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Abstract

In this paper we investigate the problem of predicting the closed set identifi-
cation performance of biometric matchers in large-scale applicatioes gheir
corresponding performances in small-scale applications. We identifyrtajor
effects responsible for the prediction errors in previously proposettiads: the
binomial approximation effect and the score mixing effect. We proposese a
score resampling method for prediction, which is not susceptible to thenidho
approximation effect. We also reduce score mixing effect by usingessmection
based on identification trial statistics. The experiments on NIST biometrie sco

dataset show the accuracy of our proposed prediction method.

Introduction

With the wider deployment of biometric authentication sys$ and the increased num-

ber of enrolled persons in such systems, the problem of cityneredicting the perfor-

mance becomes more important. The number of availablegestimples is usually



smaller than the number of enrolled persons the biometstesy will handle. The
accurate performance prediction allows system integsatooptimally select the bio-
metric matchers for the system, as well as to properly sadelesion thresholds.

The research in predicting the performance in large-sdaladtric systems is still
limited and mostly theoretical. Wayman [20] introduced tiplé operating scenarios
for biometric systems and derived the equations for predigerformance assuming
that the densities of genuine and impostor scores are kndavosz et al. [9] presented
an overview of possible performance estimation methodsiditeg extrapolation of
large-scale performance given performance on smallde-stzabases, binomial ap-
proximation of performance and the application of extrealeetheory. Bolle et al. [4]
derived the performance in identification systems (CMC euassuming that the per-
formance in corresponding biometric verification syster®(Rcurve) is known. The
major assumption used in all these works is that the biometdtch scores are inde-
pendent and identically distributed - genuine scores aiégmaly drawn from a genuine
score distribution and impostor scores are randomly andpeddently drawn from
impostor score distribution. As we will show in this papeistssumption does not
generally hold and using it leads to the underestimatiod@dfiification performance.

The need to account for match score dependencies was psvimied in [10] and
[7]. Grother and Phillips [7] proposed two practical methdol deal with score depen-
dencies - conditioning impostor scores used in the prexficin corresponding genuine
scores obtained in the same test identification trial ant/agpT-normalization to test
scores [3]. We will discuss these methods later in this papdrevaluate their perfor-
mance.

The research on predicting the biometric system performana single test sam-
ple [19] can be considered as related to our topic since therate modeling of match-
ing score dependencies in identification trials is requirElde problem of estimating

identification system performance was also previouslyistlioh the area of handwrit-



ten word recognition [21, 12].

Since we will use the results of experiments throughout tqepin order to con-
firm our discussions, we will introduce the problem statenaer experimental setup
at the beginning, in section 2. Sections 3 and 4 describe tajomeffects influencing
the prediction results - score mixing effect and binomigdragimation effect. Sections
5 and 6 analyze two previously proposed methods for predjdtirge-scale identifi-
cation system performance - binomial model and T-norm@édina In section 7 we
present our prediction method - resampling utilizing idfergtion trial statistics. Fi-

nally, sections 8 and 9 contain additional discussion amtlosion.

2 Experimental Setup

We have used the biometric matching score set BSSR1 ditdlny NIST[1]. This set
contains matching scores for a fingerprint matcher and te® faatchers ‘C’ and ‘G’.
Fingerprint matching scores are given for the left indexfitiger matches and right
index ‘ri’ finger matches. Since the performance of fingerprhatcher is different
for two fingers, we consider these datasets as being two atepdentification sys-
tems. In summary, we consider the predictions in four pdssitentification systems
corresponding to each of these score subsets: ‘C’, ‘G'aftid ‘ri".

Each of these sets contains matching scoreé{o0 identification trials, and each
trial has scores for eith&000 (for face sets) 06000 (for fingerprints) enrollees. One
score in each trial is genuine, and remaining are imposétaged to different enrollees.
In order to avoid dealing with different numbers of enrofie@ee restricted the number
of scores in identification trials for fingerprints 3000. Furthermore, some enrollees
and some identification trials had to be discarded due torappa&nrollment errors.
Finally, we obtained four datasets 882 identification trials with each trial having
2991 matching scores.

We use a bootstrap testing procedure [5]: for 100 iteratiamesrandomly split the



data in two parts 2991 identification trials used as separate prediction andigsets.
Since our purpose is to predict the performance in largentifieation systems using
the performance in smaller systems, for each identificati@hin the prediction set
we retained onlyl00 randomly selected impostor scores. So, our task is by 28ifg
identification trials with100 impostor scores in each, try to predict the performance in
the test set 02991 trials and2990 impostor scores in each trial (one score in each trial
is genuine). The results of 100 bootstrap predictiontigstierations are averaged at
the end.

In this work we concentrate on predicting ttlesed set identificatioperformance.
The identification trial is considered as successful if aujyga score is higher than all
impostor scores of this trial. The correct identificatioterahat is a probability of suc-
cessful identification trials, is a measure of closed settifieation performance. Most
of the previous works in predicting identification systemfpamance also consider the
scenario ofopen set identificatignwhere, in addition to being the top score, the gen-
uine score is required to be higher than some threshold. \d&eahot to consider open
set identification scenario in this paper due to increasetptexity of the analysis and
our previous observation, that simple thresholding of togre might not deliver the
optimal performance [15].

