126

IEEE SYSTEMS JOURNAL, VOL. 4, NO. 2, JUNE 2010

A Framework for Efficient Fingerprint
Identification Using a Minutiae Tree

Praveer Mansukhani, Sergey Tulyakov, and Venu Govindaraju, Fellow, IEEE

Abstract—Given the existence of large fingerprint databases,
including distributed systems, the development of algorithms for
performing fast searches in them has become the important topic
for biometric researchers. In this paper, we propose a new indexing
method for fingerprint templates consisting of a set of minutia
points. In contrast to previously presented methods, our algorithm
is tree-based and well addresses the efficiency needs of complex
(possibly distributed) systems. One large index tree is constructed
and the enrolled templates are represented by the leaves of the
tree. The branches in the index tree correspond to different local
configurations of minutia points. Searching the index tree entails
extracting local minutia neighborhoods of the test fingerprint
and matching them against tree nodes. Therefore, the search time
does not depend on the number of enrolled fingerprint templates,
but only on the index tree configuration. This framework can
be adapted for different tree-building parameters (feature sets,
indexing levels, bin boundaries) according to user requirements
and different enrollment and searching techniques can be applied
to improve accuracy. We conduct a number of the experiments
on Fingerprint Verification Competition databases, as well as the
databases of synthetically generated fingerprint templates. The
experiments confirm the ability of the proposed algorithm to find
correct matches in the database and the minimum search time
requirements.

Index Terms—Biometric identification systems, fingerprint iden-
tification, indexing.

I. INTRODUCTION

IOMETRIC systems usually operate in one of two

modes—verification or identification. In the verification
mode, where the user identifies himself while providing his
biometric data to the system, we only need to match the ac-
quired template of the person against the stored template of
his claimed identity. Such a 1:1 matching process relies on the
two fingerprint images (or their template representation) being
sufficiently similar to one another to provide a positive result.
Different methods for matching two fingerprints are described
in the literature [1]. Generally, the matching process consists
in finding correspondences in two templates, e.g., pairs of
matched minutiae. Both templates should be available during
matching process, and the matching can take significant time in
order to consider all possible matching correspondences.

Manuscript received January 15, 2009; revised November 10, 2009. First pub-
lished May 20, 2010; current version published June 03, 2010.

The authors are with the Center for Unified Biometrics and Sen-
sors, State University of New York at Buffalo, Buffalo, NY 14201
USA (e-mail: pdmS @cubs.buffalo.edu; tulyakov @cubs.buffalo.edu;
govind @cubs.buffalo.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSYST.2009.2037286

The problem is more complicated in 1:N recognition systems,
also known as fingerprint identification schemes. Given a probe
fingerprint image (or template) the system must determine the
identity of the owner of the print, from a database of stored
templates. The stored template best matching the probe provides
the identity of the input probe. A naive method of approaching
this identification process is to match each user in the dataset
with the probe, and the user with the highest matching score is
returned as output. Even though the typical fingerprint matching
algorithm can perform a matching of two templates in less than
a second, the identification in larger datasets, say containing few
millions templates, can require prohibitively large time.

Seemingly, there exist two practical approaches for searching
in large biometric databases. The first tries to construct the ef-
ficient representation of biometrics, e.g., fixed-length feature
vector, and perform fast matching, for example, consisting of
calculating Euclidean distance. By distributing matching across
few servers it is possible to perform identification in a few sec-
onds, even if the database contains millions of records [2]. But
it might be difficult to extract fixed length feature vector repre-
sentations for fingerprint images. The second direction attempts
to split biometric templates into few clusters or classes, and to
restrict the database search only to templates of the same class.
The example of this approach is the Henry fingerprint classifi-
cation system. Ideally, though, we would like to have a third ap-
proach—indexing. Traditional indexing relies on the some tree
structure; for example, we might look at the first letter of the
word and select the branch with that letter, second letter corre-
sponds to the selection of second branch in the index tree and
so on. In this paper, we investigate the possible construction of
such an index tree for fingerprint templates.

Fingerprint matching is not an exact process—two images
acquired at different times from the same finger will never be
exactly the same, even if the images are acquired under iden-
tical conditions. Moreover, this is not the case in most practical
applications where two matched images could be acquired by
different types of sensors, under different conditions and at dif-
ferent times. Translation of the fingerprint with respect to the
origin, difference in orientation of the two images, distortions
applied due to pressure of the finger on the sensor surface are
just some of the ways in which two samples differ. Other fac-
tors such as partial acquisition of one or more images, presence
of dirt or water on the finger surface or errors (quantization or
algorithmic) in the feature extraction algorithm also contribute
to the complexity of matching two fingerprint images. As a re-
sult, the indexing method should be able to deal with distorted
or missing minutia information. Our method does this by: 1)
considering localized minutia information and 2) enrolling the

1932-8184/$26.00 © 2010 IEEE

MANSUKHANI et al.: A FRAMEWORK FOR EFFICIENT FINGERPRINT IDENTIFICATION USING A MINUTIAE TREE 127

same fingerprint multiple times into the index tree. This results
in a significant increase of efficiency in complex (possibly dis-
tributed) systems.

The content of this paper is as follows. The existing ap-
proaches to perform fingerprint identification in large datasets
are discussed in the next section. In Section III, we introduce
our approach for fingerprint indexing. Section IV contains the
results of the tests of our algorithm for speed and accuracy on
different real and synthetic datasets. Finally, we conclude a
paper with a summary of our work and present some direction
for future research.

II. CURRENT FINGERPRINT IDENTIFICATION SYSTEMS

One of the ways to reduce search space in fingerprint
databases is to determine the class, e.g., whorl, arch or loop,
of all enrolled fingerprints and to match the probe only to the
enrolled fingerprints of the same class (Henry classification
system). This approach has been in use from the beginning
of the fingerprint usage for person identification [3] and auto-
mated fingerprint identification systems (AFIS) might include
an implementation of such classification [4], [5].

