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Biometrics is the automated recognition of the persons based on the structure of their
body or their behavior. The expansion of the technology resulted in the availability of
cheap and high performance biometric sensors, and made the functioning biometric sys-
tems a reality. In this chapter we briefly describe the main advances of biometrics research
field. In particular, we will discuss the most widely used biometric modalities, fingerprint
and face, present the main concepts of the measuring biometric system performance and
combining biometric matchers. We will also devote our attention to some research di-
rections further enhancing biometric systems: cancelable biometrics, liveness detection,
indexing and individuality. The discussions are illustrated by the examples providing
additional insight into this field.

1. Introduction

1.1. History of Biometrics

General descriptions of a particular person, including the height, color of the skin, hair
and eyes, particular traits in appearance and behavior, have been possibly used since
ancient times. Though such general descriptions might not be sufficient for person identi-
fication with complete confidence, they can be successfully used in constrained situations
or for the confirmation of other, more discriminative, biometric features. These features
are still widely used (e.g. on driver licenses) and might be called as soft biometrics. The
fingerprints and face can be considered as the earliest traditional biometrics in use by
people. Fingerprints have been known to be used by ancient potters to identify the pro-
duced goods [2]. Face portraits and sculptures might have been used for both identifying
the important persons and marking goods. For example, coins bearing king head might
serve both to confirm validity of the coin, as well as, help to recognize the king.
The biometric measurement began to play more increasing role with the increased

amount of travel and bigger scale of industrial production in recent time. The modern
use of biometrics has probably began with the development of Henry fingerprint classifi-
cation system at the end of 19th century. In this system, each fingerprint of the person
was checked on whether it had a whorl ridge structure. The total number of possible
combinations of whorls for ten fingers is 210 = 1024; therefore, each person belongs to one
of 1024 possible Henry fingerprint classification classes. The system was first employed
at India to avoid the duplicate payments to factory workers. Later it was adopted by
Scotland Yard to track criminals - after arresting a person the Henry classification system
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was used to check whether this person already had a criminal record. At the same time,
the techniques of lifting latent fingerprints at the crime scenes have been developed and
increasingly used in forensics [2].
The wide use of face photographs and signatures in passports and other documents can

be viewed as further expansion of biometric use in modern society. Until recently the
process of biometric matching, e.g. between passport photo and person’s face or between
bank check signature and previously enrolled signature at the bank, relied on human
experts. With the proliferation of computers we expect that computers would perform
most biometric matching tasks. Also, with the development of new sensor technologies it
becomes possible to employ a significant number of new biometric traits.

1.2. Modern Use of Biometrics

The purpose of biometrics is to provide a confident authentication of a person partici-
pating in some activity. Since the biometrics field is still young and the price of biometric
systems is high, most of current biometric systems are deployed in high importance appli-
cations. Here is a sample list of some current biometric technology applications, clearly
incomplete:

• Access control

This is probably the most widely used application of biometrics. We can differen-
tiate: 1. large scale applications, such as access to the country, 2. middle scale
applications, such as access to work place, prison inmate control, hospital patient
tracking, and 3. small scale applications, such as controlling access to computer or
to the car.

• Distribution of benefits

Just as in case of first use of Henry fingerprint classification system to avoid the
duplicate payments to workers, biometrics is increasingly deployed for the purpose
of controlling the distribution of social benefits. In contrast to access control appli-
cations the biometric system has to ensure that each person is not enrolled twice
and, therefore, the benefits are not distributed twice to the same person. Pensions,
salaries and medical insurance payments can benefit from biometrics use.

• Financial transactions

If person’s credit card is lost or stolen, a stranger would be able to use. Integrating
biometrics with credit, debit and other types of payment cards can significantly
reduce their misuse. It is not even necessary to have a card; a person might use a
biometrics alone to identify himself to the financial system and authorize payments.

• Forensics

Fingerprints had a long history of usage in forensics due to the property of human
skin to leave them on touched surfaces. The development of FBI’s AFIS (Automatic
Fingerprint Identification System) showed the ability to automate the matching
process and to perform a match of latent fingerprints to the database consisting of
millions known fingerprints. DNA matching is another recently developed technique
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used for the purpose of identifying criminals. The proliferation of biometric sensors,
for example surveillance video cameras, will result in the collection of biometric data
capturing suspects and in the possibility of such biometrics to be used in forensics.

With the further development of biometric technologies and the falling prices of bio-
metric sensors and solutions we expect the biometric field to expand widely into modern
life. Here are some possible future applications of biometric technologies:

• Smart environments

The idea of smart environments is the increased interaction between the person
and the surrounding environment enhanced with sensors and computing power.
The biometrics might play an essential part in this interaction by recognizing who
the person is and providing person-specific actions. For example, by recognizing
who entered the room, the smart room might adjust the lighting and temperature
according to that person’s preferences. Or, the smart car might recognize the person
sitting in the driver’s seat and adjust rear-view mirrors accordingly.

• Internet transactions

Current user-computer authentication is based on the remembering passwords; many
websites require registration and entering authenticating passwords. Password au-
thentication might be replaced by biometrics; instead of entering password a user
might swipe a finger at fingerprint sensor and be authenticated. As another exam-
ple, the smart video system might stream and show a rated movie only if built-in
biometrics sensor recognizes that all people watching it are adults.

• Total surveillance

The eventual development of sensor and biometrics technology might lead to the
systems identifying and tracking all people at all times. It is hard to predict the
consequences of such development, but it is clear it will have a significant impact
on the society; one of the benefits frequently advertised is the elimination of crime.
The deployment of city-wide surveillance system in London showed that significant
progress in biometrics is still required in order for the system to work as expected.

1.3. The Structure of Biometric System

The typical biometric system consists of the following elements: biometric scanners
located at the points where the person has to be authenticated, biometric matchers and
the biometric database which stores the person’s information and biometric templates.
Depending on application the matchers and database can be located either at the dedi-
cated server, at the location of the scanner, or be contained in the smart card belonging
to the user. In all cases biometric system integrators have to ensure that no tampering
has occurred to any of the system’s elements or communication lines between them.
The work flow of biometric system has two operational stages - enrollment and authen-

tication.

• Enrollment
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The task of enrollment stage is to create a record about the person in the database
together with biometric templates. Since the access to biometric database should be
secure, the enrollment stage usually requires the presence of human operator. The
operator should verify the identity of the user by alternative means and insert the
enrollment record into biometric database. The successfully enrolled user is called
enrollee. The protocol for enrollment might include the quality control of biometric
templates and the check that this person is not already enrolled in the system or
that there is no other enrollee with similar biometric templates (which will be the
cause of errors during authentication stage). If some confusion exists, the user might
be asked to re-scan the biometrics or to use additional biometric modalities. The
biometric system might also update its indexing structure during enrollment.

