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Abstract

In this paper we investigate the problem of predicting the closed set identifi-

cation performance of biometric matchers in large-scale applications given their

corresponding performances in small-scale applications. We identify twomajor

effects responsible for the prediction errors in previously proposed methods: the

binomial approximation effect and the score mixing effect. We proposeto use a

score resampling method for prediction, which is not susceptible to the binomial

approximation effect. We also reduce score mixing effect by using score selection

based on identification trial statistics. The experiments on NIST biometric score

dataset show the accuracy of our proposed prediction method.

1 Introduction

With the wider deployment of biometric authentication systems and the increased num-

ber of enrolled persons in such systems, the problem of correctly predicting the perfor-

mance becomes more important. The number of available testing samples is usually
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smaller than the number of enrolled persons the biometric system will handle. The

accurate performance prediction allows system integrators to optimally select the bio-

metric matchers for the system, as well as to properly set thedecision thresholds.

The research in predicting the performance in large-scale biometric systems is still

limited and mostly theoretical. Wayman [20] introduced multiple operating scenarios

for biometric systems and derived the equations for predicted performance assuming

that the densities of genuine and impostor scores are known.Jarosz et al. [9] presented

an overview of possible performance estimation methods including extrapolation of

large-scale performance given performance on smaller-scale databases, binomial ap-

proximation of performance and the application of extreme value theory. Bolle et al. [4]

derived the performance in identification systems (CMC curve) assuming that the per-

formance in corresponding biometric verification system (ROC curve) is known. The

major assumption used in all these works is that the biometric match scores are inde-

pendent and identically distributed - genuine scores are randomly drawn from a genuine

score distribution and impostor scores are randomly and independently drawn from

impostor score distribution. As we will show in this paper this assumption does not

generally hold and using it leads to the underestimation of identification performance.

The need to account for match score dependencies was previously noted in [10] and

[7]. Grother and Phillips [7] proposed two practical methods to deal with score depen-

dencies - conditioning impostor scores used in the prediction on corresponding genuine

scores obtained in the same test identification trial and applying T-normalization to test

scores [3]. We will discuss these methods later in this paperand evaluate their perfor-

mance.

The research on predicting the biometric system performance on a single test sam-

ple [19] can be considered as related to our topic since the accurate modeling of match-

ing score dependencies in identification trials is required. The problem of estimating

identification system performance was also previously studied in the area of handwrit-



ten word recognition [21, 12].

Since we will use the results of experiments throughout the paper in order to con-

firm our discussions, we will introduce the problem statement and experimental setup

at the beginning, in section 2. Sections 3 and 4 describe two major effects influencing

the prediction results - score mixing effect and binomial approximation effect. Sections

5 and 6 analyze two previously proposed methods for predicting large-scale identifi-

cation system performance - binomial model and T-normalization. In section 7 we

present our prediction method - resampling utilizing identification trial statistics. Fi-

nally, sections 8 and 9 contain additional discussion and conclusion.

2 Experimental Setup

We have used the biometric matching score set BSSR1 distributed by NIST[1]. This set

contains matching scores for a fingerprint matcher and two face matchers ‘C’ and ‘G’.

Fingerprint matching scores are given for the left index ‘li’ finger matches and right

index ‘ri’ finger matches. Since the performance of fingerprint matcher is different

for two fingers, we consider these datasets as being two separate identification sys-

tems. In summary, we consider the predictions in four possible identification systems

corresponding to each of these score subsets: ‘C’, ‘G’, ‘li’and ‘ri’.

Each of these sets contains matching scores for6000 identification trials, and each

trial has scores for either3000 (for face sets) or6000 (for fingerprints) enrollees. One

score in each trial is genuine, and remaining are impostors related to different enrollees.

In order to avoid dealing with different numbers of enrollees we restricted the number

of scores in identification trials for fingerprints to3000. Furthermore, some enrollees

and some identification trials had to be discarded due to apparent enrollment errors.

Finally, we obtained four datasets of5982 identification trials with each trial having

2991 matching scores.

We use a bootstrap testing procedure [5]: for 100 iterations, we randomly split the



data in two parts -2991 identification trials used as separate prediction and testing sets.

Since our purpose is to predict the performance in larger identification systems using

the performance in smaller systems, for each identificationtrial in the prediction set

we retained only100 randomly selected impostor scores. So, our task is by using2991

identification trials with100 impostor scores in each, try to predict the performance in

the test set of2991 trials and2990 impostor scores in each trial (one score in each trial

is genuine). The results of 100 bootstrap prediction/testing iterations are averaged at

the end.

In this work we concentrate on predicting theclosed set identificationperformance.

The identification trial is considered as successful if a genuine score is higher than all

impostor scores of this trial. The correct identification rate, that is a probability of suc-

cessful identification trials, is a measure of closed set identification performance. Most

of the previous works in predicting identification system performance also consider the

scenario ofopen set identification, where, in addition to being the top score, the gen-

uine score is required to be higher than some threshold. We chose not to consider open

set identification scenario in this paper due to increased complexity of the analysis and

our previous observation, that simple thresholding of top score might not deliver the

optimal performance [15].

