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Abstract— Combination functions typically used in biometric Person i
identification systems consider as input parameters only those
matching scores which are related to a single person in order @ o o ol @ [ @
to derive a combined score for that person. We discuss how 5 P 3

such methods can be extended to utilize the matching scores

corresponding to all persons. The proposed combination meth- Matcherj °o o o o @

ods account for dependencies between scores output by any

single participating matcher. Our experiments demonstrate the ° Do :
advantage of using such combination methods when dealing @ R @ e @
with large number of classes, as is the case with biometric f

person identification systems. The experiments are performed on

the NIST BSSR1 dataset and combination methods considered S

include likelihood ratio, neural network and weighted sum.

Index Terms— Combination of classifiers, biometric identifica- Fig. 1. The set of scores available for combinations in idieation systems
tion systems. includes allM N matching scores fromd/ matchers and assigned to &
persons. The combination functiorfsusually only utilize the set of scores

related to one persohin order to calculate the combined matching score for
I. INTRODUCTION this person.

IOMETRIC applications operate in two modes: verifica-

tion (1:1) mode and identification (1:N) mode. Common
approaches to combining biometrics for (1:N) identificatio
applications are usually a simple iterative use of the (%el) .
ification system. The combined score assigned to a particuf{€reas theglobal methodsconsider the whole set ai/ V-
enrolled person is obtained as a function of the scoresraaigMatch scores (all columns in Figure 1) to derive the combined
to that person by all the biometric matchers in either mod&SCreé for any one class. In this paper we explgtebal

of operation. However, in the identification mode additiondn€thodswhose combination functions use the additional in-
information is available for deriving the combined scorffrmation (all columns) when computing the integrated scor

for any person in the database of enrollees. This additioril ach person.
information is available from the matching scores returftgd  When classifiers deal with a small number of classes,

the enrollees other than the target person. the dependencies between the scores assigned to different
We considerM multiple biometric matchers used to proglasses can be learned and used for combination purposes.
duceM N matching scores (Figure 1), wheleis the number For example, Xu et al. [1] used class confusion matrices for
of enrolled persons. We assume thétis small andV is large. deriving belief values and integrated these values into-com
Each biometric matcher in such a setting is equivalent topghation algorithms in the digit classification problem.igh
classifier assigning matching scores to each of¥helasses algorithm has class specific and global combination funetio
or persons. And the combination of biometric matchers cais the most general type of combination method allowing
be viewed as a classifier combination problem with a larggtimal performance. However, learning class dependencie
number of classes. requires significant number of training samples for eachscla
Combination methods can be categorized based on ®gch data might not be available for 1:N identification mode
construction properties of the combination functighdVhen systems, where usually a single template is enrolled foh eac
methods use a single common combination function, thg¥érson. In addition, the database of enrolled persons can

are calledclass genericmethods. When each class has itge frequently changed making learning class relationships
own combination function, so that the combined scores gfgeasible.

calculated differently for different classes, the metheas L . . -
calledclass specific As a consequence, combination approaches in 1:N identifi-
Local methodsake as parameters only thé match scores cation systems have considered only the local methods even

related to a particular class (single column in Figure #yhen all the M N scores are available. In this paper we

_ _ _ investigate the question of whether it is possible to improv
Manuscript received September 14, 2007, revised FebruargaiiB the performance of the identification system by using all the
The authors are with the Center for Unified Biometrics and SexnsState MN hi for derivi h bined f h
University of New York at Buffalo, USA (email: tulyakov@cubsiffalo.edu; matching scores for deriving the combined score for eac
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Il. PREVIOUSWORK IN IDENTIFICATION SYSTEM genuine class remains to be a stable statistic, and congbinin
COMBINATIONS this rank with other ranks of the genuine class should result

Traditionally, two types of biometric person authentioati in true_ classification. Brunelli _a_nd Falavig_na [11] cons&ﬂa_
systems are defined - verification (1:1) and identificatio hybrid approach where traditional combination of matghin
(1:N) systems. It is usually implied that verification syate SCOres is fused with the rank information in order to achieve
have only the matching scores related to one enrolled perdgfintification decision. Hong and Jain [12] consider ramic,
available to the combination method. However, it is possibfor combination, but for modeling or normalizing the output
that a verification system additionally uses matching scorécore of a classifier. Behavior-Knowledge Space combinatio
related to other persons. For example, in [4] authors pexdolr methods [13] are also based on ranks. Saranli and Demirekler
'identification based verification’ by utilizing matchingares [14] provide additional references for rank based comimnat
of other enrolled peoples while making verification deaisiomethods. _ .
on a particular person. The problem with rank based methods is that the score

In order to avoid confusion, we define an identificatiof?formation is lost. Indeed, the best score can be muchrette

system as a system which provides matching scores for tgn second best score, or it could be only slightly better,
N enrolled persons. As in [4], such systems can operate QHt score ranks do not reflect this difference. It would be
verification mode also. An identification system is opergtindesirable to have a combination method which retains thesco
in identification mode if its purpose is to classify an inpst ainformation as well as the rank information.