In spite of a reduction in the search space, systems relying
solely on classification might still be insufficient for real world
applications. Fingerprints can be classified into one of six (at
times even four or five, in most applications) classes which is
not good enough in order to arrive at a decision while searching
in large datasets. The problem is worsened by not having all
fingerprint classes of the same size. So classes with a higher
frequency will be searched more often, and will have a greater
number of candidate prints in them. Moreover, some classifica-
tion systems return the two most probable classes for a particular
fingerprint, which does reduce the misclassification rate, but in-
creases the search space. However, far greater speed-ups will be
needed in case of very large datasets. The approaches bypassing
Henry classification system have been found to be more effec-
tive, both in terms of better accuracies and in terms of the size
of the search space considered [6].

A. Filter-Based Schemes

A set of features (or a feature vector) is extracted from the fin-
gerprint image by applying a series of filters. Such an approach
has been used in the Local Axial Symmetry (LAS) Registration
scheme by Liu [7] where the system tries to identify fingerprints
by locating (almost) symmetrical subregions of the image. A
scheme of three filters (core, delta and parallel) have been used
to transform fingerprint images to a easily indexible template by
Li [8]. Another combination-based approach is used by Boer et
al. [9] where three possible indexing features: directional field
estimates, FingerCode, and triplets have been used, and a system
combining them has worked more efficiently.

Singular point features, class information and ridge count in-
formation are used at various levels to prune the search space.
However each fingerprint in the space must be individually com-
pared to the test template to give the best match. Singular point-
based indexing is also used by Liu et al. [10]. Another approach
that has been used is by Feng [11] where ridge information
around minutiae points have been used to index prints.

B. Minutiae-Point Indexing Schemes

Minutiae-point based fingerprint indexing algorithms involve
a variation of a binning technique as described below. A bin
array is developed to group fingerprint templates having sim-
ilar minutiae point arrangements together. The features used for
binning depend on the type of minutiae point arrangements to
be binned. Different combinations of these feature values are
used to create a n-dimensional array of bins. In the enrollment
stage, information from each extracted minutiae are mapped to
an arrangement of bins. The fingerprint template identifier, cor-
responding to the matched minutiae is stored in the bin. Hence,
each bin has a list of all the templates which have an extracted
minutia point corresponding to its bin boundaries. When a test
fingerprint arrives into the system, minutiae extraction is done,
the bins corresponding to each of the minutiae points are deter-
mined, and the template details in those bins are ordered ac-
cording to the frequency of occurrence. These templates are
compared, in order, with the test template, until a match is found.

The most common indexing schemes used involve indexing
fingerprints based on the local features of minutiae triplets.
Different triplet-based schemes, formed by varying the fea-
tures extracted and assigning different weighting schemes
to matching pairs have been explored in [12], [13] and [14].
Whereas the filter-based schemes explicitly construct fixed
length fingerprint representation for fast fingerprint matching,
triplet-based indexing schemes do it implicitly. Basically, the
features correspond to the number of triplets in a particular bin.
The matching consists in determining the common numbers of
triplets in two fingerprints.

C. Limitations of Current Indexing Schemes

Scalability with Large Datasets: It can be seen that indexing
approaches have been able to reduce the size of the search space
quite significantly, but it is still a linear fraction of the orig-
inal, and hence of the order O(N), where N is the size of the
dataset. Even a quick scan of the entire dataset (without a de-
tailed matching procedure) to eliminate a bulk of the candi-
date templates from further consideration makes them unsuit-
able for many real time applications which could involve very
huge datasets. Even the triplet-based binning approaches, which
do have a large number of bins, would have a considerable over-
head in aggregating the results of the bin constituents when the
size of the datasets (and hence bins) do get very large.

Addition of Separate Matching Algorithm: Currently studied
indexing systems just produce an ordered list of candidate
matches, and would require a separate matching algorithm at
the post-processing verification stage, to perform a 1:1 match of
the test template with each candidate image left in the reduces
search space. This is an additional overhead on the system.

III. USING MINUTIAE-BASED GRAPHS FOR
FINGERPRINT RECOGNITION

Previously, Chikerrur ef al. [16] proposed a fingerprint
matching method using local patterns of multiple minutiae
points(Fig. 1). In the k-plet approach, graph G(V, F) has been
generated based on the arrangement of minutiae points in the
enrolled template. The matching process has two parts: local
matching for two k-plets, and combination of local matches by

128

Fig. 1. k-plet technique uses local arrangements of minutiae points to match
fingerprints [15].

global coupled breadth first search. Specifically, if two k-plets
from two fingerprints are matched, we try to expand the the
matching to the neighboring k-plets in both fingerprints.

Our indexing algorithm employs similar ideas: we perform
local match and, in case of success, we try to expand the
match to nearest local neighborhood. But instead of matching
our probe fingerprint against a single enrolled fingerprint, we
encode the neighborhood configuration information into one
global tree and match our probe against the that tree. In order to
reduce complexity, in the current system we simply take single
minutia in place of k-plets, and expansion of match consists in
considering the closest non-matched minutia.

A. Index Overview

Our system arranges the fingerprint dataset in a tree-based
structure, as shown in Fig. 2. Each non-leaf node represents an
arrangement of minutiae points based on the path from the root
to that particular node. Fingerprint templates are enrolled at the
leaf nodes, one or more templates can be enrolled at each leaf.
Also, a fingerprint might be enrolled at multiple leaf nodes in
the tree, representing multiple minutiae paths corresponding to
various different minutiae arrangements in a single fingerprint
image.

Note, that we build a single tree for all fingerprints in the data-
base, and all enrolled fingerprints will have some of the leaves
representing them. The tree provides true index structure for fin-
gerprint database—when we perform identification, we traverse
the tree and find leaves corresponding to minutia paths in the test
fingerprint template; found leaves will most likely point to the
matching enrolled fingerprints in the database.

