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ABSTRACT

In this work we place some of the traditional biometrics work on fingerprint verification via the fuzzy vault
scheme within a cryptographic framework. We show that the breaking of a fuzzy vault leads to decoding of
Reed-Solomon codes from random errors, which has been proposed as a hard problem in the cryptography
community. We provide a security parameter for the fuzzy vault in terms of the decoding problem, which gives
context for the breaking of the fuzzy vault, whereas most of the existing literature measures the strength of the
fuzzy vault in terms of its resistance to pre-defined attacks or by the entropy of the vault. We keep track of our
security parameter, and provide it alongside ROC statistics. We also aim to be more aware of the nature of the
fingerprints when placing them in the fuzzy vault, noting that the distribution of minutiae is far from uniformly
random. The results we show provide additional support that the fuzzy vault can be a viable scheme for secure
fingerprint verification.

Keywords: fuzzy vault, security, fingerprints, biometrics, cryptography, Reed-Solomon codes

1. INTRODUCTION

Fingerprints are a popular form of biometrics; however, they are currently mostly collected by governmental
agencies and do not have a large-scale commercial deployment. The primary reason for this is the lack of good
hashes for fingerprints which both obfuscate the fingerprints and still allow for fast and accurate matching.
Most existing work on fingerprints either focuses exclusively on the speed and accuracy of matching or designing
hashes for secure storage of fingerprints. In particular, the proposed secure hashes for fingerprints have not been
thoroughly compared with existing matching algorithms with respect to their accuracy. Further, the analysis of
secure hashes are theoretical and assume that the fingerprints have sufficient entropy, i.e. the fingerprints are
distributed somewhat uniformly at random. This paper aims to bridge these two shortcomings.

In this work, we focus on a hash function called fuzzy vault, which was first proposed by Juels and Sudan.1

The fuzzy vault has been studied quite a bit by the biometrics community in recent years.2–7 Unlike traditional
work in biometrics, which reports full ROC curves, existing results on fuzzy vault only consider a few cases where
the false accept rate is very small or zero. We believe that experiments should be performed for the entire range
of false accept and false reject rates and report the ROC curve to give a fair comparison between a secure fuzzy
vault and traditional matching algorithms. Our first contribution is a study on the accuracy of the fuzzy vault
matching along the lines of traditional fingerprint matching.

The main reason for studying hash functions for fingerprints is for security. Indeed, it seems very unlikely
that hash functions that obscure fingerprints will have the same accuracy as traditional fingerprint matching.
Some methods actually improve the matching accuracy while achieving security, though these schemes make use
of an encryption key that is assumed to be secret.8 In this approach, called biometric hardening, at the time of
enrollment each enrollee presents a key known only to himself. This way, an impostor fingerprint will use a key
different from the enrolled fingerprint, leading to increased security. We do not take this approach in our work.

Our implementation uses only data from the fingerprint itself which makes it more difficult to achieve both
goals. The hope, however, is this loss in accuracy will be made up for by increased security against attackers.
Some measures of security have been previously studied in the literature. Theoretical work on secure hash
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function have presented formulas for the amount of security (the security parameter∗).1,9 However, all of these
security measures are based on worst-case entropy arguments. For the range of parameters that are practical for
fingerprints, we end up with a very small security parameter.† Presumably, it is due to this reason that existing
work on fuzzy vault in the biometrics community use the following somewhat ad-hoc notion of security: the time
taken by a natural brute force algorithm to break the hash function, or other specified attacks.4,5, 10 Others
have used average entropy as a security measure.11 Our second main contribution is to point out that breaking
the fuzzy vault leads to decoding of Reed-Solomon codes from random errors, which has been proposed as a hard
problem in the cryptography community.12 In other words, we measure the security of the fuzzy vault in terms
of an established cryptographically secure primitive to obtain a non-trivial security parameter. Furthermore,
unlike in previous works, in our experiments we also keep track of this security parameter.

