
Classifier Combination Types for Biometric Applications

Sergey Tulyakov and Venu Govindaraju
Center for Unified Biometrics and Sensors (CUBS)

SUNY at Buffalo, USA
tulyakov@cubs.buffalo.edu

Abstract

In this paper we present four types of classifier combina-
tions determined by the numbers of trained combining func-
tions and their input parameters. We discuss the usage of
these combination types in biometric applications and give
an example of suboptimal combination as a result of choos-
ing non-appropriate combination type. Finally, we present
results of combinations in biometric identification systems
utilizing similar methods, but related to different combina-
tion types.

1. Introduction

With the growth of classifier combination field it became
important to categorize different approaches to classifier
combinations. First of all we might distinguish combina-
tions dealing with ensemble classifiers and non-ensemble
classifiers. Usually ensemble classifiers are generated us-
ing subsets of training data or subsets of features, and we
assume that there is a large number of classifiers to be com-
bined. Only limited information about each classifier in the
ensemble can be learned, and ensemble combinations are
mostly limited to fixed combination rules. Non-ensemble
classifiers represent traditional individually trained or con-
structed classifiers, and we assume that there is a small
number of such classifiers in the combination. The behav-
ior of each classifiers can be learned from the training data,
and combination methods involve some training. Biometric
applications usually require combinations of non-ensemble
classifiers or matchers.

Another distinction between classifier combination
methods is whether they operate on the confidence scores
of classifiers assigned to different classes or on some inter-
nal classifiers’ features. Generally, such features might not
be available to system integrators who might simply treat
biometric matchers as black boxes. Also, such features can
be of limited use as, for example, fingerprint minutia posi-
tions. Thus we assume in this paper that we are working
with confidence scores output by classifiers.

The third distinction between classifier combinations is
based on the type of classifiers’ outputs[22]:

• Type I : output only a single class. This type can
also include classifiers outputting a subset of classes
to which the input pattern can belong. This is equiva-
lent to the classifier assigning a confidence of 0 or 1 to
each class.

• Type II: output a ranking for all classes. Each class is
given a score equal to its rank - 1, 2, . . . , N .

• Type III: output a score for each class, which serves as
a confidence measure for the class to be the true class
of the input pattern. Scores are arbitrary real numbers.

If the combination involves different types of classifiers,
their output is usually converted to any one of the above:
to type I[22], to type II[9] or to type III[16]. In this paper
we will assume that the classifier output is of type III.

In the next section we will introduce another categoriza-
tion of classifier combinations which rather deals with the
structural properties of combinations. As an example, con-
sider the general scheme for classifier combination shown
in figure 1. The final score for each class is derived from the
scores received from all the classifiers for that class. This
approach has low complexity, and many well known combi-
nation methods (e.g. weighted sum of scores) fall into this
category. But, it is also possible to consider a more general
form of combination where derivation of a final score for a
particular class includes all classifier scores, for that class as
well as for other classes [16]. A class confusion matrix can
be used for the construction of such combination methods
[22].

If classifiers deal with the small number of classes,
then the dependencies between scores assigned to different
classes can be learned and used for combination purposes.
Xu et al. [22] used class confusion matrices for deriving be-
lief values and integrated these values into combination al-
gorithms in the digit classification problem. Learning class
dependencies requires significant number of training sam-
ples of each class. Thus, if considered application has small

1

Classifier 1

Classifier 2

Classifier M

Class 1

Class 2

Class N

Score 1

Score 2

Score N

Combination
 algorithm

:

S
1

1

S
1

2

S
1

N

:

S
M

1

S
M

2

S
M

N

:

S
2

1

S
2

2

S
2

N

Figure 1. Classifier combination takes a set of sj
i - score for class i

by classifier j and produces combination scores Si for each class
i.

number of classes and sufficient number of training samples
for each class, such combinations can be superior to the low
complexity combinations of figure 1.

The number of classes, i.e. the number of enrolled per-
sons, in biometric applications is usually large, and multiple
training samples of each class are difficult to obtain. In ad-
dition, the database of enrolled persons can be frequently
changed, and this makes learning class relationships infea-
sible. Consequently, combination approaches in biometric
systems consider only matching scores related to the single
person in order to derive a combined score for that person.
The question is whether we can improve a combination per-
formance if we somehow account for class dependencies in
the classifiers’ scores.

