For likelihood ratio combinations we estimate score den-
sities using the Parzen window method with Gaussian ker-
nels. The kernel width is determined by the maximum
likelihood method. We use only 1000 identification trial
scores for reconstructing densities, and the remainder of
the training set (2991-1000 trials) is used for validating
kernel widths. Note, that for each identification trial there
is 1 genuine score and 2990 impostor scores. In order to
make our implementation faster, we only used a single ran-
dom impostor score from a trial for training. We did not
utilize the statistical independence of data when combin-
ing matchers of different modalities, and in all experiments
we approximated either two dimensional densities of gen-
uine and impostor scores -pgen(s1, s2) and pimp(s

1, s2), or
four dimensional densities -pgen(s1, sbs(s1), s2, sbs(s2)) and
pimp(s

1, sbs(s1), s2, sbs(s2)).
The neural network is multilayer perceptron trained by

backpropagation algorithm. The neural network has two hid-
den layers with 8 and 9 nodes and an output layer with 1
node in all cases. The input layer has 2 nodes for traditional
training (no identification model) and T-normalized training,
and 4 nodes for training with second best score model. As
for likelihood ratio method, we used1000 training samples
(1 genuine and one random impostor score from identification
trial) for backpropagation training and remaining2991−1000
training samples for validation. The training was stopped when
the MSE on the validation set achieved minimum.

For the weighted sum methods we need to find the optimal
weights maximizing the number of correct identification trials
on the training sets. Though there exists previous research
proposing solutions for this problem (e.g. [31], [32]), it
deals with the case of small number of classes and is not
directly applicable to our case. The key idea of learning
algorithms minimizing classification error is to replace the
discrete misclassification cost function with some smooth
approximation in order to be able to take a derivative of
the cost function and perform gradient descent optimization.
For our experiments we implemented a simpler approach of
random modification of weights and accepting new weights
if classification performance improves. Though our approach
takes more training time than gradient descent method would
have took, it does not depend on the smoothing parameters
and it is sufficiently fast.

B. Performance in Identification Operating Mode

Table II shows the obtained correct identification rate for
experiments with neural network and weighted sum combina-
tion methods. The correct identification means that the genuine

Matchers NN NN+T NN+sbs WS WS+T WS+sbs
C & G 83.49 83.59 83.86 84.51 84.53 84.85

(σ) (0.65) (0.84) (0.62) (0.50) (0.50) (0.50)
li & ri 95.12 95.11 95.17 95.11 95.13 95.02

(σ) (0.30) (0.30) (0.29) (0.29) (0.32) (0.32)
li & C 96.44 97.13 96.21 97.15 97.17 97.19

(σ) (0.93) (0.24) (0.78) (0.23) (0.23) (0.25)
li & G 95.38 94.65 95.73 95.38 95.28 96.12

(σ) (0.35) (0.80) (0.43) (0.30) (0.26) (0.29)
ri & C 97.51 98.10 97.39 98.11 98.10 98.16

(σ) (0.63) (0.17) (0.41) (0.16) (0.17) (0.22)
ri & G 96.69 96.09 97.03 96.85 96.76 97.29

(σ) (0.29) (0.54) (0.26) (0.23) (0.21) (0.25)

TABLE II

CORRECT IDENTIFICATION RATES OF COMBINATIONS IN IDENTIFICATION

SYSTEMS. THE STANDARD DEVIATIONS OF THESE RATES ESTIMATED

FROM BOOTSTRAP SAMPLES ARE GIVEN IN PARENTHESES.

combined score was better than2990 impostor combined
scores (there is a total of2991 enrollees). In this table, ‘NN’
is the traditional neural network combination method of low
complexity type, ‘NN+T’ is the neural network operating
on T-normalized scores and ‘NN+sbs’ is the neural network
augmented with the second-best score model. Similarly,‘WS’
is the traditional weighted sum combination of Eq. 7, ‘WS+T’
is the weighted sum operating on T-normalized scores and
‘WS+sbs’ is the weighted sum combination augmented with
the second-best score model of Eq. 8.

We also provided the CMC graphs showing the performance
of ‘WS’, ‘WS+T’ and ‘WS+sbs’ methods in Figure 7. As
we discussed in section IV-F, neural network training is not
optimized for best rank performance and we chose do not
include similar CMC graphs for it.

We can see that in all cases, the addition of either the T-
normalization or the second-best score statistic into the cor-
responding low complexity algorithm results in performance
improvement. The weighted sum has generally better perfor-
mance than neural network combination method, and second
best score statistics mostly outperforms T-normalization.