B. Branch Selection and Binning of Minutiae Points

To arrange the minutiae points together, we use the concept
of minutiae bins. Binning is done based on the relative features
of a particular minutiae point and its nearest neighbor. The fea-
ture set used for binning the points will be selected based on
the analysis of fingerprint matching features, discussed later in
this document. A discretization technique will be used to handle
continuous featured values. Hence, the number of bins for a par-
ticular minutiae point will depend on the number and the prop-

IEEE SYSTEMS JOURNAL, VOL. 4, NO. 2, JUNE 2010

(@) (b)

Fig. 3. (a) Basic bin arrangement for 16 bins. (b) Bins have been applied to a
pair of minutiae points.

erties of each individual feature selected. An example of the bin-
ning procedure follows.

Consider an arrangement where we use two features for bin-
ning a particular point its distance and orientation with respect to
the current minutia point. We could set a single threshold value
on the distance, effectively dividing all values into two clusters.
For the orientation, we divide these values into eight different
bins, giving us a total of 16 bins, as can be seen in Fig. 3(a).

Consider an arrangement of minutiae points as shown in
Fig. 3(b). Assume that the top point is the current point, cor-
responding to the current node in the tree. If we evaluate the
location of the nearest minutiae point to this one, located at the
bottom right of the image, we can see that, using our binning
scheme, it would map to bin B4. (In case two or more points are
located equidistant from the current point, another metric, such
as the orientation could be used to break the tie.) Hence, the
path corresponding to B4 is taken (Fig. 4) and the new (bottom
right) minutiae point becomes the current point. The process is
repeated, until we reach the end of the tree.

C. Enrollment of Templates

One or more fingerprint templates per user might be enrolled
into the system. Noise removal, smoothing and binarization of

MANSUKHANI et al.: A FRAMEWORK FOR EFFICIENT FINGERPRINT IDENTIFICATION USING A MINUTIAE TREE 129

MinutiaeBin,

MB,, MBy, [ssss

MB}HS

Fig. 4. Selection of branch at the lower level depends on the assignment of the
minutiae point to the bin [Fig. 3(b)].

ROOT

M&MBC
MB,, MBap, MB,.
MB 2 MBaba MBaph

MB,bba

) & G ~

ROOT

©)

Fig. 5. Enrollment of a fingerprint template. Original minutiae tree (a), in
which template (b) must be enrolled. One minutia point (red color) is selected
as a root, the path from it to neighboring minutia points is found (d) and the
corresponding branches in the tree are selected (c). The fingerprint gets enrolled
at the corresponding leaf node of the index tree.

the fingerprint image may be carried out as a part of prepro-
cessing, followed by minutiae extraction. One point is selected
as the starting minutia; this corresponds to the root of the tree. Its
nearest minutia point is found and its features are calculated rel-
ative to the current (root) minutia. Based on these feature values,
the matching bin is found and the control moves to the corre-
sponding branch of the tree, with the nearest (with respect to
the current) minutia as the new current minutia. Now the nearest
minutia point to the (new) current minutia is determined and the
procedure is repeated as before.

Once we reach the end of the tree, we will enroll the fin-
gerprint template at the corresponding leaf node (Fig. 5). Now
another minutia is selected as the start (root) minutia and the
above enrollment procedure is again carried out; here the fin-
gerprint might get enrolled at a different location at the tree,

depending on the local neighborhood of the new start (root)
minutia point. We repeat this process with all minutia from the
fingerprint serving as a root, so that if fingerprint template has
n minutia, then up to n paths (and n leafs) of the tree will cor-
respond to the same enrolled fingerprint template (Fig. 6).

D. Fingerprint Template Matching

The matching task involves the identification of the owner of
a fingerprint template, assuming that one of the initial process
carried out is similar to the enrollment scheme. Preprocessing
(noise removal, smoothing, binarization) is done before the
minutiae extraction stage.

The matching of the test template is similar to the enrollment
procedure. One minutia point is again selected as the root and
the relative properties of its nearest minutia point are calculated.
These are used for the selection of the branch for traversal down
the tree (Fig. 7). Now the newly selected minutia becomes the
current minutia and the process is carried on as before, until a
match is found (Fig. 8). In case, we encounter a node with no
matching fingerprints on the branch to be traversed, we might
either backtrack to one of the previous nodes or start over with
another minutia point from the test template taken as the root.

The matching will succeed if during the processing of test
template we find a minutia path similar to the minutia path of the
enrolled template. The corresponding leaf node in the index tree
will point to the enrolled template having same path of neigh-
boring minutia. In order to increase our chances of finding cor-
responding minutia paths, we propose (see the next section) in-
vestigating alternative minutia paths for test fingerprint in cases
when the neighboring minutia positions are near the boundaries
of the bins.

In any case, the search time for the test fingerprint is approx-
imately the same as the enrollment time: exploring n paths (n
is the number of minutia in the test template) of m neighboring
minutia (mn is the maximum depth of the tree) will take O(nm)
time. The total size of the tree is equivalent to the number of
leaf nodes and equals to O(B™), where B is the number of
branches at each node. Generally, the search time and the tree
size do not depend on the number of enrolled fingerprints in
the database. But for bigger fingerprint databases we might re-
quire bigger numbers of bins B and search path lengths m, so
that the chance of collision (different fingerprints having similar
minutia paths and thus being enrolled at the same leaf nodes) is
minimized.

E. Variation in Minutiae Feature Values

Two fingerprint images from the same finger are never exactly
similar. There is inherent variation in the values of the extracted
minutiae points caused due to:

i) different positioning of the finger on the scanner, which
causes affine transformations on the images;

ii) pressure applied by the user causing distortions in the

image;

iii) quality of the images caused do to external factors such

as dryness of fingers;

iv) limitations of the feature extraction procedure such as

quantization and image quality leading to missing minu-
tiae points and addition of spurious points.