In the next section we identify four types of combina-
tions depending on the number of matching scores they con-
sider and on the number of trainable combination functions.
One of these types (medium II complexity type) seems to be
the most appropriate combination type for biometric match-
ers in identification systems. Then we give a review of exist-
ing approaches to classifier combinations in the context of
presented framework. Next we give an example of improper
choice of the combination type resulting in the decrease of
system performance. Finally, we present a results of combi-
nation experiments in biometric identification system using
different combination types.

2. Complexity Types of Classifier Combina-
tions

Combination algorithms (combinators) can be separated
into 4 different types depending on the number of classi-
fier’s scores they take into account and the number of com-
bination functions required to be trained. As in Figure 1 i
is the index for the N classes and j is the index for the M

classifiers.

1. Low complexity combinators: Si = f({sj
i}j=1,...,M).

Combinations of this type require only one combina-
tion function to be trained, and the combination func-
tion takes as input scores for one particular class as
parameters.

2. Medium complexity I combinators: Si =
fi({sj

i}j=1,...,M). Combinations of this type have
separate score combining functions for each class and
each such function takes as input parameters only the
scores related to its class.

3. Medium complexity II combinators: Si =
f({sj

i}j=1,...,M , {sj
k}j=1,...,M ;k=1,...,N,k �=i). This

function takes as parameters not only the scores
related to this class, but all output scores of classifiers.
Combination scores for each class are calculated using
the same function, but scores for class i are given a
special place as parameters. Applying function f for
different classes effectively means permutation of the
function’s parameters.

4. High complexity combinators: Si =
fi({sj

k}j=1,...,M ;k=1,...,N). Functions calculating
final scores are different for all classes, and they take
as parameters all output base classifier scores.

Higher complexity combinations can potentially produce
better classification results since more information is used.
On the other hand the availability of training samples will
limit the types of possible combinations. Thus the choice of
combination type in any particular application is a trade-off
between classifying capabilities of combination functions
and the availability of sufficient training samples. When the
complexity is lowered it is important to see if any useful
information is lost. If such loss happens, the combination
algorithm should be modified to compensate for it.

Different generic classifiers such as neural networks, de-
cision trees, etc., can be used for classifier combinations
within each complexity class. From the perspective of this
framework, the main effort in solving classifier combina-
tion problem consists in a justification for a particular cho-
sen complexity type of combination and providing any spe-
cial modifications to generic classifiers compensating for
this chosen complexity type. The choice of used generic
classifier or combination function is less important than the
choice of the complexity type.

In order to illustrate the different combination types we
can use a matrix representation. Each row corresponds to a
set of scores output by a particular classifier, and each col-
umn has scores assigned by classifiers to a particular class.
The illustration of each combination type functions is given
in Figure 2. In order to produce the combined score Si for

(a) Low (b) Medium I

(c) Medium II (d) High

Figure 2. The range of scores considered by each combination type
and combination functions.

class i low complexity combinations (a) and medium I com-
plexity (b) combinations consider only classifier scores as-
signed to class i (column i). Medium II (c) and high com-
plexity (d) combinations consider all scores output by clas-
sifiers for calculating a combined score Si for class i.

Low (a) and medium II (c) complexity combinations
have the same combination functions f irrespective of the
class for which the score is calculated. Note that medium II
complexity type combinations have scores related to a par-
ticular class in a special consideration as indicated by the
second ellipse around these scores. We can think of these
combinations as taking two sets of parameters - scores for
a particular class, and all other scores. The important prop-
erty is that combination function f is same for all classes,
but the combined scores Si differ, since we effectively per-
mute function inputs for different classes. Medium I (b) and
high (d) complexity combinations have combining func-
tions fi trained differently for different classes.

Figure 3 illustrates the relationships between presented
complexity types of combinations. Medium complexity
types are subsets of high complexity combinations, and the
set of low complexity combinations is exactly the intersec-
tion of sets of medium I and medium II combination types.
In order to avoid a confusion in terminology we will hence-
forth assume that a combination method belongs to a partic-
ular type only if it belongs to this type and does not belong
to the more specific type.

It is interesting to compare our combinations types
with previous categorization of combination methods by

Figure 3. The relationship diagram of different combination com-
plexity types.