C. Performance in Verification Operating Mode

Although there are examples where score normalization
techniques with background models have been used for identi-
fication tasks [11], even more applications use such techniques
for identification systems operating in verification mode[21],
[33], [18]. We also applied the combinations utilizing identi-
fication models for biometric person verification tasks. The
drawback of using either the background models or the
second-best score statistic in verification tasks is that wehave
to produce not only one match per person and per matcher, but
also some set of matching scores for other persons enrolled in
the system (or some artificially modeled persons).

Figures 8 and 9 contain the results of experiments when
operating in the verification mode for likelihood ratio and
neural network combination methods. The ROC performance
curves were constructed using combinations of2991 × 100
(test trials× iterations) genuine and impostor score sets. Note
that only a single random impostor was used from each test
identification trial.
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Fig. 7. CMC curves for weighted sum combinations utilizing and not utilizing
identification models in identification mode.

We were able to achieve significant improvement in the
verification task performance as well, by utilizing the second-
best score statistic. The T-normalization is also beneficial, but
to a smaller extent in these experiments.

D. Dependence of the Performance on the Number of Training
Samples

Since the use of second best score model requires learning
combination functions with bigger number of parameters, the
errors associated with the learning algorithm might increase
and negate the benefits of additional model information. In
order to clarify the impact of additional training demand on
proposed methods, we conducted experiments with different
numbers of training samples supplied to the learning algo-
rithm. Figures 10 and 11 present results of these experiments
for neural network and likelihood ratio combination methods.
Same numbers of training and validation samples are chosen
here -8, 16, . . . , 512.

Figure 10 presents the correct identification rate together
with 90% confidence intervals estimated from bootstrap sam-
ples (extreme 5% of bootstrap samples were discarded from
each end) for neural network combinations. The performance
results agree with the results presented in Table II - com-
binations involving ’C’ are well handled by T-normalization
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Fig. 8. ROC curves for likelihood ratio combinations utilizing and not
utilizing identification models in verification mode.

method, and combinations involving ’G’ have better perfor-
mance when using second best score model. The size of
training and validation sets have little impact on average
correct identification rate, though it tends to slightly increase
with the increasing size of these sets. The impact on spread of
rate measurements is more significant. If we want to avoid the
accidental bad performance of a particular learned algorithm,
we need to ensure that a sufficient number of training samples
is used.

Figure 11 presents the equal error rates together with
90% confidence intervals for likelihood ratio combination
methods. The increase of the training sample size has big
impact on the spread of error rates, and lesser impact on
the average error rate. In some cases, the second best score
model has worse performance than T-normalization method
when the number of training samples is small. For bigger
number of training samples, second best score model overtakes
T-normalization. This observation confirms that learning 4-
dimensional score densities for second best score model can
result in a worse performance than the approaches requiring
learning 2-dimensional densities, such as T-normalization.
When the number of training samples is sufficiently large
(more than 100 in this case), the density approximations for
second best score method are good enough to outperform T-
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Fig. 9. ROC curves for neural network combinations utilizingand not
utilizing identification models in verification mode.

normalization.

VI. CONCLUSION

We have presented four complexity combination types that
originate naturally from the structure of the constructed com-
bination method. We showed the usefulness of differentiating
these four combination types for better understanding the
problem of classifier combination and for constructing well-
performing combination algorithms. We observe that often
the algorithms used for combining matchers in biometric
identification systems only utilize the scores related to one
class to produce the final combination score. Combination
algorithms of low complexity type discard the dependency
information between scores assigned to all classes by any
single classifier. Instead of using low complexity combination
algorithms in identification systems, we describe the use of
medium II complexity type combinations, which utilize all
the available scores and require the training of only a single
combination function.

In order to use the relationships between scores assigned
by one classifier to different classes, we have introduced the
concept of the second-best score statistic. It is a way of score
normalization where the normalization depends on all the
scores output by a classifier in any one identification trial,
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Fig. 10. Correct identification rates together with 90% bootstrap confidence
estimates for different numbers of training and validation samples in neural
network combination methods.

and the method is the same for all classes. This approach
has less complexity than previous attempts of normalization
[34], [35]. In these previous attempts normalizations were
class specific and required huge amount of training data.
The combinations utilizing such normalizations are similar to
Behavior Knowledge Space combination [36], and belong to
the high complexity combination type. Biometric identification
problems can have a large number of enrolled persons, and
such combinations are not feasible due to the lack of training
data. By restricting ourselves to non-class-specific normaliza-
tions we are able to concentrate on combinations of medium II
complexity type. Such combinations have significantly lower
complexity, and result in efficient algorithms for identification
systems.
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