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ABSTRACT

This paper considers combinations of biometric matchers in
identification system. We assume that the test template is
matched not only against the enrolled template of claimed
person identity, but also against few enrolled templates of
other persons, and all matching scores are available to the
combination algorithm. We present a combination method
utilizing the dependencies between these scores and show-
ing better performance than comparable traditional combina-
tion method using only matching scores related to the claimed
identity.

1. INTRODUCTION

Let us consider a person identification system with biometric
matcher producing a set of confidence scores {s1, . . . , sN}
for one identification trial, N is the number of enrolled per-
sons. In order to make an identification decision we have to
find an index i1 so that si1 is the the highest confidence in
this set. One can notice, though, that if there are other scores
si in this set which are close to si1 , then it is quite probable
that i1 does not correspond to the true test identity, and the
identification attempt should be rejected. [1] investigates this
question in detail and concludes that the performance of iden-
tification systems can be significantly improved if decision is
based not only on the best score si1 but also on the second
best score si2 .

Thus the second best score can be regarded as the use-
ful statistic about the set of matching scores which is used
to transform best matching score into the likelihood of best
matching score belonging to genuine user. In this paper we
will investigate if similar algorithm could be used in the com-
bination of biometric matchers. The idea behind the algo-
rithm is that not only the best score but all other scores are
transformed using second best score statistics to represent like-
lihoods of corresponding classes being genuine.

1.1. Dependence Between Match Scores

As above, {s1, . . . , sN} is the set of match scores output by
one biometric matcher during one identification attempt, and
we assume that one of these scores, e.g. sgen, is a genuine
match score and all other scores are impostor match scores.

It turns out that typically these scores are dependent. Let us
denote meanimp as the mean of impostor scores produced
during one identification trial, firstimp and secondimp as
the best and second best impostor scores for one identifica-
tion trial. Given experimental data of few identification trials,
we can extract the values of sgen, meanimp, firstimp and
secondimp for each trial, and find the correlations between
them across different trials. Table 1 shows the correlations
between sgen and functions of the set of impostor scores ex-
tracted from NIST biometric score set [2]. In this table ’li’
and ’ri’ correspond to left and right index finger match scores
produced by the same fingerprint matcher, and ’C’ and ’G’
correspond to face match scores produced by so named face
matchers. The correlations are computed for 6000 identifica-
tion trials, and each trial has 2999 impostors for faces and
5999 impostors for fingerprints. Positive correlations con-
firm that there is a dependency between genuine and impostor
scores output by biometric matchers.

Matchers firstimp secondimp meanimp

li 0.3164 0.3400 0.2961
ri 0.3536 0.3714 0.3626
C 0.1419 0.1513 0.1440
G 0.1339 0.1800 0.1593

Table 1. Correlations between sgen and different statistics of
the impostor score sets produced during identification trials in
NIST BSSR1 data.

Since there exists a dependence between genuine and im-
postor scores produced during identification trials, it would
be desirable to somehow utilize it for score normalization
or directly for combination. The intuition behind such need
could be illustrated by the following example. Suppose for
our matcher bigger score means better match, and suppose
we have an output match score of 0.5 for some pair of test
and enrolled biometric templates. Suppose we also have a set
of matching scores of this test template with other enrolled
templates, and we extract some statistic of this set, say, sec-
ond best score. If, for example, second best score is 0.4, then
we have high confidence that the score of 0.5 corresponds to
the genuine match. And if the second best score is .6, then
we have less confidence that 0.5 is a genuine match. Since



there is a strong correlation between genuine score and best
or second best impostor (the second best score is one of them),
then we expect that genuine score be on par with second best
score, and consequently have less confidence of score .5 be-
ing genuine in the second case. Thus the second best score
statistics, or any other statistics of the scores produced during
one identification trial, can be used to improve the estimate of
the likelihood of a score being genuine or impostor.

1.2. Score Set Statistics and Identification Model of a
Matcher

Suppose that identification system consists of M biometric
matchers and each matcher produces a set of scores
{sj

1, . . . , s
j
N}, 1 ≤ j ≤ M . Usually combination algorithms

consider score combination functions accepting as parame-
ters only scores related to one class: Si = f(s1

i , . . . , s
M
i ).

