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Abstract

This paper presents a novel approach to feature aggrega-
tion for template/set based face recognition by incorporat-
ing metadata regarding face images to evaluate the repre-
sentativeness of a feature in the template. We propose using
orthogonal data like yaw, pitch, face size, etc. to augment
the capacity of deep neural networks to find stronger corre-
lations between the relative quality of the face image in the
set with the match performance. The approach presented
employs a siamese architecture for training on features and
metadata generated using other state-of-the-art CNNs and
learns an effective feature fusion strategy for producing op-
timal face verification performance. We obtain substantial
improvements in TAR of over 1.5% at 10~* FAR as com-
pared to traditional pooling approaches and illustrate the
efficacy of the quality assessment made by the network on
the two challenging datasets IJB-A and IARPA Janus CS4.

1. Introduction

Face recognition is described as the problem of classify-
ing faces to particular identities or verifying the possibility
that two given faces are of a common identity or not. Over
the past few years, face recognition has seen tremendous ad-
vances in pushing the state-of-the-art performances to near
human [16, 11] and sometimes even surpassing human ca-
pabilities [9, 14]. Though these systems have demonstrated
exemplary performances leading to the community consid-
ering constrained face recognition as generally a solved
problem, unconstrained face recognition, however, presents
a different challenge.

Unconstrained face recognition attempts to address the
fact that many face recognition systems are deployed in set-
tings where there is no control over the conditions under
which faces are captured with the possibility of uncoop-
erative subjects. In the unconstrained setting (eg. video
surveillance), the goal of face recognition systems is to
identify subjects (referred to as probe) from a media col-
lection (referred to as gallery) that may have been compiled
previously. The probes and galleries are stored as templates
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- each of which can constitute one or more face images cor-
responding to a specific identity. These face images are typ-
ically generated through a pipeline of face detection [19],
landmark identification [12] and finally alignment. The
aligned faces are then transformed into a discriminative rep-
resentation (such as CNN based features [16, 15]) that is
compared with similar representations of other face images
to determine if the identities present in the images are the
same. Several metrics are employed for the purpose of es-
timating the similarity of face representations such as the
euclidean distance, cosine proximity and even metric learn-
ing methods like [1, 13].

Matching face templates which are comprised of only
single images for the probe and gallery each is relatively
straight forward with the use of the above mentioned simi-
larity functions, the most common one being the cosine sim-
ilarity. However, in the unconstrained datasets like IJB-A
[6] and YTF [17], face templates contain multiple images
and therefore poses a new challenge of determining how to
fuse/pool the face features to a single feature vector repre-
sentative of the template. Typically the simplest solution is
employed - naive average/max pooling [11, 3, 4] of the fea-
tures to yield the template representation. In recent works,
more intelligent solutions using weighted averaging have
been proposed [18, 8] where the weights are determined by
analyzing the features and evaluating its representativeness.

In this paper we present a new approach for pooling fea-
tures of a template trained in the context of a face verifica-
tion task. We use metadata accompanying the face images
in the template for the purpose of evaluating the importance
of each feature in the aggregation process. Metadata for
face images include, but are not limited to, the yaw, pitch,
roll of the face in the image as well as other external details
such as the size of the face crop, positions of the landmarks,
etc. The motivation behind our approach stems from the
fact that all previous approaches [18, 8] only consider the
features for determining the aggregation weights. Gener-
ally speaking, the features are generated by a CNN or other
embedding system whose optimization criteria is to map all
the face images of an identity to a single distinct cluster with



minimal within-class variances (to enhance discriminabil-
ity) and maximal inter-class variances (to enhance separa-
bility). But it becomes evident that, in doing so, this very
optimization function restricts the ability of a system to ex-
ploit the variances amongst the features to determine opti-
mal relative weights for pooling. Hence we conjecture us-
ing additional data/metadata which is unperturbed by the
optimization process for generating discriminative features
would lead to discovering better aggregation weights.

We use the CNNs described in Ranjan et al. [12] and
Chen et al. [2] to obtain the metadata and features used
in our approach. We design a Metadata-based Feature Ag-
gregator Network (M-FAN) which takes as input, features,
metadata and an extra parameter called seed weights to pro-
duce a weighted feature representation for the template. The
seed weights are simply initial weight estimates provided to
the network intended as a starting point for the optimiza-
tion process and the network is trained to transform these
seed weights based on the corresponding metadata. This
parameter presents the possibility of providing the network
with previously hand-crafted weights which it can then fine-
tune according to the metadata, thereby boosting the perfor-
mance as compared to using the hand-crafted aggregation
weights. We experiment the model on IJB-A and Janus CS4
datasets and obtain compelling improvements over the pre-
vious state-of-the-art approaches and show that the M-FAN
model improves the performance of face recognition sys-
tems using naive pooling strategies.