In order to have less confusion we are also not consideriagribre general k-th
rank identification performance measured by CMC curve, ghoour proposed pre-
diction methods can be easily extended to measure suchriparfice. Our goal is to
investigate the general mechanisms of identification sy$tmctioning, rather than to
consider all possible operating and decision making seenapplied for identification

systems.



3 The Score Mixing Effect

One of the important characteristics of the identificatigstam is the dependence be-
tween matching scores assigned to different classes irgkesdentification trial. For
example, in one identification trial all the matching scomgight be relatively high,
and in the other trial all the scores might be low. Such depeoe can be a result of
multiple reasons: the quality of the input biometrics, thasity of biometric templates
around the input template, the particulars of the matchingescalculation algorithms.

Only limited research has been carried out so far in invastig score dependen-
cies in identification trials. Li et al. [11] try to connectetmeasures derived from
matching scores with the quality of the image. Wang and BHa8linvestigate the
possibility of success of the fingerprint match through thepprties of fingerprint
matching algorithm. Xue and Govindaraju [21] try to prediot performance of the
handwritten word recognizer based on the density of thedexibut do not consider
any other factors, e.g. quality of the word image. The eiptiodeling of score depen-
dencies presented in these approaches might be usefuh dut current investigation
we are not associating the score dependence with partichéaacteristics of test tem-
plate or the matching algorithm. The employed dataset amtanly matching scores
and does not allow such analysis of matching algorithms.

The following example illustrates the necessity of accmgnfor matching score

dependencies when we try to predict the identification systerformance.

3.1 Example of Identification Systems

Consider a following two-class identification system. lrcleddentification trial we
have only one genuine and one impostor score. Suppose thaingeand impostor
scores are distributed according to score densities showigure 1.

Consider two possible scenarios on how the matching scoeegemerated during

identification attempt:
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Figure 1: Hypothetical densities of matching(genuine) aod-matching(impostors)

Scores.

1. Both scores .., ands;,,, are sampled independently from genuine and impos-

tor distributions.
2. In every identification attempts;,,, = sgen, — 1.

If our identification system follows first scenario, therdlWwe identification trials with
impostor score higher than the genuine score. Consequtrglgorrect identification
rate for such system will be less than 100%. In the secondasicetihe identification
system always correctly places genuine sample on top anddreect identification
rate of 100%. Score distributions of Figure 1 do not refleid thifference. So, if we
want to predict identification system performance, we nedddrn the dependencies
between matching scores produced in a single identificatian Using genuine and

impostor score densities alone might not be sufficient forez prediction.



3.2 Performance of Systems with Randomized Impostor Scores

In order to confirm the presence of score dependencies inxparienental systems
and the necessity to account for this dependence, we cottaridollowing experi-
ment. Instead of original sets of identification trial segree consider identification
trials with randomly chosen impostor scores belonging ffecnt trials. In practice,
we randomly permute the impostor matching scores frommdiffeidentification trials.
Such randomization converts our original identificatioateyns into identification sys-
tem having the same distributions of genuine and impostaes¢ but impostor scores
in identification trials become independent and identyoditributed. Comparing with
the example of the previous section, we convert the ideatiin system with depen-
dent scores of second scenario into identification systetin widependent scores of

first scenario.

Matchers|| True Performance Randomized Impostors
C 0.811 0.738
G 0.774 0.669
li 0.823 0.777
ri 0.885 0.850

Table 1: Identification system performance using origideahitification trials ('True
Performance’) and using random impostors in identificatitals ('Randomized Im-

postors’).

Table 1 compares the performances of our original identifinasystems and corre-
sponding identification systems with randomized impostores. For all matchers the
difference in performances of corresponding identificaigstems is rather significant.

In all cases we observe that the performance of originaksysts higher and not

lower. This might be explained by the positive correlatibe$ween genuine and im-



postor scores for all considered matchers. When matchingsewse positively cor-
related, we will have particular identification trials hagiboth high genuine and high
impostor scores. By distributing high impostor scores teeotrials we might make
them unsuccessful. This explains the lowered performanhégeatification systems

with randomized scores.

3.3 Score Mixing Effect

When we try to predict the performance of large scale ideatifio systems, we could
be calculating some parameters or functions using matatioges from separate train-
ing identification trials. For example, most of the previouwk utilizes the density of
the impostor scores(z) or the cumulative distribution function of impostor scores
N(t) = ffoo n(x)dx (we are using notation of [7] here). If we use all our training
impostor scores to estimate these distributions, then madigtion will be a prediction
of the identification system with randomized scores (aséwipus section), rather than
the prediction of the performance in the original system.

Thescore mixing effeds the result of considering scores from different idersific
tion trials simultaneously instead of considering the sémmatching scores from each
training identification trial as separate entities for odédting prediction. The pres-
ence of score mixing effect becomes apparent as soon agptaetperiments on real
data are performed (see [7], section 4.2), instead of magkimgly theoretical predic-
tions [20] or experimenting with synthetic data.