However, we note that the fuzzy vault is still vulnerable if an attacker has two distinct vaults that were
locked with the same fingerprint.3 The attacker can compare the vaults and observe which points are consistent
between them. These points are likely to be the genuine points and the rest are the randomly generated chaff
points. Our measures of security are for a single vault; more work must be done to eliminate this type of attack.

There is another issue with the previously observed theoretical security analysis of the fuzzy vault. Due to the
way the hash function is defined, the minutia points in the fingerprints have to be uniformly distributed in order
to obtain the claimed security parameters. This is because the hash function tries to hide the minutia points
(without modification) inside uniformly random “chaff” points. More precisely, the hash function first maps
the minutia points to some discrete set of points (in a finite field) and then hides it between uniformly random
points from the field. However, the minutia points are not distributed uniformly.13 To the best of our knowledge,
existing work while quantizing the minutia points uniformly quantized the entire possible ranges of the minutia
points. For example, if we wanted to use 16 bits to represent the x, y and θ coordinates of a particular minutia,
we would simply choose 3 numbers adding to 16 (one for each coordinate), say 4, 4, 8, respectively. And let’s
say x, y and θ are given to us in values of 8, 8, and 10 bits. We would then simply drop the 4 least significant
bits for x and y, and the 2 least significant bits for θ.2 It has been mentioned that uniform quantization does
not account for nonlinear distortion, though we are able to correct for this in the unlocking step.2

Therefore, it is important to make the minutiae uniform in the field; otherwise, the scheme is much more
prone to probabilistic attacks. The third main contribution of the paper is to present a more “fingerprint aware”
quantization function that results in a (more) uniform distribution in the finite field space. In other words,
instead of binning all the possible minutia points into bins of equal size, we break the range up into bins of
unequal size such that in expectation each bin receives (roughly) the same number of minutia points.

1.1 Overview of our Results

In Section 2, we recall the formal definition of the fuzzy vault, which is based on the well-known Reed-Solomon
codes. We also recall that, as proposed by Kiayias and Yung,12 the cryptographically hard problem based on
hardness of decoding Reed-Solomon codes for random errors is beyond the limits of currently known efficient de-
coding algorithms. We then show that “breaking” the fuzzy vault is the same as breaking this hard cryptographic
problem. In particular, we formally define these two hard problems and prove their equivalence.

In Section 3, we present the details of our implementation. Our main contribution here is a more fingerprint-
aware quantization of minutia points: the idea is to perform non-uniform “binning” of the minutia points in
their corresponding ranges so that the quantized values are uniformly distributed. In particular, we present
simulations on the FVC2002 fingerprint database 1 and show that the empirical distribution of our quantization
is better than those in existing work as shown in figure 1.

In Section 4, we present the results of our experiments on the FVC2002 fingerprint database 1. Here we
would like to highlight two differences from previous related work. First, we present full ROC curves as is the
norm of traditional fingerprint matching results. Second, we also plot our security parameter with the FRR and
FAR curves.

∗At a high level, a security parameter of λ means that a randomized polynomial time adversary only has roughly 2−λ

probability advantage over the trivial behavior of outputting a random answer.
†In our experimental settings, the measure of entropy is essentially 0.



1.2 Related Work

We begin with an overview of prior work on fingerprint fuzzy vault in the biometrics community. As has been
mentioned earlier, there has been a fair bit of work so here we will concentrate on the work that is most relevant
to ours.

Nandakumar, Jain and Pankanti2 present a fuzzy vault implementation with probably the best known accu-
racy (our accuracy numbers are worse). To help with alignment, the authors store a “hint” in a high-curvature
datum in the locked vault to assist with alignment. However, this work does not present full ROC curves and
refers to Chang, Shen and Teo14 for security. Chang et al. again use pre-defined attacks and entropy measures
to describe the security of the vault. By contrast our work with the original fuzzy vault and presents full ROC
curves along with a thorough security analysis.

Nagar, Nandakumar and Jain11 showed that matching accuracy can be improved further by utilizing minutia
descriptors. These descriptors capture data from the area surrounding each minutia point. This data is not
stored in the vault, yet it used for locking and unlocking the vault. Since it is not stored, an attacker presumably
must guess all the bits of this data so the entropy of the vault will be increased by the number of bits used. They
show that the vault will have a reasonable of amount entropy in the average case with their setup.