Such combinations effectively discard the relationships be-
tween scores output by one classifier. On the other hand, us-
ing all MN output scores of M matchers and N classes in
order to derive a combined score Si for class i can be dif-
ficult since the number of classes in biometric identification
system is frequently large or varying. If combination func-
tion accepts all matching scores as parameters, its training
becomes problematic. Using score statistics from the identifi-
cation trial represents a trade-off between these two extreme
approaches. Such statistics can deliver important information
about the whole set of scores output by one matcher, and the
number of parameters to the combination function remains
proportionate to the number of matchers - CM , where C is
the number of used statistics.

Score statistics, e.g. nth best score, mean, variance, etc.,
extracted from the set of single identification trial reflect the
quality of test biometric template or the test user. Using a
training set of match scores containing multiple score sets
from many identification trials, we can learn the relationships
between these statistics and genuine or impostor scores. The
term ’identification model’ represents any learned model con-
sidering these relationships. The better we are able to learn
the identification model of each biometric matcher, the more
precise estimates of scores being genuine or impostors we
will be able to get.

The general algorithm for utilizing identification models
for combination is presented in Figure 1. The rows of the
score matrix represent scores produced by each matcher, and
columns correspond to scores related to each class or person.
The identification model is applied first to rows of the score
matrix. Note that each matcher has its own learned identifi-
cation model. The identification transforms the scores to rep-
resent likelihoods of scores being genuine matches, or some
other well defined variable. On the second stage normalized
scores from different matchers are combined by some prede-
termined or trained combination function. We performed ex-
periments on two biometric matchers (face and fingerprint),

Fig. 1. Combination method utilizing identification model.

and the combination is performed by a predetermined (prod-
uct of likelihoods) function.

In this work we utilize second best statistic for model-
ing score relationships in identification models. The previous
work of [1] and the correlations of table 1 confirm that using
this statistic is reasonable. We use Bayesian classification as a
combination algorithm for our experiments. Thus our identi-
fication model is a learned joint score densities p(sj

i , t
j
i |Ci) of

score sj
i and statistic tji , with Ci representing either sj

i being
genuine score or impostor.

2. PREVIOUS WORK

Biometric applications are traditionally separated into verifi-
cation and identification systems. Verification systems usu-
ally have only the confidence scores related to one person
available for combination, and their task is to separate gen-
uine and impostor verification attempts. Thus, for verifica-
tion systems, score matrices in Figure 1 have only one col-
umn, and all types collapse into one. Identification systems,
on the other hand, can have matching confidence scores pro-
duced for all enrolled persons, and score matrices with N > 2
columns.

If we have a combination algorithm for verification sys-
tem, we can use it sequentially for all persons in identifica-
tion system. Such algorithm will not utilize dependencies be-
tween scores output by a single matcher. Most of combina-
tion algorithms used in biometric applications are of this type.
As an example, some combination algorithms are based on
FAR, FRR or ROC curves, and since the construction of these
curves assumes the independence of scores in identification
trial, such algorithms do not account for score dependence.
Below we present approaches which do utilize score depen-
dencies in identification trials: rank based combinations and
some score normalization techniques.

2.1. Rank Based Combinations

The frequent approach to combination in identification sys-
tems is to use rank information of the scores. This approach



transforms combination problems with measurement level out-
put classifiers to combination problems with ranking level
output classifiers ([3]). T.K. Ho has described classifier com-
binations on the ranks of the scores instead of scores them-
selves by arguing that ranks provide more reliable informa-
tion about class being genuine [4, 5]. Thus, if the input image
has low quality, then the genuine score, as well as the impos-
tor scores will be low. Combining low score for genuine class
with other scores could confuse a combination algorithm, but
the rank of the genuine class remains to be a good statistic,
and combining this rank with other ranks of this genuine class
should result in true classification. Brunelli and Falavigna [6]
considered a hybrid approach where traditional combination
of matching scores is fused with rank information in order to
achieve identification decision. Hong and Jain [7] consider
ranks, not for combination, but for modeling or normalizing
classifier output score. Saranli and Demirekler [8] provide
additional references for rank based combination and a theo-
retical approach to such combinations.