In order to have less confusion we are also not considering the more general k-th

rank identification performance measured by CMC curve, though our proposed pre-

diction methods can be easily extended to measure such performance. Our goal is to

investigate the general mechanisms of identification system functioning, rather than to

consider all possible operating and decision making scenarios applied for identification

systems.



3 The Score Mixing Effect

One of the important characteristics of the identification system is the dependence be-

tween matching scores assigned to different classes in a single identification trial. For

example, in one identification trial all the matching scoresmight be relatively high,

and in the other trial all the scores might be low. Such dependence can be a result of

multiple reasons: the quality of the input biometrics, the density of biometric templates

around the input template, the particulars of the matching score calculation algorithms.

Only limited research has been carried out so far in investigating score dependen-

cies in identification trials. Li et al. [11] try to connect the measures derived from

matching scores with the quality of the image. Wang and Bhanu[19] investigate the

possibility of success of the fingerprint match through the properties of fingerprint

matching algorithm. Xue and Govindaraju [21] try to predictthe performance of the

handwritten word recognizer based on the density of the lexicon, but do not consider

any other factors, e.g. quality of the word image. The explicit modeling of score depen-

dencies presented in these approaches might be useful, but in our current investigation

we are not associating the score dependence with particularcharacteristics of test tem-

plate or the matching algorithm. The employed dataset contains only matching scores

and does not allow such analysis of matching algorithms.

The following example illustrates the necessity of accounting for matching score

dependencies when we try to predict the identification system performance.

3.1 Example of Identification Systems

Consider a following two-class identification system. In each identification trial we

have only one genuine and one impostor score. Suppose that genuine and impostor

scores are distributed according to score densities shown in Figure 1.

Consider two possible scenarios on how the matching scores are generated during

identification attempt:
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Figure 1: Hypothetical densities of matching(genuine) andnon-matching(impostors)

scores.

1. Both scoressgen andsimp are sampled independently from genuine and impos-

tor distributions.

2. In every identification attempt :simp = sgen − 1.

If our identification system follows first scenario, there will be identification trials with

impostor score higher than the genuine score. Consequently, the correct identification

rate for such system will be less than 100%. In the second scenario the identification

system always correctly places genuine sample on top and hascorrect identification

rate of 100%. Score distributions of Figure 1 do not reflect this difference. So, if we

want to predict identification system performance, we need to learn the dependencies

between matching scores produced in a single identificationtrial. Using genuine and

impostor score densities alone might not be sufficient for correct prediction.



3.2 Performance of Systems with Randomized Impostor Scores

In order to confirm the presence of score dependencies in our experimental systems

and the necessity to account for this dependence, we conductthe following experi-

ment. Instead of original sets of identification trial scores, we consider identification

trials with randomly chosen impostor scores belonging to different trials. In practice,

we randomly permute the impostor matching scores from different identification trials.

Such randomization converts our original identification systems into identification sys-

tem having the same distributions of genuine and impostor scores, but impostor scores

in identification trials become independent and identically distributed. Comparing with

the example of the previous section, we convert the identification system with depen-

dent scores of second scenario into identification system with independent scores of

first scenario.

Matchers True Performance Randomized Impostors

C 0.811 0.738

G 0.774 0.669

li 0.823 0.777

ri 0.885 0.850

Table 1: Identification system performance using original identification trials (’True

Performance’) and using random impostors in identificationtrials (’Randomized Im-

postors’).

Table 1 compares the performances of our original identification systems and corre-

sponding identification systems with randomized impostor scores. For all matchers the

difference in performances of corresponding identification systems is rather significant.

In all cases we observe that the performance of original systems is higher and not

lower. This might be explained by the positive correlationsbetween genuine and im-



postor scores for all considered matchers. When matching scores are positively cor-

related, we will have particular identification trials having both high genuine and high

impostor scores. By distributing high impostor scores to other trials we might make

them unsuccessful. This explains the lowered performance of identification systems

with randomized scores.

3.3 Score Mixing Effect

When we try to predict the performance of large scale identification systems, we could

be calculating some parameters or functions using matchingscores from separate train-

ing identification trials. For example, most of the previouswork utilizes the density of

the impostor scoresn(x) or the cumulative distribution function of impostor scores

N(t) =
∫ t

−∞
n(x)dx (we are using notation of [7] here). If we use all our training

impostor scores to estimate these distributions, then our prediction will be a prediction

of the identification system with randomized scores (as in previous section), rather than

the prediction of the performance in the original system.

Thescore mixing effectis the result of considering scores from different identifica-

tion trials simultaneously instead of considering the setsof matching scores from each

training identification trial as separate entities for calculating prediction. The pres-

ence of score mixing effect becomes apparent as soon as practical experiments on real

data are performed (see [7], section 4.2), instead of makingpurely theoretical predic-

tions [20] or experimenting with synthetic data.

When we try to predict the performance of large scale identification systems, we

might have only samples of training identification trials with a small number of im-

postors. In our experimental setup we predict performance in a systems with2990

impostors by using training identification trials with only100 impostors. Given100

impostors of a single identification trial we have a great difficulty to correctly estimate

the distribution of a highest score in a set of2990 impostors. In order to make any



meaningful predictions, instead of a single trial with100 impostors, we also have to

use scores from other trials. So, it seems inevitable, that we have to mix the scores

from different trials and we need to learn how to minimize thescore mixing effect.