Boult, Scheirer and Woodworth8 improve both accuracy and security by using additional encryption with
independent keys. The keys assists in matching since an impostor with a different key is unlikely to match even
with a very similar fingerprint. Part of the security of this new system also comes from this extra encryption.
By contrast, we analyze the security of the existing fuzzy vault.

There has been a fair bit of work on attacks on the fingerprint. Scheirer and Boult3 present multiple attacks
for different proposed secure biometrics methods. A few of these are on fuzzy vault. In particular, the authors
observe that if the same fingerprint is used to lock different secrets, then this information can be used by an
attacker to break the vaults. There have also been work on other specific attacks.4,5, 10,14 By contrast, our work
shows that the fuzzy vault can be secure against more general attacks assuming that the adversary has access
to only one vault for a given fingerprint.

There has also been work on using “secure sketches” that use binary BCH codes instead of Reed-Solomon
codes (which are used for fuzzy vault).15,16 Further, these works use multiple readings of the same fingerprint
to improve the accuracy of the schemes.

Finally, we survey the theoretical results. The fuzzy vault was proposed by Juels and Sudan.1 Designing
secure sketches using BCH codes was proposed by Dodis et al.9 Both of these works present entropy based
security results. By contrast, Kiayias and Yung12 present a computationally hard problem based on decoding
Reed-Solomon codes from random errors. This latter work forms the basis of our security results.

2. FUZZY VAULTS AND REED-SOLOMON CODES

In this section, we recall the definition of the fuzzy vault of Juels and Sudan1 and Reed-Solomon codes (in
particular, the related cryptographic hardness assumption in Kiayias and Yung12).‡ We then point out the
connection between the hardness of breaking the fuzzy vault and the hardness assumption from Kiayias and
Yung12 . For the rest of the section, we will assume that the minutia points have been quantized such that
they can be mapped to the finite field with q elements, which we will denote by Fq. (We will come back to the
question of quantization in Section 3.)

We first recall the definition of polynomials. A polynomial of degree k− 1 over Fq is defined by k coefficients

p0, . . . , pk−1 ∈ Fq and is given by P (X) =
∑k−1

i=0 piX
i. It is well-known that given r ≥ k distinct points

α1, . . . , αr ∈ Fq, the set of vectors obtained by evaluating all polynomials of degree at most k − 1 over Fq

over α1, . . . , αr is the well-known Reed-Solomon codes of dimension k and block length r where the vector
(p0, . . . , pk−1) that define P is the message to be encoded.

‡We would like to emphasize that the connection between fuzzy vault and Reed-Solomon codes is well-known– in fact
the paper of Juels and Sudan presented the fuzzy vault in the language of Reed-Solomon codes. The novelty in this paper
is the connection to the hardness result from Kiayias and Yung.12



We are now ready to define the fuzzy vault. The fuzzy vault is defined by a subset f ⊆ Fq (which denotes the set
of minutia points in the fingerprint being “locked”) and a (random) secret s = (s0, . . . , sk−1) ∈ Fk

q , which denotes

a secret polynomial Ps(X)
def
=
∑k−1

i=0 si ·Xi. The hash of f with secret s is the set h(f , s)
def
= {(α, Ps(α))|α ∈ f}∪R,

where R ⊂ Fq × Fq is defined as follows. Each (α′, β′) ∈ R is chosen so that α is random (and has not been
chosen yet) and β′ is a uniformly random element in Fq \ {Ps(α

′)}. We will use r to denote |h(f , s)|.
We begin with the following simple observation:

Proposition 1. Given h(f , s) and one of f or s, one can in polynomial time compute the other.

Proof. Assume we know f .§ Then consider the pairs (α, β) for α ∈ f . Then perform polynomial interpolation¶

to obtain s.

For the other direction, assume that we know s. In that case we know that for any (α, β) ∈ h(f , s), we know
that α ∈ f if and only if β = Ps(α).