When we try to predict the performance of large scale ideatifio systems, we
might have only samples of training identification trialstwa small number of im-
postors. In our experimental setup we predict performanca $ystems witt2990
impostors by using training identification trials with onl90 impostors. Given 00
impostors of a single identification trial we have a gredidifty to correctly estimate

the distribution of a highest score in a set2900 impostors. In order to make any



meaningful predictions, instead of a single trial with0 impostors, we also have to
use scores from other trials. So, it seems inevitable, tleahawe to mix the scores

from different trials and we need to learn how to minimize $liere mixing effect.

4 The Binomial Approximation Effect

In order to perform a further analysis, we will temporarity this section assume that
the scores in identification trials are independent andticglly distributed according
to either genuine or impostor distributions. The systenmtt wandomized scores of
previous section will serve as our test systems here.

Assuming the independence of matching scores in identdicatials, the closed
set identification performance in a system withenrollees is represented by the fol-
lowing formula [7]:

R= /OO NE Y (z)m(z)dz (1)

whereN (z) is the cumulative distribution function of impostor (noratohing) scores,
m(zx) is the density of genuine (matching) scores. This formus @ssumes that
largest score corresponds to identification result ('lasgere’ = 'better score’), which
is true for all four matchers we have for experiments. No this formula can be
considered as a specific case of more general formula foulesitg the probability
of genuine score to be in rarkk(or CMC curve) [7]. Due to involvement of binomial
terms in the formula for CMC, the prediction approach utilizequation (1) is called
binomial approximation prediction method.

The formula (1) can be interpreted as an expectation of fmev~—1(x) with
respect to genuine samplesand the traditional approximation of the expectation is
given by the mean of function values over the set of genuinges in the training

set:

1 L
R~ ZZNG*(:CZ-) 2)

i=1



where L is the number of training identification trials and is the sams the number
of training genuine score samplds £ 2991 in our experiments). It is also traditional
to approximate the cumulative distribution functidi{x) by the empirical distribution

function: .
N() ~ M) = 2 > Ty < o) 3)
j=1

whereK is the number of impostor scorgs used for approximatingv(z), I is the
identity function (1 if input parameter is true, O if falséfter substituting (3) into (2)

we obtain
G—-1

1 & [(1 &
Rzz; E;I(yj<xi) (4)

This formula can be alternatively derived using combinatonethods similar to [10],
but in our derivation we explicitly state used approximasiof the theoretically correct
prediction equation (1).

Using our experimental setup and and randomized trainiogsets of section 3.2,
we evaluated the prediction capabilities of binomial agpmation method (4) on all
four our matchers. Note, that since the scores are randdptize independence con-
dition is satisfied and binomial approximation method sdad theoretically optimal.

Figure 2 shows the predicted performance of matcher 'C’qubinomial approxi-
mation method (4) for different numbers of training impestocoresk” used for approx-
imating N (x). The experiments on other three matchers showed similandigmce of
prediction on the number of used impostor samples, and weraitting their graphs
from the paper.

As we expected the predicted performance indeed conveogdsettrue perfor-
mance of the system with randomized scores with the incrieabe number of used
impostor scores. But this convergence is rather slow andinesja large number of
training impostor samples. When the number of used impossosmall we see a

significant overestimation of the identification systenfpenance.
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Figure 2: Dependence of predicted performance on the nuafilrepostor scores used

in binomial approximation for matcher 'C’ with randomizecbses.

In order to understand why such overestimation occurs,deonsider the case of
K = 100 impostor scores used to predict performance in our systeémivi 1 = 2990
impostors. From equation (3) the values of functi&(w) will be multiples of%. If,
according to equation (4), we consider powé/?(ir)c‘l, we will see that the values
of these powers will be negligible with the exception of caden N(m) = 1. For
example, itV (z) = £ = 29 thenN (z)¢~! = .9929%° ~ 8.9x10~!4. Effectively,
in this case the application of binomial approximation (4) simply count the number
of genuine scores which are bigger than all impostors (fachviV (z) = 1), and the
calculated performance will be close to the performanceleifiification system with
K = 100 impostors instead of desired performance of a system @ith 1 = 2990
impostors.

Note that the overestimation of performance by binomiakagimation occurs not

only whenK < G — 1, but also for bigger numbers of training impostor samgites

Doddington et al. [6] proposed to use the following rule afrtib when evaluating the



performance of biometric systems: to%#®% confident that the true error rate is within
+30% of the observed error rate, there must be at least 30 errdrs. imprecision
in predicting identification system performance is mostplained by the errors in
approximating the impostor distributio¥i(z) — N () in the area of high values of
In this area we might have approximatéfcax) = 1, which implies that for a givem we
did not find any training impostor value higher than it. Bug thile of thumb suggests
that we need at least 30 errors (or impostors higher if)aa correctly estimatév (z).
So, for the precise estimation &f(x) in the area ofc where we would normally
get only 1 error (impostor) in our predicted system with- 1 impostors, we would
need to have around 30 errors (impostors). This means welwead around0(G —
1) impostors to make predictions for a system with— 1 impostors using binomial
approximation, and the results of Figure 2 seem to confirsrddsoning. Hence, we
can restate the rule of thumb of [6] with respect to predgctitentification system
performance by binomial approximation: the number of iniposraining samples
should be at least 30 times bigger than the size of ideniificatystem for which the

prediction is made K /G > 30.