Rank-based methods do utilize the score dependencies in
identification trials, and, as many authors suggest, these meth-
ods provide a better performance in identification systems.
The problem with rank based methods, however, is that the
score information is somewhat lost. Indeed, genuine score
can be much better than second best score, or it could be only
slightly better, but score ranks do not reflect this difference.
It would be desirable to have a combination method which
retains the score information as well as the rank information.

2.2. Score normalization approaches

Usually score normalization [9] means transformation of scores
based on the classifier’s score model learned during train-
ing, and each score is transformed individually using such a
model. Thus the other scores output by a matcher during the
same identification trial are not taken into consideration. If
these normalized scores are later combined class-wise, then
score dependence will not be accounted for by the combina-
tion algorithm.

Some score normalization techniques can use a set of iden-
tification trial scores output by classifier. For example, Kit-
tler et al. [10] normalize each score by the sum of all other
scores before combination. Similar normalization techniques
are Z(zero)- and T(test)- normalizations [11, 12]. Z- normal-
ization uses impostor matching scores to produce a class spe-
cific normalization. Z-normalization does not include the set
of identification trial scores, and thus does not utilize score
dependency. On the other hand, T-normalization does use a
set scores produced during single identification trial, and can
be considered as a simple form of identification model. T-
normalization uses statistics of mean and variance of iden-
tification score set. Note that identification model implies
some learning algorithm, but T-normalization is a predeter-
mined routine with no training. Still, using this simple kind

of score modeling turns out to be quite useful; for example,
[13] argued for applying T-normalizations in face verification
competition.

In [14] we showed theoretically on an artificial example
that if combination algorithm does not perform score normal-
ization based on the set of scores produced during identifi-
cation trial, then such algorithm might perform suboptimally.
Even if the combination is based on optimal Bayesian algo-
rithm, the performance of combination might be worse than
the performance of a single classifier. In this paper we are
presenting specific score normalization methods, which do
use a set of identification trial scores, and deliver a better
performance of the combination algorithm. Note that we try
to compare similar Bayesian combination methods with and
without such normalization, and are not using heuristic meth-
ods such as sum and product rule. In preliminary testing sum
rule performed worse than Bayesian combination, and com-
parison with heuristic rules is not a purpose of this paper.

3. COMBINATIONS USING IDENTIFICATION
MODEL

The goal of this section is to derive specific algorithms for us-
ing identification models in combinations. We use a Bayesian
approach of modeling match score densities, and make a sim-
plifying assumption that our matchers are statistically inde-
pendent, that is any score from one matcher is independent
from any score of another matcher. Note that the scores out-
put by the same matcher are dependent, and the purpose of
identification model is to account for this dependence.

3.1. Combinations by Modeling Score Densities

Suppose that we combine M independent classifiers, and each
classifier outputs N dependent scores corresponding to N
classes. The Bayesian classifier used as combination algo-
rithm chooses the class which maximizes the posterior class
probability. An input is a whole set of NM scores output by
all the M combined classifiers. Thus the goal of classification
is to find

arg max
k

P (Ck|{sj
i}i=1,...,N ;j=1,...,M )

Term Ck refers to the fact that the class k is the genuine class.
By the Bayes theorem

P (Ck|{sj
i}i=1,...,N ;j=1,...,M ) =

p({sj
i}i=1,...,N ;j=1,...,M |Ck)P (Ck)
p({sj

i}i=1,...,N ;j=1,...,M )

(1)

and since the denominator is the same for all classes, our goal
is to find

arg max
k

p({sj
i}i=1,...,N ;j=1,...,M |Ck)P (Ck)



or, assuming all classes have the same prior probability,

arg max
k

p({sj
i}i=1,...,N ;j=1,...,M |Ck)

By our current assumption, classifiers are independent,
which means that any subset of scores produced by one classi-
fier is statistically independent from any other subset of scores
produced by another classifier. Hence, our problem is to find

arg max
k

∏

j

p({sj
i}i=1,...,N |Ck) (2)

The problem now is to reliably estimate the densities
p({sj

i}i=1,...,N |Ck), which is a rather hard task given that the
number N of classes is large and we do not have many sam-
ples of each class for training. The last problem is solved
by noticing that we do not construct class specific combi-
nation, and thus class indexes can be permuted. Thus all
training samples pertaining to different genuine classes can
be used to train only one density, p(sk, {sj

i}i=1,...,N,i �=k|Ck).
Now sj

k is a score belonging to genuine match, and all other
scores {sj

i}i=2,...,N are from impostor matches. Since there
are many impostor scores participating in this density, we
might somehow try to eliminate them. This is where we apply
our identification model.