• Authentication

The user is required to present the biometrics to the scanner, and biometric system
matches input biometrics with the biometric templates stored in the database. The
user might also be required to provide additional authentication information, e.g.
some identification number, so that the biometric system would perform matching
using only selected enrolled templates. The authentication stage might not need
the presence of human operator; upon successful authentication the system might
automatically authorize requested action.

1.4. Biometrics and Pattern Recognition

The research in biometrics uses many techniques of pattern recognition and thus can be
considered as a part of this more general field. The processing of biometric input usually
has all the traditional steps of generic pattern matching algorithm - preprocessing and
enhancement, feature extraction and matching. Pattern recognition deals with classes
and the number of the classes is rather small; some learning of the classes is frequently
performed from training samples and the number of the training samples for each class
can be large, hundreds or thousands. On the other hand, biometrics usually has only
one enrolled sample template for each person (class), and class specific learning is rarely
performed. The matching in biometric system can be viewed as simple nearest neighbor
matching in traditional pattern recognition field; the input is classified as belonging to
person with nearest enrolled template. From this point of view, the biometrics deals with
rather simple subset of problems of pattern recognition.
On the other hand, the variation in the appearance of samples of the same class in

biometrics can be significant, and sometimes bigger than the variation between samples
belonging to different classes (see the examples of face images in section 2.2). There-
fore, traditional pattern recognition methods oriented to the learning of class separation
functions might not deal adequately with biometric problems. It becomes important in
many biometric problems to learn a representational model - all possible ways in how
person’s biometric might appear on the scanner. The biometric matching in this case is
transformed to matching models, rather than doing classification in the feature space.
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2. Biometric Modalities

The structure of human body and person’s behavior is rather uniquely determined by
genetic and environmental factors. Some biometric characteristics, e.g. sex, skin and hair
color, are determined by genetic make-up, some biometrics, such as fingerprint and iris,
are formed during the fetus development, and other biometrics, such as voice and gait, are
the product of the later life of the individual. Even if the face appearance of the person
is mostly determined by the genes, the examples with monozygotic twins show that the
environment can play a role in the face appearance in the later life.
It is not surprising, therefore, that practically any part of the human body or appearance

can serve for the purpose of identifying individuals. The biometric modality is the choice of
a particular body part or a particular person’s behavioral characteristic for the purposes of
biometric person authentication. Different biometric modalities usually require different
sensors and matching algorithms. The adoption of a particular biometric modality is due
to several factors: cost of the sensors, performance of the matching algorithm, convenience
and acceptance by the users, universality of biometrics.
In the rest of this section we consider in detail most widely used biometric modali-

ties: fingerprint, face and hand geometry. We will also shortly discuss the use of other
modalities as well.

2.1. Fingerprint

The use of fingerprints for biometric purpose, especially in forensics, has a long his-
tory, and older databases were created using ink and paper. Recently, most fingerprint
databases are collected using digital scanners directly, and older databases are digitized.
The digitization of fingerprint scanning allowed using automatic algorithms for template
extraction and matching. But, digital fingerprint templates produced by different types
of scanners vary significantly in their appearance. Figure 1 presents sample fingerprint
images from three fingerprint scanners taken from FVC 2002 database [20].
Most fingerprint matching algorithms rely on the extraction and matching special points

of the fingerprint ridge structures - minutia. Usually minutia points designate ridge
endings and ridge bifurcations, and have a representation (x, y, θ), where x and y are
coordinates of the minutia in the image and θ is the direction of minutia coinciding with
the orientation of ridges at these coordinates. In order to extract minutia, the following
steps can be followed:

• Find the orientation and strength of ridges in in each point (or small blocks) of the
image. This can be achieved by different methods, for example by using wavelet
or Fourier coefficients, or by directly analyzing image gradients. The important
properties utilized here is the wavy nature of fingerprint ridges; the ridge direc-
tions change gradually, the image gradients (directions of fastest change in image
intensity) are perpendicular to ridge directions, and wave structure makes the use
of wavelets or Fourier coefficients natural. Thus, even if different sensors produce
quite different fingerprint appearances, the orientation and general ridge structure
can be relatively easy be found.

• Enhance and binarize image. Using the found direction and frequency of the ridges
in each point of the fingerprint, a filter, e.g. in wavelet or Fourier domain, can be
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(a) DB1 (b) DB2 (c) DB3

Figure 1. Samples of fingerprint images from Fingerprint Verification Competition (FVC),
2002. Included images from databases DB1, DB2, DB3 were obtained using different
fingerprint sensors.

applied emphasizing the ridge direction and frequency and removing other directions
and frequencies as noise. Consequently, a simple threshold can be used to binarize
the image.

• Segment the fingerprint area from the background. This might be considered as
the most difficult part of fingerprint image processing. Whereas some thresholding
techniques might be successful on fingerprints with white background (DB1 image
in Figure 1), they will not be sufficient for sensors producing complex background.
Additional problem is the frequent presence of residual fingerprints - the latent
fingerprints formed on the surface of the scanner by the previous users. Usually,
some heuristics, for example involving the strength of ridges, the confidence in the
extracted ridge directions and frequencies, can be used for segmentation.

• Extract minutia positions. Different techniques can be used here - thin the binary
image to obtain 1 pixel wide skeleton and find its endpoints and bifurcations, find
the contour of the binary image and extract minutia points as the points of large
change in direction of the contour, or follow the ridges with perpendicular cuts and
find where these cuts end or merge.

Note, that presented steps are not necessary and many other techniques have been
investigated [20], for example, it is possible to extract minutia positions directly from the
gray-scale image. We present an example of binarized fingerprint image and the candidate
locations of minutia positions in Figure 2; the image was enhanced and binarized using
filtering of Fourier coefficients in 16x16 pixel blocks of the image, and the candidate
minutia positions were found by following contours of binary image [5].
The set of extracted minutia usually represents a fingerprint template stored in the

database, but the template might also contain other elements useful for fingerprint match-
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Figure 2. Binarized
fingerprint with can-
didate minutia posi-
tions.

(a) 1 1.tif (b) 1 2.tif

Figure 3. Two matched fingerprints with marked matched
minutia positions.

ing, e.g. ridge orientation map, counts of ridges between minutiae, original gray-scale
fingerprint image. The type of the fingerprint, e.g. whorl as in Henry’s system, can also
be automatically extracted and used for matching or indexing.
The task of minutia matching algorithm is to find correspondences between two sets

of minutia. It is usually assumed that the map responsible for minutia correspondences
is affine (composed of rotation and translation). The brute force approach to minutia
matching will look at all pairs of minutia in two fingerprints and assume that these minu-
tia correspond to each other (pivot minutia); this assumption automatically determines
the translation from minutia coordinates and rotation from minutia directions, and all
other minutia are checked for correspondence with found transformation parameters. The
brute force algorithm is somewhat slow, and many improvements can be made to it. For
example, we might want to consider pivot minutia only if these minutia have similar
neighborhood structure determined by the minutia and its two nearest neighboring minu-
tia. The features extracted from minutia triplets are called secondary features in [16] and
can be used instead of original minutia for more precise and faster matching. The set
of matching minutia in two fingerprints obtained by the method of matching secondary
features is shown in Figure 3. The final matching score is usually some heuristic function
including number of matched minutia, numbers of minutia in two considered fingerprints
and other parameters.