4 The Binomial Approximation Effect

In order to perform a further analysis, we will temporarily for this section assume that

the scores in identification trials are independent and identically distributed according

to either genuine or impostor distributions. The systems with randomized scores of

previous section will serve as our test systems here.

Assuming the independence of matching scores in identification trials, the closed

set identification performance in a system withG enrollees is represented by the fol-

lowing formula [7]:

R =

∫

∞

−∞

NG−1(x)m(x)dx (1)

whereN(x) is the cumulative distribution function of impostor (non-matching) scores,

m(x) is the density of genuine (matching) scores. This formula also assumes that

largest score corresponds to identification result (’larger score’ = ’better score’), which

is true for all four matchers we have for experiments. Note that this formula can be

considered as a specific case of more general formula for calculating the probability

of genuine score to be in rankk (or CMC curve) [7]. Due to involvement of binomial

terms in the formula for CMC, the prediction approach utilizing equation (1) is called

binomial approximation prediction method.

The formula (1) can be interpreted as an expectation of function NG−1(x) with

respect to genuine samplesx, and the traditional approximation of the expectation is

given by the mean of function values over the set of genuine samples in the training

set:

R ≈
1

L

L
∑

i=1

NG−1(xi) (2)



whereL is the number of training identification trials and is the same as the number

of training genuine score samples (L = 2991 in our experiments). It is also traditional

to approximate the cumulative distribution functionN(x) by the empirical distribution

function:

N(x) ≈ N̂(x) =
1

K

K
∑

j=1

I(yj < x) (3)

whereK is the number of impostor scoresyj used for approximatingN(x), I is the

identity function (1 if input parameter is true, 0 if false).After substituting (3) into (2)

we obtain

R ≈
1

L

L
∑

i=1





1

K

K
∑

j=1

I(yj < xi)





G−1

(4)

This formula can be alternatively derived using combinatorial methods similar to [10],

but in our derivation we explicitly state used approximations of the theoretically correct

prediction equation (1).

Using our experimental setup and and randomized training score sets of section 3.2,

we evaluated the prediction capabilities of binomial approximation method (4) on all

four our matchers. Note, that since the scores are randomized, the independence con-

dition is satisfied and binomial approximation method should be theoretically optimal.

Figure 2 shows the predicted performance of matcher ’C’ using binomial approxi-

mation method (4) for different numbers of training impostor scoresK used for approx-

imatingN(x). The experiments on other three matchers showed similar dependence of

prediction on the number of used impostor samples, and we areomitting their graphs

from the paper.

As we expected the predicted performance indeed converges to the true perfor-

mance of the system with randomized scores with the increasein the number of used

impostor scores. But this convergence is rather slow and requires a large number of

training impostor samples. When the number of used impostorsis small we see a

significant overestimation of the identification system performance.
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Figure 2: Dependence of predicted performance on the numberof impostor scores used

in binomial approximation for matcher ’C’ with randomized scores.

In order to understand why such overestimation occurs, let us consider the case of

K = 100 impostor scores used to predict performance in our system withG−1 = 2990

impostors. From equation (3) the values of functionN̂(x) will be multiples of 1

K . If,

according to equation (4), we consider powersN̂(x)G−1, we will see that the values

of these powers will be negligible with the exception of casewhenN̂(x) = 1. For

example, ifN̂(x) = K−1

K = 99

100
, thenN̂(x)G−1 = .992990 ≈ 8.9∗10−14. Effectively,

in this case the application of binomial approximation (4) will simply count the number

of genuine scores which are bigger than all impostors (for which N̂(x) = 1), and the

calculated performance will be close to the performance of identification system with

K = 100 impostors instead of desired performance of a system withG − 1 = 2990

impostors.

Note that the overestimation of performance by binomial approximation occurs not

only whenK < G − 1, but also for bigger numbers of training impostor samplesK.

Doddington et al. [6] proposed to use the following rule of thumb when evaluating the



performance of biometric systems: to be90% confident that the true error rate is within

±30% of the observed error rate, there must be at least 30 errors. The imprecision

in predicting identification system performance is mostly explained by the errors in

approximating the impostor distributionN(x) → N̂(x) in the area of high values ofx.

In this area we might have approximatedN̂(x) = 1, which implies that for a givenx we

did not find any training impostor value higher than it. But the rule of thumb suggests

that we need at least 30 errors (or impostors higher thanx) to correctly estimateN(x).

So, for the precise estimation ofN(x) in the area ofx where we would normally

get only 1 error (impostor) in our predicted system withG − 1 impostors, we would

need to have around 30 errors (impostors). This means we would need around30(G−

1) impostors to make predictions for a system withG − 1 impostors using binomial

approximation, and the results of Figure 2 seem to confirm this reasoning. Hence, we

can restate the rule of thumb of [6] with respect to predicting identification system

performance by binomial approximation: the number of impostor training samples

should be at least 30 times bigger than the size of identification system for which the

prediction is made -K/G > 30.

