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Abstract— Traditional classifier combination algorithms use
either non-trainable combination functions or functions trained
with the goal of better separation of genuine and impostor class
matching scores. Both of these approaches are suboptimal if the
system is intended to perform identification of the input among
few enrolled classes or templates. In this work we propose
training combination functions with the goal of minimizing the
misclassification rate. The main idea of proposed methods is to
use a set of best or strong impostors, and attempt to construct
a classifier combination function separating genuine and best
impostor matching scores. We have to use iterative methods
for such training, since the set of best impostors depends on
currently used combination function. We present two iterative
methods for constructing combination functions and perform
experiments on handwritten word recognizers and biometric
matchers.

I. INTRODUCTION

Most combination methods in biometric applications as-
sume the system working in verification mode. In such mode,
given M matching scores from M biometric matchers we
have to determine whether current verification attempt is
genuine (test and enrolled templates belong to the same
person) or impostor (different persons). The ratio of genuine
and impostor score likelihoods can be used as an optimum
combination method for this problem [1]. On the other hand,
if we consider a problem of identifying the person among N
enrolled persons given biometrics, identification problem, the
optimum combination function for such mode of operation
can be different from likelihood ratio [1]. The goal of
this paper is to present possible algorithms leading to the
construction of optimal combination function for biometric
systems operating in identification mode.

The problem of constructing the optimal combination
function for systems operating in identification mode has
not received proper attention thus far. Usually, same com-
bination approaches are considered for both verification and
identification modes. For example, [2] explicitly reduce the
problem of identifying an individual among N enrolled
persons to N separate verification problems. [3], [4] try
to predict the performance of identification system from
the performance of equivalent verification system. As our
work [1] implies, such approaches might produce suboptimal
combination algorithms or incorrect performance predictions
for identification systems. Whereas ROC or DET curves are
suitable for evaluating performance in verification systems,
identification systems require using other performance mea-
sures - the correct identification rate or Cumulative Match
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Curves (CMC). In this paper we are using the correct
identification rate, or the number of successful identification
trials, for comparing experimental results.

Formally, we consider a problem of combining the outputs
of M matchers or classifiers in order to achieve better classi-
fication performance. We assume that all classifiers produce
sets of matching scores s} assigned to each of N classes, and
our combination methods will be operating on these scores.
There are two general approaches to classifier combination
problem. In one approach, a combination function f of
scores is chosen or trained, and the classification result C
is determined by the corresponding combination rule:

C:argi:m,?%f flsl 8 (1
Note that in our notation the upper index of the score corre-
sponds to the classifier, which produced this score, and lower
index corresponds to the class for which it was produced. The
names of combination rules are usually directly derived from
the names of used combination functions: the sum function
Fst, 8y = st 5™ corresponds to the sum rule,
the product function f(st,...,s™) = s'... ™ corresponds
to the product rule and so on. The combination functions are
usually fixed and some justification is given why a particular
combination function is used [5]. Such approach also usually
requires some normalization of used scores.

Another approach considers combination problem as a
pattern classification problem with N classes in MN-
dimensional score space. For example, [6] considers combi-
nation of handwritten digit (N = 10) classifiers with neural
networks operating in M * 10-dimensional score space. If
the number of classes N increases, the training of pattern
classifiers becomes an obstacle. One solution is to convert
scores to ranks and perform classification in this new space;
Behavior-Knowledge Spaces [7] is one of these methods.
But even such conversion is not sufficient if the number of
classes is big or variable.

In this work we consider the combination of handwritten
word recognizers and the combination of biometric person
matchers. In both applications (see section with the descrip-
tion of experiments) the mumber of classes N is in the order
of thousands, and the pattern classification approach becomes
infeasible. Thus, we want to use a combination rule (1) with
some combination function f and we are faced with the
problem of searching for the optimal combination function.
In terms of combination framework we presented in [8],
we restrict ourselves to the combinations of low complexity
type. So far there is no agreement among researchers on
what the optimal combination function is, and depending



on the assumptions on classifiers and their scores different
combination function can be considered as optimal [3].