Instead of p(sk, {sj
i}i=1,...,N,i �=k|Ck) we can consider

p(sj
k, tjk|Ck), where tjk is a statistic of identification trial score

set, e.g. second best score for classifier j, given that the gen-
uine class is k. Note that if sk is the best matching score, then
tjk is the second best score, and if sk is not the best score,
then tjk is the best score. Thus the combination rule is the
following:

arg max
k

∏

j

p(sj
k, tjk|Ck) (3)

3.2. Combinations by Modeling Posterior Class Probabil-
ities

As above we consider posterior class probability, apply Bayes
formula, but now use independence of classifiers to decom-
pose the denominator:

P (Ck|{sj
i}i=1,...,N ;j=1,...,M ) =

p({sj
i}i=1,...,N ;j=1,...,M |Ck)P (Ck)
p({sj

i}i=1,...,N ;j=1,...,M )
=

∏
j p({sj

i}i=1,...,N |Ck)P (Ck)
∏

j p({sj
i}i=1,...,N )

=

P (Ck)
∏

j

p({sj
i}i=1,...,N |Ck)

p({sj
i}i=1,...,N )

(4)

The next step is similar to the step in deriving the algorithm
for background speaker model [12]. We consider class Ck

meaning some other class is genuine, and decompose

p({sj
i}i=1,...,N ) = P (Ck)p({sj

i}i=1,...,N |Ck)+

P (Ck)p({sj
i}i=1,...,N |Ck)

(5)

By assuming that N is large and P (Ck) � P (Ck), we can
discard the first term and get the following classifier decision:

arg max
k

∏

j

p({sj
i}i=1,...,N |Ck)

p({sj
i}i=1,...,N |Ck)

(6)

In comparison with decision 2 of the previous section we
have have additional density p({sj

i}i=1,...,N |Ck). Such den-
sity can be viewed as a background of impostors for the gen-
uine class Ck. As research in speaker identification suggests,
utilizing such background model is helpful.

One way to model these ratios could be a direct recon-
struction of the posterior class probabilities (ratios in equation
4 are exactly these probabilities without priors). The other
way is by additional modeling of p({sj

i}i=1,...,N |Ck). We
used an approach similar to the previous section to estimate
this density as p(sk, tjk|Ck), but tjk now is not the best impos-
tor (we do not know what score is genuine, and thus can not
know the best impostor), but simply the second best score.

The technique described in this section can be character-
ized as a composition of identification model and background
model. The identification model considers p(sk, tjk|Ck) and
p(sk, tjk|Ck) instead of p(sk|Ck) and p(sk|Ck), and back-
ground model considers p(sk, tjk|Ck) or p(sk|Ck) in addition
to p(sk, tjk|Ck) or p(sk|Ck). The background model
makes score normalization under the assumption of the inde-
pendence of scores assigned to different classes, and identifi-
cation model accounts for dependencies of scores.

3.3. Extension to Combinations of Dependent Classifiers

The combination algorithms presented in the previous two
sections deal with independent classifiers. How should we
address dependent classifiers?

By looking at the combination formulas 2 and 6 we can
see that each classifier contributes terms p({sj

i}i=1,...,N |Ck)

and p({sj
i}i=1,...,N |Ck)

p({sj
i}i=1,...,N |Ck)

correspondingly to the combination al-

gorithm. Thus one can conclude that it is possible to model
the same terms for each classifier, and then combine them by
some other trainable function.

Note that any relationships between scores sj1
i1

and sj2
i2

where i1 �= i2 and j1 �= j2 will be essentially discarded.

4. EXPERIMENTS

We conducted experiments using NIST BSSR1 biometric score
database [2]. We used two subsets of fingerprints: li (left in-
dex) and ri (right index), and two subsets of face scores from



two face matchers C and G. Since we wanted to consider the
case of independent matchers we performed four sets of ex-
periments on combining fingerprint and face scores : li com-
bined with C, li combined with G, ri combined with C, and ri
combined with G.