We now formally define the problem of breaking the fuzzy vault.

Definition 1. Let r, t, k be parameters then Vr,t,k is defined as the following computational problem. Let
T ⊆ Fq × Fq be generated as follows. Pick f ⊆ Fq as a random subset of size t. Let s be picked uniformly at

random from Fk
q . Then T

def
= h(f , s) is generated as above. The goal is given y, efficiently compute s.

Note that by Proposition 1, the goal of computing s is the same as computing (an approximation) of f ,
which will constitute breaking the hash function for our application. Further, we note that we can assume (by
Section 3) that the fingerprints when quantized to a subset in Fq given rise to a random subset of Fq (and hence
in the problem above, f is picked uniformly at random).

The proof of security in Juels and Sudan (at a high level) follows by showing that given h(f , s) for |f | = t, there
are roughly qk−t

(
r
t

)
distinct pairs (f ′, s′) 6= (f , s) that, when using the locking procedure of Juels and Sudan, could

have resulted in the vault h(f , s). For an appropriate choice of the parameters (namely k close to t and r close to
q), this leads to exponentially many possibilities, which in turn implies a strong information-theoretic/entropy
based security. Unfortunately, for our more practical choice of parameters, this number actually turns out to be
essentially 0. In other words, for our range of parameters, the pair (f , s) is the only pair that could have led to
h(f , s). Thus, we do not get any information theoretic security through the fuzzy vault. However, this does not
necessarily imply that the vault does not have any security. In fact, we argue next that even though (f , s) might
be the only pair that leads to h(f , s), computing the pair (or by Proposition 1 either one) is still hard (subject
to a known cryptographic hardness assumption).

Next, we begin with a quick recap of the hard problem from Kiayias and Yung12 . Consider the following
decoding problem

Definition 2. Given r, t, k and random distinct values α1, . . . , αr ∈ Fq (for large enough q), consider the
problem RSr,t,k, which is defined as follows. Let y ∈ Fr

q be defined as follows. Pick a set S ⊆ [r] uniformly at
random from all sets of size t. For a random P (X) of degree k − 1 over Fq, define yi = P (αi) if i ∈ S and yi is
picked uniformly at random from Fq \ {P (αi)} if i 6∈ S. The goal is to compute P (X) from y.

Kiayias and Yung conjecture the above problem to be hard.12 To be precise, the hardness of the problem in
Kiayias and Yung12 holds for every set of distinct α1, . . . , αr (with the rest of the objects picked randomly as
above). Thus, the above version of the problem where α1, . . . , αr are picked at random is also hard.‖ The best
known algorithm to solve the above problem is when t >

√
rk due a list decoding algorithm due to Guruswami

and Sudan18– in fact the latter algorithm works even if the “errors” are also worst-case. To be more precise,
Kiayias and Yung12 conjecture that the above problem of decoding Reed-Solomon codes from random errors is
hard when t <

√
rk. In particular, the security parameter is defined to be

§Actually one only needs to know another set f ′ ⊂ Fq such that f ∩ f ′ ≥ k+|f ′|
2

.
¶In case we know only a noisy version f ′ of f , we preform unique decoding of Reed-Solomon code by say the Welch-

Berlekamp algorithm.17

‖Technically the hard problem in Kiayias and Yung12 is a boolean version of the problem above but if we can solve
the version above then we can also solve the boolean version.



λ
def
=
√
rk − t, ∗∗ (1)

which we use as our measure of security for fuzzy vaults.

Kiayias and Yung also show the implications of the hardness assumption above. In particular, if the problem
above is hard for probabilistic polynomial-time algorithm, then the vector y appears to be a random vector in
Fn
q to such algorithms.

We now quickly argue why breaking the fuzzy vault would imply solving the hard problem from above.

Proposition 2. If there is a (probabilistic) polynomial-time algorithm to solve Vr,t,k, then there is a (proba-
bilistic) polynomial-time algorithm to solve RSr,t,k.

Proof. We will prove a one to one correspondence between the different objects in Vr,t,k and RSr,t,k, which
will immediately prove the claim.