130

B, MBy, MB,
VB, MBqp, MB,
HByaa MBapa MBapp,
F /\ I\Maahba
@ & & G
Fk
()

Fig. 6. Enrollment of a fingerprint template (contd.). The process of enrollment
is repeated for each minutiae point in the enrolled template chosen as a root (a),
giving a different path in the index tree. Consequently, the fingerprint template
gets enrolled at the multiple leaf nodes of the tree (b).

MB,, MBab VB,
MBau MBypa MB,pp,
/ /\ g
F 0 & G 2
Fi Fi
©

Fig. 7. Matching procedure. One point is selected as the root (a), (b). Based on
the features of the nearest neighbor (d), the branch for traversal is selected (c).

These variations lead to variation in the number of correctly
extracted minutiae points and their locations in the image. They
get reflected in the indexing and matching procedure, and thus
reduce the overall accuracy of the system. To account for errors
that might be caused due to such variations, we implement the
following techniques in our indexing scheme.

1) Handing Missing and Spurious Minutiae Points: Fig. 9
shows two fingerprint samples taken from the same user. Minu-
tiae points have been extracted from each of the fingerprint im-
ages. Consider the case, as shown in Fig. 9(b) and (d), where a
minutiae point has been detected in one image but the extrac-
tion algorithm has missed the point in the other image. If one

IEEE SYSTEMS JOURNAL, VOL. 4, NO. 2, JUNE 2010

MBaaa MBjpa MBgbp
/ /\ MBabba
Fi = Ge F

(©)

Fig. 8. Matching procedure (contd.) The traversal of the tree continues (a),
based on the corresponding minutiae points (b). In the end, the leaf node is
found (c), thus ensuring a match based on the local minutiae arrangement (d).

() d

Fig. 9. Example of a missing minutia point. As the top minutia point on the
upper image has not been extracted, the tree for these patterns will be traversed
differently.

of these images is enrolled into the tree, and the other happens
to be the probe image, they will not match each other as they
would lead to different nodes in the tree.

MANSUKHANI et al.: A FRAMEWORK FOR EFFICIENT FINGERPRINT IDENTIFICATION USING A MINUTIAE TREE 131

-
o q
. ? T
ﬁ? @
dp % "] -
o
= ‘ﬂpz}a’ v &] %X
o o o & %
¥
?&,
g @,F'
L.
i3 L e
= o o

Fig. 10. Variation in minutiae points of fingerprint images.

Fig. 11. Minutiae triplets are considered to be similar even though they do not
match exactly.

Similarly due to noise in the images, the minutiae extraction
algorithm might incorrectly mark certain points as minutiae in
some images, leading to spurious points being introduced in the
image. These also cause similar errors as described before, and
hence the problem of missing and spurious minutiae points are
handled similarly.

Although having clean images with minimum noise, better
scanning hardware and more robust extraction algorithms are
the best way to handle this problem, some amount of redun-
dancy is built into the indexing system in the following ways.

i) Enrolling multiple points from the same fingerprint as
root. For every enrolled fingerprint image, each extracted
minutiae point is iteratively taken as the root and the fin-
gerprint template is placed into the corresponding slot in
the tree. This ensures that even if a small neighborhood
of minutiae points is correctly extracted, the search algo-
rithm is able to find the enrolled template for the corre-
sponding probe.

ii) Enrolling multiple images of the same user. In case some
minutiae points are missed by the extraction algorithm,
their presence in another sample of the same finger will
cause a correct enrollment. As a default, most of our ex-
periments are performed using two enrolled templates per
user, to mitigate the effect of any errors during the feature
extraction of a single template.

2) Variation in Extracted Feature Values: Fig. 10 shows us
two fingerprint images and their matching minutiae points. We
can observe variability in the minutiae locations and orienta-
tions(Fig. 11), even if we account for global affine transforma-

(b)

Fig. 12. Minutia point during enrollment of template (a) and during search
phase (b) maps to different bins.

(a) (b)

Fig. 13. Search space is limited to the bin area [12(a)]; expanding the search to
multiple bins will also find minutiae points that are just outside the bin bound-
aries [13(b)].

tions to the images. Hence, an exact match between fingerprints
is not possible, as discussed earlier.

Such variations in minutiae features affect consistency of bin-
ning procedures, in cases where the minutiae points to be binned
are close to the bin boundaries. For example, in Fig. 12, we see
how a slight shift in the position of the same minutiae point,
with respect to the bin center, causes the minutiae to be enrolled
in one bin and searched in another. As the searching procedure
only searches for minutiae points strictly within the bin bound-
aries [Fig. 13(a)] the enrolled minutiae point is not found.

This problem is solved by searching the neighboring bins
for those points that have a strong likelihood of crossing the
bin boundaries across multiple samples. Based on the choice
of a suitable threshold, those points that are sufficiently close
to the bin boundaries, have the next closest bin also searched
while traversing the tree. Relaxing the bin boundaries as shown
in Fig. 13(a) will lead to a greater number of correct minutiae
points being matched and a robust method of traversal down the
tree.

IV. SPEED AND ACCURACY ANALYSIS OF INDEXING SYSTEM

In this section, we empirically obtain and discuss the perfor-
mance of the indexing system on both live-scan and synthetic
datasets.

A. Experimental Setup

We have built and implemented the indexing system de-
scribed, and have tested it on the Fingerprint Verification
Competition (FVC) 2002 [17] Database 1 and FVC 2004

132

1.00
0.80

0.60

Accuracy

0.40 4

0.20

0.00

5 6 7 8
Number of points (N)

(@)

IEEE SYSTEMS JOURNAL, VOL. 4, NO. 2, JUNE 2010

1.00
0.80

0.60

Accuracy

0.40

0.20

0.00 + r T
5 6 7 8

Number of points (N)

®

Fig. 14. Results for single path search—number of unmatched prints increases with greater depth in the tree. (a) FVC 2002 DB, (b) FVC 2004 DB1.

Database 1 [18]images. Each dataset has eight images each of
100 different users, each scanned at 300 dpi (dots per inch).
Of these images, three images per user have been enrolled in
the tree and the remaining five have been used in the test mode
as probes, to determine if the system can correctly identify the
owner of the fingerprint.