Results are presented in Table 2. The columns represent
the combination method. ’Traditional’ is the method of re-
constructing densities of genuine and impostor score pairs,
and performing Bayesian classification using this densities.
This approach discards score dependencies. ’Density’ is the
method outlined in section 3.1. ’PP’(Posterior Probability)
is the method from section 3.2. All the densities are recon-
structed using original scores linearly normalized to interval
[0, 1], and the kernel sizes are derived using the maximum
likelihood method.

Matchers # of tests Traditional Density PP
li & C 516 5 7 4
li & G 517 9 11 6
ri & C 516 3 3 2
ri & G 517 3 2 2

Table 2. Experiments on combinations in identification sys-
tems. Entries are the numbers of failed test identification tri-
als.

All experiments were performed in leave-one-out frame-
work. The numbers in the tables are the numbers of failed
tests, and total number of tests is also given. Failed test means
that the impostor got the best combination score in this par-
ticular identification attempt.

The algorithm for traditional combinations models the op-
timal Bayesian decision by approximating score densities. For
each pair of scores the combined score is derived as a ratio
of genuine and impostor density function approximations at
this score pair. Thus, this combination method automatically
deals with the background model - the density of impostors
participates in the combined score. This might explain why
traditional combinations got better results than combinations
based on genuine score density approximation as in section
3.1 (’Density’ method in table 2). But if identification model
is combined with background model as in section 3.2 (’PP’
method), then we are able to obtain better combination than
the traditional method.

5. IDENTIFICATION MODEL FOR VERIFICATION
SYSTEMS

Although there are examples where score normalization tech-
niques with background models are used for speaker identi-
fication tasks[6], even more applications use such techniques
for speaker verification systems [15, 16, 12]. We also applied
the combinations utilizing identification models for biometric
person verification tasks. The drawback of using either the
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Fig. 2. ROC curves for traditional combinations and combi-
nations utilizing identification models in verification tasks.

background models or the identification models in verifica-
tion tasks is that we have to produce not only one match per
person and per matcher, but also some set of matching scores
for other persons enrolled in the system, or some artificially
modeled persons.

In our experiments for each test person we performed match
of input biometric with biometric templates of all enrolled
persons. All these scores were used to derive a score normal-
ized by identification and background models as in section
3.2 (’PP’ method). The ROC curves were obtained by means
of thresholding these normalized scores for both genuine and
impostor verification attempts. These curves are drawn in
Figure 2 together with ROC curves corresponding to tradi-
tional combinations.

We distinguish two possible cases with respect to impos-
tors in such verification systems: impostor is enrolled in the
database, and impostor is not enrolled in the database. If the
impostor is in the database, and impostor attempts to be veri-
fied as another person, we expect that match score to the true
impostor’s identity will be higher than impostor’s match score
to the claimed identity. Thus a verification system utilizing
the identification model (and hence all matching scores) is
more likely to reject this impostor’s matching attempt. Exper-
imental results in Figure 2 show that the performance of veri-
fication system is better if impostor is enrolled in the database
than when the impostor is not in the database. But this differ-
ence in performance is small, and both cases have better per-
formance than traditional combination. The small difference
in performance can be explained by the fact that our identi-
fication model algorithm uses second-best impostor statistics
instead of best impostor statistics (section 3.2).



6. CONCLUSION

In order to account for the relationships between scores as-
signed by one classifier to different classes, we introduced
the concept of the identification model. The identification
model application is a score normalization algorithm where
normalization depends on all scores output by a classifier in
one identification trial, and the algorithm is the same for all
classes. Thus our identification model is simpler than similar
attempts to normalization [17, 18]. In these previous attempts
normalizations were class specific and required huge amount
of training data. Biometric identification problems can have
large number of enrolled persons, and such combinations are
not feasible due to the lack of training data. By restricting
ourselves to non-class-specific normalizations of the identifi-
cation model we avoid the problem of combination algorithm
training.

At the same time, our approach is more complex than tra-
ditional combination algorithms which disregard the depen-
dence between scores in identification trials. The experimen-
tal results presented in Table 2 and in Figure 2 show that we
were able to achieve significant improvement in the perfor-
mance of identification and verification systems by utilizing
the dependence of matching scores in identification model.
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