The random secret s (or more precisely the corresponding polynomial Ps(X), which is a uniformly random
polynomial of degree at most k−1 over Fq) is in one to one correspondence with the random polynomial P (X) in
RSr,t,k. Consider only the “α” part of h(f , s) from Vr,t,k, which corresponds to the set {α1, . . . , αr} in RSr,t,k.
Further, the set S and f are in one-to-one correspondence as follows: i ∈ S if and only if αi ∈ f .

Finally, we consider the distributions in both settings. Note that the distribution on the α’s is the same in
both cases. In particular, picking α1, . . . , αr distinct random elements from Fq and then picking a random subset
S of size t is the same as picking f ⊂ Fq randomly and then picking the rest of r − t α’s as distinct random
elements in the definition of h(f , s). Finally, note that for i 6∈ S (α /∈ f resp.) the distribution on yi is the same
as the distribution on β, where (α, β) ∈ h(f , s). In other words, the distribution on the “errors” is the same in
both cases.

Thus, we have shown that all the objects in Vr,t,k are in one to one correspondence with the objects in RSr,t,k,
as desired.

3. IMPLEMENTATION

In this section we present the details of our implementation of the fuzzy vault scheme. We intend to be thorough
in this discussion (while still being brief) to assist further research on this topic.

Center: The algorithm first reads all the fingerprints from the database and stores them in a data structure. As
the fingerprints are read, they are centered about the common point of (250, 250). By centering the points
far from the origin, rotations and translations unlikely to produce negative values that can cause problems
later in the algorithm. Centering each fingerprint also allows us to get close to the proper alignment without
much cost.

Quantize: Each minutia point is then converted to a value in the field F216 . This is done by converting the x,
y, and θ values into binary strings of length 6, 6, and 4 respectively. We note that if we simply quantize
the values by taking the most significant bits, the values will not be uniform in the field, as is required
for the security proofs, since minutia points themselves are not uniformly distributed. In our analysis of
fingerprint data, we observed that the x, y, and θ values closely follow a normal distribution. By assuming
a normal distribution, we convert a value into a b bit binary string by dividing the normal curve into 2b

bins with equal probability and assigning each bin a unique binary value of length b. The x, y, and θ
values are binned based on where they lie in the approximate distribution and are then concatenated as
α = x ◦ y ◦ θ. We present some experimental justification in Section 4.

∗∗We also need to pick the parameters such that the brute force algorithm is also negligible in λ. This is true for our
settings.



3.1 Locking the Vault

To lock the vault with a fingerprint reading f , the minutia points are first converted into the field as shown above
to form the set {αi}. Then a secret polynomial, Ps(X), is generated by choosing k elements of F216 at random.
The number of terms in this polynomial is our value k and can be varied between runs. In practice, this secret
can be any data that needs to kept secure, such as an encryption key, but for testing purposes random data
will suffice. The polynomial is evaluated at each of the genuine values and the points (αi, Ps(αi)) are stored in
the vault. Since the αi are uniform in the field, the chaff points are created by choosing α′ and β′ uniformly at
random in F216 and adding (α′, β′) to the vault with the condition that β′ 6= Ps(α

′). We also make sure that the
α′ are different from the αi in f . After the specified number of chaff points are added, which can vary from run
to run, the vault is sorted by α to mix the chaff with the genuine points. The output of the locking function is
the vault V which is a set containing the genuine and chaff points.

For evaluation purposes, the chaff points are marked and the secret is stored with the vault so everything can
be checked after an attempted unlock. This will not be done in practice (and doesn’t need to be), but it allows
us to generate ROC curves that show how the vault will perform when deployed.

3.2 Unlocking the Vault

The unlocking algorithm is given a fingerprint f ′ and a vault V and attempts to recover the secret polynomial
Ps.

