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Abstract

The combination of biometric matching scores can be
enhanced by taking into account the matching scores re-
lated to all enrolled persons in addition to traditional com-
binations utilizing only matching scores related to a single
person. Identification models take into account the depen-
dence between matching scores assigned to different per-
sons and can be used for such enhancement. In this paper
we compare the use of two such models - T-normalization
and second best score model. The comparison is performed
using two combination algorithms - likelihood ratio and
multilayer perceptron. The results show, that while sec-
ond best score model delivers better performance improve-
ment than T-normalization, two models are complementary
to each other and can be used together for further improve-
ments.

1. Introduction

Biometric matching scores usually represent some varia-
tion of distance between two biometric templates - enrolled
template and test template. Thus, it is expected that the
quality of any of these templates will have an influence on
matching score. For example, if test fingerprint image has
small area and contains only few minutia, then its matching
score with enrolled fingerprint of the same finger will be
probably low. If we try to match this fingerprint with some
other, impostor, templates enrolled in the database, then we
can also expect lower than usual matching scores. Conse-
quently, the quality of test (or enrolled) biometric template
can be implicitly estimated using a set of its matching scores
with other, genuine or impostor, biometric templates.

This observation can be effectively used to enhance any
algorithm relying on biometric matching scores, for exam-
ple making decisions in person verification applications or
combining biometric scores of different modalities. Instead
of using a single matching score between test and enrolled

biometric templates, we can additionally use a derived qual-
ity measure for any of these templates. Such quality mea-
sure will provide information on how reliable is original
matching score. Alternatively, a matching score can be nor-
malized using derived quality measures.

It is not necessary to explicitly derive a template quality
from a set of matching scores as in [17]. Rather, we need
to know what information from a set of matching scores is
most useful for improving the system and how to utilize it in
a best way. In this work we are interested in extracting infor-
mation with respect to the test template. We call the process
of matching a single test template to a set of enrolled tem-
plates as an identification trial. The information extracted
from identification trial scores and the algorithm utilizing
this information is called an identification model. The goal
of this paper is to compare two identification models - the
identification model obtained by T-normalization algorithm
[3] and second best score identification model [15]. We
use both models for combination of biometric matchers by
means of likelihood ratio and multilayer perceptron.

To be clear, we use a NIST BSSR1 database of biomet-
ric scores, which has only a single template for any enrolled
person, and a single test template is used for each identifica-
tion trial. So each set of identification trial scores contains
one genuine and N − 1 impostor scores, N is the num-
ber of enrolled persons. Thus we are not considering cases
where multiple templates of the same modality are enrolled
for the same person, or where multiple verification attempts
are performed for the same person. We will also be dealing
with the combinations of two matchers only, though the the-
ory can be readily applied to a bigger number of combined
matchers.

2. Terminology

Though in this paper we measure the performance of
our systems for the verification mode of operation only,
we use the term ’identification trial scores’ to designate
all the matching scores between a test template and en-
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rolled templates of all persons in the database. This set of
matching scores is normally produced for the biometric sys-
tems operating in identification mode. In contrast to tradi-
tional combination algorithms using only a single matching
score between a test template and an enrolled template of
claimed identity, our algorithm requires using this bigger
set of scores, and this is one of the reasons we used the term
in this paper. The corresponding term to represent a proper-
ties of this score set is ’identification model’.

Though there are alternatives to this term, we think they
might not exactly convey the meaning of this score set. For
example, ’test scores’ and ’test model’ might have an over-
lap with already used T(test)-normalization and other usage
outside classifier combination field. ’Background’ and ’co-
hort’ models have been used in classifier combination field
to deal with both identification trial scores and the set of
matching scores between a single enrolled (not test) tem-
plate and other enrolled templates. We provide references
of previous usage of these terms in the next section.

3. Previous Work - Background and Identifica-
tion Models

The variation of matching scores produced during iden-
tification trials depends on the quality of test biometric
templates and makes their straightforward usage unreliable.
Similar observation was made by Ho et al. [7] with respect
to the problem of handwritten character recognition and the
quality of input (test) image. The proposed solution con-
verted matching scores to their respective ranks among all
characters in the alphabet, and used ranks instead of origi-
nal scores in the combination algorithm. In order to convert
matching score to its rank we need to consider the whole
set of identification trial scores, and thus ranking can be
considered as one possible implementation of identification
model. As the wide usage of rank based methods for combi-
nation suggests (Borda count, decision trees [7] and forests
[6], Behavior-Knowledge Spaces [8]) even this simple iden-
tification model can be quite beneficial for combination al-
gorithms. On the other hand, it is clear that conversion to
ranks discards important information, the matching scores
themselves, which is also useful to combination algorithms.