5 The Combination Of Score Mixing and Binomial Ap-
proximation Effects

In the last section we considered identification systemh wihdomized scores, and
thus bypassed the existence of score mixing effect. Whatemepip we try to predict
the performance of original identification systems and leffibcts, score mixing effect
and binomial approximation effect, influence our preditti®

The first effect underestimates identification system perémce, and the second
effect overestimates it. It might turn out, that we will asentally predict correctly the

performance in larger identification systems with binonaigproximation and mixed



scores. Note, that the true performance of system 'C’ gimélrable 1is811, and from
Figure 2 the performance of identification system with randed scores is around the
same number when the number of impostors used in binomiabzgjppation is600.
So if we simply considered binomial approximation (4), talk€ = 600 and chose
random impostorg;, our predicted performance would have coincided with the tr
performance.

We suspect that the influence of both effects contributedhéogiood prediction
results reported in [10]. Though in that paper the trainitg sf impostors are retained,
each impostor set is used with all training genuine samplédsis the score mixing
effect should be present in this approach. Also, the binbfaianula for calculating
prediction (7) of [10] involves terni/ K )“—! whereK = 100, and, as in the analysis
of previous section, we expect the binomial approximatifiect to be significant. In
our experiments we were not able to obtain good predictisnlt® using approach
of [10], and thus we do not report its performance.

One of the approaches considered in [7] to deal with the digrese of scores in
identification trials is to condition the cumulative disuition functionN («) of impos-
tor scores on the values of genuine scores obtained in the &ntification trials.
Let us denoten(y|x) as a density of impostors scores with the condition that im-
postor scores belong to identification trials having geawsoorex and tetN,(t) =
ffoo n(y|z)dy denote the corresponding conditional distribution fumectdf impostor
scores. Then, assuming that impostor scores in each idatitfi trial are independent
and identically distributed according tdy|z), we can derive the following closed set

identification performance prediction similar to (1):

R= /_00 NE(2)m(x)dz (5)

In order to approximateV,.(x), authors of [7] split the training identification trials
into B bins of equal size according to their genuine scores. They dpproximated

N, (x) using only training impostor samples from the identificatigals of one bin. By



increasing the number of bing they were trying to control the dependence between
matching scores, but they disregarded the effect of binloagiproximation which is
dominant for larger number of bins and correspondingly analumber of impostor
scores used for approximations.

Here we repeat those experiments, but instead of splittaiging identification
trials into bins, for each training genuine sampleve are using impostors frory,
training identification trials with values of genuine scomdosest tac. In this way, we
are more precise in estimatig, («) when the value of might have been near some

bin’s boundary.
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Figure 3: Dependence of predicted performance on the nuofilfapostor scores used
in binomial approximation for matcher 'C’ with randomizecoses and for impostor

scores chosen by nearest genuine principle.

Figure 3 contains the results of these experiments on séotér sets have similar
behavior). We called the method presented in this sectidbimasmial approximation
with NG (nearest genuine) impostors’ and compared it withlilmomial approxima-
tion method with randomized scores from previous sectioar the same numbers

of impostor scores used in binomial approximatiohS £ 100K,), the selection of



impostor scores using nearest genuine criteria has higkedigied performance than
random choice of impostors. This means that the influenceafesmixing effect is
reduced and the method does improve the prediction. On e band, the observed
prediction improvements are not significant, and we can Isaethis method, similar
to binomial approximation with randomized scores, is dyemfluenced by the two

previously described effects, score mixing and binomiglraegimation.

6 T-normalization

Another technigue, which was proposed in [7] to account fmre dependencies in
identification trials, is to perform T(test)-normalizatiof matching scores before ap-
plying binomial approximation prediction:

Lij — Hi
Lij = i (6)

Ti5 — G
wherez;; is thejth score fromith training identification trialsi; andg; are the sample
mean and the sample variance of the scoreghrtraining identification trial. Note,
that though [7] use the term Z(zero)-normalization, it se¢hat they actually perform
T-normalization by Eq. (6) (Z-normalization has similarrfaula with x ando derived
using either all available scores or scores related to é&cpéat enrolled template).
Suppose we have some score dengity) with mean of0 and the variance of.

Also, suppose that for each identification triale are given two random parametgs
ando;, and the scores in the identification trial are indepenglesgmpled according
to

LBt

Pi@) = D) = —-p(*—

) (7)

It is easy to show that in this case the mean of scores in theifidation triali is yu;
and the variance is;. By calculating sample mean and variance estimatganda;,

and by applying T-normalization (6) to the identificatiorakiscores, the transformed



scores will be approximately (due to approximatienss /i; ando; ~ ;) distributed
according t(x).

Equation (7) represents a possible model of how the depereebetween match-
ing scores in identification trials originate. We can cathi¢linear score dependency
model Previously, Navratil and Ramaswamy [13] described theifralization using
the property ofocal gaussianitywhich assumes that functign(z) is close to normal
density with meany; and variancer;. In our description we are not making any as-
sumptions on the form qf; (x) except that it is generated for each identification trial by
Eqg. (7) using some common density There is also no assumptions on distributions
of u; ando; (which are randomly chosen for each identification trial).