2.2. Face

The face biometrics can be considered as most convenient and universally acceptable
biometric modality. The number of digital cameras, including webcams and cellular phone
cameras, is significantly more than the number of fingerprint (or any other biometric)
scanners. Therefore, there is a big incentive to utilize this multitude of cameras for
biometric purposes.
The earliest works on face recognition relied on specialized algorithms to extract the
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positions of landmark points, such as eyes, eyebrows, nose, mouth, and on measuring
the distances between these points. The explicit extraction of landmark points follows
traditional pattern recognition approaches of feature extractions, and performing classifi-
cations using feature vectors. Though such matching methods have good sense, it turns
out that, due to large variations in the appearance of landmark points, it is rather diffi-
cult to confidently extract their positions. Subsequently, the implicit extraction of feature
vectors by projection methods proved to have better performance and became the most
popular face matching approach.
The work of Turk and Pentland [30] introduced a technique called principal component

analysis (PCA) which had a major influence on the development of the face recognition
research. Face images can be represented as points in W ×H-dimensional space (W and
H are the widths and heights of the image in pixels). Points corresponding to faces can
not occupy the whole space since there are images representing other objects. The PCA
technique attempts to approximate the region with faces by the linear subspace. Using the
criteria that the sum of squared distances from the subspace to sample face images should
be minimized, the optimal subspace is the subspace spanned by the first K eigenvectors
of covariance matrix constructed using sample face images (K is the desired dimension
of subspace; usually it is taken as the one which gives best recognition results). PCA
projection is the orthogonal projection of original face images onto found from training
samples PCA subspace, which is spanned by principal components - first K eigenvectors
or eigenfaces. The example of PCA technique is shown in Figure 4. Each face-like image
is a principal component projected back into image space (eigenface); a real face of person
can be approximated by the linear sum of these principal components.

Figure 4. Sample eigenfaces of PCA model (images provided by R. Rodriguez).

The PCA technique can be used for two different purposes. First, by calculating the
distance from the test image to the PCA subspace we can judge whether the test im-
age represents a person’s face or some other object. Many face detection techniques
successfully use PCA. Second, two PCA projections of two different face images are K-
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dimensional vectors of PCA coefficients, and the distance between these two vectors can
serve as matching measure between two face images. The PCA and similarly constructed
linear (some non-linear methods are also been investigated) projection algorithms [12]
make the largest share of face matching methods.
Though projection techniques are able to get satisfactory matching results on some

databases containing frontal and uniformly illuminated face images, their performance
decreases significantly when any of the typical face variations appear: change in illumi-
nation, head rotation, occlusions, facial expressions and speaking dynamics. Figure 5
shows the examples of face images from CMU PIE (Pose, Illumination and Expression)
database [25]. It is clear, that by using eigenfaces of Figure 4 it will not be possible to
properly represent these faces and have a matching algorithm.

Figure 5. Samples of face images from CMU PIE [25] database. The great variation in
the face position and illumination makes most projection-based matching methods and
algorithms relying on feature extraction from landmark points ineffective.

We can view the PCA algorithm from two sides: on one side it is a projection of original
image onto lower-dimensional feature space, and on the other side it is representation or
the model of the face by K latent variables (same as feature vector). The PCA model of
the face is quite simple - the face is a linear combination of eigenfaces and the coefficients
in this combination are the latent variables. It is possible to construct more complex face
models which more adequately represent the face and face variations.
Active Appearance Model (AAM) [8] was successfully utilized for face modeling. In this

model, instead of using projections of whole face, the principal component projections
for small patches around face landmark points are constructed (texture PCA). The set
of distances between landmark points is also represented by the PCA projection (shape
PCA). The model is matched to the face image by searching the best position of landmark
points. For a particular choice of landmark points the match confidence is a sum of
matching confidences from texture and shape PCAs. Active appearance models show good
performance and are increasingly utilized in many tasks: face detection, face recognition,
facial expression analysis. But active appearance models might still not work well with
changes in illumination and head rotation, and special adjustments to the algorithm are
needed [1].
3D morphable model [3] gives an example of even more complex face model. Instead
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of a set of landmark points in two-dimensional plane for AAM, the surface in three-
dimensional space is used to represent the shape of the face. The shape model is learned
from a set of separately obtained 3D face scans by constructing PCA model. In addition
to shape model, a texture model is constructed from the appearance of each pixel of the
shape model - pixel color values. Again, the PCA model is used to represent textures.
Note, that though the 3D morphable model algorithm represents a face as surface in

a 3-dimensional space, it is used to match 2-dimensional images only. The important
part of the algorithm is to construct a model from a given the face image. During this
construction the rotation of the head and the position of illumination source are estimated,
as well as, shape and texture parameters of the model. Thus, this algorithm is inherently
designed to deal with head rotations and changes in illumination, and it shows superior
performance on the images from CMU PIE database of Figure 5.

2.3. Hand Geometry

Different biometric modalities exhibit different levels of variation; as a consequence the
matching algorithms have different complexities. We might think that face matching re-
quires rather complex algorithms (if we want to deal with head rotations and illumination
changes) and fingerprint matching has rather medium complexity. Here we consider an
easier biometric modality - hand geometry.

(a) (b)

(c) (d)

Figure 6. Different stages of processing hand
image.

Figure 7. The features utilized for hand
geometry matching.

We describe an algorithm for hand geometry matching used in [21]. Though there are
specialized hand geometry scanners (e.g. including pegs for precise positioning of the
hand and using laser for scanning), the hand images can be easily obtained with regular
digital camera (Figure 6a). Simple binarization is applied in Figure 6b and the boundary
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contours are extracted in Figure 6c. Using some heuristics, all the contours except one
corresponding to the hand are discarded in Figure 6d.
The set of predefined features is extracted by searching the particular points of the

hand contour - extrema where either the direction or the convexity of contour changes,
Figure7. The features are usually the distances between these points, or some functions of
distances (e.g. ratio of distances). The euclidean distance between feature vectors serves
as (inverse) confidence of biometric match.