5 The Combination Of Score Mixing and Binomial Ap-

proximation Effects

In the last section we considered identification systems with randomized scores, and

thus bypassed the existence of score mixing effect. What happens if we try to predict

the performance of original identification systems and botheffects, score mixing effect

and binomial approximation effect, influence our predictions?

The first effect underestimates identification system performance, and the second

effect overestimates it. It might turn out, that we will accidentally predict correctly the

performance in larger identification systems with binomialapproximation and mixed



scores. Note, that the true performance of system ’C’ given in Table 1 is.811, and from

Figure 2 the performance of identification system with randomized scores is around the

same number when the number of impostors used in binomial approximation is600.

So if we simply considered binomial approximation (4), taken K = 600 and chose

random impostorsyj , our predicted performance would have coincided with the true

performance.

We suspect that the influence of both effects contributed to the good prediction

results reported in [10]. Though in that paper the training sets of impostors are retained,

each impostor set is used with all training genuine samples.Thus the score mixing

effect should be present in this approach. Also, the binomial formula for calculating

prediction (7) of [10] involves term(i/K)G−1 whereK = 100, and, as in the analysis

of previous section, we expect the binomial approximation effect to be significant. In

our experiments we were not able to obtain good prediction results using approach

of [10], and thus we do not report its performance.

One of the approaches considered in [7] to deal with the dependence of scores in

identification trials is to condition the cumulative distribution functionN(x) of impos-

tor scores on the values of genuine scores obtained in the same identification trials.

Let us denoten(y|x) as a density of impostors scores with the condition that im-

postor scores belong to identification trials having genuine scorex and tetNx(t) =
∫ t

−∞
n(y|x)dy denote the corresponding conditional distribution function of impostor

scores. Then, assuming that impostor scores in each identification trial are independent

and identically distributed according ton(y|x), we can derive the following closed set

identification performance prediction similar to (1):

R =

∫

∞

−∞

NG−1

x (x)m(x)dx (5)

In order to approximateNx(x), authors of [7] split the training identification trials

into B bins of equal size according to their genuine scores. Then they approximated

Nx(x) using only training impostor samples from the identification trials of one bin. By



increasing the number of binsB they were trying to control the dependence between

matching scores, but they disregarded the effect of binomial approximation which is

dominant for larger number of bins and correspondingly smaller number of impostor

scores used for approximations.

Here we repeat those experiments, but instead of splitting training identification

trials into bins, for each training genuine samplex we are using impostors fromKn

training identification trials with values of genuine scores closest tox. In this way, we

are more precise in estimatingNx(x) when the value ofx might have been near some

bin’s boundary.
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Figure 3: Dependence of predicted performance on the numberof impostor scores used

in binomial approximation for matcher ’C’ with randomized scores and for impostor

scores chosen by nearest genuine principle.

Figure 3 contains the results of these experiments on set ’C’(other sets have similar

behavior). We called the method presented in this section as’binomial approximation

with NG (nearest genuine) impostors’ and compared it with the binomial approxima-

tion method with randomized scores from previous section. For the same numbers

of impostor scores used in binomial approximations (K = 100Kn), the selection of



impostor scores using nearest genuine criteria has higher predicted performance than

random choice of impostors. This means that the influence of score mixing effect is

reduced and the method does improve the prediction. On the other hand, the observed

prediction improvements are not significant, and we can see that this method, similar

to binomial approximation with randomized scores, is greatly influenced by the two

previously described effects, score mixing and binomial approximation.

6 T-normalization

Another technique, which was proposed in [7] to account for score dependencies in

identification trials, is to perform T(test)-normalization of matching scores before ap-

plying binomial approximation prediction:

xij →
xij − µ̂i

σ̂i
(6)

wherexij is thejth score fromith training identification trial,̂µi andσ̂i are the sample

mean and the sample variance of the scores inith training identification trial. Note,

that though [7] use the term Z(zero)-normalization, it seems that they actually perform

T-normalization by Eq. (6) (Z-normalization has similar formula withµ andσ derived

using either all available scores or scores related to a particular enrolled template).

Suppose we have some score densityp(x) with mean of0 and the variance of1.

Also, suppose that for each identification triali we are given two random parametersµi

andσi, and the scores in the identification trial are independently sampled according

to

pi(x) = pµi,σi
(x) =

1

σi
p(

x− µi

σi
) (7)

It is easy to show that in this case the mean of scores in the identification trial i is µi

and the variance isσi. By calculating sample mean and variance estimates,µ̂i andσ̂i,

and by applying T-normalization (6) to the identification trial scores, the transformed



scores will be approximately (due to approximationsµi ≈ µ̂i andσi ≈ σ̂i) distributed

according top(x).

Equation (7) represents a possible model of how the dependencies between match-

ing scores in identification trials originate. We can call itthe linear score dependency

model. Previously, Navratil and Ramaswamy [13] described the T-normalization using

the property oflocal gaussianity, which assumes that functionpi(x) is close to normal

density with meanµi and varianceσi. In our description we are not making any as-

sumptions on the form ofpi(x) except that it is generated for each identification trial by

Eq. (7) using some common densityp. There is also no assumptions on distributions

of µi andσi (which are randomly chosen for each identification trial).