belonging to any ofV classes or persons. We assume that the

classification decision is performed by applying the max g gcore normalization approaches

operator to theV combined scores: o )
Usually score normalization [15] refers to transformation

C =arg max, Si of scores based on a classifier's score model learned during

) L ) training, and each score is transformed individually using
The correct identification rate, that is the frequency ofectty sych a model. Thus the other scores output by a matcher

finding the trge c!ass of the mput,l IS the_ r_1atura| measure 8Ejring the same identification trial (rows in the score nxadfi
performance in this case, and we will use it in our experimentiq re 1) are not taken into consideration. If these norsalli
Note, that there could be other performance measures res are later combined class-wise (column-wise), theres
identification mode operation, such as Rank Probabilityst\/la%ependence is not accounted for by the combination algurith

Cumulative Match Curve [5]. Some score normalization techniques can use a set of

When an _|den_t|f|cat|on system opera_tes in ve_rlflcatlon MOG&antification trial scores output by the classifier. Forrapée,
we can distinguish two classes: genuine and impostor ver

. o ) Kittler et al. [16] normalize each score by the sum of all
cation gttempts. The deC|S|_on to accept 1S ba_sed On COMPAKRL other scores before combination. Similar normalizatio
a combined score of a claimed person |dent;t}8i, to some techniques are used in Z(zero)- and T(test)- normalization
thresholdd: S; > 6. The common way to describe the systegw]' [18]. Z- normalization uses impostor matching scores

performahnce_ n SEChdtWO'C(IjaSS _prob:cems Is to c?]ns;tljct RQ& produce a class specific normalization. Z-normalization
curves showing the dependencies of errors on thresh@® o5 ot include the set of identification trial scores (rdmvs

DET curve [5]). I . e Figurel), and thus does not utilize the score dependency. On
If we have a combination algorithm for verification system:ihe other hand, T-normalization uses a set of scores prdduce

it can be sequentially applied for all persons to operate H?Jring a single identification trial by utilizing statissicof

the |d_elz_nt|f|gat|on dmoo_le [2]' However, this approglch dQ ean and variance of the identification score set. Note that T
not utilize dependencies between scores output by a Singigajization is a predetermined routine with no trainiagll,

matcher, i.e. the dependencies between the scores along ﬁg this simple kind of score modeling turns out to be quite

rows in the score matrix of Figure 1. It is essentially a loc seful; for example, [19] argued for applying T-normaliaas

method which con5|dersb_onl)_/ afsmgl_e coll;/lmn of SCOTeS @5 face verification. There is also a counterargument [20]
Input parameters to combination functions. Most cpmbmaﬂ that useful classification information gets lost during tsuc
algorithms used in biometric applications are of this typd a normalizations

sometimes are also user specific [7], [8]. _ . Score normalization techniques have been well developed
we presgnt _here previous a_ipproaches which utilize SCOE the speaker identification literature. Cohort normailigi
dependencies in the identification mode. method [21], [22] considers a subset of enrolled persons
close to the current test person in order to normalize the
A. Rank Based Combinations score for that person by a log-likelihood ratio of the geruin
T.K. Ho has used classifier combinations on the ranks @furrent person) and impostor (cohort) score density mod-
the scores instead of scores themselves by arguing thas raels. Auckenthaler et al.[17] separated cohort normabrati
provide more reliable information about a class being gamuimethods into cohorts found during training (constrainaa) a
[9], [10]. Thus, if the input image has low quality, then theohorts dynamically formed during testing (unconstrained
genuine score, as well as the impostor scores will be loaohorts). Normalization by constrained cohorts utilizedyo
Combining low score for genuine class with other scora@me matching score of each classifier and thus does not
could confuse a combination algorithm, but the rank of theonsider score dependencies. On the other hand, nornatizat



by unconstrained cohorts potentially uses all scores of all @
classifiers. o

IIl. COMPLEXITY TYPES OFCLASSIFIER COMBINATIONS

This section describes four types of combination methods . @ o @ &)
and their requirements of training data. Ultimately, thelpr / /i
lem characteristics and the availability of training scode- S; S
termine the type of combination method which is appropriate (a) Low (b) Medium 1
for a particular problem. @ """""" @ @ """""" @
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|
: It represents class specific and reduced parameter set
! combination functions.
v 3) Medium complexity Il methods:
Fig. 2. Classifier combination takes a setspf- score for class by classifier S. _ f({sj} ) , {Sj } ) )
j and produces combination scorgs for each class. i is the index for the v CiSg=1 Mo Ok Si=1, Mik=1,. N k# ) -
N classes ang is the index for theM classifiers Methods of this type take as parameters not only the

scores related to the same class, but all output scores
of classifiers. Combination scores for each class are
calculated using the same function, but scores for
classi are given a special place in the parameter list.
Applying function f for different classes effectively
means permutation of the function’s parameters. These
combination functions are class generic and use the
whole parameter set.

4) High complexity methods:

Si = fi{s].}j=1,...M:k=1,...,n). Functions calculating
final scores are different for all classes, and they take as
parameters all the scores output by the base classifiers.
This represents class specific and whole parameter set
combination functions.