2.4. Other Modalities

It would be impossible to describe all investigated biometric modalities in this short
chapter. In this section we only mention the most popular ones.
The iris is colorful ring-like structure around the pupil of human’s eye. The iris turned

out to provide good properties for person identification: diversity, small intrapersonal and
large interpersonal variations, protection from the outer environment and little change
with the passage of time. The binary vector of length 2048 is extracted by quantizing
the responses of Gabor wavelets at the circular grid locations throughout the iris in [10].
The match distance between two irises is calculated as the Hamming distance between
two binary feature vectors. Due to small variation in the irises of the same person and
the relative ease of locating irises in images we might consider iris biometrics as a simple
to implement. The most difficulty might be due to making good scans of irises, especially
at a larger distances.
Speaker identification was one of the first automatic biometric applications investigated.

The main advantage of speech modality is the abundance and cheapness of sensors -
microphones. But, despite a significant research effort, speaker identification systems
have shown only average performance. The performance of speaker identification systems
is degraded in the presence of noise, and thus they are not suitable for many applications.
Additional drawbacks of speaker biometrics is the inconvenience to the users (the necessity
to actively speak) and high non-universality. But, so far, it is the only biometrics allowing
remote authentication by means of phones, and this is how it mostly used.
Handwritten signature has been used for a long time to identify the documents to belong

to particular persons, and similarly it can be used for the person identification. Some
research into automatic matching of handwritten signatures has been performed, but the
reported performance is not very strong. The online handwritten signature, providing
time of writing in addition to position, has substantially better performance than offline
handwritten signature. Though it can be used for the current widespread application of
signature verification during credit card transaction, it is not clear if it would be more
cost effective than replacement of signature by other, more convenient, biometrics, such
as fingerprint or face.
Some newly developed biometric modalities rely on specific biometric sensors. 3-

dimensional face (or rather head) uses special sensor (e.g. laser) to obtain a 3-dimensional
structure of person’s head. Blood vessel biometrics might need a camera operating in in-
frared, and not in traditional visible light, spectrum. Retina biometrics uses blood vessels
located inside person eyes; though it has good properties of performance and the preser-
vation of features, many users might object to the intrusiveness of the retina scans. Gait
biometrics might be useful in surveillance applications, where the distance to the subject
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is typically large and most of the other biometrics fail to acquire usable templates.

3. Evaluating Performance of Biometric Systems

The important question facing biometric system designers is the evaluation of perfor-
mance. We want to be able to say that one biometric matcher will perform better than the
other, and, in general, that using a biometrics system is beneficial for the current applica-
tion. It turns out that the evaluation depends on a particular application - one biometric
matcher might have better performance than the other in one application, but worse per-
formance in another application. In this section we present some ways to evaluate the
performance of biometric matchers.

3.1. Operating Modes of Biometric Systems

The biometric system in a particular application is usually utilized in one of the follow-
ing modes of operation:

• Verification

In order to be authenticated the user first claims his identity, e.g. by presenting an
I.D. card or by simply entering his name or identification number on the keypad.
Then the user’s biometric is scanned and matched against a single template corre-
sponding to the claimed enrolled identity. The decision to accept the identity claim
or reject it is usually made by comparing a single matching score to the threshold.

• Identification

No claim of identity is made by the user, and the user’s biometric is matched against
all enrolled persons. Closed set identification systems assume that the user is always
enrolled in the system; the identification is successful if the score corresponding to
the true user’s identity is better than all other matching scores. Open set identifi-
cation systems assume that user might not be enrolled in the database and in such
cases the correct decision of the identification system will be to reject identification
attempt. Thus, in such systems, not only a best matching score is found, but it is
also compared to some threshold.

• Watch list or Screening

Watch list is the biometric application reverse of open set identification system. The
input biometrics is matched against all persons in the database and the decision is
made on whether the person is enrolled or not. In contrast to open set identification,
we might not need to know which enrollee matches current user.

All modes of operation deal with two types of scores - genuine matching scores are
the result of matching biometric templates of the same person, and impostor matching
scores are the result of matching biometric templates of the different persons. The task
of verification system is to determine whether a particular score is genuine or impostor,
the task of identification system is to make sure that genuine score is higher than any
impostor score and the task of watch list is to make sure that all scores produced during
matching are impostors. Different tasks assume that the cost of errors made by a biometric
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system is calculated differently. Therefore, some biometric systems might be suited for one
operating mode, and some might be better suited for other. The example of section 3.3
shows that changing costs for system errors in verification system might change the choice
of biometric matcher.

3.2. Performance of Verification Systems

The biometric system operating in verification mode makes a decision on whether the
score is genuine and has two possible types of errors: false accepts (FA), where an impostor
score was accepted, and false rejects (FR), where a genuine score was rejected. False accept
rate, FAR, is the proportion of accepted impostors among all impostors, and false reject
rate, FRR, is the proportion of rejected genuines among all genuines. The decision usually
consists in comparing the score to the threshold, θ, and both error rates are functions of
θ: FAR(θ) and FRR(θ).
Suppose we know what are the densities of the scores: pgen(s), the density of the genuine

scores, and pimp(s), the density of the impostor scores. Then, the FAR(θ) and FRR(θ)
can be expressed as (assuming accept decision if score is bigger than θ):

FAR(θ) =
∫
s≥θ

pimp(s)ds , FRR(θ) =
∫
s<θ

pgen(s)ds (1)

If we obtain a sample of genuine and a sample of the impostors scores of a biometric
matcher, we can approximate pgen(s) and pimp(s), e.g. by using mixture of gaussians or
Parzen window method. Though it might be possible to calculate FAR(θ) and FRR(θ)
using approximated densities and equations 1, it would be easier to simply count the pro-
portion of sample impostors above threshold and the proportion of sample genuines below
threshold. Figure 8 shows the densities of genuine and impostor scores of face matcher ’C’
from NIST biometric score set BSSR1 approximated by Parzen window method. The inte-
grals of equations 1 are represented as the areas under corresponding densities; threshold
θ = 0.4 was used for acceptance decision.
The graphs of score densities of Figure 8 might be helpful to visualize the distributions

of scores in a biometric system, but they are of little use for making comparisons of
biometric systems. Since both FAR and FRR depend on the single parameter, it is possible
construct a graph {FAR(θ), FRR(θ)} representing a trade-off between two types of error
depending on threshold parameter θ. Such curve is called ROC curve (ROC stands for
Receiver Operating Characteristic). Note, that this curve might also be called DET curve
(Detection-Error Trade-off), and FRR axis can be changed to GAR (genuine acceptance
rate) axis.
The ROC curves for face matcher ’C’ and for fingerprint matcher ’ri’ (to be precise,

’ri’ stands for ’right index’ match scores of fingerprint matcher ’V’) from NIST BSSR1
database are shown in Figure 9. The closer ROC curve to the axes, the less errors
biometric matcher has, and consequently, has better performance. As ROC curves for
both matchers show, there might not be a short yes/no answer that one matcher is always
better than another matcher. If our preference is to have lower FAR, for example in a
high-security application requiring fewer false accepts, then we need to use matcher ’ri’.
If we need more convenience to the users and smaller number of false rejects, we need to
use matcher ’C’. Sometimes, the Equal Error Rate (EER) is used for comparison, which
is defined as the point in ROC curve where FAR = FRR (shown in the figure); in this
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case EER = FAR = FRR. In the next section we present a practical example on how
the biometric systems can be evaluated with respect to a particular application.