According to linear score dependency model the range of scores in each identifica-

tion trial is shifted byµi and stretched byσi. Note, that there are two types of scores

in identification trials - genuine and impostors, and it is quite possible that they might

have different dependence models. But the number of genuinescores in identification

trials is limited (usually only one genuine score), and it isnot possible to learn the

dependency model for genuine scores. Therefore, we will assume that the same model

is applied for both types of scores; the sample estimatesµ̂i and σ̂i can be computed

using both genuine and impostor samples, but in this work we use only impostor score

samples.

T-normalization is a linear transformation for each identification trial, and it does

not change the order of matching scores. So, if identification trial was successful, it

will remain successful after T-normalization. Thus, instead of making performance

prediction in an identification system with linear score dependency model (7), we can

make predictions in an identification system with T-normalized scores. More specif-

ically, assuming that genuine and impostor scores in each identification trial are the



result of linear score dependency model and have distributions

mi(x) = mµi,σi
(x) =

1

σi
m(

x− µi

σi
)

ni(x) = nµi,σi
(x) =

1

σi
n(

x− µi

σi
)

(8)

after T-normalization genuine and impostor scores will be independently and identi-

cally distributed according tom(x) andn(x), and the closed set identification perfor-

mance of original system will be similar to the performance of identification system

with i.i.d. scores with densitiesm(x) andn(x).

Since the total number of impostor scores in our experimental setup is sufficient

to make binomial approximation performance prediction of closed set identification

system with independent scores, we made such predictions onT-normalized scores for

all four identification systems. Table 2 shows the results ofthis prediction.

Matchers True T-norm & BA

C 0.811 0.818

G 0.774 0.602

li 0.823 0.838

ri 0.892 0.902

Table 2: True performances of identification systems (’True’) and prediction using T-

normalized scores and binomial approximation on a full set(’T-norm & BA’).

The use of T-normalization seems to give almost perfect prediction results for 3

systems, but failed for predicting the performance of identification system ’G’. This

failure means that the linear score dependence model does not represent the set of

matching scores in system ’G’, and we have to search for some other model of score

dependence. Additionally, even if other systems do achievegood performance pre-

diction after T-normalization, it is not necessary that linear score dependence model

exactly describes the dependencies of scores in identification trials and the actual de-



pendencies might be more complex.

7 Resampling Methods

In this work we introduce the resampling method for predicting large-scale identifica-

tion system performance. The method is rather simple: we simulate the work of the

identification system by choosing the genuine and impostor scores from the training

set. Specifically, for each training genuine sample, we chooseG − 1 = 2990 training

impostor samples. If the genuine score is the highest, then the identification trial is

successful and the performance of the simulated system is calculated as a proportion

of successful identification trials.

It is clear that this method requires bigger number of training impostor scores than

the numberG of enrolled persons in simulated system. But, since we analyzed that

the number of impostor scores for binomial approximation should be at least 30 times

more thanG, we can expect that the approximation abilities of resampling method will

be on par with the abilities of binomial approximation. In order to confirm the ap-

proximation abilities of proposed method, we compared its performance with binomial

approximation method on an identification system with randomized scores (section 3.2)

using the full training set ofL = 2991 genuine samples andK = 2991 ∗ 100 impos-

tor scores. Whereas in binomial approximation method (4) foreach genuine score we

used allK = 2991∗100 impostors, in resampling method we were randomly choosing

G− 1 = 2990 impostors for each genuine.

The results of these experiments are shown in Figure 4. Both methods show similar

approximating performance. The spread of error bars is alsosimilar and slightly bigger

than the spread of error bars on test set. Note, that evaluation on the test set (’True

performance’) works in essentially the same way as resampling method. The only

difference is that evaluation on the test set uses2991 ∗ 2990 test impostor scores with

2990 non-repeating impostors for each genuine score, but resampling method uses only
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Figure 4: Performance prediction of identification system with randomized scores by

binomial approximation and score resampling methods.

2991 ∗ 100 impostors and has to repeatedly use impostors with each impostor used

approximately 30 times. The reuse of training impostor samples explains the bigger

spread of error bars for resampling method.

7.1 Resampling Using Genuine Score Neighbors

The key advantage of the resampling method and the reason forits use is that it allows

us to more precisely control the score mixing effect when performing prediction. The

binomial method requires mixing more than30G impostors by formula (4) for each

training genuine score, but resampling method uses onlyG − 1 impostors for each

genuine. The binomial approximation effect did not allow usto correctly predict per-

formance by approximating cumulative distribution functionsNx(x) conditioned on

genuine scoresx in section 5. The resampling method is not susceptible to thebi-

nomial approximation effect and allows us to more preciselyevaluate the benefits of



utilizing genuine score conditioning.

In this section we modify the experiments of section 5 using resampling method.

For each training genuine samplex we are usingG − 1 impostors fromKn train-

ing identification trials with values of genuine scores closest tox. Since each train-

ing identification trial has100 impostor scores, it is sufficient to use onlyKn =

⌈(G− 1)/100⌉ = 30 closest training identification trials.
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Figure 5: Performance prediction in original identification systems by score resampling

methods with randomized sampling and nearest genuine sampling.