The paper presents two new algorithms for iterative
training of combination function. We employ the heuristic
reasoning that such function should be aiming at separating
the scores assigned to genuine classes and the scores assigned
to a set of somehow determined best impostor classes. We
investigate these algorithms in contrast to the algorithms
trying to have best separation between sets of genuine and all
impostor scores. An example of such algorithm, likelihood
ratio combination rule, might not give the best performance
in our application.

II. TRADITIONAL APPROACHES

With the development of biometric field the new applica-
tion of matching algorithms became important - minimizing
the cost of verifying the hypothesis of whether the input
belongs to the prespecified class. In particular, for biomet-
ric verification system we need to determine whether the
presented biometric input belongs to the claimed enrolled
person. The verification problem is a two-class problem
- the input does belong to the hypothesis class (genuine
verification attempt) or does not (impostor). On the other
hand, the traditional classification problem still takes place
in biometrics as an identification problem: given biometric
input determine the person among N enrolled persons. Note,
that similar task division existed before in other pattern
recognition tasks. As an example of verification system in
a handwriting application, a bank check recognition system
might hypothesize about the value of the check based on the
legal field, and numeric string recognition module must con-
firm that courtesy value coincides with the legal amount[9].
In identification mode a handwriting recognition module is
used to identify each word between N words in the lexicon.

Verification problems have to separate only two classes -
genuine and impostor matching scores in the M -dimensional
score space. The optimal solution can be achieved by con-
sidering the ratio of gernuine and impostor score density
functions (likelihood ratio) and thresholding it [10]:
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Thus likelihood ratio seems to be the first candidate for the
optimal combination function in corresponding identification
systems. As we will show next, this is not necessarily
true, and we have to look for optimal combination function
elsewhere.

A, Likelihood Ratio Combination Rule

Let us investigate whether the likelihood ratio combination
function will be optimal for identification systems. Suppose
we performed a match of the input sample by all A
matchers against all N classes and obtained M N matching
scores {s] bim1,. Noj=1,.,a Assuming equal prior class
probabilities, the Bayes decision theory states that in order
to minimize the misclassification rate the sample should be
classified as one with highest value of likelihood function

P({S‘g}zel,...,N;j:l,...,M\U-’z')- Thus, for any two classes wy
and wo we have to classify input as wj rather than we if
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(3)

Let us make an assumption that the scores assigned to each
class are sampled independently from scores assigned to
other classes; scores assigned to genuine class are sampled
from M -dimensional genuine score density, and scores as-
signed to impostor classes are sampled from M -dimensional
impostor score density:
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After substituting 4 into 3 and canceling out common
factors we obtain the following inequality for accepting class
wq rather than wo:

pgen(sglgla R Si{)pimp(si,z, e ,Sﬂ) =3
pimp(stlgl pee e 75%)}99371(83)2, . ,sf\;‘;
ar
Poen(sL o0 sMY  poen(sl,,...,s¥ 5
pimp(sclula‘“’sﬁ) pimp(sig,...,sgé)

The terms in each part of the above inequality are exactly
the values of the likelihood ratio function fj. taken at the
sets of scores assigned to classes wj and we. Thus, the
class maximizing the M N-dimensional likelihood function
of inequality 3 is the same as a class maximizing the
M-dimensional likelihood ratio function of inequality 5.
The likelihood ratio combination rule is indeed the optimal
combination rule under used assumptions.

The results of experiments in section IV show that the per-
formance of this rule is not necessarily optimal for identifica-
tion problems. Moreover, such combination can have worse
performance than a performance of single matcher used in
combination. This failure is caused by the incorrectness in
assuming that the matching scores in each identification trial
are independent. We discussed the reasons for this more
deeply in [1].