Each minutiae point is binned into one of 128 bins, based
on value of its distance to the previous point (threshold = 30
pixels, two classes), its angle to the vertical (eight classes, 45
degrees each) and the difference in the orientation of the ridge
directions of the current and the preceding point in the tree (eight
classes, 45 degrees each).

In the current implementation, we could have three outcomes
of the database search: found correct fingerprint (“white” color
in performance graphs below), found incorrect fingerprint
(“black”), and did not find matching fingerprint (“gray”).

B. System Accuracy

We have tested the system going various levels deep into the
tree. An arrangement of N minutiae points considered enrolls
the fingerprint (N-2) levels deep, as the first two points are the
root and the alignment minutiae point respectively. In addition,
we have built the system to work in two modes.

i) Single Path Mode: Here, we traverse the tree on a single
path, and hence the minutiae point graph must exactly
match the enrolled graph.

i) Multiple Path Mode: As described in Section I1I-E.2 if the
minutiae point is close to the bin boundaries, we search
the corresponding minutiae bin and its neighboring bin.
Thresholds have been set to 0.1 times the angle and ori-
entation bin sizes and 0.2 times the distance threshold.

Fig. 14 shows us the performance of the system while we
have considered a single path, rather than traversing the tree
along multiple paths while searching for the identity of the test
fingerprint. We can observe that as we increase the number of
levels, there are a greater number of unmatched/unidentified fin-
gerprints. This is because, to find a matched template at a deeper
level in the index tree implies that a larger number of minutiae
points in the enrolled and the probed template must match one
another. We can also observe that while searching at lower levels
in the tree, a larger number of matching candidates per finger-
print have been returned.

While we traverse multiple paths during the search for a
matching enrolled template, we allow for the fact that, due to
some minutiae points being located near the bin boundaries,
distortions of the fingerprint might cause them to be mapped to

TABLE I
VARYING NUMBER OF TEMPLATES SEARCHED PER USER
(SINGLE PATH SEARCH)

No. User Templates 1 2 3 4 5
Accuracy 0.81 | 091 | 091 | 095 | 0.96
Matching Rate 022 | 052 | 0.72 | 0.84 | 0.87
TABLE II

VARYING NUMBER OF TEMPLATES SEARCHED PER USER
(MULTIPLE PATH SEARCH)

1 2 3 4 5
0.73 | 0.76 | 0.81 | 0.80 | 0.77
0.19 | 0.32 | 0.50 | 0.57 | 0.58

No. User Templates
Accuracy
Matching Rate

a nearby bin. This leads to a greater number of correct matches
as compared to the previous case, but we do have a larger
number of incorrect matches also. As before, we see (Fig. 15)
that searching deeper into the index tree, i.e., as the value of N
increases, the number of test fingerprints that do not match any
of the enrolled fingerprints increases.

Table I shows how an improvement to the system perfor-
mance can be achieved by increasing the number of templates
searched per user, and aggregating the individual results of each
template to arrive at a single candidate for that user. This gives
us a higher accuracy (ratio of correct matches to total number
of probed users, who have returned candidate matches) and
matching rate (ratio of the number of users whose searching has
returned a candidate list to the total number of users probed).

In this case, using multiple paths while searching does not
improve the performance of the system, as seen in Table II.
Though larger number of test samples return a list of potential
candidates, leading to a higher matching rate, the accuracy of
the system is affected due to a greater possibility of incorrect
matches being returned.

C. Running Time of the System

One of the main requirements of an indexing system is that it
should be able to produce an output in a short duration of time,
ideally a real-time system is what is desired. Running time anal-
ysis of our indexing system is carried out with respect to both
enrollment time for a fingerprint template into the tree structure
and the search time required for the system to determine the
identity of the owner of the template.

We have performed all these tests using the same FVC
datasets as reported in the previous sections, and all indexing
parameters (number of features and the binning thresholds)
have been set to their default values. All experiments have been

MANSUKHANI et al.: A FRAMEWORK FOR EFFICIENT FINGERPRINT IDENTIFICATION USING A MINUTIAE TREE

1.00

0.80

0.60

Accuracy

0.40

0.20

0.00 +

5 6 7 8

Number of points (N)

(@)

Fig. 15.

0.35

133

Accuracy

5 6 7 8
Number of points (N)

®

Results for multiple path search—searching multiple paths leads to greater number of matches returned. (a) FVC 2002 DB, (b) FVC 2004 DB1.

0.30 A
0.25 A
0.20 -
0.15 1
0.10

Search time per
template (sec)

[e
0.05 S g

---&-- FVC 02 - Single
—+— FVC 02 - Multiple
---w-- FVC 04 - Single
—a— FVC 04 - Multiple

0.00 T
5 6

Number of points (N)

Fig. 16. Running time for a identification of test template.

carried out on a Dell Dimension 2400 PC, with a 2.2-GHz
Pentium 4 CPU and 512 MB of RAM, running Windows XP
with Service Pack 2.

Enrollment of a Fingerprint Template Into the Tree: The tree
structure is designed so that it is easily update-able. If a certain
number of users have already been enrolled into the system, and
a new user enters the system, it is just the new users details
that have to be added to the corresponding nodes in the tree;
the details of the other users are unaffected. This means that we
do not have to rebuild the tree at every instance, which would
have lead to a large time spent if we had a large number of users
enrolled.

The enrollment time of a template has been found to depend
on two factors:

1) the number of minutiae points in the enrolled template,

which can be bounded by a constant value;

2) the number of levels deep into which the fingerprint must
be enrolled, which is kept constant by implementing the
indexing structure as an NTFS directory tree.

Experiments show us the indexing time has been found to be
approximately 1 s per template enrolled per user, independent
of the dataset size and number of templates enrolled per user.

Searching the Index for a Test Template: We have empirically
found out average search times for the test templates during our
previous experiments with the FVC datasets and have plotted
them in Fig. 16.