Kuncheva et al.[15]. In that work the score matrix has
names ’decision profile’ and ’intermediate feature space’. It
seems that using term ’score space’ makes more sense here.
Kuncheva’s work also separates combinations into ’class-
conscious’ set which corresponds to the union of ’low’ and
’medium I’ complexity types, and ’class-indifferent’ set
which corresponds to the union of ’medium II’ and ’high’
complexity types. Again these terms might not be suit-
able since we can think of a combination method as be-
ing ’class-conscious’ if each class has its own combina-
tion function (’medium I’ and ’high’ complexity types), and
’class-indifferent’ if combination functions are same for all
classes (’low’ and ’medium II’ complexity types). The con-
tinuation of this work [14] gave an example of the weighted
sum rule having three different numbers of trainable para-
meters (and accepting different numbers of input scores),
which correspond to ’low’, ’medium I’ and ’high’ complex-
ity types.

In contrast to Kuncheva’s work, our categorization of
combination methods is more general since we are not lim-
iting ourselves to simple combination rules like weighted
sum rule. Also we consider an additional category of
’medium II’ type, which is missed there. An example of
’medium II’ combinations are two step combination algo-
rithms where in the first step the scores produced by a par-
ticular classifier are normalized with the participation of all
scores of this classifier, and in the second step scores are
combined by a function from ’low’ complexity type. Thus
all scores participate in the combined score for each class,
and if normalization function is same for all classes, then
the combination function is also the same.

3. Previous Research

Biometric applications are traditionally separated into
verification and identification systems. Verification systems
usually have only the confidence scores related to one per-
son available for combination, and their task is to sepa-
rate genuine and impostor verification attempts. Thus, for

verification systems, score matrices in Figure 2 have only
one column, and all types collapse into one. Identification
systems, on the other hand, can have matching confidence
scores produced for all enrolled persons, and score matrices
with N > 2 columns. The choice of combination type be-
comes important for identification systems. Note that most
traditional pattern classification problems, such as optical
character recognition, also have the number of classes big-
ger than 2, so the presented framework is directly applicable
to those problems.

3.1. Low and Medium I Type Combinations

The most frequent approach to combinations in identi-
fication systems is the use of some combination function
f to produce combined score for each class from classi-
fiers’ scores assigned to the same class. In our combina-
tion framework such combinations are of the low complex-
ity type. Combination functions can also be user specific
- fi [12, 6] (medium I complexity type). These are in fact
the same combination methods which are used in biomet-
ric verification problems where only scores related to one
person are available for combination.

For example, suppose we have a score combination al-
gorithm used for verification task. It can be represented as
a function f({sj}j=1,...,M) combining scores sj assigned
by M matchers to a test sample. The test sample is ver-
ified if the value of the function is bigger than some pre-
defined threshold. The direct extension of this combina-
tion algorithm to the identification systems will compute the
confidences of matching test sample to any enrolled person
i, f({sj

i}j=1,...,M), and finding a maximum among these
combined scores. Note, that combination function is same
for all persons i, and it takes as input parameters only scores
related to this person. Thus, such extension of verification
task combination algorithm to identification systems is in-
deed of low complexity type.

We can also note, that the training of such function f
will usually involve separate genuine and impostor score
sets {s1

geni
, . . . , sM

geni
} and {s1

impi
, . . . , sM

impi
}, and the de-

pendencies between genuine and impostor scores from the
same matcher sj

geni
∼ sj

impi
will be discarded. Such

score dependence is also discarded when combination algo-
rithm utilizes some performance characteristics of biomet-
ric matchers which treat genuine and impostor scores sep-
arately: score densities, FAR and FRR curves, and derived
from them ROC curve.

The main reason for using medium II and high complex-
ity combinations is to account for the dependencies between
matching scores assigned to different classes by the same
matcher. As our previous experiments show[21], such de-
pendence does exist in many identification applications. In
the remaining part of this section we review existing ap-
proaches to utilize score dependence - rank based classifier

combinations and combinations involving different score
normalization techniques.