3.3. Example

Consider the application of biometrics to control the access to an amusement park.
The user enrolls into the system during the first visit to the park, when her biometrics is
scanned and stored in the database. On subsequent visits the scanned biometric input is
matched against the stored template (retrieved with the help of entrance ticket identifi-
cation number). If match decision is made by the biometric system, the user is let in, and
if no match is declared, the user is asked to re-scan biometrics and/or human supervisor
is called to verify the identity of the user by alternative means (e.g. driver’s license).
In order to optimally choose the biometric system for this application, we might want

to consider the following cost function:

Cost = CFAPimpFAR(θ) + CFRPgenFRR(θ) (2)

where CFA is the cost associated with making erroneous accept decision, CFR is the cost of
making erroneous rejection, Pimp and Pgen are the prior probabilities of impostor and gen-
uine matches (impostor or genuine user attempting to get access), FAR(θ) and FRR(θ)
are error rates of considered biometric system. The costs of making decision errors and
prior probabilities should be estimated by the park administration. For example, the cost
of making erroneous accept decision, CFA, is the cost of servicing user in a park, say $20;
the cost of erroneous reject (time spent by servicing personnel, dissatisfaction of the user
and reduced possibility of making repeated ticket sale to this user, dissatisfaction of other
users waiting in line) might be estimated as $1; the probability of impostors (users with
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stolen, borrowed or fake ticket trying to get unauthorized access to the park) might be
estimated as 1% and the probability of genuines is correspondingly 99%. In this case, the
total cost of making biometric decision error is

Cost = 20 ∗ .01 ∗ FAR(θ) + 1 ∗ .99 ∗ FRR(θ) = .20FAR(θ) + .99 ∗ FRR(θ) (3)

Suppose, as in Figure 9 we are evaluating two matchers with regards to this cost
equation. The lowest overall cost will be achieved by finding the intersection of line
.2FAR + .99FRR = C with any of the ROC curves. Such intersection is denoted in
Figure 9 as θ and face matcher ’C’ achieves lowest cost. Note, that if we had different es-
timates on costs of errors or prior probabilities of each type of users, we might have gotten
different biometrics preference. For example, if we had Pimp = 10% of impostors trying to
gain unauthorized access to the park, our cost would have been Cost = 2FAR + .9FRR

and fingerprint matcher ’ri’ would have achieved lower cost.
In order to decide whether the deployment of biometric system would be beneficial,

we need to account for more factors. The total cost would be the sum of cost given by
equation 2, the cost of purchasing and maintaining biometric system and the implicit cost
of inconvenience to the visitors of the park. The additional revenue will be due to reduced
number of unauthorized users getting access to the park, consequent increased number
of ticket sales and less dissatisfaction of legitimate users from sharing the park facilities
with unauthorized users.

4. Multimodal Biometrics

Multimodal biometric system uses more than one biometric modality for the authenti-
cation of the user. There are two major advantages for using such systems:

1. Properly constructed combined system will have better performance than the system
using only a single biometric modality.

2. It is more difficult for an intruder to bypass the security of multimodal system since
more modalities need to be faked.

The possible drawback of multimodal systems is the need for additional biometric scanners
and more time needed for the user to be authenticated. The drawback might be reduced if
scanners of different modalities can be combined in one device. For example, it is possible
to have a combined scanner for face and for iris utilizing one or two digital cameras
with different resolutions in one unit. Or, fingerprint scanner can be combined with
finger blood vessel scanner; in this approach the blood vessel scanner can use similarly
positioned camera which is more sensitive to infrared spectrum of light than the camera
for the fingerprint ridges.

4.1. Combination in Verification Systems

Without loss of generality, assume that we have two scanners for different modalities
or two matching algorithms using the input of one scanner (instead of arbitrary many
scanners or matchers). Both matchers deliver two matching scores, s1 and s2, and our
task is somehow combine them in a single matching score, S = f(s1, s2), so that the
performance of combined matching system was optimal. The problem of finding the
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combination function f is quite simple for the biometric systems operating in verification
mode.
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Figure 10. Likelihood ratio combination of face matchers ’C’ and ’G’ from NIST BSSR1
biometric score set: a. Few samples of genuine and impostor score pairs from both match-
ers and the contours of likelihood ratio combination function (scores in both matchers are
linearly normalized to interval [0, 1]. b. ROC curves of standalone matchers and their
combination by likelihood ratio function.

Let score pairs (s1, s2) be the points in the two-dimensional space in Figure 10(a).
This space can be regarded as the feature space for a classification algorithm trying to
separate two types of points - points corresponding to either genuine or impostor score
pairs (s1, s2). The performance criteria of verification systems, minimizing the trade-off
between two types of errors, false accepts and false rejects, directly corresponds to the
criteria of minimizing misclassification cost of our two-class classification problem. The
solution to such problem is well-known in pattern classification field: the optimal decision
function f can be taken as the likelihood ratio of two classes:

f(s1, s2) =
pgen(s1, s2)

pimp(s1, s2)
(4)

The densities of score pairs pgen(s1, s2) and pimp(s1, s2) can be approximated by different
methods using a training set of sample score pairs. Alternatively, a classification can
be performed by many developed methods of pattern classification field without explicit
approximation of score densities. Generally, many pattern classification algorithms can
deliver better approximation of decision boundaries than the explicit use of approximated
densities in likelihood ratio method, but the difference is not significant. Since the dimen-
sion of feature vectors in classification problem coincides with the number of matchers
and this number is usually small, the densities approximation methods will have adequate
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performance. Figure 10(a) shows the decision boundaries (contours f(s1, s2) = θ) of like-
lihood ratio combination method for combining face matchers ’C’ and ’G’ of NIST BSSR1
dataset, as well as few samples of genuine and impostor score pairs. The two dimensional
densities were approximated using Parzen window method. Figure 10(b) contains ROC
curves of single matchers and of their combination using likelihood ratio.