For a single path search mode, we can see that the time re-
mains almost constant as we increase the depth of the search.
This result holds up well for results on both the FVC 2002 and
FVC 2004 datasets. We do observe that the time taken for a
5-level deep tree on the FVC 2002 database is slightly higher,
but we could attribute that to a significantly larger I/O time, due
to a larger number of candidates returned.

TABLE III
AVERAGE RUNNING TIME FOR TEMPLATE IDENTIFICATION
N=5 | N=6 | N=7 | N=8
FVC 2002 - Single Path 0.112 0.032 0.028 0.028
FVC 2004 - Single Path 0.106 0.096 0.146 0.230
FVC 2002 - Multiple Path | 0.060 0.040 0.042 0.042
FVC 2002 - Multiple Path | 0.122 0.124 0.192 0.310

For a multiple path search mode, there is a significant increase
in the search time as we go deeper into the tree. This is attributed
to greater instances where the minutia point is close to the bin
boundary, leading to a forking of the search path. Each fork
effectively doubles the search time, and hence as we go deeper
into the tree, we do traverse a greater overall distance in the
search, increasing the time required. The results are tabulated
in Table III.

D. System Performance on Large Synthetic Datasets

The difficulty to obtain a large number of willing users to
hand over multiple prints and a significant amount of resources
needed to manually enroll each user make it impossible to create
large size datasets from actual users. Hence, we have tested the
indexing system on generated (synthetic) fingerprint minutiae
point arrangements. Here, enrolled and probed fingerprint tem-
plates have been generated in a controlled environment, so that
we can vary, based on our requirements, one or more character-
istics of the templates and observe its effect on the accuracy.

Our synthetic template generation method is divided into two
steps.

1) Generation of the master template—A master template is
generated for each user; it is not used for enrollment or
matching but to generate multiple templates of the user
from the master template. Fingerprint area (height and

134 IEEE SYSTEMS JOURNAL, VOL. 4, NO. 2, JUNE 2010
1.00 1.00 _ﬁ
0.80 4 0.80 4
» >
§ 0.60 @ 0.60 -
3 -
y 0.40 - J 0.40
< <
0.20 A 0.20 A
0.00 - - . - - 0.00 . y . . x
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Size of Enrolled DB (x100) Size of Enrolled DB (x100)
(a) (b)
Fig. 17. Number of correct matches remains constant with increase in database size. (a) Single path search. (b) Multiple path search.
2.00
A A A A
1
» 150
v
E 100 —e— Single Path
= —&— Multiple Path
< o050 L g 4 o *
1
(7
0.00 + T T T T T 1
1 2 4 8 16 32 64
Size of Enrolled DB (2100)
Fig. 18. Running time for an identification of test template.

width), the number of minutiae points and the locations
and orientations of the minutiae points are stored in the
master template.

2) Creating multiple sample templates—From each master
template one or more sample templates are generated per
user, by introducing affine transformations on the entire
template, location and orientation-based distortions on
individual minutiae points and introducing spurious and
eliminating genuine (missing) minutiae points.

In this section, we look at how the accuracy and running time
scale with an increase in the size of the dataset. We have applied
a default value to each distortion to simulate those found in real
life datasets. Then, we have varied the magnitude of each dis-
tortion individually and then together to study the effect on the
system performance.

E. Varying Size of Enrolled Fingerprint Database

One of the central advantages of our indexing scheme is that
the system does scale very well with an increase in the size of
the enrolled dataset. To validate this, we have progressively in-
creased the size of the enrolled dataset and tested the perfor-
mance of the system. Three templates per user, with the number
of users varying from 100 to 6400, have been enrolled, keeping
the default distortion parameters. The tree has been searched six
levels deep with a 100 probed users, five templates per user.

We can see from Fig. 17 that as the size of the enrolled dataset
increases, the number of correct matches remains constant. For a
search into the tree a finite number of levels deep, the template
is matched on the basis of the minutiae pattern matching, and
even though increasing the number of enrolled templates would
cause a greater probability of a wrong pattern matching, it does
not affect the probability of a correct match. Observe that the
average number of templates returned for a probed fingerprint

template does slightly increase with larger datasets. This is more
prominent in the multiple path search, as the search branches
down a larger number of nodes, and hence has a greater chance
of matching any other enrolled template. A higher accuracy, but
a larger number of incorrect matches in larger datasets can be
observed when we search multiple paths.

F. Running Time on Large Datasets

An important characteristic of the indexing system is that it
is scalable with large datasets. We have already seen that our
tree building technique allows for additional users to be enrolled
without any need to rebuild the tree. A constant time taken to en-
roll a template into the system means that the time taken to enroll
a particular dataset is proportional to the size of the dataset.

For our experiments in evaluating the search time for finger-
print templates, we have used similar hardware configuration as
in the previous section and have calculated the average time per
probed template, required by the system to return a result for a
corpus of 100 users, five templates per user. The number of users
in the enrolled dataset has been varied from 100 users onwards
with three templates enrolled per user. Testing has been done
with a largest enrolled dataset size of 6400 users, which was the
maximum permissible given the hardware and I/O constraints
permitted by the operating system. It is possible to overcome the
encountered constraints by migrating the system from the index
stored in file directories to the index stored in a single file. But
note that most other indexing systems (such as [13], [10], [19],
[7]) have reported their results on datasets of only 100 users.

We can see that even as we successively double the size of the
enrolled dataset, the time taken per user remains constant. For
multiple path search, we observe that an increase in dataset size
does not have a significant impact on the search time. However,
as expected, searching multiple paths does take more time than
a single path search (Fig. 18).

MANSUKHANI et al.: A FRAMEWORK FOR EFFICIENT FINGERPRINT IDENTIFICATION USING A MINUTIAE TREE

0.60

0.40

Accuracy

0.20

0.00 + T T T T 1

0 1 2 3 4 5
Yariance of Minutiae Shift (pix)

(@)

Fig. 19.