The concept of background model has been previously
introduced in the speaker identification applications [13, 4].
The idea of background models is similar to the idea of
identification models - the model should reflect the char-
acteristics of a template with respect to other templates. We
can define the difference between two models in the way as
shown in Figure 1: background models account for the en-
rolled template, and identification models account for test
template. Though earlier developed background models in
speaker identification research might include both enrolled
and test template models, it is rather convenient to separate

them in our research.

Figure 1. Schematic view of background and identification mod-
els.

One example of previous use of background models is
the cohort based score normalization for speaker verifica-
tion [13, 4] and for fingerprint verification [2]. Cohort meth-
ods find a cohort - a subset of enrolled templates close to
the one under consideration as shown by a circle in Fig-
ure 1. During the matching of the enrolled and test tem-
plates, the matching score can be modified either by the
set of matching scores from background model (matching
scores between enrolled template and its cohort templates),
or by the set of matching scores from identification model
(matching scores between test template and enrolled cohort
templates). Thus, cohort methods might include both back-
ground models and identification models.

Furthermore, Auckenthaler et al. [3] separated cohort
normalization methods into cohorts found during training
(constrained) and cohorts dynamically formed during test-
ing (unconstrained cohorts). As in the previous paragraph,
constrained cohorts might not include identification model,
but only background model. But unconstrained cohorts
might only use identification model and no background
model. Also, both types of cohorts can utilize both back-
ground and identification models at the same time.

As an example of direct construction of background
models, we can cite the algorithms learning user-specific
biometric parameters of enrolled templates [9, 5, 17]. Such
algorithms not only construct background models, but also
attempt to make such model different for different users or
enrolled templates. Note, that cohort methods usually imply
user-specific cohort parameters as well.

T-normalization [3, 10] is the example of simple identifi-
cation model. Each matching score is normalized using the
mean µ and standard deviation σ of the set of all matching
scores produced during single identification trial:

s → s − µ

σ
(1)

Another identification model is the second best score model
[15, 16], which considers a pair of original score and best
score from identification trial besides original score instead
of a single original matching score. In terms of cohort



methods, T-normalization is equivalent to considering un-
constrained cohort consisting of all enrolled templates, and
second best score model is equivalent to considering an un-
constrained cohort consisting of only one enrolled template
- the one closest to the test template (note, that cohort tem-
plate is different from the enrolled template under matching
consideration). Obviously, some intermediate identification
models between these two extremes can be considered sim-
ilar to [14], where different numbers of enrolled templates
closest to the test one are used in a normalization similar to
T-norm.

4. Identification Models

The goal of this paper is to compare two identification
models, T-normalization and second best score model, in
the problem of combining two matchers in biometric person
verification application. In this section we present a brief
overview of these two models.

The important characteristic of identification model is
its ability to correct the variation of scores obtained during
same identification trial. As formula 1 for T-normalization
suggests, T-normalization can account for score variations
involving spreading them by product with some constant
factor and addition of some constant to all scores in the
identification trial. The constants can change for differ-
ent identification trials. If our matching scores in differ-
ent identification trials have only these variations, then T-
normalization is an optimal identification model, since it
will successfully (with some approximation) account for
matching score dependencies. Navratil and Ramaswamy
[11] considered this property in more detail and introduced
the concept of local gaussianity, so that if matching scores
possess this property, their T-normalization will have con-
stant gaussian distribution.

The second best score identification model can be repre-
sented by the following formula:

s → {s, sbs(s)} (2)

where sbs(s) is the best score besides s obtained in the
same identification trial. In contrast to T-normalization, sec-
ond best score model produces two numbers instead of one,
which might allow bigger flexibility in training combination
algorithm. Whereas the score variations are rigidly mod-
eled by T-normalization model, the subsequent training of
algorithm using second best score model can automatically
account for different score variations. For example, if we
assume that the scores in identification trials are subjected
to the same addition by the constant as in T-normalization,
both s and sbs(s) will be shifted by the same constant. The
combination algorithm can be trained to use the difference
s − sbs(s), which will be the same for all such shifts.

Another factor which we might consider when choosing
used identification model is information contained in de-

rived score set statistics, such as mean and standard devia-
tion for T-normalization and sbs(s) for second best score
identification model, with respect to predicting a perfor-
mance of considered matching score. One way to measure
such information is to verify that such statistics can indeed
predict that the score is genuine or impostor. In our exper-
iments we use biometric score set distributed by NIST[1]
consisting from matching scores for two fingerprints by one
matcher, and two sets of face scores produced by two differ-
ent face matchers. As it was noted before [16], the best im-
postor score has similar or higher correlation with genuine
score than the mean of the impostor scores. This implies
that second best score model has the same or more relia-
bility in evaluating the genuine score than T-normalization.
Note, that T-normalization also utilizes the standard devia-
tion of identification trial matching scores, but it is plausible
it has little effect on genuine score evaluation.