This paper is organized as follows. Section 2 reviews
other works related to our approach. Section 3 describes the
proposed algorithm in detail. Section 4 provides the results
of our method on standard datasets. Finally, we conclude
the paper in Section 5 with a brief discussion and future
research possibilities.

2. Related Works

Remarkable advances have been made in the area of face
recognition and verification over the past few years with
the advent of deep learning. The VGG-Face model [11]
which was one of the earliest deep CNN based approaches
for face recognition had significantly improved results on
LFW by using a 16 layer convolutional network trained on a
large face dataset of 2.6M images of 2622 subjects. Schroff
et al. [14] presented an approach that learnt a mapping of
the face images to a compact euclidean space using the
triplet loss formulation which resulted in even better perfor-
mances. DeepFace [16] introduced by Taigman et al. used
a DCNN coupled with 3D face alignment where the face
pose is normalized by warping facial landmarks to a fixed
position and is trained on the resulting face images. Many
new approaches also investigate employing metric learning
in the form of triplet similarity loss or joint Bayesian met-
ric for arriving at an optimal embedding for face recogni-

tion [2, 16]. Masi et al. [10] presented Pose-Aware-Models
(PAM) that handle pose variability by modeling different
poses with separate CNNs. Sankaranarayanan et al. [13]
proposed using triplet probabilistic embedding to learn a
low dimensional embedding using the triplet probability
constraints for improving face recognition in the wild. The
above mentioned approaches work well under constrained
scenarios, however, they usually are not as capable of han-
dling unconstrained face recognition involving templates or
sets where large appearance variations are prevalent.

Traditional approaches to feature pooling relied on naive
averaging or max pooling and sometimes even going to the
extent of having to carefully design “weighting functions”
that evaluate the quality of the feature vectors and produce
more intelligent weights. Several approaches like [16, 14]
merely perform pairwise frame feature similarity compar-
isons or use naive feature pooling [3, 4]. Neural Aggrega-
tion Networks (NAN) [18] by Yang et al. introduce an auto-
mated approach for generating aggregation weights using a
cascaded attention mechanism primed on face features in a
template and reported state-of-the-art results on IJB-A and
YouTubeFace datasets. Template Adaptation [5] discusses
applying a form of transfer learning to the set of media in a
template using an SVM loss function. Quality Aware Net-
works (QAN) proposed by Liu et al. [8] assess the quality
of each image in a set using a quality generation unit that is
coupled beside a feature generation unit to facilitate end-to-
end learning of optimal template/set representation. How-
ever, all the above methods invariably rely on the feature
representation of the face images to assess the quality for
aggregation. Hence, in order to overcome these limitations,
we propose to use orthogonal features such as metadata, that
are not explicitly present in the feature representation and
which are learnt using different target objectives, for learn-
ing effective feature aggregation methods.

3. Metadata-based Feature Aggregation Net-
work (M-FAN)

We discuss the intuition for proposing the M-FAN model
in this section and also elaborate upon our network model
and the training approach we implemented for our experi-
ments.

3.1. Overview

The entire objective of the M-FAN model is to function
as a feature quality evaluator and produce weights corre-
sponding to the "worthiness” of the feature vector as being a
part of the template. Let f; and m; be the i*" feature vector
and corresponding metadata vector in a template. We define
an evaluator function hy to be a function of the metadata
vector, parametrized by 6, producing a weight that qualifies
the provided metadata. If 7" denotes the template vector or
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Figure 1: M-FAN architecture. This figure shows the training setup with the M-FAN model deployed as a siamese network.
The Feature and Metadata extractor are the networks described in [12] and [2]. The FCN is the only trainable block in the

structure.

the pooled features for the template, we have
T =Y ho(mi)f; )
i

Here, hg could be realized as any function approximator,
and in our case, it is represented by a Fully Connected Net-
work (FCN). The above formulation ensures that the M-
FAN network does not rely on the features to make its pre-
dictions which is crucial to the performance of our model
based on the following reasoning. The feature vectors are
typically generated by a face recognizer whose task is to
map any and all variations of face images for a particular
subject to a single tightly bound cluster in the feature space.
It would therefore imply that the feature vectors correspond-
ing to the set of face images for a subject would have min-
imal variations so as to maximize discriminability for the
concerned subject. Now this presents a problem for any ag-
gregation system that attempts to evaluate the relative rich-
ness” of the feature vectors in a template since they would
all be extremely similar. This motivates the intuition why
the same system would need orthogonal information such
as metadata, which is not affected by the feature genera-
tion process, to yield context that can help it discriminate
between face images of a subject.