3.2. Rank based approaches

The frequent approach to combination in identification
systems is to use rank information of the scores. This
approach transforms combination problems with measure-
ment level output classifiers to combination problems with
ranking level output classifiers ([22]). T.K. Ho has de-
scribed classifier combinations on the ranks of the scores
instead of scores themselves by arguing that ranks provide
more reliable information about class being genuine [8, 9].
Thus, if the input image has low quality, then the genuine
score, as well as the impostor scores will be low. Combining
low score for genuine class with other scores could confuse
a combination algorithm, but the rank of the genuine class
remains to be a good statistic, and combining this rank with
other ranks of this genuine class should result in true clas-
sification. Brunelli and Falavigna [4] considered a hybrid
approach where traditional combination of matching scores
is fused with rank information in order to achieve identifi-
cation decision. Hong and Jain [10] consider ranks, not for
combination, but for modeling or normalizing classifier out-
put score. Saranli and Demirekler [20] provide additional
references for rank based combination and a theoretical ap-
proach to such combinations.

Rank-based methods are examples of the medium II
complexity type combinations. Recall that combinations of
these type consider possibly all output classifiers’ scores,
and use the same combination function irrespective of the
class. Indeed, rank based methods take into account all
scores output by each classifier in order to calculate ranks.
The ranks are combined at the second stage using some non-
class specific combination functions (e.g. Borda count).
Thus combination functions are indeed independent of the
class, and there is only one combination function applied to
all classes.

Despite the apparent simplicity of rank based combina-
tion methods, they are placed in the higher complexity type
than previously mentioned low complexity combinations.
As many authors suggest, these methods do provide a better
performance in identification systems. The problem with
rank based methods, however, is that the score information
is somewhat lost. It would be desirable to have a combina-
tion method which retains the score information as well as
the rank information.

3.3. Score normalization approaches

Ranking of the matching scores is somewhat similar to
the score normalization. Usually score normalization [11]
means transformation of scores based on the classifier’s
score model learned during training, and each score is trans-
formed individually using such a model. Thus the other

scores output by a classifier during the same identification
trial are not taken into consideration. If these normalized
scores are later combined by low complexity combination,
then the resulting total combination algorithm will still be
of low complexity. On the other hand, rank based normal-
ization considers all scores of a classifier in order to derive
a normalized score for a particular class, and thus results in
higher complexity combinations.

Some score normalization techniques can use a whole
set of scores output by classifier. For example, Kittler et al.
[13] normalize each score by the sum of all other scores be-
fore combination. The combinations employing such nor-
malizations can be considered as medium II complexity
type combinations. However, Altincay and Demirekler [2]
note that useful classification information gets lost during
such normalizations.

Score normalization techniques have been well devel-
oped in the speaker identification problem. Cohort nor-
malizing method [19, 5] considers a subset of enrolled per-
sons close to the current test person in order to normalize
the score for that person by a log-likelihood ratio of gen-
uine (current person) and impostor (cohort) score density
models. [3] separated cohort normalization methods into
cohorts found during testing (constrained) and cohorts dy-
namically formed during testing (unconstrained cohorts).
Normalization by constrained cohorts followed by low level
combination amounts to medium I combination types, since
whole combination method becomes class-specific, but only
one matching score of each classifier is utilized. On the
other hand, normalization by unconstrained cohorts fol-
lowed by low level combination amounts to medium II or
high complexity combinations, since now potentially all
scores of classifiers are used, and combination function can
be class-specific or non-specific.

The related normalization techniques are Z(zero)- and
T(test)- normalizations [3, 17]. Z- normalization is similar
to a constrained cohort normalization, since it uses impos-
tor matching scores to produce a class specific normaliza-
tion. Thus Z-normalization used together with low com-
plexity combinator results in medium I combination. T-
normalization uses a set scores produced during single iden-
tification trial, and used together with low complexity com-
binator results in medium II combination (note that this nor-
malization is not class-specific).

Medium II combinations seem to be the most appropri-
ate type of combinations for biometric applications. In-
deed, it is usually hard to train class-specific combination
types of medium I and high complexity since we might have
only single template per user available. As an example jus-
tifying medium II combinations in biometrics, [7] argued
for applying T-normalizations in face verification competi-
tion. Another example of normalization leading to medium
II combinations is identification model[21] developed for

thresholding results in identification system. Whereas T-
normalization is a non-trainable algorithm, identification
model is trained for each classifier in order to account for
the dependencies between genuine and impostor scores. We
will use similar identification model in our experiments on
combining biometric matchers in identification systems be-
low.