Figure 5 compares the performance of resampling method utilizing the nearest gen-

uine sampling method with the resampling method using random impostors and the

true performances of our systems. Clearly, using nearest genuine identification trial

reduces the score mixing effect, but this reduction is stillnot sufficient for precise

performance prediction. Similar reduction was observed for binomial approximation

method (Figure 3), but due to binomial approximation effectwe were not able to judge

objectively the strength of using nearest genuine principle.



7.2 Score Resampling Using Identification Trial Statistics

In order to control the mixing effect in the resampling method we want to mix scores

only from similar training identification trials. Selecting identification trials using clos-

est genuine scores of the previous section is just one possible way of specifying the

similarity between identification trials. We expand this method by using statistics of

identification trial score sets to determine the similaritybetween trials.

Let Ti = {xij}j denote the set of matching scores from theith training identifi-

cation trial and lett(Ti) denote some statistic of this set. For example,t(Ti) could

be the sample mean̂µi or the sample variancêσi statistics used for T-normalization in

section 6. Define the distance between identification trialsTi andTk with respect to

statistic functiont as a distance between corresponding statistics of two sets:

distt(Ti, Tk) = |t(Ti)− t(Tk)| (9)

DenoteGt as the number of impostor scores in training identification trials (Gt = 100

in our experiments). Then the resampling method with identification trial statistict for

predicting identification system performance is formulated as follows:

1. For training identification trialTi and corresponding genuine scorexi, findKn =

⌈(G− 1)/Gt⌉ training identification trialsTk closest toTi with respect to dis-

tancedistt(Ti, Tk)

2. Choose randomG − 1 impostors from selected identification trials; simulated

trial is successful ifxi is bigger than all chosen impostors

3. Repeat 1-2 for all available training identification trials Ti and calculate the pre-

dicted system performance as the proportion of successful simulated identifica-

tion trials

The proposed resampling algorithm is rather simple and doesnot require any pa-

rameter training. However, it does require proper selection of used identification trial



statistict. In the rest of this section we will investigate the use of different statistics.

Note, thatKn = ⌈(G− 1)/Gt⌉ = 30 in our experiments, so for each genuine score we

are looking for30 training identification trials out of total2991. Thus, the resampling

method seem to be quite selective and might be able to significantly reduce the score

mixing effect.

7.3 Resampling and T-normalization

The performance prediction method based on T-normalization (Eq. 6) used two iden-

tification trial score statistics - sample meanµ̂i and sample variancêσi. We conducted

experiments on using these statistics in resampling methodand compared the results of

prediction with T-normalization based prediction of section 6.
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Figure 6: Performance prediction in original identification systems by T-normalization

followed by binomial approximation and score resampling methods based on mean and

mean-variance statistics.



Figure 6 presents the results of these experiments. Note, that when we use both

mean and variance statistics, the statistics of identification trials are two dimensional

vectorst(Ti) = (µ̂i, σ̂i), and instead of simple absolute difference for calculatingdis-

tance in equation 9 we use euclidean distance.

T-normalization method has quite good prediction performance for matchers ’C’,

’li’ and ’ri’, and resampling method using mean and variancestatistics is also close

to the true system performance. The interesting feature here is that variance statistics

apparently reduces score mixing effect more than mean statistics. For matcher ’G’ on

which T-normalization method failed, we see better prediction results by resampling

methods using either or both of these statistics, but the prediction is still far from true

performance.

If we compare these results with the prediction results of Figure 5, we notice that

any of the resampling methods with mean or variance statistics reduce score mixing

effect better than resampling using nearest genuine neighbors. Generally, we can view

a genuine score from identification trial as a statistic of the trial. But considering a

single score as a statistic might not be a reliable way to model dependencies of scores in

identification trials, and the poor prediction results of nearest genuine score resampling

method confirm this.

7.4 Resampling Using n-th Order Statistics

The other type of frequently used statistics is the n-th order statistics

tni = tn(Ti) = {the value of n-th highest element inTi} (10)

In our experiments we use a set of impostor scores in each identification trial Ti to

calculate n-th order statisticstni and use them in resampling method for prediction.

Figure 7 shows the results of experiments.

Overall, using the 2-nd order statistics or the second best impostor score gave the

best prediction results. The prediction precision seems todecrease with the increased
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Figure 7: Performance prediction in original identification systems by resampling

methods utilizing different nth order statistics of identification trial score sets.

order of used statistics. Note, that the last, 12-th order statistics correspond toGt/8-

th order statistics. We also tried higher order statistics,like Gt/4 andGt/2, but the

prediction accuracy was consistently worse and the predicted performance approached

the performance of system with randomized scores (section 3.2).

There seems to be no theoretical proof on why second best impostor statistic should

allow making more precise prediction than any other statistic. We can reason that

it simply better reflects behaviors of the high score tails ofimpostor distributions in

separate identification trials. If we needed to estimate some other features of impostor

distributions, we might have better results using some other statistics.



7.5 Justification of Using Identification Trial Statistics

Consider the following identification trial score dependency model. Suppose that for

each identification trialTi we are given a set of parametersθi = {θ1i , . . . , θ
k
i }, and the

scores in the identification trial are independently sampled according to

pi(x) = p(x|θi) (11)

As we already pointed out, all the matching scores in a singleidentification trial are

generated using the same test biometric sample, and parametersθi could represent test

sample quality, the amount of information contained in the test sample (e.g. number

of minutia in test fingerprint), the closeness of other samples to the test sample and

similar characteristics of test sample.