4.2. Combination Rules

One of the research directions in classifier combination field investigates the use of so
called combination rules [18]. The combination rules specify that the matching scores
should be combined in some predetermined fashion, for example, sum rule adds scores
f(s1, s2) = s1 + s2 and product rules multiplies them f(s1, s2) = s1 × s2. Usually, some
assumptions are made on the nature of scores, and one or the other rule is justified.
If the matching scores were truly satisfying some required assumptions, the use of par-

ticular combination rule might have made sense. In practice, the matching scores are the
result of elaborate calculation of distances between two biometric templates, and there is
no reason to expect that some assumptions on these scores, e.g. scores are approxima-
tions of posterior class probabilities, hold. We might try to convert the matching scores
to satisfy required condition, but such conversion would require some learning algorithm
using a training set of scores. In this case the task will be somewhat equivalent to learn-
ing combination function. Learning combination function directly seems to be an easier
approach to combination.
One of the reasons used to justify combination rules is the existence of independence be-

tween scores produced by matchers of different modalities. The independence knowledge
might be easily exploited for likelihood ratio combination method: instead of approximat-
ing two-dimensional score densities pgen(s1, s2) and pimp(s1, s2), we can decompose them
in one dimensional components

pgen(s1, s2) = p1,gen(s1)p2,gen(s2) , pimp(s1, s2) = p1,imp(s1)p2,imp(s2) (5)

and approximate one-dimensional components. As our research shows [27], such decom-
position and approximation of one-dimensional components indeed improves the perfor-
mance of combination algorithm, but the gains are very small.

4.3. Combination in Identification Systems

There is almost no research investigating the combination of biometric matchers in
identification systems. Usually it is implied that the same combination function f which
was constructed for verification system can be similarly used for combinations in identi-
fication systems. The likelihood ratio combination function of equation 4 seems to be a
good candidate for the combinations in identification systems.
As we investigated in [28], the likelihood ratio combination function might not deliver

the optimal performance for identification systems. It is actually possible, that the combi-
nation in identification system using likelihood ratio function will have worse performance
than a single matcher used in combination. The optimal combination function for iden-
tification systems might not have convenient analytic representation as likelihood ratio
function, and finding it is an open research question. We have proposed some combina-
tion methods [29] that work better than likelihood ratio in identification systems, but the
optimality of these methods is uncertain.
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4.4. Increase in Performance

Is performance of combined system always better than the performance of any single
matchers used in combination? It is clear that in worst case, we can always have a
combination function to simply output a score of single matcher, e.g. f(s1, s2) = s1, and
therefore the performance of optimal combination algorithm can not be worse than the
performance of a single matcher. But, the increase in performance is not guaranteed when
the number of matchers is increased. If, for example, two matchers operate on the same
modality, they might have very similar matching results, and combining them will have
little effect. It is usually hypothesized that the increase in performance is largest when
combined matchers produce statistically independent matching scores, but no published
evidence for such hypothesis seems to exist.

5. Additional Topics in Biometrics

5.1. Cancelable Biometrics

If a traditional security system utilizing passwords is compromised, and the intruder
gains access to the passwords, the old passwords can be easily revoked and new passwords
issued. If we want to utilize biometrics in the analogous system, we need to ensure that
enrolled biometric templates could be revoked and new biometric templates are issued;
the intruder possessing compromised biometric templates should not be able to use them.
The biometrics implementing this capability is called cancelable biometrics.
There are two obstacles for constructing cancelable biometric templates. The first

obstacle is the permanent nature of biometrics - it is not possible for the users to change
their biometrics as they could do with the passwords. In order to overcome this obstacle
any cancelable biometric system should combine the permanent biometric features with
some replaceable key in order to create cancelable templates. The second obstacle is the
variation of biometric measurements and the necessity to match close but non-identical
scanned biometrics. If we are dealing with traditional passwords, one-way hash function
(such as MD5) can be applied, and only password hashes could be stored; the password
match would succeed only if identical password is entered and its hash exactly coincides
with the stored hash. Since the biometric measurements of the same person are not
identical, this method can not be applied directly to the biometric templates.
One idea to deal with the variability of biometric templates is to utilize error correcting

codes. Error correcting codes are mostly used in the transmission of digital data. If the
part of the data is corrupted, the error correction algorithm might be able to recover
the original data. Suppose, b is the binary representation of the biometric template and
let c denote the error correction bits, such that the concatenation b||c represents a valid
codeword of the used error correction system. If b′ is another sample of the same person’s
biometric and the difference between b and b′ is sufficiently small for chosen error correction
system, then b′||c can be corrected to b||c. Such application of error correcting codes allows
us to eliminate storing biometric template b in the biometric database: instead of b, we
store error correcting bits c and some hash of the string b: h(b). During authentication
user presents biometrics b′ and using stored c the original b is calculated; the hash of
restored template is compared to stored hash h(b) and, if they are identical, the match is
declared. Note, that if intruder obtains stored values of c and h(b), he would not be able
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to restore b.
The above algorithm for hiding biometric data has been presented in [11]. The biometric

b can be combined with replaceable key k, bk, before calculating c and h(bk) in order to
make the biometric cancelable, but it is not clear if this enhancement is really needed.
Indeed, if we assume that intruder is smart enough to reverse (generally non-reversible)
hash function and obtain bk from the h(bk), then it is probable that he would be able to
obtain k and reverse bk to get b as well.
Although described algorithm can be applied to many biometric modalities whose tem-

plates are represented by a slightly varying binary string b, there are biometric modalities
which do not have such representation. For example, the fingerprint templates usually
contain a set of minutia, whose quantity, order and values can change significantly. Most
of the recent research in cancelable biometrics deals specifically with fingerprint templates
represented as a set of minutia. Juels and Sudan [17] proposed a construction of fuzzy
vault, which allows comparison of two non-ordered sets of features, and Clancy et al. [6]
applied fuzzy vaults for storing fingerprint templates. Most of the subsequent research
into fingerprint fuzzy vaults deals with their two major weaknesses - the corresponding
minutia positions of two compared fingerprints should be exactly the same, so the finger-
prints should be pre-aligned before fuzzy vault construction, and the requirement of using
unprotected fingerprint during matching to fingerprint stored in fuzzy vault (intruder can
simply intercept these unprotected fingerprints instead of trying to break the fuzzy vault).
The more detailed analysis of the security weaknesses of fingerprint fuzzy vaults and other
cancelable biometrics is presented in [24].
There are also proposals of hiding fingerprint templates not involving the error cor-

recting codes. For example, in [13] and [26] authors construct hashes of fingerprint
minutia sets so that the matching of two fingerprints is performed by using only their
hashes. No fingerprint pre-alignment is needed, and hashes can be constructed securely
at the scanner location so that original templates are never transmitted or stored. Though
such approaches are sometimes criticized for the degradation of matching performance,
such degradation should be expected. As we explain in section 5.5, the combined use
of biometrics and user specific keys can result in apparent perfect performance of bio-
metric systems, but such results are misleading. Therefore, the algorithms constructing
cancelable biometrics and claiming performance superior to the original non-cancelable
biometrics should be considered with caution.