4. Low Complexity Combinations in Identifi-
cation System

This section contains an example of combining two clas-
sifiers with score dependencies in the identification system.
We consider combinations of low complexity type and of
medium II complexity type. The goal of this section is to
show that low complexity combinations fail to account for
score dependencies and produce suboptimal combination.
In fact, the combined classifier performs worse than one
classifier used for combination.

Consider a combination of two hypothetical matchers in
two class identification system both of which have the dis-
tributions of genuine and impostor scores as shown on fig-
ure 4. Suppose that the first matcher produces both scores
independently drawn from these distributions (one score is
genuine, the other is impostor). For the second matcher,
suppose that it produces dependent scores in each identifi-
cation attempt where it is always simp = sgen − 1. Note
that both matchers have same distributions of genuine and
impostor scores, but second matcher is optimal for identifi-
cation system, since top score is always genuine.

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

scores

impostor scores
genuine scores

Figure 4. Hypothetical densities of matching(genuine) and non-
matching(impostors) scores.

Assume that these matchers are independent. Let the up-
per score index refer to the matcher producing this score; sj

i

is the score for class i assigned by the classifier j. From our
construction we know that the second matcher always out-
puts genuine score on the top. So the optimal combination
algorithm simply look at scores s2

1 and s2
2 output by the sec-

ond matcher and classifies the input as arg maxi s2
i . Such

a combination considers the whole set of scores produced
by the second matcher, and thus belongs to the medium II
complexity type.

Now suppose we can only use combinations of the low
complexity type. These combinations use some function
f to combine scores assigned to the same class and clas-
sify the input as a class producing the best combined score:
arg maxi f(s1

i , s
2
i). The training of the combination func-

tion f can be performed only by taking sample pairs of
scores (s1

i , s
2
i), with some pairs belonging to the gen-

uine matching scores and other pairs belonging to impostor
matching scores. Even though we might have our scores
originating from identification trials {(s1

1, s
2
1), (s

1
2, s

2
2)}, we

still have to separate them into genuine and impostor score
pairs and use them separately for training. The information
about the dependence of scores output by any classifier dur-
ing one identification trial is simply discarded.

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

s1

s2

Figure 5. Optimal decision surfaces for low complexity combina-
tions.

Pairs of scores (s1
i , s

2
i) belonging to genuine and im-

postor matchings could be displayed in the s1 × s2 score
space. In our example, impostor scores are distributed as a
Gaussian centered at (0, 0), and genuine scores are distrib-
uted as a Gaussian centered at (1, 1). Figure 5 shows the
decision contours for optimal classification of genuine and
impostor matches. The optimal classification decision in
this space looks at the ratios of genuine and impostor densi-
ties at points (s1

1, s
2
1) and (s1

2, s
2
2) and classify the sample as

the class giving the bigger ratio (the proof of this is similar
to the derivation of likelihood ratio rule we give in the next
section). The contours in Figure 5 are exactly the curves
where such ratio is constant.

Now, suppose we conduct a testing of this combina-

tion method, and the test sample is (s1
1, s

2
1) = (−0.1, 1.0),

(s1
2, s

2
2) = (1.1, 0). We know from our construction that

class 1 is the genuine class, since the second matcher as-
signed score 1.0 to it and 0 to the second class. But its score
pair (1.1, 0) is located just above the diagonal s1 + s2 = 1,
and the score pair (−0.1, 1.0) corresponding to class 1 is
located just below this diagonal. Hence class 2 has bigger
ratio of genuine to impostor densities than class 1, and the
optimal low complexity method would incorrectly classify
class 2 as the genuine class.

We can also show that this sample will be incorrectly
classified by the following reasoning. Combination func-
tion f should be symmetrical in its arguments since dis-
tributions of genuine and impostor scores s1 and s2 are
identical. We also know that the genuine scores are gen-
erally higher than impostor scores, thus function f should
be increasing in its arguments (higher score should result in
higher combined score output by f). So, for the first class
f(−0.1, 1.0) = f(1.0,−0.1), which should be smaller than
the value for second class f(1.1, 0).