Note, that two types of dependence between matching
scores exist. The first type of dependence is the dependence
between scores produced by different matchers and assigned
to the same class: s1,..., s, Most combination algorithms
account for such dependence; by considering reconstructed
M-dimensional densities in pgen and pim, in likelihood ratio
function (2) we take care of this dependence as well. The
second type of dependence is the dependence between scores
produced by the same recognizer and assigned to different
classes: sg;,i, ooy 8L - The existence of this dependence is
precisely the reason why likelihood ratio function fails for
combinations in identification systems, and why we need
to construct separate combination algorithms for verification
and identification systems.



B. Weighted Sum Combination Rule

One of the frequently used rules in classifier combination
problems is the weighted sum rule with combination function
f(st o 8M) = wyst + -+ wprs™. The weights w;
can be chosen heuristically with the idea that better per-
forming matchers should have bhigger weight, or they can
be trained to optimize some criteria. In our case we train
the weights so that the number of successful identification
trials on the training set is maximized. Since we have two
matchers in all configurations, we use brute-force method:
we calculate the correct identification rate of combination
function f{s', s%) = ws' + (1 —w)s? for different values of
w € [0,1], and find w corresponding to highest rate.

The results of testing weighted sum combination rule are
presented in section IV. This combination rule has better per-
formance than the performances of combined matchers for
all datasets and does not show failures similar to likelihood
ratio combination rule. This is expected due to specific nature
of weighted sum rule training - we seek to maximize the
number of successful identification trials. In the worst case
we might get one of the weights to be 0, and the performance
of such rule will be equivalent to the performance of a single
matcher.

III. ESTIMATING OPTIMAL COMBINATION FUNCTION
FOR IDENTIFICATION SYSTEMS

The failure of likelihood ratio combination function sug-
gests that the densities of genuine and impostor matching
scores are of little help for finding optimal combination
function, and might be useful only if the scores in identifi-
cation trials are independent. For dependent scores we have
to consider the scores in each identification trial as a single
training sample, and train the combination function on these
samples.

This was precisely the technique we used to train the
weighted sum rule for identification systems in section 11-B.
For each training identification frial we checked whether the
genuine score pair produced bigger combined scores than all
impostor score pairs. By counting the numbers of successful
trials we were able to choose the proper weights.

Though the weighted sum rule provides a reasonable
performance in our applications, its decision surfaces are
linear and might not completely separate generally non-
linear score distributions. We might want our combination
function to be more complex, trained with available training
set and possibly approaching ideal optimal function when
the size of the training set is increased. In this section we
present two ideas on learning such combination functions.
Since we do not know the exact analytical form of optimal
combination function, the presented combination methods
are rather heuristic.

A. Learning Best Impostor Distribution

The likelihood ratio combination function of section II-
A separates the set of genuine score pairs from the set of
all impostor score pairs. But we might think that for iden-
tification systems it is more important to separate genuine

score pairs from the best impostor score pairs obtained in
each identification trial. There is a problem, though, that
we do not know which score pair is the best impostor in
each identification trial. The best impostor score pair can
be defined as one having biggest combined score, but the
combination function is unknown.

To deal with this problem we implemented an iterative
algorithm, where the combination function is first randomly
initialized and then updated depending on found best im-
postor score pairs. The combination rule is based on the
likelihood ratio function with the impostor density trained
only on the set of found best impostor score pairs. The exact
algorithm is presented below:

1) Make initialization of f(s',s?) = % by se-
lecting random impostor score pairs from each training
identification trial for training pimp(st, s2).

2) For each training identification trial find the impostor
score pair with biggest value of combined score ac-
cording to currently trained f(s',s?).

3) Update f(s',s?) by replacing impostor score pair
of this training identification trail with found best
impostor score pair.

4) Repeat steps 2-3 for all training identification trials.

5) Repeat steps 2-4 for predetermined mumber of training
epochs.

The algorithm converges fast - after 2-3 training epochs,
and found best impostor score pairs change little in the
subsequent iterations. The trained combination function sub-
sequently gets tested using a separate testing set. Table I
(BestImp LR method) provides the results of the experi-
ments.

