Er-suffixation in Chinese monophthongs: phonological analysis and phonetic data

Tsan Huang 黃璨
thuang3@buffalo.edu
Department of Linguistics
University at Buffalo (SUNY)
Historically, the retroflex suffix /-ə-/ originated mainly from four morphemes (Chao 1968; Li 1986):

- (1) the diminutive /er/ 儿,
- (2) /ri/ 日 “day”,
- (3) the locative /li/ 里 “inside”, and
- (4) the perfective /le/ 了

Other, specific lexical items (see e.g. T. Lin 1982)
monophthong vowels in Beijing

- Phonetically, seven (not counting “er”, i.e.) single vowels: \([i, y, z̄, z̄, u, ɤ, a]\) (Cf. Chao, 1968)
 - \([z̄]\) only after dentialveolar /ts, tsʰ, s/
 - \([z̄]\) only after retroflex /tʂ, tʂʰ, ʂ, ʐ/
surface forms of /ə-/-suffixed single Vs

- **Pulleyblank (1984)**
 \[i, y, z, \dot{z}, u, y, a \] + /ə-
 \[> [jər, jwər, ər, ər, ur, ər/ər, ar]\]

- **Duanmu (2007)**
 \[> [jəə, həə, əə, əə, əə, uə, əə, əə, əə]\]

- **Li (1986)**
 \[[iəɭ, əɭ, əɭ, ɣɭ, uɭ, əɭ, aɭ] \]
 \((ɭ, \text{Karlgren’s symbol} = \dot{z})\)

- **Y. Lin (1989)**
 \[[iər, ər, ər, ɣər, ur, ər, ar]\]
Methodology (1) - recording

• Six (6) female and six (6) male speakers from the city of Beijing. Results from eight (4 male and 4 female) speakers will be reported here.

• The recording material: a randomized list of 350 x 2 disyllabic words, balanced for rhyme and tone, with the second syllable containing the target plain rhyme or er-suffixed rhyme.

• Equipment:
 – a sound-attenuated booth
 – a Shure® SM10A head-mounted microphone
 – a Marantz® solid state recorder.
Methodology (2) – data tagging

Huang, IACL8/NACCL22, Harvard, May 20-22, 2010
Methodology (3) – taking measurements

• Formant measurements were taken with a Praat script (originally written by Mietta Lennes)

• Setting LPC parameters
 ◦ In general: 5 formants under 5000Hz for male and 5 formants under 5500Hz for female
 ◦ In an /ə/-suffixed form: 5/4500 for male and 5/5000 for female (esp. in non-front Vs)
Beijing monophthongs: “mid” F1 vs. F2 (female)

Huang, IACL8/NACCL22, Harvard, May 20-22, 2010
Beijing monophthongs: “mid” F1 vs. F3 (female)
Beijing monophthongs + er: “early” F1 vs. F2 (female)

Huang, IACL8/NACCL22, Harvard, May 20-22, 2010
Beijing monophthongs + er: “early” F1 vs. F3 (female)

F3

4000 3500 3000 2500 2000 1500 1000 500

F1

-200

-300

-400

-500

-600

-700

-800

-900

-1000

-1100

-1200

ir

uyr

e+tr

zhir

zir

er

ar

Huang, IACL8/NACCL22, Harvard, May 20-22, 2010
Beijing monophthongs + er: “mid” F1 vs. F2 (female)

Huang, IACL8/NACCL22, Harvard, May 20-22, 2010
Beijing monophthongs + er: “mid” F1 vs. F3 (female)
Beijing monophthongs + er: “late” F1 vs. F2 (female)
Beijing monophthongs + er: “late” F1 vs. F3 (female)
Changes in F1 ("mid") with er-suffixation

(Hz)
Changes in F2 ("mid") with er-suffixation
Changes in F3 with er-suffixation

(Hz)
Results – general patterns (2)

- F3 is lowered significantly \((p < .05) \) across the board, except for \([ʐ̩]\).

- For the non-back Vs \([i, y, ʐ̩, z̩]\):
 - F1 is significantly \((p < .05) \) raised \(↑\) in /ə/- suffixed forms
 - F2 is significantly \((p < .05) \) lowered \(↓\).