According to linear score dependency model the range oésdareach identifica-
tion trial is shifted byu; and stretched by;. Note, that there are two types of scores
in identification trials - genuine and impostors, and it i#gpossible that they might
have different dependence models. But the number of gesgiores in identification
trials is limited (usually only one genuine score), and ihct possible to learn the
dependency model for genuine scores. Therefore, we willasghat the same model
is applied for both types of scores; the sample estimatends; can be computed
using both genuine and impostor samples, but in this work seeomly impostor score
samples.

T-normalization is a linear transformation for each idécsition trial, and it does
not change the order of matching scores. So, if identificatiial was successful, it
will remain successful after T-normalization. Thus, isteof making performance
prediction in an identification system with linear score elggiency model (7), we can
make predictions in an identification system with T-normedi scores. More specif-

ically, assuming that genuine and impostor scores in easftifitation trial are the



result of linear score dependency model and have distoibsiti

() = 0, (2) = (L)
i x 711141‘ (8)
nl(x) = nltmt’fqz(x) = ;H(T)

after T-normalization genuine and impostor scores will idependently and identi-
cally distributed according tm(x) andn(z), and the closed set identification perfor-
mance of original system will be similar to the performanéedentification system
with i.i.d. scores with densities(x) andn(z).

Since the total number of impostor scores in our experimesetap is sufficient
to make binomial approximation performance prediction loked set identification
system with independent scores, we made such predictiomsiormalized scores for

all four identification systems. Table 2 shows the resulthisfprediction.

Matchers|| True | T-norm & BA

C 0.811 0.818

G 0.774 0.602

li 0.823 0.838

ri 0.892 0.902

Table 2: True performances of identification systems (Jraad prediction using T-

normalized scores and binomial approximation on a full'etérm & BA).

The use of T-normalization seems to give almost perfectigtied results for 3
systems, but failed for predicting the performance of ideation system 'G’. This
failure means that the linear score dependence model ddeepresent the set of
matching scores in system 'G’, and we have to search for sdaher model of score
dependence. Additionally, even if other systems do achimed performance pre-
diction after T-normalization, it is not necessary that#n score dependence model

exactly describes the dependencies of scores in idenidficaials and the actual de-



pendencies might be more complex.

7 Resampling Methods

In this work we introduce the resampling method for predigtiarge-scale identifica-
tion system performance. The method is rather simple: wellaie the work of the
identification system by choosing the genuine and impostores from the training
set. Specifically, for each training genuine sample, we sb6b— 1 = 2990 training
impostor samples. If the genuine score is the highest, thendentification trial is
successful and the performance of the simulated systeniaglaeed as a proportion
of successful identification trials.

It is clear that this method requires bigger number of tragrimpostor scores than
the numberG of enrolled persons in simulated system. But, since we apdlyhat
the number of impostor scores for binomial approximatioousth be at least 30 times
more than(z, we can expect that the approximation abilities of resamgpinethod will
be on par with the abilities of binomial approximation. Irder to confirm the ap-
proximation abilities of proposed method, we comparedeétsggmance with binomial
approximation method on an identification system with ranided scores (section 3.2)
using the full training set of. = 2991 genuine samples and = 2991 * 100 impos-
tor scores. Whereas in binomial approximation method (4g&mh genuine score we
used allK' = 2991 % 100 impostors, in resampling method we were randomly choosing
G — 1 = 2990 impostors for each genuine.

The results of these experiments are shown in Figure 4. Bethads show similar
approximating performance. The spread of error bars issatsitar and slightly bigger
than the spread of error bars on test set. Note, that evafuati the test set ('True
performance’) works in essentially the same way as resagptiethod. The only
difference is that evaluation on the test set uEH * 2990 test impostor scores with

2990 non-repeating impostors for each genuine score, but rdsagmpethod uses only
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Figure 4: Performance prediction of identification systeithwandomized scores by

binomial approximation and score resampling methods.

2991 * 100 impostors and has to repeatedly use impostors with eachsitmipased
approximately 30 times. The reuse of training impostor dampxplains the bigger

spread of error bars for resampling method.

7.1 Resampling Using Genuine Score Neighbors

The key advantage of the resampling method and the reasds fwe is that it allows
us to more precisely control the score mixing effect wherfigueting prediction. The
binomial method requires mixing more th80G impostors by formula (4) for each
training genuine score, but resampling method uses 6hly 1 impostors for each
genuine. The binomial approximation effect did not allowtagorrectly predict per-
formance by approximating cumulative distribution fuonas NV, (z) conditioned on
genuine scoreg in section 5. The resampling method is not susceptible tdbthe

nomial approximation effect and allows us to more precisstgluate the benefits of



utilizing genuine score conditioning.