Given the template vector construction, the objective of
our system then becomes to determine the optimal set of
parameters € that minimizes our cost function defined as:
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where T}, and T}, are the probe and gallery template vec-
tors obtained using (1), Y,, € [0, 1] is the match label for
the given probe and gallery templates, E,, is the error in
match score prediction and, as is evident, the similarity be-
tween the two templates is obtained using the cosine sim-
ilarity. With these goals in mind, Section 3.2 presents the
design of the M-FAN structure.

3.2. Architecture

The setup of the M-FAN architecture is illustrated in Fig-
ure 1. The essence of the model is the Fully Connected Net-
work (FCN) that assesses the metadata and outputs a weight
for the corresponding feature vector. In practice, the net-
work is also provided a set of seed weights w; (for example
setting w; = %, n being the number of images in the tem-
plate) which it can use as an origin to begin the optimiza-
tion process. Consequently, the FCN block does not explic-
itly produce weight predictions as output, rather, produces
parameters used to transform the seed weights. Providing
seed weights produced by elaborate hand-crafted functions
generally improves the ability of the model to converge on
better weight predictions.

For training, the M-FAN network is built as a siamese
network. The network is provided features, metadata and
seed weights for the probe template as the left input and
the same for the gallery template as the right input. The
features and metadata are obtained from the networks de-
scribed in [12] and [2]. The FCN block that these inputs
go through use shared weights as is typical in siamese ar-
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Figure 2: Batch Processing of Templates. The template in-
dices provided indicate which features/metadata comprise a
template.

chitectures. The output of the FCN block transforms the
seed weights w; producing w} such that " w} = 1, which
is then used in conjunction with the corresponding features
fi to create the template vector for each probe and gallery
template. The cosine similarity loss layer computes the dis-
tance between the templates and is optimized against the
match label. During testing, we don’t use the siamese setup
and instead, present all the inputs for a template to the M-
FAN model which produces the aggregated feature vector.

3.3. Gradient backpropagation

The error E,, defined in (2) can be used to derive the
gradients for the parameters 6 in the FCN being optimized.
The gradient for an individual probe gallery template match
is computed as:
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follows the product rule of calculus. Similarly, we ob-
tain the gradients of the template vector 7" and its norm as

T
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The interesting thing to note here is that the gradients for
the parameters 6 are also a function of the feature vectors
fi- This has a nice effect on the overall training procedure in
that even though the FCN block never sees the feature vec-
tor for making its predictions, its parameter updates are in-
fluenced by f;, thereby forcing it to learn the implicit corre-
lations between the metadata and features. Moreover, with
the presence of only a few dimensions in the input space,
as compared to 100s or 1000s when taking the face feature
vector also as input, the training algorithm is able to con-
verge faster using fewer network parameters.

3.4. Batch training

During the design of the training setup, it became clear
that the network would only be able to train on a single pair
of probe and gallery templates at each iteration. This was
owing to the fact that each template may be comprised of a
variable number of face images, which implies that making
batches of probe and gallery templates would be difficult.
However, as mentioned in [7], networks generally converge
faster and to better minima with batch sizes > 1. In or-
der to work around this problem, we introduced an addi-
tional input - indices k; which held the template indices in
the batch that each face image (and the corresponding fea-
tures and metadata) would be mapped to. This enabled us
to group multiple sets of templates as a batch (Figure 2 and
to compute the aggregated template vectors using only the
corresponding feature vectors as indexed by k;.

4. Experiments and Analysis

In this section we present the experiment setup and re-
sults obtained with our approach on two datasets - IJB-A
and JANUS CS4.

4.1. Experiment Setup

The CNN described in [2] produces a 128 dimensional
feature vector for each face image. Alongside that, the
CNN detailed in [12] produces multiple metadata outputs
of which we use yaw, pitch, roll, face bounding box area,
gender classification confidence and the face detection score

Decreasing Aggregation Weights

Figure 3: M-FAN predictions on Janus CS4. The pooling
weights are influenced by the orientation of the face, source
image size, etc.
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Figure 4: Plots showing aggregation weight predictions of M-FAN against various metadata features.