Figure 2 gives a different view of the problem of integrating
scores in identification systems, for the purpose of forynall
categorizing the combination methods. The combinatiorc-fun
tions of local methods have a reduced parameter set (as con-
nections in Figure 2 show), and many well known combination
methods (e.g. weighted sum of scores) fall into this categor
fully connected artificial neural network acceptingN input
parameters and havingy output parameters would present
an example of the most general, class specific and global
combination function algorithm[1], [23]. The disadvantag
of this more general approach is that it requires very large
amount of training data, which might not be always available

in identification systems. ) ] o )
We can illustrate the different combination types using

the matrix score representation (Figure 1) as well. Each
row corresponds to a set of scores output by a particular

We develop here a formal framework for combinatioglassifier, and each column corresponds to scores assigned

methods further categorizing thecal andglobal combination by classifiers to a particular class. The illustration of leac
functions that are required to be trained. The first two cateéembination type functions is given in Figure 3. In order to
gories correspond tocal and the remaining two correspondproduce the combined scorg for classi, low complexity

to global methods. methods (Figure 3a) and medium | complexity (Figure 3b)

1) Low complexity methodsS; = f({s{}jzl,_“’M). Meth- combinations consider only those classifier scores whieh ar
ods of this type require only one combination functioassigned to clasg (column ), reflecting the property of
to be trained, and the combination function takes agcal combination functions. Medium Il (Figure 3c) and high
input scores for one particular class as parametermmplexity (Figure 3d) methods consider all the scoresuutp
It represents class generic and reduced parameter Betclassifiers for calculating a combined scaigfor classi,
combination functions. reflecting the property of global combination functions.

2) Medium complexity | methodsS; = fi({sz}jzl,_“’M). Low (Figure 3a) and medium Il (Figure 3c) complexity
Methods of this type have separate score combinimgethods have the sanstass genericombination functiong
functions for each class and each such function takesgespective of the class for which the score is calculatémte
as input parameters, only the scores related to its clagsat medium Il complexity type methods have scores related

A. Types of Combination Methods



to a particular class in a special consideration as indicatef different combination types justifies our usage of term
by the second ellipse around these scores. We can think‘admplexity types’.
these combinations as taking two sets of parameters - scorelligher complexity methods can potentially produce better
for a particular class, and all other scores. The importadiassification results since more information is used. Hane
property in these methods is that the combination funcfionthe availability of training samples limits the types of pitde
is the same for all classes, but the combined sc6ediffer, combinations to choose from. Thus the choice of combination
since we effectively permute function inputs for differentnethod in any particular application is a trade-off between
classes. Medium | (Figure 3b) and high (Figure 3d) compyexitlassifying capabilities of the combination functions ahe
methods havelass specificombination functionsf; trained availability of sufficient training samples. Different geit
differently for different classes. classifiers such as neural networks, decision trees, en., ¢
It is interesting to compare our combinations types with prée used for combination within each complexity class. From
vious categorization of combination methods by Kuncheva #ie perspective of our framework, the main effort in solving
al.[24], who refer to the score matrix as ‘decision profilada the classifier combination problem consists of identifying
‘intermediate feature space’. Kuncheva’'s work also sdparathe complexity type and modifying the generic classifiefs (i
combinations into ‘class-conscious’ set which correspondeeded) to compensate for a mismatched function complexity
to the union of ‘low’ and ‘medium I’ complexity types, type for reasons of inadequate training data.
and ‘class-indifferent’ set which corresponds to the unodn  The biometric person authentication systems we experi-
‘medium 11" and ‘high’ complexity types. The continuationmented with in this research have a high number of enrolled
of this work [25] gave an example of the weighted sum rulglasses (personsy and a small number of classifiers (bio-
having three different numbers of trainable parametersl (ametric face and fingerprint matcheraJ. Most combinations
accepting different numbers of input scores), which cgrmesl  methods described in the literature for biometric appidret
to ‘low’, ‘medium I’ and ‘high’ complexity types. are of low complexity type. In this work we are interested
In contrast to Kuncheva’s work, our categorization of comin exploiting higher complexity combinations. We will deei
bination methods is more general since we are not limitingpmbinations rules of medium Il complexity type which are
ourselves to simple combination rules like the weighted suamalogous to the traditional likelihood ratio, neural neti
rule. Further, we consider an additional category of ‘mediuand weighted sum combinations of the low complexity type.
II" type. An example of ‘medium II' combination is the Our experiments on large biometric score sets confirm tieat th
two step combination algorithm where in the first step th@edium 1l complexity combinations have better performance
scores produced by a particular classifier are normalizétth (wthan their counterparts of low complexity.
possible participation of all scores of this classifier)d@mthe  Both identification and verification modes of operation can
second step, scores are combined by a function from the ‘lowtilize combinations of all four complexity types. In our
complexity type. Thus scores in each row are combined firgikperiments we compare combination methods of low and
and then the results are combined columnwise in the secafédium Il complexity types and report performance for both,
step. verification and identification, modes of operation.