In this section we modify the experiments of section 5 usegpmpling method.
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Figure 5: Performance prediction in original identificat&ystems by score resampling

methods with randomized sampling and nearest genuine sampl

Figure 5 compares the performance of resampling methadinglthe nearest gen-
uine sampling method with the resampling method using ramglopostors and the
true performances of our systems. Clearly, using nearestige identification trial
reduces the score mixing effect, but this reduction is stilt sufficient for precise
performance prediction. Similar reduction was observedinomial approximation
method (Figure 3), but due to binomial approximation effeetwere not able to judge

objectively the strength of using nearest genuine priecipl



7.2 Score Resampling Using Identification Trial Statistics

In order to control the mixing effect in the resampling methwee want to mix scores
only from similar training identification trials. Selectjidentification trials using clos-
est genuine scores of the previous section is just one pessdy of specifying the
similarity between identification trials. We expand thisthwal by using statistics of
identification trial score sets to determine the similabiggween trials.

Let T; = {z;;}, denote the set of matching scores from ttfetraining identifi-
cation trial and let(7;) denote some statistic of this set. For examp(&;) could
be the sample mea#y or the sample variancg; statistics used for T-normalization in
section 6. Define the distance between identification tfialand 7}, with respect to

statistic functiont as a distance between corresponding statistics of two sets:
dist(T;, Ti) = [¢(T;) — t(Tk)| 9)

DenoteG, as the number of impostor scores in training identificatiaid (G; = 100
in our experiments). Then the resampling method with idieation trial statistia for

predicting identification system performance is formulaas follows:

1. Fortraining identification tridl’; and corresponding genuine scatefind K, =
[(G —1)/G;] training identification trialsl, closest tol; with respect to dis-
tancedist,(T;, Ty.)

2. Choose randon® — 1 impostors from selected identification trials; simulated

trial is successful ifz; is bigger than all chosen impostors

3. Repeat 1-2 for all available training identification Igid; and calculate the pre-
dicted system performance as the proportion of successfulated identifica-

tion trials

The proposed resampling algorithm is rather simple and doesequire any pa-

rameter training. However, it does require proper selaabioused identification trial



statistict. In the rest of this section we will investigate the use ofedlé#nt statistics.

Note, thatk,, = [(G — 1)/G:] = 30 in our experiments, so for each genuine score we

are looking for30 training identification trials out of tot&l991. Thus, the resampling

method seem to be quite selective and might be able to significreduce the score

mixing effect.

7.3 Resampling and T-normalization

The performance prediction method based on T-normalizdfq. 6) used two iden-
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Figure 6: Performance prediction in original identificat®ystems by T-normalization

followed by binomial approximation and score resamplinghrods based on mean and

mean-variance statistics.



Figure 6 presents the results of these experiments. Naewiien we use both
mean and variance statistics, the statistics of identifinatials are two dimensional
vectorst(T;) = (4i;, d; ), and instead of simple absolute difference for calculatiisg
tance in equation 9 we use euclidean distance.

T-normalization method has quite good prediction perfarogafor matchers 'C’,
'li" and 'ri’, and resampling method using mean and variastatistics is also close
to the true system performance. The interesting feature isghat variance statistics
apparently reduces score mixing effect more than mearsttati For matcher 'G’ on
which T-normalization method failed, we see better préglictesults by resampling
methods using either or both of these statistics, but théiqtien is still far from true
performance.

If we compare these results with the prediction results gtiFé 5, we notice that
any of the resampling methods with mean or variance staisdduce score mixing
effect better than resampling using nearest genuine neighGenerally, we can view
a genuine score from identification trial as a statistic @f ttial. But considering a
single score as a statistic might not be a reliable way to traefendencies of scores in
identification trials, and the poor prediction results cdrest genuine score resampling

method confirm this.

7.4 Resampling Using n-th Order Statistics
The other type of frequently used statistics is the n-th ostegistics
t = t"(T;) = {the value of n-th highest elementi} (10)

In our experiments we use a set of impostor scores in eactifidation trial 7; to
calculate n-th order statisticd and use them in resampling method for prediction.
Figure 7 shows the results of experiments.

Overall, using the 2-nd order statistics or the second Ipgsbs$tor score gave the

best prediction results. The prediction precision seentetwease with the increased
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Figure 7: Performance prediction in original identificatieystems by resampling

methods utilizing different nth order statistics of idéicttion trial score sets.

order of used statistics. Note, that the last, 12-th ordaistics correspond tG'; /8-
th order statistics. We also tried higher order statistiks, G, /4 andG,/2, but the
prediction accuracy was consistently worse and the predijperformance approached
the performance of system with randomized scores (sectin 3

There seems to be no theoretical proof on why second besshopstatistic should
allow making more precise prediction than any other statistWe can reason that
it simply better reflects behaviors of the high score tail$ngbostor distributions in
separate identification trials. If we needed to estimateesother features of impostor

distributions, we might have better results using someraitatistics.



7.5 Justification of Using Identification Trial Statistics

Consider the following identification trial score dependemodel. Suppose that for
each identification trial’; we are given a set of parametés= {6}, ..., 05}, and the

scores in the identification trial are independently sachplecording to
pi(z) = p(z|6;) 11)

As we already pointed out, all the matching scores in a siigatification trial are
generated using the same test biometric sample, and pamsfietould represent test
sample quality, the amount of information contained in #& sample (e.g. number
of minutia in test fingerprint), the closeness of other sampb the test sample and
similar characteristics of test sample.