For each identification trialTi, we can extract a set of score set statisticsti. Thus,

statistics are the random variables of parametersθi, ti = t(Ti(θi)), and if statistics are

stable, thenti ≈ φ(θi) = E(t(Ti(θi))). Assume that statisticsti are chosen so that

functionφ(θi) is continuous and invertible. In this case we obtain that identification

trials having close statisticsti, will have close parametersθi and, as a consequence,

close score densitiespi(x) = p(x|θi). Therefore, we can simply use training iden-

tification trials with close statistics to estimate score densitiespi(x) without explicit

estimation of parametersθi.

In practice, since we have no knowledge on what parametersθi might be, we cannot

guarantee the good properties of functionφ(θi). Intuitively, if we consider the statistics

vectorti to consist of many diverse statistics of identification trial score set, then we

are more sure that close statistics are the result of sampling close conditional densities

pi(x).



7.6 Close Sampling Effect

Suppose that we are given a large numberL of training impostor trials and we use suf-

ficiently large number of statistics in the resampling method. When we search for the

closest training identification trials, we might find the identification trials very similar

to the one we consider at the moment. Indeed, a sufficiently large number of available

training trials will result in the existence of very similartrials, and if the chosen statis-

tics well reflects the set of training identification trial scores, these very similar trials

will have very similar statistics and will be found during resampling method search.

In the extreme case, all found closest training trials will be exactly the same as the

particular training trial whose genuine score we consider at the moment; the simulated

trial will be successful if and only if that particular training identification trial was

successful. The predicted performance for a larger system will be exactly the same as

the performance of smaller system and the prediction algorithm will fail.

Though the extreme case seems to be improbable, some overestimation of pre-

dicted system performance might be observed in our experiments. For example, if we

use the best impostor score instead of second and other n-th order statistics in resam-

pling method, we will find that predicted performance will bealmost the same as the

performance in smaller training system withGt = 100 impostors. The reason for this

is quite clear - the best impostor in the simulated trial willbe among the best impos-

tors in closest training trials, and all of them are close to the best impostor of currently

considered training trial. We might call the effect of overestimating identification sys-

tem performance due to too close neighboring trials asclose sampling effect. It seems

that it is quite difficult to say whether the effect has influence on particular prediction

results. Still, we need to control the appearance of this effect by making sure that used

statistics in resampling method does not coincide with the property of the system we

are trying to predict.



8 Discussions

8.1 Identifciation models

Accounting for the dependencies between matching scores assigned to different classes

during single identification trial seems to be the key for correct prediction of identifi-

cation system performance. The existence of this dependence has been mostly ignored

in biometrics research so far. The problem lies in the difficulty of modeling this de-

pendence and deriving any algorithms using it; therefore a simplifying assumption on

score independence is usually made.

In [15] we proposed to use in addition to currently considered score a best score

from the identification trial besides current (second best score) for making acceptance

decisions in verification systems. In [17] we used second best score in combinations

of biometric matchers. In order to differentiate the modelsfor score dependencies in

identification trials from previously explored score dependencies in cohort and back-

ground models, we introduced the termidentification model. We further formalized the

notion of identification models utilizing identification trial score set statistics in [18].

Resampling methods utilizing identification trial statistics can be viewed as an ex-

tension of the identification model research in the area of predicting the performance

of identification systems. The usefulness of chosen statistics in identification model

is judged by the prediction precision, whereas in previous research the usefulness of

statistics is determined by its ability to improve performance of either decision making

or of combination algorithm. The current research well complements the previous stud-

ies - if some statistics is useful for prediction, it must contain information about score

dependencies in identification trials and consequently canbe successfully utilized in

decision making or classifier combination.

Note, that thesecond best impostorstatistics used in experiments of current paper is

slightly different from thesecond best scorestatistics utilized in our previous research,



wheresecond best scoreis calculated using all matching scores including genuine.The

difference is that in current experiments we precisely knowwhich scores are impostor

and which score is genuine in the identification trials. Previous research modeled the

situations where such knowledge is not available, for example, if we use some scores in

identification trial for combination we are not aware which score is genuine - the final

goal of combination algorithm is to find it. Nevertheless, both statistics are closely

related, and current research confirms the use of second bestscore statistics advocated

before.

8.2 Extreme Value Theory

The important part of the identification system performanceprediction research is mod-

eling the distributions of scores in the tails, especially,the tail of impostor distribution

corresponding to high scores. Extreme value theory is a fieldof statistics investigating

the behavior of distribution tails and we can expect the improvement in the prediction

if we use its techniques.

One of the results of extreme value theory states that the distribution of values of

random variableX satisfying the condition of being in the tail,X > u for sufficiently

largeu, is close to the generalized Pareto distribution (GPD):

Fu(x) = P (X − u > x|X > u) ≈















1− (1− kx/a)
1/k

k 6= 0

1− exp(−x/a) k = 0

(12)

The parametersk anda can be learned from training data by different methods [8] for

a particular choice ofu. Equation (12) provides only an asymptotic approximation of

the extreme value distribution ofX whenu approaches the supremum of all possible

values ofX. The derivation of sufficient conditions on the minimum number of sam-

ples ofX, confidence intervals ofu, k anda, is a main topic for ongoing research

in extreme value theory. Note, that most existing research in extreme value theory is

rather theoretical; the ability to predict the performancein identification systems might



be used as an objective practical measure to evaluate the performance of extreme value

theory methods.