IV. DERIVATION OF COMBINATION RULES USING
IDENTIFICATION TRIAL STATISTICS

In this section we present different combination methods of
medium Il complexity type utilizing the statistics of theeiati-
fication trial score set for normalization purposes. Ourl goa
to theoretically derive an optimal combination algorithrithw

High the assumption that the joint densities of the scores anek sco

set statistics are known. We will also discuss the appticatif
) o ) o ) the ‘background model’ (used in speaker identification J18]
Fig. 4. The relationship diagram of different combinatiomgexity types. and its relation to our approach.
coﬂ?)?rgtignl"muiﬁgz.tl\t;lidriilritlggr?wr;)llpeiitk;/ett%eeesnaizesl%zzfs'%f L.ikt_alihoods With the Use of Identification Trial Score Set
high complexity type, and the set of low complexity method§tatIStICS
is exactly the intersection of sets of medium | and medium Suppose we combin&/ independent classifiers, and each
Il combination methods. In order to avoid a confusion ielassifier outputsN dependent scores. The optimal com-
terminology we will henceforth assume that a combinatidaination algorithm is the Bayesian classifier which accepts
method belongs to a particular type only if it belongs to thihhese NAM scores and chooses the class which maximizes
type and does not belong to the more specific type. the posterior class probability. Thus the goal of the optima
In [26] we provide a description of these complexiticombination method is to find

types using the concept of VC (Vapnik-Chervonenkis) dimen- ;
sion [27]. The ability to use VC dimension for characteriaat arg m,f‘XP(CkHSi =t N=1,..00)



Term C}, refers to the fact that the clagss the genuine class. B. Likelihood Ratios with the Use of Identification Trial 8o

By Bayes theorem Set Statistics
j B We consider the posterior class probability, apply Bayes
4(C’“Hsvﬁ}":1"--=N%j:1v--~M) - formula as before, but now use the independence of classifier
p({s?}iz1,... Nij=1....m|Ck)P(Cy) to decompose the denominator:
p({sz }i:l,...,N;j:l,...,M) P(Ck|{Sz}i:l,...,N;j:l,‘..,M)
and since the denominator is the same for all classes, olir goa _ p(sitim1vii=1,..|CR) P(Cr)
is to find p({sg}i:l,...,N;j:l,...,M)
) I
argmkaxp({sg}i:l,...,N;j:l,..‘,M|Ck:)P(Ck) _ Hj p({Sl }1:1,44..,N|Ck)P(Ck) (4)
[ p({s]}i=1,...N)
or, assuming all classes have the same prior probability, H D {S }Z 1 N|CR)
. J
arg mgxzo({si}i:l ..... Nij=1,..,.m|Ck) ] Siti=1,.,N)

The next step is similar to the step in deriving the algorithm

Given the assumption that classifiers are independentjwhfor the background speaker model [18]. We consider the

means that any subset of scores produced by one classifiess C}, to mean that some other class is genuine, and
is statistically independent from any other subset of scordecomposep({s’}i—1,..nv) = P(Cx)p({s!}i=1,..~|Ck) +

produced by another classifier, our problem is to find P(Cy)p({s!}iz1,.. .n|Ck). By assuming thatV is large and
_ P(Cy) > P(Cy), we can discard the first term and represent
argmaxHp({53}1=1,...,N|0k) (1) 4as:
b

CkM Hp {Sj}z 1,...~|Ck)

The goal is to reliably estimate the densities p({s! }l 1V 1Ck)
p({s!}i=1....~|Ck), which is a hard task given that theAssuming that aII classes have the same probability of eccur
number N of classes is large and we do not have mamng (P(Cy) = P(C;) and P(Cy) = P(C;)) we obtain the
samples of each class for training. Since we do not waiailowing classifier decision:

to construct a class specific combination method, the class {8»} Cy)

indexes can be permuted. Thus all the training samples argmapr e Nk %)
pertaining to different genuine classes can be used to train p({s]}iz1,...vICk)

only one density,p(sy, {s;}i=1....n,i#|Ck). NOW 3 is @ |5 comparison with deC|S|on 1 of the previous section we

score belonging to a genume match, and all other scoigs e an additional density({s? };—1....x|C%). This density
{si}i=2,...v are from impostor matches. In order to keep thgan pe viewed as a background of impostors for the genuine
problem tractable, instead Of(sk, {57 im1,.. Nkl Ci) We classCy. As research in speaker identification suggests [21],

can conside(s}, 14|Cx), wheret;, is some statistics of all ytilizing such a background model is beneficial for system
the other scores besideg. The final combination rule for performance.

this method is to find We estimate the ratios of equation 5 by additional modeling
i of p({s!}i=1,..~|Ck). We use an approach similar to the
arg mngp(sk,tMCk) () previous section to estimate this densityzds; , t,|Cy,) with

tj - the joint density of impostor scoreg and corresponding

As our previous experiments have shown [3] this a|gomhrl]qentn‘lcatlon trial stat|st|cstj The final combination rule is
does not perform as well as the traditional likelihood ratig’en:

combination: arg max H P 5k7tf|0k ®)
arg ma H 3k|Ck 3) 7 p(sy, 1 |Ck)
Ireg max
sk|C,c The use of the identification trial score set statistics con-