For each identification tridl;, we can extract a set of score set statistjcsThus,
statistics are the random variables of paramelers; = ¢(7;(0;)), and if statistics are
stable, thert; ~ ¢(0;) = E(t(T;(6,))). Assume that statistidg are chosen so that
function ¢(0;) is continuous and invertible. In this case we obtain thantifieation
trials having close statistids, will have close paramete®; and, as a consequence,
close score densities(z) = p(x|0;). Therefore, we can simply use training iden-
tification trials with close statistics to estimate scorasigesp;(x) without explicit
estimation of parametets.

In practice, since we have no knowledge on what parame@temight be, we cannot
guarantee the good properties of functit(; ). Intuitively, if we consider the statistics
vectort; to consist of many diverse statistics of identificationltsieore set, then we

are more sure that close statistics are the result of sagnglirse conditional densities

pi(x).



7.6 Close Sampling Effect

Suppose that we are given a large numbef training impostor trials and we use suf-
ficiently large number of statistics in the resampling meth@/hen we search for the
closest training identification trials, we might find themtifcation trials very similar
to the one we consider at the moment. Indeed, a sufficienthg laumber of available
training trials will result in the existence of very similaials, and if the chosen statis-
tics well reflects the set of training identification trialoses, these very similar trials
will have very similar statistics and will be found duringseempling method search.

In the extreme case, all found closest training trials weélldxactly the same as the
particular training trial whose genuine score we consitlénemoment; the simulated
trial will be successful if and only if that particular tramg identification trial was
successful. The predicted performance for a larger systdirbevexactly the same as
the performance of smaller system and the prediction dtgarwill fail.

Though the extreme case seems to be improbable, some avextésh of pre-
dicted system performance might be observed in our expaten&or example, if we
use the best impostor score instead of second and otherndéh statistics in resam-
pling method, we will find that predicted performance will dlenost the same as the
performance in smaller training system with = 100 impostors. The reason for this
is quite clear - the best impostor in the simulated trial Wwél among the best impos-
tors in closest training trials, and all of them are closéhmtiest impostor of currently
considered training trial. We might call the effect of owimating identification sys-
tem performance due to too close neighboring trialslase sampling effectt seems
that it is quite difficult to say whether the effect has inflaeron particular prediction
results. Still, we need to control the appearance of theceffy making sure that used
statistics in resampling method does not coincide with ttop@rty of the system we

are trying to predict.



8 Discussions

8.1 Identifciation models

Accounting for the dependencies between matching scosegasl to different classes
during single identification trial seems to be the key foreot prediction of identifi-
cation system performance. The existence of this deperdasxbeen mostly ignored
in biometrics research so far. The problem lies in the diffjcaf modeling this de-
pendence and deriving any algorithms using it; thereforienalgying assumption on
score independence is usually made.

In [15] we proposed to use in addition to currently consideseore a best score
from the identification trial besides current (second bestes) for making acceptance
decisions in verification systems. In [17] we used secondl $m®e in combinations
of biometric matchers. In order to differentiate the modetsscore dependencies in
identification trials from previously explored score degencies in cohort and back-
ground models, we introduced the teigentification modelWe further formalized the
notion of identification models utilizing identificatioridt score set statistics in [18].

Resampling methods utilizing identification trial statistcan be viewed as an ex-
tension of the identification model research in the area edlipting the performance
of identification systems. The usefulness of chosen sttist identification model
is judged by the prediction precision, whereas in previasearch the usefulness of
statistics is determined by its ability to improve performa of either decision making
or of combination algorithm. The current research well ctamgnts the previous stud-
ies - if some statistics is useful for prediction, it must tzon information about score
dependencies in identification trials and consequentlybsasuccessfully utilized in
decision making or classifier combination.

Note, that thesecond best impoststatistics used in experiments of current paper is

slightly different from thesecond best scostatistics utilized in our previous research,



wheresecond best scoie calculated using all matching scores including genulte
difference is that in current experiments we precisely kmdvich scores are impostor
and which score is genuine in the identification trials. Rres research modeled the
situations where such knowledge is not available, for exanipve use some scores in
identification trial for combination we are not aware whido is genuine - the final
goal of combination algorithm is to find it. Neverthelessttbsetatistics are closely
related, and current research confirms the use of seconddweststatistics advocated

before.

8.2 Extreme Value Theory

The important part of the identification system performamesliction research is mod-
eling the distributions of scores in the tails, especidhg, tail of impostor distribution
corresponding to high scores. Extreme value theory is adiedthtistics investigating
the behavior of distribution tails and we can expect the oupment in the prediction
if we use its techniques.

One of the results of extreme value theory states that theldison of values of
random variableX satisfying the condition of being in the taiX, > w for sufficiently
largeu, is close to the generalized Pareto distribution (GPD):

1—(1—kz/a)'* k+£0
F.(r)=PX —u>z|X>u)= ( /%) ? (12)

1 —exp(—z/a) k=0
The parameterd anda can be learned from training data by different methods [8] fo
a particular choice ofi. Equation (12) provides only an asymptotic approximatibn o
the extreme value distribution of whenw approaches the supremum of all possible
values ofX. The derivation of sufficient conditions on the minimum nuwmbf sam-
ples of X, confidence intervals of, £ anda, is a main topic for ongoing research
in extreme value theory. Note, that most existing researaxireme value theory is

rather theoretical; the ability to predict the performaimciglentification systems might



be used as an objective practical measure to evaluate tloermpance of extreme value
theory methods.