We have presented an example of the identification sys-
tem with two matchers, which has optimal performance
by utilizing combinations from the medium II complexity
type, and suboptimal performance if combinations from low
complexity type are used. If at the beginning we considered
an identification system with only the second matcher (hav-
ing the optimal performance) and added another matcher
(suboptimal), and used only combinations of the low com-
plexity type, we would have decreased the performance of
this identification system.

This somewhat contradicts the generally accepted rule
that incorporating additional classifiers into the recogni-
tion system should not decrease system performance (at
least theoretically). If combination decreases system per-
formance, it is usually explained by the small training set
and training errors or by incorrectly chosen combination
function. It does not matter what low complexity combi-
nation function is chosen in our example, the performance
will still be worse than before combination. As our example
shows, such decrease in performance can be caused by the
improper choice of the combination complexity type.

Combination algorithms of low complexity type sim-
ply discard the dependency information between scores as-
signed to all classes by one classifier. The example illus-
trates, that if such information is discarded and low com-
plexity type combinations are used instead of medium II
complexity type combinations, then the combination can re-
sult in a worse performance than the performance of the sin-
gle involved classifier. Interestingly, Rao [18] proved that
the fusion performance can not be worse than the perfor-
mance of any involved classifier, if the system possesses
the so called isolation property, that is, single classifiers
are included in a set of possible combinations. In our ex-

ample low complexity combinations possess the isolation
property, but the performance of the combination is worse
than the performance of a single classifier. However, our
example does not contradict Rao’s work. Rao considered
two class classifiers outputting a single score differentiating
two classes, and for such combinations all the complexity
types degenerate into one low complexity type. In our case,
we assume that classifiers output at least two scores each,
and we truly have these 4 different combination types. The
performance decrease comes from the inability of low com-
plexity combinations to properly model the score relation-
ships.

5. Experiments

In order to test presented theory we investigated the
combination of fingerprint and face matchers using NIST
BSSR1 biometric score database [1]. We used two subsets
of fingerprint scores: li (left index) and ri (right index), and
two subsets of face scores from two face matchers C and
G. Since we wanted to consider the case of independent
matchers we performed four sets of experiments on com-
bining fingerprint and face scores : li combined with C, li
combined with G, ri combined with C, and ri combined with
G.

Results are presented in Table 1. The columns repre-
sent the combination method. ’Low’ is the method of re-
constructing densities of genuine and impostor score pairs,
and performing Bayesian classification using this densities.
This approach discards score dependencies, and it is of low
complexity type. ’Medium II’ is also Bayesian classifi-
cation method, but the variant of identification model[21]
is used to model score dependencies and thus to normal-
ize scores. Specifically, this model employs the statistics
of the score set produced during one identification trial
ts = ’best score besides s’, and reconstructs densities of
pairs (s, ts) for s genuine and s impostor. The ratio of
such densities serves as normalized score. All the densities
are reconstructed using original scores linearly normalized
to interval [0, 1], and the kernel sizes are derived using the
maximum likelihood method.

Matchers Number of tests Low Medium II
li & C 516 5 4
li & G 517 9 6
ri & C 516 3 2
ri & G 517 3 2

Table 1. Experiments on combinations in identification systems.
Entries are the numbers of failed test identification trials.

All experiments were performed in leave-one-out frame-
work. The numbers in the tables are the numbers of failed
tests, and total number of tests is also given. Failed test

means that the impostor got the best combination score in
this particular identification attempt.

The reason for improvement appears to be the ability of
used identification model to account for score dependen-
cies in identification trials. The considered biometric scores
indeed showed some dependency: the correlation between
genuine and best impostor scores in identification trials was
around 0.10 − 0.15 for these score sets. As the example
in the previous section illustrates, low complexity combi-
nations discard this dependency information and produce
suboptimal results.

6. Conclusion

We can view a classifier combination problem as a sec-
ondary classification problem in the score space. If the
number of classes or the number of classifiers is too large
for adequate training of the classification algorithm, we
have to consider constrained combination algorithms of
low, medium I or medium II type. These types of combina-
tions arise naturally from the assumed meaning of scores:
’produced by jth classifier and related to ith class’. Thus,
the problem of classifier combination can be defined as a
problem of choosing appropriate reduction to a lower com-
plexity class, and possibly accounting for the discarded de-
pendencies between scores.