1.00
0.80
0.60

0.40

Accuracy

0.20

0.00 + T T T T 1
1] 2 4 6 8 10
Yariance of Minutiae Orientation (deg)

(@)
Fig. 20.

1.00
0.80
0.60

0.40

Accuracy

0.20

0.00 + T
0 0.05

Maximum Ratio of Missing Points

(@)

0.25

0.2

0.1 0.15

135

Accuracy

0.40

0.20

1 2 3 4 3
Yariance of Minutiae Shift (pix)

®

Effect of minutiae point shifting on indexing system. (a) Single path search. (b) Multiple path search.

0.60

0.40

Accuracy

0.20

0.00 + T T T T 1
o 2 4] 8 10

Yariance of Minutiae Orientation (deg)

®

Effect of minutiae point rotation on indexing system. (a) Single path search. (b) Multiple path search.

1.00
0.80

0.60

Accuracy

0.40

0.20

0.00 + r T T T
o 0.05 0.1 0.15 0.2
Maximum Ratio of Missing Points

®)

Fig. 21. Effect of missing points in fingerprint template. (a) Single path search. (b) Multiple path search.

1) Shifting of Minutiae Points: We have shifted the location
of the minutiae points in the template randomly. The magnitude
of the shift is determined by a normal distribution with a 0 mean
and a parameterized variance. A random angle, between 0 and
359 is calculated and the location of the minutiae point is shifted
based on the distance and angle for that particular point. All
other parameters of distortion are kept at their default value.

Fig. 19 shows how the identification system is affected by
the shifting in minutiae points. We observe that the accuracy
of the system is not seriously affected by increased deviation,
up to a certain limit. After this point, there is a drop in accu-
racy for increase in point distortions. This is because, in a bin-
ning structure, a slight deviation in the locations of the points
still cause the corresponding points from templates belonging
to the same user to get mapped to the same bin. As we increase
distortions, the chances of the same minutiae mapping to dif-
ferent bins, across templates increases, and affects the retrieval
accuracy.

2) Changes in Minutiae Orientation: Here we vary the ori-
entation of the minutiae points and observe the effect on the
system. For each minutiae point, a value is picked from a normal
distribution with 0 mean and a selected variance, based on the
amount of distortion to by applied to the template. The ridge ori-
entation calculated for the point is either increased or decreased

based on the selected value. All other distortion parameters have
been set to their default values. We can observe (Fig. 20) that ini-
tially there is no significant change in system accuracy. How-
ever, beyond a threshold, we see a drop in performance, due
to the points getting distorted beyond the bin boundaries. The
system has been tested on both a single and multiple path-based
searching.

3) Missing Minutiae Points: From a particular template, we
calculate the probability of elimination of a minutiae point in it,
based on randomly selecting a value up t0 maxXpyjssing. Greater
values of maxmissing should lead to a larger number of points
being eliminated from it, and might lead to a lesser number of
minutiae patterns getting correctly matched, affecting the ac-
curacy of the system. To test this hypothesis, we have varied
the value of maxyissing, keeping all other distortion parameters
at their default value, and have plotted the system accuracy in
Fig. 21.

We can see that with an increase in the number of missing
minutiae points, the accuracy of the system steadily decreases.
The same trend is observed during a multiple path search, al-
though it performs better than in the single path mode.

4) Spurious Minutiae Points: While generating the sample
template from the master, we add up to maxXspurious fraction of
extra minutiae points into the template, representing spurious

136 IEEE SYSTEMS JOURNAL, VOL. 4, NO. 2, JUNE 2010
1.00 1.00
0.80 0.80 -
» >
§ 0.60 § 0.60 ‘—M\
3 3
y 0.40 1T Y 0.40
< <
0.20 4 0.20 4
0.00 T T T T 0.00 T r T T
1] 0.05 0.1 0.15 0.2 0.25 1] 0.05 0.1 0.15 0.2 0.25
Maximum Ratio of Spurious Points Maximum Ratio of Spurious Points
(a) (b)
Fig. 22. Effect of spurious points in fingerprint template. (a) Single path search. (b) Multiple path search.

minutiae points typically introduced due to errors in feature ex-
traction. Just as having missing points, we can see from Fig. 22
that a larger number of spurious minutiae points negatively im-
pacts the system, as they cause incorrect tree traversal.

Graphs for single path search mode and multiple path search
show us a similar pattern as observed for missing points. A
steady decrease in performance can be seen as the number of
spurious points increase. We can also see that the system per-
formance is slightly worse as compared to the corresponding
numbers for the missing minutiae experiments.

Hence, we can observe that due to a binning approach, slight
distortions wont affect the system as corresponding minutiae
from the enrolled and probed templates will most probably map
to the same bin, in spite of slightly different features calculated.
A multiple path-based search will improve the search accuracy,
because of it will also search in neighboring bins, and eliminate
some of the errors caused due to bin misses. But in both cases,
as the distortions in the templates starts increasing, there is a
significant decrease in system performance.

V. CONCLUSION

In this paper, we described the developed indexing system
for fingerprint images based on minutiae point patterns, partic-
ularly suited to enhance the performance in a complex (possibly
distributed) biometric system. Fingerprint templates are binned
based on local arrangement of minutiae points. This allows for
some amount of distortion in the templates, without loss of ac-
curacy. We empirically observe that methodology is scalable to
large datasets. The accuracy of the identification system does
not decrease with an increase in the size of the enrolled dataset.
The response time for identifying a test template scales well
with respect to an increase in search depth of the tree, and is
almost unaffected with an increase in the size of the enrolled
dataset. The time required for enrollment of a template is not sig-
nificant, and it remains constant as the indexing tree increases.
Experiments have been performed on real world and synthetic
datasets to validate these assumptions. Moreover, our indexing
system is dynamic which allows us to enroll new fingerprint
templates into the tree without any significant changes to the
rest of the index.