The method seems to perform well, but weighted sum
combination rule is still better for word recognizers and
biometric 1i&C matchers. This method is not able to fully
account for the dependence of scores in identification frials,
and the learning of the optimal combination function will
not be probably achieved with it.

B. Sum of Logistic Functions

Generally, the matching score reflects the confidence of the
match, and we can assume that if the score is bigger, then the
confidence of the match is higher. When the scores are com-
bined, the higher score should result in higher combination
score. Thus, the combination function f(s!,s?) should be
monotonically nondecreasing in both of its arguments. One
type of monotonic functions, which are frequently used in
many areas, are logistic functions:

1

J(sl,sg) = 1 +e*(0‘151+0‘252+0‘3)
If @1 > 0 and @z > 0, then I(s!,s?) is monotonically
nondecreasing in both of its arguments. Our goal is to ap-
proximate the optimal combination function as a sum of such
logistic functions. The sum of monotonically nondecreasing
functions will also be monotonically nondecreasing.

Suppose we have one identification trial and s; = (s1, s%)
and s3 = (si, s2) are two score pairs of this trial. Let s; be a



genuine score pair, and s be an impostor score pair. Suppose
also that we have some initial sum of logistic functions as our
combination function. If both matchers gave a higher score
to the genuine class and s{ > sl and s > s3, then by our
construction the combination score for genuine class will be
higher than the combination score for impostor class. There
is no need to do any modifications to our current combination
function. If both matchers gave a lower score to the genuine
class and s < s} and s7 < s, then we can not do anything -
any monotonically nondecreasing function will give a lower
combination score to the genuine class.

If one matcher gave a higher score to the genuine class and
another matcher gave a higher score to the impostor class, we
can adjust our combination function by adding corresponding
logistic function to the current sum. For example, if s > sl
and s% < s2 logistic function {(s!,s%) = m
will be increasing with respect to the first argument and
constant with respect to the second argument. The input
sample will be assigned genuine class since first matcher
correctly identified it. We choose parameters o) and as
relative to the training sample:

1
1+ 67% Fop (st
where o = s] and b = sl, and A is the smoothing parameter.
If & and b are close to each other, we get a steeper logistic
function, which will allow us better separate genuine and
impostor score pair. Similar logistic function is added to the
current sum if second matcher is correct, and first is not: we
replace s! by s? in equation (6), and a = s%,b = s2.

The overall training algorithm is similar to the training we
did for best impostor likelihood ratio in the previous section:

1) Make initialization f(s',s%) = st +s% n= 1.

2) For each training identification trial and for each im-
postor score pair in this trial check if its combined
score is higher than combined score of the genuine
Ppair.

3) Update f(s',s?) by adding described above logistic
function: f(st,s%) = T%H(nf(sl, s +i(st s%)), n =
i+ 1.

4) Repeat steps 2-3 for all training identification trials.

3) Repeat steps 2-4 for predetermined number of training
epochs.

The smoothing parameter h is chosen so that the perfor-
mance of the algorithm is maximized on the training set.
The convergence of this algorithm is even faster than the
convergence of the best impostor likelihood ratio algorithm.
Table I (Log Sum method) presents correct identification rate
for this method.

The method outperforms weighted sum method for both
biometric combinations, but not for the combination of
word recognizers. This suggests that our heuristic was quite
good, but still can be improved somehow. We can also
see that the advantage of this method for second biometric
combination outweighs its disadvantage for the combination
of word recognizers, and thus we can consider it as the best
combination rule so far.

(') = =5, ©

IV. EXPERIMENTS

We have performed three sets of experiments for this
paper - one for combining two word recognizers and two
for combining fingerprint and face biometric matchers. The
reason of using the word recognizer combination is that
this combination problem is similar to combining biometric
matchers. Also, used word recognition datasets deliver a
good example of failure of likelihood ratio method. Even
though used biometric datasets do not show this, the failure
of likelihood ratio combination method surely can happen
on other biometric databases.