- For \([ɤ]\): F1 and F2 are raised \(↑\) (marginally significant).

- For the low \([a]\): F1 and F2 are lowered \(↓\).

- For \([u]\): no significant changes in F1 and F2.
examples of [u] and [uː̃]
The formant structure of /u/ is mostly preserved, with the r-formant “super-imposed”. (Formant values were taken from mid vowel.)

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>u + ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>F5</td>
<td>3635</td>
<td>3025</td>
</tr>
<tr>
<td>F4</td>
<td>2975</td>
<td>1760</td>
</tr>
<tr>
<td>F3</td>
<td>800</td>
<td>795</td>
</tr>
<tr>
<td>F1</td>
<td>390</td>
<td>445</td>
</tr>
</tbody>
</table>
Examples of plain and r-suffixed [ʐ̩]
Examples of plain and r-suffixed [z̩]
For /i, y/, the first 20% of the vowel is somewhat unaltered, followed by drastic downward movements in F2 and F3.

- Pulleyblank (1984: 53): /i; y/ + r-suffix > [ʃə, jwər]
- Duanmu (2007): [ʃəɭ, ɭəɭ]
- Y. Lin (1989): [ʃəɭ, ɭəɭ]
- Li (1986: 125-128): [ʃəɭ, ɭəɭ]
Examples of plain and er-suffixed /i/

Huang, IACL8/NACCL22, Harvard, May 20-22, 2010

5000Hz

0Hz

jil-e jil-m jil-l

jirl-e jirl-m jirl-l
Examples of plain and r-suffixed /y/

Huang, IACL8/NACCL22, Harvard, May 20-22, 2010
Results for [i, y] (2)

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>i</th>
<th></th>
<th>ü</th>
<th></th>
<th>er</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plain V</td>
<td>350</td>
<td>355</td>
<td>365</td>
<td>325</td>
<td>355</td>
<td>450</td>
</tr>
<tr>
<td>V+er</td>
<td>450(*)</td>
<td>655*</td>
<td>550(*)</td>
<td>445(*)</td>
<td>630*</td>
<td>560</td>
</tr>
<tr>
<td>F2 (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plain V</td>
<td>2765</td>
<td>2920</td>
<td>2880</td>
<td>2460</td>
<td>2320</td>
<td>2205</td>
</tr>
<tr>
<td>V+er</td>
<td>2465</td>
<td>1575*</td>
<td>1605*</td>
<td>1950(*)</td>
<td>1490*</td>
<td>1545*</td>
</tr>
<tr>
<td>F3 (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plain V</td>
<td>3670</td>
<td>3750</td>
<td>3620</td>
<td>2905</td>
<td>2795</td>
<td>2885</td>
</tr>
<tr>
<td>V+er</td>
<td>3230(*)</td>
<td>2175*</td>
<td>1990*</td>
<td>2635</td>
<td>2230(*)</td>
<td>2065</td>
</tr>
</tbody>
</table>
Examples of “ge1” and “ger1”
Examples of “ba1” and “bar1”
The formant values in the latter half of all /ə/-suffixed single vowels (except for /u/) are similar to the rhotic vowel /ɚ/.

The revised representations of the /ə/-suffixed single vowels: [jə, ʉə, ə, ɚ; u̯; ŋə, ə̯(ɚ)]

This is mostly consistent with Pulleyblank’s (1984) and Duanmu’s (2007) analysis, except that --

- Rhoticity is noted throughout the V
- The offglide in /u-er/ may not be perceptible.
Future research

◦ To compare all r-suffixed rhymes with their plain counterparts

◦ an articulatory study

◦ To compare Chinese with other languages with r-colored Vs
Selected References

Acknowledgements

I would like to thank my graduate research assistants Kuo-Chan Sun and Adam Sposato for collecting, segmenting and tagging the data.

I am also grateful to all my speakers, to Professor Lin Yen-Hui for sending me her manuscripts, and to Professor 曹文 CAO Wen (Beijing Language Institute) who located the Chinese references for me.

The vowel spaces were plotted with “PlotFormant”, developed by the late Professor P. Ladefoged.

Part of this work was presented at MLS39. I thank the participants there for their feedback.