The system has been designed such that it can be easily
customized according to the needs of the user. For example,
the number of levels up to which fingerprints are enrolled
and searched can be varied—either increasing the probability

of getting a correct match or a confidence in the result. This
indexing methodology does not depend on any particular fea-
ture set to be used as indexing parameters. Based on a feature
study of the fingerprint dataset to be enrolled, the best feature
set could be identified, and the system performance could be
improved.

We consider the developed system as the first prototype of
the minutia-based indexing algorithm which can be further de-
veloped and improved in multiple ways. For example, we can
expand our index tree search to include backtracking based on
some matching cost function. This will be a generalization of
multipath method which we tested. Or we can take k-plets [16]
(k > 2) instead of currently considered single minutia used for
tree branching. In this case, we have to deal with bigger number
of bins at each level, but a smaller number of levels in the index
tree.

REFERENCES

[11 A. K. Jain and D. Maltoni, Handbook of Fingerprint Recognition.
New York: Springer-Verlag, 2003.

[2] J. Daugman and I. Malhas, “Iris recognition border-crossing system in
the uae,” Int. Airport Rev., no. 2, 2004.

[3] F. Galton, FingerPrints. New York: McMillan, 1892.

[4] G. Candela, P. Grother, C. Watson, R. Wilkinson, and C. Wilson,
PCASYS-A Pattern-Level Classification Automation System for Fin-
gerprints National Inst. Standards and Technol., Tech. Rep. NISTIR
5647, Apr. 1995.

[5] N.Ratha, K. Karu, S. Chen, and A. Jain, “A real-time matching system
for large fingerprint databases,” IEEE Pattern Anal. Mach. Intell., vol.
18, no. 8, pp. 799-813, Aug. 1996.

[6] X.Tan,B.Bhanu,and Y. Lin, “Fingerprintidentification: Classification
vs. indexing,” in Proc. IEEE Conf. Advanced Video and Signal Based
Surveillance, 2003.

[7] T. Liu, C. Zhang, and P. Hao, “Fingerprint indexing based on las reg-
istration,” in Proc. Int. Conf. Image Processing (ICIP), Atlanta, GA,
2006.

[8] J. Li, W. Yau, and H. Wang, “Fingerprint indexing based on sym-
metrical measurement,” in Proc. 18th Int. Conf. Pattern Recognition
(ICPR), Hong Kong, 2006.

[9] J. de Boer, A. M. Bazen, and S. Gerez, “Indexing fingerprint databases
based on multiple features,” in ProRISC 2001 Workshop on Circuits,
Systems and Signal Processing, Utrecht, The Netherlands, 2001.

[10] T. Liu, G. Zhu, C. Zhang, and P. Hao, “Fingerprint indexing based on
singular point correlation,” in Proc. Int. Conf. Image Processing (ICIP),
Genoa, Italy, 2005.

[11] J. Feng and A. Cai, “Fingerprint indexing using ridge invariants,” in
Proc. 18th Int. Conf. Pattern Recognition (ICPR), Hong Kong, 2006.

[12] R. Germain, A. Califano, and S. Colville, “Fingerprint matching using
transformation parameter clustering,” IEEE Comput. Sci. Eng., vol. 4,
no. 4, pp. 42-49, Oct.-Dec. 1994.

[13] B. Bhanu and X. Tan, “Fingerprint indexing based on novel features of
minutiae triplets,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no.
5, pp. 616-622, May 2003.

MANSUKHANI et al.: A FRAMEWORK FOR EFFICIENT FINGERPRINT IDENTIFICATION USING A MINUTIAE TREE 137

[14] K. Choi, D. Lee, S. Lee, and J. Kim, “An improved fingerprint in-
dexing algorithm based on the triplet approach,” in Proc. Audio and
Video Based Biometric Person Authentication (AVBPA), Guildford,
U.K., 2003.

[15] S. Chikkerur, “Online Fingerprint Verification System,” M.S. thesis,
Univ. Buffalo, Buffalo, NY, 2005.

[16] S. Chikkerur, A. Cartwright, and V. Govindaraju, “K-plet and coupled
bfs: A graph based fingerprint representation and matching algorithm,”
in Proc. Int. Conf. Biometrics, Hong Kong, 2006.

[17] Second International Fingerprint Verification Competition 2002 [On-
line]. Available: http://bias.csr.unibo.it/fvc2002/

[18] Third International Fingerprint Verification Competition 2004 [On-
line]. Available: http://bias.csr.unibo.it/fvc2004/

[19] X. Liang, A. Bishnu, and T. Asano, “A robust fingerprint indexing
scheme using minutia neighborhood structure and low-order Delaunay
triangles,” IEEE Trans. Inf. Forensics Security, vol. 2, no. 4, pp.
721-733, Dec. 2007.

Praveer Mansukhani received the Master’s degree
in 2004 and the Ph.D. degree in 2008 from the
Department of Computer Science and Engineering
(CSE), University of Buffalo, State University of
New York (SUNY).

His research interests are biometric authentication,
pattern recognition, and document image processing.

Sergey Tulyakov received the Ph.D. degree in com-
puter science and engineering from the University of
Buffalo, State University of New York (SUNY), in
2006.

Currently, he is a Research Scientist at the
Center for Unified Biometrics and Sensors, Univer-
sity of Buffalo. His research interests handwriting
recognition, fingerprint and face biometric person au-
thentication, and combination of pattern classifiers.

Venu Govindaraju (F’06) received the B.Tech.
(Hons.) degree from the Indian Institute of Tech-
nology (IIT), Kharagpur, India, in 1986 and the
Ph.D. degree from the University of Buffalo (UB),
State University of New York (SUNY), in 1992.

He is a UB Distinguished Professor of Computer
Science and Engineering at the UB SUNY. He has
authored more than 300 scientific papers, including
over 60 journal papers and 30 book chapters. He has
been the primary investigator(PI)/co-PI of projects
funded by the government and the industry for about

50 million dollars in the last 15 years.
Dr. Govindaraju is a Fellow of the International Association of Pattern Recog-
nition (IAPR).