Table 1: IJB-A 1:1 Verification TAR(%)

Table 2: Janus CS4 1:1 Verification TAR(%)

Method 10"TFAR  107?FAR 10 °FAR Pooling Method 1072 FAR 10 °FAR 10~ FAR
TE [13] 96.40+0.5 90.00+1.0 81.30+2.0 Naive Average 95.27 90.40 86.54
TA [5] 97.90+0.4 93.90+1.3 83.60+2.7 Media Average 95.38 90.85 86.88
NAN[18] 97.80+0.3 94.10+£0.8 88.10+1.1 M-FAN (naive) 95.65 90.99 87.35
M-FANT  97.97+03 96.34+03 94.10£0.7 M-FAN (media) 95.98 92.19 88.63
M-FAN*  98.00+0.3 9656+04 94.44+0.5

TE: Template Embedding, TA: Template Adaptation, NAN: Neural Aggre-
gation Network, T M-FAN (naive), ¥ M-FAN (media)

for our experiments. Our M-FAN model is created with a 4
layer FCN having ReLU as activations. We group the sub-
jects in the datasets into 3 sets - 60% for training (of which
20% is for validation) and the rest for testing. We then used
the provided template protocols to generate probe vs gallery
matches for the three sets. We train our model on the train-
ing set for a maximum of 100 epochs with a learning rate
of 0.15 with a decay rate of 0.99 every epoch. We report
results on the test set with the model that had the best per-
formance on the validation set. Since the network perfor-
mance would be influenced by the seed weights provided to
it, we conducted 2 sets of experiments - one with the naive
average weights and the other by grouping images by their
media source and weighting it by the face detection score on
each image. For the latter, we first pool all the images cor-
responding to a particular media source weighted by their
face detection scores s;, i.e., fr, = >, %ﬁ The
weighted face detection score for the media-pooled images
is sm =), %sz In a similar manner, we aggre-
gate all the media-pooled features f,, with their respective
scores s,, to get the template vector 7. We record the final
weights computed for each image via this method and use
them as the seed weights for this experiment which we’ll
refer to as “media average weights”. The models we train
on both these experiments are referred to as M-FAN (naive)
and M-FAN (media) respectively.

4.2. Results on IJB-A

Here we present the results of the M-FAN model on the
IJB-A verification protocol. IJB-A contains 5712 images
and 2085 videos of 500 subjects, for an average of 11.4

im- ages and 4.2 videos per subject. We divide the sub-
jects in the provided training split into training and valida-
tion (80:20 splits) and evaluate the trained model on the pro-
tocol provided in the test splits. The 1:1 verification results
are evaluated using the ROC curve and the TAR (True Ac-
cept Rate) performance is reported for different FAR (False
Accept Rate) values. We present the results reported by the
previous state-of-the-art approaches for IJB-A and compare
them to our system. The results shown in Table 1 clearly
indicate the ability of M-FAN to capture the correlations of
the metadata and the features constituting a template and
proves its utility as an intelligent aggregation unit.

4.3. Results on Janus CS4

We conduct our experiments on the IARPA Janus Chal-
lenge Set 4 (CS4) dataset, which is a superset of the IJB-A
dataset [6]; the comparison between CS4 and 1JB-A sets is
given in [2]. A sample of the weights predicted by M-FAN
is shown in Figure 3. Table 2 shows the improvements in
performances while using the M-FAN model seeded with
naive average weights. It is interesting to note that even
when M-FAN is provided naive average seed weights, it is
able to perform better than the hand-crafted media average
weights. When it is provided the more complex media aver-
age weights, it can improve upon its earlier performance by
over 1.5%. We also analyzed the weights predicted (during
test phase) by the M-FAN model with respect to the vari-
ous metadata provided to it and plotted the results shown in
Figure 4. We can see that the network has learnt to predict
low aggregation weights for any orientation that strays far
from the frontal pose. Figure 4d depicts the weights for var-
ious face detection (FD) scores and here too we see it assign
higher confidence to images having higher FD scores.



5. Conclusion

In this paper we discussed about template/set based face
verification and how it is deeply influenced by the aggrega-
tion or pooling strategy employed in generating represen-
tative template features. We presented an approach of us-
ing metadata to judge the relative quality of every feature
vector in a template for aggregation and investigate its abil-
ity to outperform related approaches. Our system produced
significant gains over traditional pooling approaches on the
IJB-A and Janus CS4 datasets proving the effectiveness of
our method. Moreover, our system can be easily plugged
into at the end of a face recognition pipeline to optimize
the template feature generation process in order to produce
improvements in the overall performance.

As part of our future research, we aim to design an end-
to-end learning framework for automatically fine-tuning the
features and metadata generation networks in view of attain-
ing an optimal template feature generation for face recogni-
tion.
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