Alignment: When a fingerprint is used to attempt to unlock a vault, the alignment parameters are first com-
puted from a baseline algorithm. The baseline matching results and the reference alignment information
were obtained using a minutia based fingerprint matching algorithm utilizing secondary features from the
triplets of neighboring minutia.19 This is a simulation that can be replaced by techniques outlined in section
3.3. However, as we are primarily concerned with the security of the vault within a reasonable matching
scheme, this simulation fits our needs. The genuine and impostor matchings both use this alignment data
so as to ensure fairness. Other fuzzy vault implementations that use pre-aligned data typically don’t give
the impostors any help, which can artificially improve results.

Matching: We first convert the minutia points in f ′ to values in F216 in the same way we did for the locking
set. We then perform a simple matching algorithm between the set of αi and V . For each αi, we find the
closest value in V by the L2 distance of the vectors (x, y, θ) ∈ R3 as they are stored in the field. If the
closest vault point is within a predetermined threshold, that point is added to a set S which will be the
input for a Welch-Berlekamp decoder.17 We use a threshold of an L2-distance less than or equal to 2. This
value has shown the best results among the threshold values tested. We also experimented with the idea
of having a probability distribution such that the smaller the L2-distance, the higher the probability the
point would be added to S. We ran a genetic algorithm to find the best distribution with the condition that
the probability distribution was monotone non-increasing in L2 distance. We saw no remarkable change
in the matching accuracy using these distributions and the genetic algorithms seemed to converge to the
heuristically (via a sweep of threshold values) best threshold. ††

Score: To compute the matching score of a given f and f ′, we use the number of genuine points minus the number
of chaff points in the set of points S that results from attempting to unlock a vault with f ′ that has been
locked by f . This score accurately captures the ability of f ′ to unlock the vault, since the Welch-Berlekamp
decoder will return the secret polynomial exactly when

t ≥ n+ k

2
(2)

where t is the number of genuine minutia in S, k is the number of terms in the polynomial, and n = |S|.
We define c to be the number of chaff points in S, then we can rewrite the equation as

t− c ≥ k (3)

††In our evaluation of the thresholds, we used EER for FVC2002/DB1



where t − c is our score function. Therefore, if the score is greater than or equal to the number of terms
in the polynomial, the vault will unlock and vice-versa. Using this score, we generate FAR, FRR, and
ROC curves where the threshold is the number of terms k in the polynomial. This allows us to see how a
particular set of parameters for a vault will perform with respect to the size of the polynomial.

3.3 Improvements

Though this paper is mostly concerned about the security of the fuzzy vault scheme, it is worth noting that
there are various techniques that can be used to improve the error rates of fuzzy vault and traditional matching
schemes. Whether the schemes terribly decrease security is a point of interest, and is a topic for further research.
We will list some of possibilities here.

Alignment Our implementation uses alignment data from a separate matching algorithm as described in section
3.2. This is sufficient for testing purposes; however, this is not possible in practice. To overcome this,
several approaches have been successfully explored. Geometric hashes, hash functions that are rotation
and translation invariant, have been used to construct vaults.4,5 Using these hash functions eliminates
any need to find the alignment data. Without using invariant hashes, the alignment data can be found
by storing high-curvature data along with the locked vault.2 Another benefit of this approach is that it
effectively adds another iteration to the matching algorithm which will reduce the FAR since most imposers
will not match the high curvature stored and will be rejected without attempting to unlock the vault itself.

Descriptors Nagar et al.11 showed that matching accuracy can be improved further by utilizing minutia
descriptors. These descriptors capture data from the area surrounding each minutia point. This data is
not stored in the vault, yet it used for locking and unlocking the vault. Since it is not stored, an attacker
presumably must guess all the bits of this data so the entropy of the vault will be increased by the number
of bits used. They show that the vault will have a reasonable of amount entropy in the average case with
their setup.

Cyclic Redundant Check(CRC) We mark the genuine and chaff points to obtain a matching score that
relates to fingerprint’s ability to unlock the vault. However, in practice, any matching set that is larger
than the degree of the polynomial will have to be inputted into the Welch-Berlekamp decoder. If the
decoder returns a polynomial, there will be no consistent way to tell if it is the secret polynomial. To
overcome this, a CRC term can be added to the secret and used to check if the returned polynomial is in
fact the secret desired.2 For a CRC of length k, there is only a 2−k probability that a random polynomial
will satisfy the check. With high probability, a returned polynomial that satisfies the CRC is the secret
polynomial. Adding this functionality will not affect the security of the vault, and so was not implemented
in our vault, but it could easily be added if desired.

