Recent Advances in Reinforcement Learning Theory

Yingbin Liang, The Ohio State University Shaofeng Zou, University at Buffalo, SUNY Yi Zhou, University of Utah

2021 IEEE International Symposium on Information Theory July 18, 2021

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Recent Adv

Recent Advances in RL Theory

ISIT 2021 Tutorial 1 / 99

Outline

1 Introduction to Reinforcement Learning and Applications

- **2** Policy Evaluation and TD Learning
- **3** Value-based Method for Optimal Control
- Policy Gradient Algorithms
- 5 Advanced Topics on RL and Open Directions

Outline

1 Introduction to Reinforcement Learning and Applications

- Policy Evaluation and TD Learning
- **3** Value-based Method for Optimal Control
- Policy Gradient Algorithms
- **5** Advanced Topics on RL and Open Directions

Reinforcement Learning

- An agent learns to interact with environment in the best way
 - Agent observes state, and takes an action based on a policy
 - Environment changes the state
 - Agent receives a reward
 - Agent finds a policy to maximize reward

Markov Decision Process (MDP)

• Markov decision process (MDP): (S, A, r, P)

- S and A: state and action spaces
- $r: S \times A \times S \rightarrow \mathbb{R}$: reward function
- $\mathsf{P}(s'|s, a)$: transition kernel; prob of $s \to s'$ given action a
- Agent's policy $\pi(a|s)$: prob of selecting action a in state s

MDP trajectory $\{s_t, a_t, r_t, s_{t+1}\}_{t=0}^{\infty}$ defined by

$$s_0 \xrightarrow{\pi(\cdot|s_0)} a_0 \xrightarrow{\mathsf{P}(\cdot|s_0,a_0)} (s_1,r_0) \xrightarrow{\pi(\cdot|s_1)} a_1 \cdots$$

Randomness: actions, state transitions

Application: Autonomous Driving

- Collects driving data
- Al agent trained to optimize driving control
- Specification of MDP
 - State: driving environment (distance to nearby cars, weather, etc)
 - Action: turn left/right, accelerate, brake
 - Reward: stay safe, drive smoothly
 - Policy: vehicle control in a state

Application: Wireless Communication

- Downlink Scheduling [1]
- Learn optimal scheduling to minimize average queuing delay
- Specification of MDP
 - State: buffer status and channel state
 - Action: assign resource block, determine number of transmitted bits
 - Reward: buffer cost
 - Policy: determine action in a given state

Application: Agricultural Farming

- Collect data on crop & soil health
- Learn good farming policy to maximize yield
- Specification of MDP
 - State: crop & soil health
 - Action: apply amount of water & fertilizer
 - Reward: expected yield, crop & soil health
 - Farming policy: guide farming action in a state

Formulation of RL

- MDP trajectory $\{s_t, a_t, r_t, s_{t+1}\}_t$ with $r_t := r(s_t, a_t, s_{t+1})$
- Quality of s, a: discount factor $\gamma \in (0, 1)$

(State value): $V_{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t | s_0 = s, \pi\right]$ (State-action value): $Q_{\pi}(s, a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t | s_0 = s, a_0 = a, \pi\right]$

• Expected long-term accumulated reward start with s, a

RL Goal: find the best policy π^*

$$\begin{array}{lll} (\text{Criterion I}) & V_{\pi^*}(s) \geq V_{\pi}(s), \quad \forall \pi, \forall s \\ (\text{Criterion II}) & \max_{\pi} J(\pi) := \mathbb{E}_{s \sim \xi}[V_{\pi}(s)] \end{array}$$

Tutorial will not cover all the RL formulations

• Finite-time horizon, Average reward, Regret analysis

Outline

1 Introduction to Reinforcement Learning and Applications

2 Policy Evaluation and TD Learning

- **3** Value-based Method for Optimal Control
- Policy Gradient Algorithms
- **5** Advanced Topics on RL and Open Directions

Formulation of Policy Evaluation

• Recall Markov Decision Process: $\{s_t, a_t, r_t, s_{t+1}\}_t$

$$s_0 \xrightarrow{\pi(\cdot|s_0)} a_0 \xrightarrow{\mathsf{P}(\cdot|s_0,a_0)} (s_1,r_0) \xrightarrow{\pi(\cdot|s_1)} a_1 \cdots$$

• State value function:

$$V_{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} | s_{0} = s, \pi\right]$$

• Expected accumulated reward, start with *s* follow π .

Policy Evaluation Problem:

Given a fixed policy π , how to evaluate its state value function V_{π} ?

• Foundation for policy optimization

Summary of Policy Evaluation Approaches

- Known transition kernel $P(\cdot|s, a)$
 - Solving Bellman equation
- Unknown transition kernel $P(\cdot|s, a)$ (Model-free)
 - On-policy TD learning
 - Off-policy TD learning

Our focus is model-free approaches.