5.2. Liveness

Even if an intruder gets access to unprotected templates stored in the biometric database,
these templates might be of no use if the biometric system implements some kind of live-
ness test during biometrics acquisition. For example, by presenting a face photo to a
camera, the intruder might trick the face biometric system to perform a match of the
photo instead of live face. If the stored biometric templates use some features and not
original images of faces, it is usually easy to construct an artificial face image having same
features as a particular biometric template and use such image for breaking the system.
By implementing additional liveness test, the biometric system can avoid such break-ins.
The particular technique for liveness detection would greatly depend on biometric

modality. For some modalities, such as face and speech, we can use an active liveness de-
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tection working on a challenge-and-response principle - during the biometrics acquisition
the user might be asked to turn head, smile or speak a particular sentence. For other
biometrics, e.g. fingerprint, such method will not work and we need to devise a passive
liveness detection, which searches for the specific properties of live biometric scans. For
example, the fingerprints produced by the synthetic gummy finger might have smoother
edges than fingerprints of the live fingers, as well as have no sweat pores. The fingerprint
image processing algorithm might look for these specific features and determine if the
used finger was artificial.
Sometimes the liveness detection might require the use of separate scanner. For exam-

ple, the determined intruder might simply cut off the finger of person in order to bypass
a security system. The scanned fingerprint in this case will be practically the same as
coming from a live fingerprint if traditional fingerprint sensors are used. But, if the fin-
gerprint scanner also incorporates the sensor able to analyze the chemical blood content,
the liveness of the fingerprint can be easily detected.

5.3. Indexing Biometric Databases

As we already pointed out in section 3.1, in addition to more widespread verification
mode of operation, the biometric system can operate in other modes, for example, iden-
tification and watch list modes. These other modes might require the matching of input
biometric templates to a set of N biometric templates enrolled in the database. But the
biometric matching usually takes a significant time. For example, matching two finger-
print or two face templates can typically take up to one second. If the database contains
a large number N of enrolled persons, e.g. millions, matching input template to all en-
rolled templates will require a prohibitively large time. Therefore, in order to deal with
large-scale biometric applications, some kind of indexing algorithm should be used in the
system.
If the biometric templates are represented as fixed length feature vectors, then tradi-

tional indexing techniques in multidimensional space, such as kd-trees, can serve as a basis
for biometric index. For example, in [21] a pyramid technique was used to index hand
geometry biometrics. Such techniques are most helpful when the dimension of feature
vectors is rather small. If the dimension of the feature vectors is large, for example 1̃000,
multidimensional indexing techniques might not be effective. But, the ordered nature
of biometric templates makes the distance calculation between them relatively fast and
still allows their use in large-scale real-time applications. For example, an iris recognition
system deployed in the watch list mode [9] is able to perform a significant number of
matches, since each match consists in a fast calculation of Hamming distance between
two binary iris templates.
The situation is more difficult when the biometric templates do not have fixed length

feature vector presentation. Fingerprint templates usually consist of a minutia set of a
variable size and with no particular order. Moreover, the coordinates of corresponding
minutia in two fingerprints can differ significantly due to their translation and rotation.
Therefore, the simple, euclidean-like, calculation of distance between two templates is
not possible. Hence, above described techniques are not applicable - we are not able to
perform multidimensional indexing, and we are not able to simply match every template
in the database.
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The construction of fingerprint indexing algorithm turned out to be a rather difficult
task. Three general approaches for reducing match time exist. The first approach is to
classify all fingerprints into few classes (usually five) of the Henry classification system, and
perform matching of the input fingerprint only to enrolled fingerprints of the same class.
Many algorithms for doing such classification were proposed, but the existence of only
few classes is an inherent limiting factor for this approach. The second approach relies on
representing fingerprint as a fixed length feature vector. The features are usually extracted
from the orientation field of fingerprint ridges, and finding common frame of reference (for
example, core positions) might be required [4]. The third approach tries to use minutia
triplets to construct position invariant fingerprint representation, fingerprints are matched
based on the number of similar triplets and the transformations between these triplets [15].
The input fingerprint is still practically matched against each enrolled template, but, in
contrast to second approach, does not require separate processing of orientation fields
and finding reference frame. The last two approaches have better performance than first
approach based on Henry classification, but still not sufficient for large scale deployment
(retrieving 10% of enrolled templates has 90% probability of getting correct match).

5.4. Individuality of Biometrics

Is it possible for two different persons to have almost identical fingerprints or face
appearances? The research into biometric individuality tries to investigate this question.
It is clear, that biometric measurements of the same person are not absolutely identical and
some variation always exists. It would be interesting to know the chances of an impostor
template to be within the boundaries of this variation. The individuality research has
most impact on the forensic investigations. It also defines the best possible performance
of biometric systems and separate biometric modalities.
Since the introduction of fingerprints in the criminal investigation, it was important

for the prosecution to prove that the latent fingerprints found on the crime scene match
exactly the fingerprints of the suspect, and do not match fingerprints of any other person.
The first known individuality model of Galton [14] randomly placed minutia on a grid and
calculated the probability that specific grid locations are chosen. Most subsequent models
used similar designs and reported almost negligible probabilities that two fingerprints of
different persons would match. As a consequence, the fingerprint evidence was considered
as infallible in the courts for a long time.
But, the time showed that few errors in the fingerprint matching did happen [7]. The

errors have become more visible when the DNA evidence took more central role; some
fingerprint matching evidence have been overturned by the DNA evidence. The most im-
portant case occurred in 2004, when the innocent person has been arrested as a suspect
of Madrid terrorist bombing [7]. The degree of the incorrect fingerprint match was excep-
tionally high - around 15 minutia were matched in two fingerprints, as well as, some third
level features - sweat pores (12 matching minutia are sometimes regarded as sufficient for
the positive match by FBI). The errors might also be the result of the increased use of
fingerprint databases. If we already have a suspect and match his fingerprints to ones
left in the crime scene, the probability of positive match is indeed quite low. But, if the
suspect is not known, and a multi-million database is searched for a match, it is quite
possible to find few well-matching fingerprints and declare the wrong person as a suspect.
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In order to confirm the validity of fingerprint evidence in courts, it is desirable, as in
the case of DNA evidence, to derive specific probabilities that two fingerprints belong
to the same person. Ideally, an automatic algorithm would be used to report exact
confidence numbers, and these numbers would be statistically verified by the experiments.
Unfortunately, the current performance of automatic fingerprint matchers is still inferior
to the performance of human experts, and we can not rely on them. Some recent research
attempts to find a more precise fingerprint individuality models which would agree with
the results of automatic fingerprint matchers. For example, Pankanti et al. [22] consider
the model which accounts for the way fingerprint matchers try to find a transformation
of one minutia set into another. But the results of experiments show that constructed
model still does not have required precision.
The individuality research is an active part of biometrics research. With regards to

fingerprints we expect the appearance of more advanced individuality models, which would
take into account the statistical distributions of minutia and ridges, as well as nonlinear
fingerprint deformations. With the proliferation of other biometrics and their ’latent’
recordings, e.g. face, gait, speech, we expect the growth of research into their individuality
as well.