7 S|der3p(sk,tf€|(]k) andp(s,,t1|Cy) instead ofp(sk|Ck) and

One reason for the lower performance could be that thes; |Cy), and the background model considexs;,t;|Cy)
score set statlstlcs7 does not fully reflect the backgroundorp(skmk) in addition tOp(sk7tJ|Ck) or p(s1.|Cy,). Thus, the
information for SCOFGSL whereas the term(s;|Cy,) contains use of the identification trial score statistics differsrfrdhe
such information. For example, the genuine matching scotegckground model in being able to account for dependencies
53, can be very strong, but located in the region of low prolof scores in identification trials by using the statls‘tic
ability (both p(8k|Ck) and p(sk,tj |Ck) are small), whereas Note, that traditional likelihood ratio (Eq. 3) is the optim
(sk|C'k) could be even smaller, and the likelihood ratio canombination method for low complexity combinations operat
still succeed. In the next section we will derive a combiorati ing in verification mode (see [28]). Thus, its extension by Eq
rule which combines the use of the score set statistics afidhould provide a good combination method of medium I
background models [21]. complexity type for verification mode operations.



C. Statistics of Identification Trial Scores Matchers || firstimp | secondimp | meanimp

[ 0.3164 0.3400 0.2961

The important question which we have to decide is what fC' 8-151?8 8%1@ 8-?238
partlcular identification trial score statisti¢g will be most G 01339 0.1800 01593
suitable to replace the set of scorés]};—1, . n.zx. The
likelihood ratio incorporating score statistics (Eq. 6)llviie TABLE |
more discriminating than the traditional likelihood ra(i&g. CORRELATIONS BETWEENS e, AND DIFFERENT STATISTICS OF THE
3) if ¢], provides an information on whether the scafeis  IMPOSTOR SCORE SETS PRODUCED DURING IDENTIFICATION TRIALSI
genuine or impostor. We use the term ™identification motel” NIST BSSRIDATA.

to denote a particular way of choosing identification trizdre

set statisticst;, and using this statistics together with scores

- i i t S ight want to calculate such
One of the identification models we previously presented 350€ 1S genuine or not. 50 we might want to caiculaie suc

the second best score model [29], where statigfics sbs(s7,) cqrrelz?mons for many different statistics and chqo;elsttm
. : ; with bigger correlations. Second best score statisticsiseae
is calculated as the best score in the $&f}i—1 . nizk

; X rovide a good prediction on the strength of genuine scoi, a
("second best” afters;). We can reason that if second bes{?n 9 P 9 9

is bi bi th ¢ scef J is not th is is additional reason we used it in our experiments. Note
score is big (€.g. bigger than current SC@’?QSQ‘% IS not the thatsbs(s},) used in our experiments is calculated with respect
best score), then we have less confidence ¢has a genuine j j

p fog . o .
score, and more confidence that this is impostor score. Aind iLOr i’; szzzlf %k Iljsuf}: Q;Tef)s?[isrfgrng %r(e): I|1t oT:?nrgvx? (xh?ﬁg%’)’(act
is small (sas, is big relative to all other scores), we have morg < e
confidence thas; is a genuine. Originally, we usebs(s7,)
for accepting first-choice decisions in open-set identifica
systems [29]. In this casesbs(sj,) exactly coincides with D. Combinations of Dependent Classifiers
second best score of the identification trial score set. ' o ) i ]
T-normalization can be considered as another identificatio "€ combination algorithms presented in the previous two

model. It is expressed as a transformation of all matchir?&c'[ions deal with independent classifiers. How should we

postors is, so instead $irsti,, Or secondim, We
are forced to usebs(sy,).

scoresgi by the formula address d_ependent classif.iers.? _
_ By looking at the combination equations 1 and 6 we can
() — sp () — (1) see tha’g each classifier contributes tem(és? };—1,. n|Ck)
k ai(l) and % correspondingly to the combination al-
i=1,...,

S pi= k
where /(1) and i (1) are correspondingly the mean and thgoritzﬁ(r%fThus one can conc_IL_Jde that itis possible_ to m_o_del_th
standard deviation of the set of scores produced by matcRéme terms for each C|‘aS$IerI’ with thej hjelp of identification
j during the identification trial. In contrast to second besttrial score statisticsp(sy,t7|Cy) and % and then
score model, T-normalization uses different statistick’- combine them by some other trainable function.
and o7 which are the same for all scoreg in the current  Note that any relationships between scokgs and s;’
identification trial, and it does predetermined transfdiora wherei; # i, and j; # j» will be essentially discarded.
using these statistics. This seems to be inevitable for the current complexity type
Clearly, there might be many variations on calculatingf combinations - medium II. If we wanted to account for
statistics ¢, - it may or may not be dependent af it such relationships, we would need class-specific comiinati
might include mean, variance, n-th ranked score or any ottfanctions, and thus higher complexity combination methods
statistics of a score set. It seems that for different appbos Another way to construct combinations of medium Il com-
the most useful statistics will be different, and it would be@lexity type for dependent classifiers is presented in the ne
desirable to have an automatic way of determining usefsgction.
score statistics. In our experiments we limited ourseles t
only using second best score statistics and T-normalizatio E. Normalizations Followed by Combinations and Single Step
One approach to choose a best statistics of identificatiain trCombinations

score sets is to look at the depgndence between genuine aﬂﬂgure 5 represents in graphical form the type of combina-
impostor scores. In order to verify the dependence of matgh,s'we have presented thus far. All these combinations con
scores we measured the correlation between the genuing seQt; of two steps. In the first step, each score is normalized b
and different statistics of the sets of impostor scoresleTab using other scores output by the same matcher. In the second
contains a small part of measured correlations correspgndiiep normalized scores are combined using a predetermined
to firstymp - 1st ranked impostor scoreecondim, - 2nd or trained combination function.