4. EXPERIMENTAL RESULTS AND DISCUSSION

We begin with a description of our experimental results on quantizing the minutiae into α ∈ F216 . The set of
α values are then used to lock and unlock the vault. The resulting distribution of all the minutia points used
in our experiments is shown in figure 1(b). For comparison, a min-max quantization of the same data is shown
in figure 1(a). This data was computed by normalizing the data over the range from the min value to the max
value, then dropping the least significant bits to arrive at the desired quantization. For both distributions 6,
6, and 4 bits were used for x, y, and theta respectively. We note that this algorithm can give slightly more
uniform data than the method discussed in the introduction which quantizes over the entire scanner range since
it eliminates any area around the edge of the scanner that contains no minutia points. This can only help the
alternate distribution so we used it here to achieve a more fair comparison.

We conducted the experiments on the first fingerprint database from the Second International Fingerprint Ver-
ification Competition (FVC2002/DB1) (http://bias.csr.unibo.it/fvc2002/). The minutia positions were obtained
by finding large curvature points on the contours extracted from the binarized fingerprint images.20 Addition-
ally, to improve the performance of minutia extraction, the fingerprints were enhanced by the short time Fourier



transform algorithm.21 A standard testing protocol for calculating all possible 2800 genuine (100 persons with
8·7
2 matches) and 4950 (1 print of each person matched against 1 print of another, or 100·99

2 ) impostor matches
has been used. To ensure that there is no symmetry error in our results, each pair (f , f ′) is tested with a vault
locked by f and unlocked by f ′ and vice-versa.

The results for a run with 200 and 300 chaff points are shown in Figures 2 and 3, respectively. To compute
the λ curves, we used the average number of minutia of all the readings in FVC2002/DB1, which is 45. We can
see from Figures 2(b) and 3(b) that the fuzzy vault has a negative lambda if there are fewer than 9 terms in the
secret polynomial with 200 chaff points, or fewer than 6 terms with 300 chaff points. A negative λ indicates that
the entire vault can be used as input for the Guruswami-Sudan decoding algorithm18 and it will successfully list
decode to the correct polynomial. As λ increases above zero, the security of the vault increases exponentially.

For reference, the ROC for the baseline algorithm19 is given in Figures 2(a) and 3(a). With this implemen-
tation, matching accuracy decreased in exchange for security. We notice that the fuzzy vault implementation
outperforms the baseline algorithm at small values of FAR. This is partly due to the baseline algorithm assigning
scores of 1 or 0 (the scores range from 0 to 1) under certain, somewhat common, conditions. This results in
many-way ties at these two values and the fairly odd shape of the ROC curve. The performance of fuzzy vault
seems to be comparable to other works2,4, 11 reporting results on different FVC2002 datasets. We also list the
results for some specific polynomial powers in Table 1. The most accurate practical matching results we present
here occurred with 200 chaff points and a polynomial with 9 terms. For these values we observed an FRR of
0.2025, FAR of 0.0044, and λ of 1.96. At this λ there is very little security for the vault. For a vault with 300
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(a) Distribution using a simple min-max quantization.
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(b) Distribution using our method of quantizing the minutia points.

Figure 1. A comparison of the distribution of genuine minutia points in F216 . Our method achieves a distribution that is
closer to uniform than standard quantization algorithms. The distribution is still noisy due to the nature of fingerprint
data and we will explore new ideas to reduce this noise.
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Figure 2. A summary of the performance and security results for a vault with 200 chaff points. Figure 2(a) shows a
comparison of the ROC curves of the vault and the baseline algorithm, while figure 2(b) shows a comparison of the
matching performance and security of the vault. The vault has a positive λ for k ≥ 9 indicating that smaller polynomials
should not be used due to the lack of security. We computed λ using the average number of genuine minutia which is 45.
The EER is 0.0856 and we note that there is no security at the EER.

chaff points and a polynomial with 13 terms, we observe a λ of 21.97 and zero false accepts. This represents a
fairly secure vault. The FRR for this setup was 0.3646. We note that at the EER there is no security.