5. Combination methods

The first algorithm which we used to compare two mod-
els is the likelihood ratio combination method. This is the-
oretically optimal combination method for verification sys-
tem [12] and consists in assigning a combined score a value
of the ratio between genuine and impostor score densities:

S =
pgen(s1, s2)
pimp(s1, s2)

(3)

where si is the verification matching score assigned by
the matcher i. The likelihood ratio with T-normalization
will operate by the same formula, only using T-normalized
scores si. The likelihood ratio method using second best
score model will consider the joint densities of scores and
second best score statistics:

S =
pgen(s1, sbs(s1), s2, sbs(s2))
pimp(s1, sbs(s1), s2, sbs(s2))

(4)

The use of T-normalization and second best score model
at the same time implies first T-normalization of combined
scores, and then using second best score model likelihood
ratio combination using above formulas. Note that for
methods utilizing T-normalization, the training (approxi-
mation of score densities) is performed on T-normalized
scores. In order to approximate score densities we use the
Parzen window method with gaussian kernels.

We also repeated the comparison of the same identifi-
cation models using multilayer perceptron instead of likeli-
hood ratio. Direct approximation of score densities might
be problematic in a higher dimensional space correspond-
ing to the case of bigger number of combined matchers,
and using alternative classification methods can be bene-
ficial. We fixed the structure of perceptron to have 3 lay-
ers with 8 nodes in first hidden layer and 9 nodes in sec-
ond hidden layer. The output layer had one node with



goal values of 0 and 1 corresponding to impostor and gen-
uine verification attempts. The input layer traditional and
for T-normalization had two nodes for two original or T-
normalized scores {s1, s2} from two matchers. The in-
put layer for second best score identification model had 4
nodes for two pairs of scores and second best score statistics
{s1, sbs(s1), s2, sbs(s2)} from two matchers. The logistic
function is used as a threshold function for all layers.

6. Experiments

We performed experiments on a set of biometric scores
by NIST[1]. All six possible two-matcher combinations has
been investigated using fingerprint matching scores for left
index ’li’ and right index ’ri’ fingers produced by the same
matcher, and face matching scores produced by two dif-
ferent matchers, ’C’ and ’G’. We used the bigger subsets
of the database involving 6000 users (identification trials).
Since the scores in these subsets originate from different
persons, we assumed the independence of fingerprint and
face matching scores, and considered randomly paired set
of scores corresponding to 6000 identification trials of 3000
enrolled persons. Note that correspondence of scores to the
same physical person was retained when combining scores
of the same modality. Also note, that some enrollee and user
scores had to be discarded due to apparent template acqui-
sition errors, resulting in 5982 identification trials and 2991
enrollees.

We applied bootstrap sample testing technique in our ex-
periments. For each bootstrap test, 2991 identification trials
were randomly chosen as test set, 1000 trials were chosen as
training set and remaining 1991 trials were chosen as val-
idation set. 100 bootstrap tests were performed for each
experiment.

Since each identification trial had 1 genuine and 2990
impostor scores we chose to use only a single random im-
postor score for each genuine score from the same identi-
fication trial for training. The validation sets were used to
estimate the kernel sizes for likelihood ratio methods, and
to stop the training of multilayer perceptrons when the min-
imum MSE is achieved for validation set.

The results of testing are presented in figures 2 and 3. In
almost all cases second best score identification model was
able to show better improvement than T-normalization. This
results seem to confirm the analysis of used statistics (mean
and sbs(s)) in predicting the genuine property of consid-
ered score presented in [16]. We also note that using both
models at the same time had even better performance, which
indicates the complementary nature of both models.

7. Conclusions

The identification models can provide a significant im-
provement to biometric systems utilizing biometric match-
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Figure 2. ROC curves for likelihood ratio combinations utilizing
and not utilizing identification models.

ing scores. In this paper we showed how biometric score
combination algorithm can be improved using two such
models - T-normalization and second best score model.
We also tried to analyze the strengths of these methods,
and it seems that for considered biometric matchers second
best score model can provide a better performance than T-
normalization.

As we also described in this paper, it is possible to con-
sider a whole range of identification models in the future
research. It might turn out that some identification models
will be suited for one type of biometric matchers, and other
models for other types. There has been only little research
in this area so far, and more theoretical and practical results
are needed.
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