The main assumption for the application of the extreme valuetheory is the indepen-

dence and identical distribution of the samplesX. Since there is a dependence between

matching scores in identification trials, we expect that extreme value theory will have

same problem as binomial approximation for performance prediction in identification

systems - we would need to mix sets of scores from different identification trials to

make good approximations, and consequently will introducescore mixing effect into

prediction.

One possible solution is to use identification trial score set statistics in order to

select close training identification trial. Though the results presented in [9] seem to

imply that extreme value theory provides better approximations than binomial model,

it is not clear if using it along with score set statistics will deliver better prediction

than resampling method. Another solution might be to try to parameterize the fitting

of GPD to the tails of impostor distributions for different identification trials. Thus,

instead of common parametersu, k anda, we would need to find separateui, ki and

ai for each training identification trialTi. Statistics of identification trialsti can serve

for such parameterization. Alternatively, we might consider joint density modeling of

statistics and extreme values ofX by means of multivariate extreme value theory [14].

8.3 Performance Prediction in Open Set Identification Systems

Whereas the closed set identification problem assumes that the genuine user is enrolled

and the match is performed against1 genuine andG− 1 impostor templates, the open

set identification problem assumes that genuine user might not be enrolled and the cor-

rect solution of the identification system will be to reject current identification attempt.

Clearly, the analysis of open set identification system should include the assumption on

the prior probability of the user to be enrolled. It is not clear if the proper analysis of



open set identification systems has been presented before; recent works discussing open

set identification (e.g. [7]) do not use such prior probability. In contrast to traditional

ROC curve used for evaluating verification systems and describing the trade-off be-

tween two types of errors, false accept and false reject, open set identification systems

have three types of error [2]: the error of incorrectly choosing first matching choice,

the error of accepting incorrect first choice, and the error rejecting correct first choice.

The trade-off between three types of errors might be described by a two-dimensional

surface in the three dimensional space, and we are not aware of any research using such

performance measures.

Instead of considering the full system with three error types, we can consider the

reduced open set identification problem assuming that the test user is always enrolled

in the database and the system has the ability to reject the first match choice. Such

system indeed will be quite useful since first match choice might be an impostor and

rejecting such choice is the correct decision. Similar approach is also taken explicitly

in [2] and in our works [15, 16]. In such case we have two types of error - accepting

the incorrect first choice and rejecting the correct first choice or identification.

Traditional decision to accept or reject the first choice in open identification systems

is to compare the first matching score to some thresholdθ [7]. In [15] we showed that

such decision is not optimal and we get better results if instead of only single first score

s1 we also use second best scores2 and base our decision on thresholding some learned

function of these two scores:f(s1, s2) > θ. We further explored this idea in [16] and

showed that the improvement is theoretically present even if scores in identification

trials are independent (and impostor scores are identically distributed). The rate of

improvement seems to decrease slightly with the increase ofthe number of impostors.

This discussion implies that the estimation of open set identification system perfor-

mance is not an easy task. Although, we can follow the traditional derivations [20, 7, 9]

specifying that the false match rate in a system withN impostors can be determined



by the function of false match rate of verification system:FMR1:N = 1 − (1 −

FMR1:1)
N , and the false non-match rate stays the same:FNMR1:N = FNMR1:1,

such measures are not adequate for proper performance description due to broad as-

sumptions: 1. independence of matching scores in identification trials, 2. the decision

based on thresholding single top score, 3. the whole system performance can be de-

scribed by two numbers (note that open set identification systems have three types of

error, so these false match and false non-match rates might not be sufficient). Therefore

we restricted the topic of current paper to close set identification, and left the investi-

gation of open set identification systems for the future.

The results presented in current paper suggest that the predictions of open set iden-

tification system performance might also have to deal with score mixing effect, and we

might have to use score set statistics for selecting close identification trials for testing.

Note also, that use of the second best score for making decisions is similar to using this

score as the statistics of identification trials. Therefore, it is not clear how much benefit

using identification set statistics might have on open set identification system already

utilizing such scores for decisions.

9 Conclusion

In this paper we investigated the problem of predicting the performance of large-scale

closed set identification systems. First, we showed the existing dependency in matching

scores assigned to different classes during identificationtrials. This dependency has

major effect on the previously proposed algorithms for estimating system performance.

Second, we showed that binomial approximation prediction method introduces its own

effect on performance prediction. Third, we discussed the T-normalization and its

relationship to the prediction problem. Fourth , we proposed the new prediction method

based on resampling of available training scores using identification trial statistics. The

utilization of identification trial statistics allows to reduce score mixing effect, and



delivers good prediction results. Finally, we discussed the results of the paper with

respect to other research directions: identification models for decisions and matcher

combinations, extreme value theory and open set identification system performance

prediction.
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