ranked impostor score, andean;y,, - the mean of Impostor  geore normalization based on modeling the joint densi-

scores. As results of Table | show, the scores produced by rea " i p(s] t |Cr)
life classifiers are indeed dependent. fi€s of scores and statistic(sy,, t/Ck) and p(s3,t,|Ck)’

The correlations between genuine and impostor set st;ﬂ;tislrinight not correctly repreps(({asr}t}i)rigina‘llc t)erms o Eqs. -1 and
indicate the usefulness of a given statistics - bigger taticn 5. P({s; }i=1,...,n|Ck) and = —=t==2). Approximating

p({s]}i=1,...~|Ci

means that this statistics is better able to predict whether densities might also be unreliable if few statistics areduse



Class i matchers assigned to a particular class

@ . @ . s @ S; = wisp + -+ +wyrst )

o ! o
o ! o

R : The weighted sum rule with the sbs model (‘weighted sum
Classifier j | o o o:;o 0. :Stepl. / _ od
R S N/ Identification Model global’) combines scores as well as statistics of score sets
@ o o o @ ° o o @ 51 - wlS}‘i’U)QSbS(S%)JF' . ~+w2M_1sf”+w2Msbs(s£\/[) (8)
2 Step 2: Weighted sum rule can be specifically trained to maxi-
Combination mize the correct identification rate in identification mode o

i operation[28]. However, it is not optimal for the verifiaaii
mode. Thus, we will test the performance of the weighted
sum rule with and without the second-best score model
modification for the identification mode operation only. The
o neural network, on the other hand, might not be optimal for
However, it is not necessary to have the two steps fifentification mode due to MSE minimization criteria, but
combinations. The contribution of the particular classifje gives an output approximating likelihood ratio. We give the

to the whole combination algorithm’s output for classs performance of neural network method for both identificatio
calculated only from scores) and statistict; . Figure 6 4nd verification modes.

illustrates how scores and statistics from all the parditig
classifiers could be combined in a single combination step.

Fig. 5. 2-step combination method utilizing identification rabd

V. EXPERIMENTS

Class i lass i We have used the biometric matching score set BSSR1
N N distributed by NIST[30]. This set contains matching scores
for a fingerprint matcher and two face matchers ‘C’ and ‘G’.

@ o D@o ° Statistics of @

identification | ¢ H

""""""""""""""""""""""""" LA Fingerprint matching scores are given for the left indek ‘li
) @ finger matches and right index ‘ri’ finger matches. For each
@ @ combination method we performed six sets of experiments on
R combining any two pairs of scores : ‘C’' & ‘G’, ‘li" & ‘ri’, ‘I
S, &‘C,1 &G, 'ri"&C,and i’ & ‘G
Although the BSSR1 score set has a subset of scores ob-
Fig. 6. 1-step combination method utilizing identification rabd tained from the same physical individuals, this subsettisara

small - 517 identification trials with517 enrolled persons. We

In the algorithm described by Figure 6 the statistitsare Use bigger subsets of fingerprint and face matching scores of
extracted for each classifier using its output scores by aBSSR1 by creating virtual persons; the fingerprint scores of
predetermined and non-trainable algorithm. The scoresea| & Virtual person come from one physical person and the face
to a particular class and statistics are combined togetier $$0res come from a different physical person. Note, that for
a trainable function. This combination function is not stas Pairs of face scores and for pairs of fingerprint scores, we
specific and is easily trainable. This type of combinatiores aretain the correspondence of scores to real persons asispeci
of medium Il complexity type. In comparison, for the lowin the database. The scores are not reused, and thus we are
complexity type combinations only the scores for a pargicullimited to the maximum number of identification trial$600

class are combined, and statistics from other classes are &l the maximum number of classes, or enrolled persons, -
considered. 3000. Some enrollees and some identification trials had to be

discarded due to enroliment errors.We use a bootstramgesti
F. Neural Network and Weighted Sum Combinations Usirpdocedure: for 100 iterations, we randomly split the datavim
Second-Best Score parts -2991 identification trials with2991 enrolled persons in

each part used as separate training and testing sets. This res

As an ?Xample of smgI.e step co'mb|nat|ons, we conydg}r 100 training/testing iterations are averaged at the end.
two combination methods incorporating the second best—:‘scorIn order to achieve good performance of training algo-

statistics: the neural network and the weighted sum rule. . . . . .
Traditional neural network corresponding to low com Iyexitmhms all the scores were normalized using simple min-max
P 9 P algorithm to interval [0,1]. When we used T-normalization,

combination type can be represented as a funcBpn= dditional min-max normalization was performed after it
f(st,...,sM). Following the diagram of Figure 6, the neuraf’ P '

network combination of medium Il complexity type will have o ]

the form S; = f(s!,sbs(s}),...,sM, sbs(sM)). We used A. Description of Used Algorithms

multilayer perceptron trained by a traditional backprogiam The goal of our experiments is to compare three gen-

method and optimizing MSE. eral architectures for classifier combination - traditioloav
The traditional weighted sum combination without the useomplexity combinations which do not use any identification

of second-best score (‘weighted sum local’) is a low complexodel, medium Il complexity combinations based on T-

ity combination which combines/ scores fromM biometric normalized scores and medium Il complexity combinations