Two handwritten word recognizers are Character Model
Recognizer (CMR)[11] and Word Model Recognizer
(WMR)[12]. Both recognizers employ similar approaches to
word recognition: they oversegment the word images, match
the combinations of segments to characters and derive a
final matching score for each lexicon word as a function
of character matching scores.

Our data consists of three sets of 2654, 1723 and 1770
word images representing UK postal town and county names
of approximately same quality (the data was provided as
these three subsets and we did not regroup them). The
word recognizers were run on these images and their match
scores for the total of 1681 lexicon words were saved. Since
our data was already separated into three subsets, we used
this structure for producing training and testing sets. Each
experiment was repeated three times, each time one subset
is used as a training set, and two other sets are used as
test sets. Final results are derived as averages of these three
training/testing phases.

For combinations of biometric matchers we used the bio-
metric matching score set BSSR1 distributed by NIST[13].
This set contains matching scores for a fingerprint matcher
and two face matchers 'C” and 'G’. Fingerprint matching
scores are given for left index 'li’ finger matches and right
index ‘i’ finger matches. In this work we used both face
matching scores and fingerprint 'li’ scores and we do two
types of combinations: '1i’&’C” and "1i’&’ 3’. We used bigger
subsets of this data set with 6000 identification attempts to
create a set of virtual persons and their matching scores.
After discarding enrollees and identification trials with failed
biometric enrollment we obtained two equal sets - 2991
identification trials with 2997 enrolled persons with each part
used as training and testing sets in two phases.

The densities for genuine and impostor scores in two
likelihood ratio methods were approximated by Parzen win-
dow method with gaussian kemels. The kemel widths are
calculated using maximum likelihood leave-one-out cross-
validation method on the training sets. Since iterative meth-
ods showed fast convergence we set the total number of
training epochs to be 20 in all cases, and the combination
function obtained at the end was evaluated on the test sets.

Table T shows the performance of all considered algorithms
on all three combination tasks. The given numbers are the
mumbers of correct identification trials. Note, that for word
recognizers, each sample is used two times for testing, so



Matchers LR Weighted | Bestlmp Log
Sum LR Sum
CMR&WMR || 4293 5015 4922 5005.5

Li&C 5817 5816 5803 5823

Li&G 5737 5711 5742 5753
TABLE I

CORRECT IDENTIFICATION RATE FOR ALL CONSIDERED COMBINATION

METHODS.

we divided the totals by 2.

The performance of likelihood ratio (LR column) on
biometric matchers seems to be satisfactory which can be
explained by the relatively low dependence between scores in
identification trials (.32 correlation between genuine and best
impostor scores for 'li’ and approximately .14 correlations
for 'C" and 'G’"). The performance of likelihood ratio on
word recognizers is not satisfactory (the correlations between
genuine and best impostor scores are .79 and 44 for WMR
and CMR correspondingly).

The performance of a weighted sum rule is relatively high
for all tasks. Basically, it can serve as a landmark for all
other algorithms. It is actually best performing method for
word recognizers.

The two proposed methods, best impostor likelihood ratio
{("BestImp LR") and the sum of logistic functions ('Log
Sum’), have good performance on biometric matchers and
better than likelihood ratio performance for handwritten
recognizers. The sum of logistic functions have good per-
formance on all tasks.

V. CONCLUSION

In this paper we fried to underscore the difficulty in
finding the optimal combination function for combination
rules. With independence assumption on the sets of scores
produced by matchers during single identification trial this
function coincides with likelihood ratio function. But if this
assumption does not hold, the optimal combination function
is not evident. The two presented iterative methods might
held a key for finding the optimal combination function in
all cases.

The main idea of both methods is to modify the trained
combination function depending on its performance in each
identification trial. Thus we do not consider separate sets of
genuine and impostor scores as in traditional likelihood ratio
method, but each genuine score is considered simultaneously
with the corresponding set of impostor scores obtained in the
same identification trial. It is possible that some traditional
pattern classification methods could be trained in the similar
way resulting in the optimal combination function.
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