We note that for our implementation, we gave the impostor readings the same alignment opportunity as the
genuine readings. Since the matching algorithm19 used for alignment favors the larger number of matched minutia
pairs, it gives to the fuzzy vault a maximal possible subset of true, or non-chaff, minutia during unlocking. Such
idealized alignment procedure could be equivalent to trying to unlock the vault by exploring all possible rotations
and translations, and finding the one which delivers the maximum number of matched non-chaff minutia. This
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Figure 3. A summary of the performance and security results for a vault with 300 chaff points. Figure 3(a) shows a
comparison of the ROC curves of the vault and the baseline algorithm, while figure 3(b) shows a comparison of the
matching performance and security of the vault. The vault has a positive λ for k ≥ 6 indicating that smaller polynomials
should not be used due to the lack of security. We computed λ using the average number of genuine minutia which is 45.
The EER is 0.0867 and we note that there is no security at the EER.



Table 1. Summary of results and security on FVC2002 DB1 for select choices of parameters. We note that λ is a logarithmic
measure of security so the actual security grows exponentially with λ

200 chaff points 300 chaff points
# of terms in the polynomial(k) FRR FAR λ FRR FAR λ

9 0.2025 0.0044 1.96 0.2389 0.0018 10.72
11 0.2668 0.0012 6.91 0.2975 0.0003 16.60
13 0.3286 0.0001 11.44 0.3646 0 21.97

sometimes resulted in some rotations which were over 90 degrees and large translations. These transformations
may not be realistic and gave the impostors much higher scores than they would without the helper data.
Running the same setup without assisting the impostor matches effectively reduced the EER by a factor of two.
We note that many implementations that pre-align readings only align the genuines and don’t give any help to
the impostors. We feel that giving the impostors the same chance as the genuines results in more realistic error
rates. Also note that we do not discard the fingerprints with small number of detected minutia, which might have
resulted in decreased performance compared to other published results which have non-zero Failure-To-Enroll
rates.

5. FUTURE WORK

It is convenient to have λ as a security parameter as it quantizes fundamentally how hard it is to break a vault.
However, this parameter is inconsistent between vaults because it depends on the number of genuine minutia
points used to lock the vault, which varies between fingerprint readings. This makes it difficult to control the
security of a fuzzy vault system in general and prompts the need to control the number of minutia used to lock
the vault. By using multiple fingerprints for enrollment as in7,15 we can limit the effect that a single poor reading
can have on the vault. We can require a user to provide multiple scans and combine these images to obtain an
accurate template of the fingerprint. This will effectively increase the number of minutia we can use to lock the
vault since more of the minutia points will be captured.

We will also explore the NIST MINDTCT minutia extraction algorithm22 as an alternative to locating the
points themselves. This algorithm has the advantage of a quality assessment of each minutia based on local
image quality. Since we would be able to rank the minutia by quality, we can use the top j points by quality to
lock the vault, where j is a chosen value for how many points to use. By combining multiple readings to increase
the number of minutia, and quality ranking to limit the number of minutia, the number of genuine points in the
vault, and thus λ, can be chosen. Since only the poor quality points are exempt from the vault, we expect the
performance will not suffer considerably while the security of the vault will greatly increase.

Another concern that should be more adequately addressed in future work is how to protect against enrollment
of a fingerprint in many different fuzzy vaults. As we mentioned earlier, this can lead to a straightforward attack,
and more work must be performed to eliminate it.

Our future work will also include further experimentation using the genetic algorithm. This algorithm has
been used to confirm that the matching threshold we are using is optimal, and we will apply the algorithm to
other parameters as well. By applying this algorithm to the other parameters, we can find the optimal tradeoff
between security and matching performance. We will also consider the avenues for future work discussed in
Section 3.3.
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