As we showed by the constructed example, by reduc-
ing complexity of combination from medium II to low we
can loose important information about dependence between
scores produced during single identification trial. The ex-
periments on real biometric scores show that such depen-
dence exists, and taking it into consideration can improve
the performance of the combination algorithm.

References

[1] Nist biometric scores set.
http://www.nist.gov/biometricscores/. 7

[2] H. Altincay and M. Demirekler. Undesirable effects of out-
put normalization in multiple classifier systems. Pattern
Recognition Letters, 24(9-10):1163–1170, 2003. 5

[3] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas. Score
normalization for text-independent speaker verification sys-
tems. Digital Signal Processing, 10(1-3):42–54, 2000. 5

[4] R. Brunelli and D. Falavigna. Person identification using
multiple cues. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 17(10):955–966, 1995. 4

[5] J. Colombi, J. Reider, and J. Campbell. Allowing good im-
postors to test. In Signals, Systems & Computers, 1997. Con-
ference Record of the Thirty-First Asilomar Conference on,
volume 1, pages 296–300 vol.1, 1997. 5

[6] J. Fierrez-Aguilar, D. Garcia-Romero, J. Ortega-Garcia,
and J. Gonzalez-Rodriguez. Bayesian adaptation for user-
dependent multimodal biometric authentication. Pattern
Recognition, 38(8):1317–1319, 2005. 4

[7] P. Grother. Face recognition vendor test 2002 supplemental
report, nistir 7083. Technical report, 2004. 5

[8] T. K. Ho. A Theory of Multiple Classifier Systems And Its
Application to Visual Word Recognition. Ph.d thesis, SUNY
Buffalo, 1992. 4

[9] T. K. Ho, J. Hull, and S. Srihari. Decision combination in
multiple classifier systems. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 16(1):66–75, 1994. 1, 4

[10] L. Hong and A. Jain. Integrating faces and fingerprints for
personal identification. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, 20(12):1295–1307, 1998. 4

[11] A. Jain, K. Nandakumar, and A. Ross. Score normaliza-
tion in multimodal biometric systems. Pattern Recognition,
38(12):2270–2285, 2005. 4

[12] A. Jain and A. Ross. Learning user-specific parameters in a
multibiometric system. In Image Processing. 2002. Proceed-
ings. 2002 International Conference on, volume 1, pages I–
57–I–60 vol.1, 2002. 4

[13] J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining
classifiers. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 20(3):226–239, 1998. 5

[14] L. I. Kuncheva. Combining Pattern Classifiers: Methods and
Algorithms. Wiley InterScience, 2004. 3

[15] L. I. Kuncheva, J. C. Bezdek, and R. P. W. Duin. Deci-
sion templates for multiple classifier fusion: an experimental
comparison. Pattern Recognition, 34(2):299–314, 2001. 3

[16] D.-S. Lee. Theory of Classifier Combination: The Neural
Network Approach. Ph.D Thesis, SUNY at Buffalo, 1995. 1

[17] J. Mariethoz and S. Bengio. A unified framework for score
normalization techniques applied to text independent speaker
verification. IEEE Signal Processing Letters, 12, 2005. 5

[18] N. Rao. On fusers that perform better than best sensor. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions
on, 23(8):904–909, 2001. 6

[19] A. Rosenberg and S. Parthasarathy. Speaker background
models for connected digit password speaker verification. In
Acoustics, Speech, and Signal Processing, 1996. ICASSP-96.
Conference Proceedings., 1996 IEEE International Confer-
ence on, volume 1, pages 81–84 vol. 1, 1996. 5

[20] A. Saranli and M. Demirekler. A statistical unified frame-
work for rank-based multiple classifier decision combina-
tion. Pattern Recognition, 34(4):865–884, 2001. 4

[21] S. Tulyakov and V. Govindaraju. Combining matching
scores in identification model. In 8th International Confer-
ence on Document Analysis and Recognition (ICDAR 2005),
Seoul, Korea, 2005. 4, 5, 7

[22] L. Xu, A. Krzyzak, and C. Y. Suen. Methods for combin-
ing multiple classifiers and their applications to handwriting
recognition. IEEE transactions on System, Man, and Cyber-
netics, 23(3):418–435, 1992. 1, 4