; ; Matchers|| NN [ NN+T | NN+sbs || WS | WS+T | WS+sbs
using second best score model. Three types of learning algo=—¢ 8349 8350 | 8386 [ 8451 8453 | 8485

rithms are used in the experiments - likelihood ratio, neura () (0.65) | (0.84) | (0.62) || (0.50) | (0.50) | (0.50)
network and weighted sum. In order to make the comparispnli (&)ri 3)5.3102) 29053101) 3)5.2197) 3)5.2191) 29055123; (&9()5;322;
objept|ve we utilize eachll_ear_mng glgorlthm in eaqh o_f thre TG C 6o 3 T 96 o7 5 T o7 7 o710
architectures. Each classifier in traditional and T-noipadion () 0.93) | (0.24) | (0.78) || (0.23) | (0.23) | (0.25)

methods supply only a single score and the learning functipnii & G 9538 | 9465 | 9573 || 9538 | 95.28 | 96.12

: ol o2 (0) (0.35) | (0.80) | (0.43) || (0.30) | (0.26) | (0.29)
depends on two input parametef$s’, s#). On the other hand, s ST o8I0 57— s T S8 1o 516

second best score model has additional score statigti¢s') ) ©063) | (017) | (041 || 0.16) | (017) | (0.22)
and sbs(s?) and the learning function depends on four input & G 96.69 | 96.09 | 97.03 || 96.85 | 96.76 | 97.29
parametersf(sl7 SbS(Sl), 327 Sb8(82)) (o) (0.29) | (0.54) (0.26) (0.23) | (0.21) (0.25)

For likelihood ratio combinations we estimate score den- TABLE Il
sities using the Parzen window method with Gaussian ker-
. . . . CORRECT IDENTIFICATION RATES OF COMBINATIONS IN IDENTIFICAION
nels. The kernel width is determined by the maximum
llke“hood methOd. We use Only 1000 identification trial SYSTEMS THE STANDARD DEVIATIONS OF THESE RATES ESTIMATED
. . . FROM BOOTSTRAP SAMPLES ARE GIVEN IN PARENTHESES
scores for reconstructing densities, and the remainder of
the training set (2991-1000 trials) is used for validating
kernel widths. Note, that for each identification trial ther
is 1 genuine score and 2990 impostor scores. In order @ombined score was better th&990 impostor combined
make our implementation faster, we only used a single ragsores (there is a total @91 enrollees). In this table, ‘NN’
dom impostor score from a trial for training. We did nois the traditional neural network combination method of low
utilize the statistical independence of data when combinemplexity type, ‘NN+T’ is the neural network operating
ing matchers of different modalities, and in all experinsenon T-normalized scores and ‘NN+sbs’ is the neural network
we approximated either two dimensional densities of geaugmented with the second-best score model. Similarly,' WS’
uine and impostor scorespy.,(s', s?) and pi,(s', s?), or is the traditional weighted sum combination of Eq. 7, ‘WS+T’
four dimensional densitiesp, ., (s', sbs(s!), s, sbs(s?)) and is the weighted sum operating on T-normalized scores and
Pimp(s', sbs(s'), s, sbs(s?)). ‘WS+sbs’ is the weighted sum combination augmented with
The neural network is multilayer perceptron trained bthe second-best score model of Eq. 8.
backpropagation algorithm. The neural network has two hid-We also provided the CMC graphs showing the performance
den layers with 8 and 9 nodes and an output layer withaf ‘WS’, ‘WS+T" and ‘WS+sbs’ methods in Figure 7. As
node in all cases. The input layer has 2 nodes for traditionsie discussed in section IV-F, neural network training is not
training (no identification model) and T-normalized traigj optimized for best rank performance and we chose do not
and 4 nodes for training with second best score model. Awlude similar CMC graphs for it.
for likelihood ratio method, we useti000 training samples ~ We can see that in all cases, the addition of either the T-
(1 genuine and one random impostor score from identificatiirmalization or the second-best score statistic into thre c
trial) for backpropagation training and remaini2@91 — 1000 responding low complexity algorithm results in performanc
training samples for validation. The training was stoppév improvement. The weighted sum has generally better perfor-
the MSE on the validation set achieved minimum. mance than neural network combination method, and second
For the weighted sum methods we need to find the optintagst score statistics mostly outperforms T-normalization
weights maximizing the number of correct identificatiomlsi
on the training sets. Though there exists previous reseafeh Performance in Verification Operating Mode
proposing solutions for this problem (e.g. [31], [32]), it Although there are examples where score normalization
deals with the case of small number of classes and is nethniques with background models have been used for identi
directly applicable to our case. The key idea of learninfication tasks [11], even more applications use such teciesiq
algorithms minimizing classification error is to replacee thfor identification systems operating in verification modg[2
discrete misclassification cost function with some smoo{B3], [18]. We also applied the combinations utilizing idien
approximation in order to be able to take a derivative dfcation models for biometric person verification tasks. The
the cost function and perform gradient descent optimiratiodrawback of using either the background models or the
For our experiments we implemented a simpler approach sécond-best score statistic in verification tasks is thahawe
random modification of weights and accepting new weights produce not only one match per person and per matcher, but
if classification performance improves. Though our appnoaalso some set of matching scores for other persons enrolled i
takes more training time than gradient descent method woulé system (or some artificially modeled persons).
have took, it does not depend on the smoothing parametergigures 8 and 9 contain the results of experiments when