The main assumption for the application of the extreme viddaery is the indepen-
dence and identical distribution of the samplésSince there is a dependence between
matching scores in identification trials, we expect thataxe value theory will have
same problem as binomial approximation for performancediptien in identification
systems - we would need to mix sets of scores from differegmti€ication trials to
make good approximations, and consequently will introdsczee mixing effect into
prediction.

One possible solution is to use identification trial scoressatistics in order to
select close training identification trial. Though the tespresented in [9] seem to
imply that extreme value theory provides better approxiomstthan binomial model,
it is not clear if using it along with score set statisticslwiéliver better prediction
than resampling method. Another solution might be to trydoameterize the fitting
of GPD to the tails of impostor distributions for differemtentification trials. Thus,
instead of common parametarsk anda, we would need to find separatg, k; and
a; for each training identification trial;. Statistics of identification trials; can serve
for such parameterization. Alternatively, we might comsibint density modeling of

statistics and extreme values Xfby means of multivariate extreme value theory [14].

8.3 Performance Prediction in Open Set Identification Syst@as

Whereas the closed set identification problem assumes thgettuine user is enrolled
and the match is performed againgjenuine ands — 1 impostor templates, the open
set identification problem assumes that genuine user mahtenenrolled and the cor-
rect solution of the identification system will be to rejeatrent identification attempt.

Clearly, the analysis of open set identification system Ehimg¢lude the assumption on

the prior probability of the user to be enrolled. It is notarlé the proper analysis of



open set identification systems has been presented bedoegitiworks discussing open
set identification (e.g. [7]) do not use such prior prob&pilin contrast to traditional
ROC curve used for evaluating verification systems and desgrthe trade-off be-
tween two types of errors, false accept and false reject) speidentification systems
have three types of error [2]: the error of incorrectly clingdirst matching choice,
the error of accepting incorrect first choice, and the emf@ating correct first choice.
The trade-off between three types of errors might be desdrdy a two-dimensional
surface in the three dimensional space, and we are not afvaing cesearch using such
performance measures.

Instead of considering the full system with three error §/pee can consider the
reduced open set identification problem assuming that steuser is always enrolled
in the database and the system has the ability to reject stenfitch choice. Such
system indeed will be quite useful since first match choicghinbe an impostor and
rejecting such choice is the correct decision. Similar apph is also taken explicitly
in [2] and in our works [15, 16]. In such case we have two tyfesrmr - accepting
the incorrect first choice and rejecting the correct firstichor identification.

Traditional decision to accept or reject the first choicegamidentification systems
is to compare the first matching score to some threshfd. In [15] we showed that
such decision is not optimal and we get better results ieedbf only single first score
s! we also use second best scet@nd base our decision on thresholding some learned
function of these two scoreg(s, s?) > 6. We further explored this idea in [16] and
showed that the improvement is theoretically present efrendres in identification
trials are independent (and impostor scores are identici#gtributed). The rate of
improvement seems to decrease slightly with the increatieeaiumber of impostors.

This discussion implies that the estimation of open settifieation system perfor-
mance is not an easy task. Although, we can follow the tiawatiti derivations [20, 7, 9]

specifying that the false match rate in a system vi\timpostors can be determined



by the function of false match rate of verification systemiM R;.y = 1 — (1 —
FMR;y.1)Y, and the false non-match rate stays the saRWM Ry.xy = FNMR;.q,
such measures are not adequate for proper performanceptiescdue to broad as-
sumptions: 1. independence of matching scores in iderttdit#rials, 2. the decision
based on thresholding single top score, 3. the whole systaformance can be de-
scribed by two numbers (note that open set identificatiotesys have three types of
error, so these false match and false non-match rates noghersufficient). Therefore
we restricted the topic of current paper to close set ideatifin, and left the investi-
gation of open set identification systems for the future.

The results presented in current paper suggest that thiefioed of open set iden-
tification system performance might also have to deal withesixing effect, and we
might have to use score set statistics for selecting clom#tifitation trials for testing.
Note also, that use of the second best score for making dasis similar to using this
score as the statistics of identification trials. Therefirie not clear how much benefit
using identification set statistics might have on open sattification system already

utilizing such scores for decisions.

9 Conclusion

In this paper we investigated the problem of predicting tdéggmance of large-scale
closed set identification systems. First, we showed théiegidependency in matching
scores assigned to different classes during identificdtiafs. This dependency has
major effect on the previously proposed algorithms fomeating system performance.
Second, we showed that binomial approximation predictiethad introduces its own
effect on performance prediction. Third, we discussed thrMmalization and its
relationship to the prediction problem. Fourth , we propidbe new prediction method
based on resampling of available training scores usindifitstion trial statistics. The

utilization of identification trial statistics allows to dace score mixing effect, and



delivers good prediction results. Finally, we discusses résults of the paper with

respect to other research directions: identification nwétel decisions and matcher

combinations, extreme value theory and open set identditatystem performance

prediction.
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