5.5. Hardening of Biometrics

The two-factor authentication, relying on biometrics and traditional random key based
authentication, is usually considered as a good approach to increase the security of the
system. Indeed, it would be more difficult for intruder to obtain both means, fake biomet-
rics and stolen key, in order to bypass the security of such system than the system relying
on only one of those factors. Both factors can be kept separate; the authentication of the
user might consist in first verifying the key and then verifying the biometrics. If key is
incorrect or the confidence of biometric match is low the user is not authenticated.
At the same time there is a growing number of approaches trying to merge both fac-

tors together and construct so called hardened biometrics or biohashing methods. In
such approaches, both during enrollment and during matching the biometric template
is transformed using user-specific random key. The matching is performed using trans-
formed biometrics, and significant increases in performance are usually reported. Here we
present a simple example of such technique.
Suppose the biometric template is represented as a fixed length feature vector of length

N , x1, . . . , xN , and suppose 0 ≤ xi ≤ 1 for all i. Let the user-specific key to be a binary
string of length N , b1, . . . , bN . Let the biometric hardening to be the following operation:
xi → xi + bi ∗ (N + 1). In this case, if two different users use different keys, then there
will be index j, where bj is 0 for one user and 1 for the other. The distance between
corresponding transformed features will be at least N , and the total distance between
two transformed templates (for example, assuming city-block distance) is at least N . It is
also easy to see that the distance between any two templates transformed using same key
will be less than N . So, apparently the presented hardening algorithm is able to achieve
0 FAR - 0 FRR error rates: genuine users, utilizing same key, will have matching distance
between templates always less than N , and impostor users, utilizing different keys, will
have matching distance always bigger than N . The hardening transformations might
be more complex and deal with non-fixed biometric templates, but the essence remains
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the same - biometrics of different users have different transformations and transformed
templates have greater separation for impostors.
Does biometric hardening gives any advantage over separate use of biometrics and keys

in two factor authentication systems? If we assume that genuine matches are always
performed using same keys, and impostor matches always use different keys, the separate
use of keys and biometrics can easily be made to have 0 FAR and 0 FRR - the matching
should only compare keys and discard biometric matching scores. So, the claim of superior
performance in hardened biometric systems is easily achieved when keys and biometrics
are used separately. The interesting case would be if intruder steals the key of legitimate
user and tries to be authenticated using this key. In separate key-biometrics system, the
performance in this case will be exactly the performance of original biometric system.
For hardened system we have some transformation which is applied to two templates
of different persons; it is very doubtful that such transformation will result in better
performance. If it were so, why would not we use so transformed biometric templates
instead of original templates for original biometric matcher?
Thus, by considering different scenarios, hardened biometrics is expected to have worse

performance than separate use of keys and biometrics in two-factor authentication sys-
tems [19]. Another point against biometric hardening is hiding of proper security analysis,
which might involve the probabilities of either key or biometrics to be compromised. If
deployed system will attempt to set acceptance thresholds so that claimed 0 FAR - 0 FRR
performance is achieved, it will completely rely on keys (in order to make 0 FRR we have
in general to accept any biometric match). The intruder with stolen key will be accepted
by the system in this case.
It might be difficult for biometric system buyers to determine whether the claims of su-

perior performance are results of improving matching algorithms or the results of harden-
ing. Consequently, despite having worse performance and decreased security, it is possible
that hardened biometric systems will be increasingly deployed in the future.
Note, that cancelable biometrics (section 5.1) is also a two-factor authentication system,

and due to the effect described in this section, a superior performance for such systems
might be claimed. In order to correctly estimate the performance of cancelable biometric
system, we need to assume that intruder is able to steal the user-specific key. When the
templates of different users use same key, the transformation applied to these templates is
the same, and we expect the reduced matching performance of corresponding cancelable
templates.

5.6. Performance of Biometric Matchers and Quality Control

Due to large commercial interests in the biometrics field there is a great number of re-
ports claiming almost ideal performances of developed biometric systems. It is practically
impossible to verify such reports - the systems might include expensive and difficult-
to-obtain sensors and evaluations might be performed on privately collected data. The
system’s performance evaluation might also be distorted by the use of hardening, which
as we discussed can elementarily make any biometric matcher to appear to have ideal
performance.
The competitions using publicly available data and well-defined performance evaluation

criteria provide a good way to compare the performance of different matching algorithms.
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Fingerprint Verification Competitions (FVC), Face Recognition Vendor Test (FRVT) and
Iris Challenge Evaluation (ICE) are the examples of such competitions. The testing proto-
cols usually include multiple performance criteria for evaluating biometric matchers. For
example, FVC competitions report EER, TER and FRR rates corresponding to different
FAR levels (1%, .1%, .01% FAR). This is reasonable approach to performance evaluation
- as we saw in section 3.2 a single number is not sufficient for comparison, and few selected
numbers give an adequate replacement for comparisons of ROC curves.
As the results of recent competitions show [23], modern biometric matchers have achieved

good progress. Though, the human visual system is well adapted for the task of face recog-
nition, automated face matchers can have better performance than humans. Another
conclusion of the experiments is the importance of good quality biometric scanners and
standardized acquisition procedures. For example, the face recognizers perform best on
high resolution face images taken under controlled illumination conditions.
The quality control during biometric scanning can be a decisive factor in the deploy-

ment of biometric system. The large-scale iris recognition system [9] deployed in UAE
reportedly did not produced any errors during its entire operation. But the same iris
matching algorithm had only average performance in ICE 2006 competition. This might
be explained by the poor quality of some iris images in the ICE 2006 database. The
quality control in the production biometric system might be able to detect the presence
of such bad images and require additional scanning attempts.

6. Conclusion

The area of biometrics includes multiple topics and is currently under intensive study by
many scientists and companies. In this chapter we reviewed the major topics of biometrics
research. Some research topics have reached a maturity stage and are interesting mainly
from implementation point of view. For example, multiple solutions have been proposed
for fingerprint matching, and the problem consists in the proper combination of these
solutions rather than in developing new algorithms. But, still there are topics which do
not have ready solutions and present challenges. Cancelable biometrics, indexing and
biometrics individuality are among such topics.
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