and it is sufficiently fast. operating in the verification mode for likelihood ratio and
. o _ neural network combination methods. The ROC performance
B. Performance in Identification Operating Mode curves were constructed using combinations2991 x 100

Table Il shows the obtained correct identification rate fdtest trials< iterations) genuine and impostor score sets. Note
experiments with neural network and weighted sum combintrat only a single random impostor was used from each test
tion methods. The correct identification means that the igenuidentification trial.
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Fig. 7. CMC curves for weighted sum combinations utilizing ot utilizing

Fig. 8. ROC curves for likelihood ratio combinations utitigi and not
identification models in identification mode.

utilizing identification models in verification mode.

We were able to achieve significant improvement in the
verification task performance as well, by utilizing the setto Method, and combinations involving ‘G’ have better perfor-
best score statistic. The T-normalization is also benéfioiz Mance when using second best score model. The size of
to a smaller extent in these experiments. training and validation sets have little impact on average

correct identification rate, though it tends to slightly riease
with the increasing size of these sets. The impact on spread o

D. Dependence of the Performance on the Number of Trainifgte measurements is more significant. If we want to avoid the
Samples accidental bad performance of a particular learned algorit

Since the use of second best score model requires |earmy% need to ensure that a sufficient number of training Samples
combination functions with bigger number of parameters, tfs used.
errors associated with the learning algorithm might inseea Figure 11 presents the equal error rates together with
and negate the benefits of additional model information. B0% confidence intervals for likelihood ratio combination
order to clarify the impact of additional training demand omethods. The increase of the training sample size has big
proposed methods, we conducted experiments with differémpact on the spread of error rates, and lesser impact on
numbers of training samples supplied to the learning algthe average error rate. In some cases, the second best score
rithm. Figures 10 and 11 present results of these experémentodel has worse performance than T-normalization method
for neural network and likelihood ratio combination method when the number of training samples is small. For bigger
Same numbers of training and validation samples are chosember of training samples, second best score model oesrtak
here -8,16,...,512. T-normalization. This observation confirms that learning 4

Figure 10 presents the correct identification rate togethdimensional score densities for second best score model can
with 90% confidence intervals estimated from bootstrap samesult in a worse performance than the approaches requiring
ples (extreme 5% of bootstrap samples were discarded frégarning 2-dimensional densities, such as T-normaliratio
each end) for neural network combinations. The performané¢hen the number of training samples is sufficiently large
results agree with the results presented in Table Il - corfmore than 100 in this case), the density approximations for
binations involving 'C’ are well handled by T-normalizatio second best score method are good enough to outperform T-
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Fig. 9. ROC curves for neural network combinations utiliziagd not Fig. 10. Correct identification rates together with 90% btrap confidence
utilizing identification models in verification mode. estimates for different numbers of training and validatiomgkes in neural
network combination methods.

normalization. and the method is the same for all classes. This approach

has less complexity than previous attempts of normaliratio
VI. CONCLUSION [34], [35]. In these previous attempts normalizations were
nalgss specific and required huge amount of training data.
The combinations utilizing such normalizations are simita
Behavior Knowledge Space combination [36], and belong to

We have presented four complexity combination types t
originate naturally from the structure of the constructeche

bination method. We showed the usefulness of differentati hiah lexi binati . i< identifi
these four combination types for better understanding tmee igh complexity combination type. Biometric identitica

problem of classifier combination and for constructing We”oroblems can have a large number of enrolled persons, and

performing combination algorithms. We observe that oftesfich combinations are not feasible due to the lack of trginin

the algorithms used for combining matchers in biometrféata‘ By restricting ourselves to non-class-specific nézaa

identification systems only utilize the scores related te oﬁ'ons we are able to concentrate on combinations of medium i

class to produce the final combination score. Combinati&qmplex?ty type. Such_com_bi_nations have signi.ficanﬂ){ lowe
algorithms of low complexity type discard the dependen mplexity, and result in efficient algorithms for identéfton
information between scores assigned to all classes by tems.

single classifier. Instead of using low complexity combhiomt

algorithms in identification systems, we describe the use of REFERENCES
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