Known P: Bellman Equation

Transition kernel $P(\cdot|s, a)$ is known

• By definition of $V_{\pi}(s)$:

$$V_{\pi}(s) = \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots | s_0 = s, \pi]$$

= $\mathbb{E}[r_0 | s_0 = s, \pi] + \gamma \mathbb{E}[r_1 + \gamma r_2 + \dots | s_0 = s, \pi]$

Note that

$$\mathbb{E}[r_1 + \gamma r_2 + \dots | s_0 = s, \pi]$$

= $\mathbb{E}_{s_1} \Big[\mathbb{E}[r_1 + \gamma r_2 + \dots | s_0 = s, s_1 = s', \pi] \Big]$
= $\mathbb{E}_{s_1}[V_{\pi}(s')]$

$$V_{\pi}(s) = \sum_{a,s'} \mathsf{P}(s'|s,a) \pi(a|s) \Big(r(s,a,s') + \gamma V_{\pi}(s') \Big)$$

э

イロト イヨト イヨト

$$V_{\pi}(s) = \sum_{a,s'} \mathsf{P}(s'|s,a)\pi(a|s)\Big(r(s,a,s') + \gamma V_{\pi}(s')\Big)$$

• Define Bellman operator

(Bellman operator):

$$\mathsf{T}_{\pi} V_{\pi}(s) = \sum_{a,s'} \mathsf{P}(s'|s,a) \pi(a|s) \Big(r(s,a,s') + \gamma V_{\pi}(s') \Big)$$

Bellman Equation for Value Function

 $V_{\pi}(s) = \mathsf{T}_{\pi}V_{\pi}(s)$

- Linear programming: Directly solve the linear equation
 - High computation complexity
- Value iteration: fixed point update

$$V_{t+1}(s) = \mathsf{T}_{\pi} V_t(s)$$

•
$$\mathsf{T}_{\pi}$$
 is contraction $\Rightarrow V_t \rightarrow V_{\pi}$.

Model-Free: On-Policy TD Learning

Model-Free

• Transition kernel $P(\cdot|s, a)$ is unknown

On-Policy Data

• Collect Markovian data $\{s_t, a_t, r_t, s_{t+1}\}_t$ following target policy π

- 4 目 ト 4 日 ト

On-Policy TD(0) Algorithm

• Recall Bellman equation

$$V_{\pi}(s) = \mathbb{E}[r(s, a, s') + \gamma V_{\pi}(s')]$$

• Idea: update $V_{\pi}(s)$ using $r(s, a, s') + \gamma V_{\pi}(s')$

 \bullet Formally: collect $\{s_t, a_t, r_t, s_{t+1}\}_t$ and do

$$V(s_t) = \underbrace{r_{t+1} + \gamma V(s_{t+1})}_{\text{Target (one-step bootstrap)}}, \qquad (*)$$

• TD learning is a damped version of (*): 0 < η < 1,

$$V(s_t) \leftarrow (1-\eta)V(s_t) + \eta (r_{t+1} + \gamma V(s_{t+1})),$$
 (TD)

TD(0) Algorithm [2]

$$V(s_t) \leftarrow V(s_t) + \eta (\underbrace{r_{t+1} + \gamma V(s_{t+1}) - V(s_t)})$$

temporal difference

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah)

Recent Advances in RL Theory

TD(λ **)** Algorithm

TD(0) Algorithm

$$V(s_t) \leftarrow V(s_t) + \eta \big(\mathbf{r}_{t+1} + \gamma V(s_{t+1}) - V(s_t) \big)$$

- In TD(0), target $r_{t+1} + \gamma V(s_{t+1})$ is one-step bootstrap
- Extension: *n*-step bootstrap

$$G_t^{(n)} := r_{t+1} + \gamma r_{t+2} + \cdots + \gamma^{n-1} r_{t+n} + \gamma^n V(s_{t+n})$$

• Define λ -return: $G_t^{\lambda} := (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$.

TD(λ) Algorithm [3]

$$V(s_t) \leftarrow V(s_t) + \eta (G_t^{\lambda} - V(s_t))$$

Reduce the variance of TD target

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Value Function Approximation

- Curse of dimensionality: state space is often large or infinite
- Solution: approximate V_{π} using parameterized model V_{θ}
 - Linear model: $V_{\theta}(s) := \phi_s^{\top} \theta$, where ϕ_s is feature vector of s
 - ▶ Neural model: $V_{\theta}(s) := NN_{\theta}(s)$, where NN_{θ} is neural network

TD(0) learning with function approximation

- Initialize model θ₀.
- Observe sample $\{s_t, a_t, r_t, s_{t+1}\}$, define target $G_t = r_t + \gamma V_{\theta_t}(s_{t+1})$
- Define loss $\ell_t(\theta) := \frac{1}{2}(V_{\theta}(s_t) G_t)^2$, compute $g_t(\theta_t) = -\frac{\partial \ell_t(\theta)}{\partial \theta}|_{\theta = \theta_t}$
- TD update:

$$\theta_{t+1} = \theta_t + \eta g_t(\theta_t),$$

where $g_t(\theta_t) = (r_t + \gamma V_{\theta_t}(s_{t+1}) - V_{\theta_t}(s_t)) \nabla V_{\theta_t}(s_t)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Analysis of TD(0) with Linear Approximation

TD(0) with linear approximation $V_{\theta}(s) := \phi_s^{\top} \theta$

$$egin{aligned} & heta_{t+1} = \operatorname{Proj}_{\mathcal{R}}ig(heta_t + \eta g_t(heta_t)ig), \ & ext{where } g_t(heta_t) = (r_t + \gamma \phi_{s_{t+1}}^{ op} heta_t - \phi_{s_t}^{ op} heta_t) \phi_{s_t} \end{aligned}$$

- Challenge: $g_t(\theta_t)$ is gradient of time-varying function ℓ_t
- Challenge: Samples $\{s_t, a_t, r_t, s_{t+1}\}_t$ are Markovian and correlated

Non-exhaustive summary of existing work:

- Asymptotic convergence: [4, 5, 6, 7]
- Non-asymptotic (finite-time) convergence
 - I.I.D. samples: [8]
 - Markovian samples: [9], [10] (will be presented)

Finite-Time Convergence of TD(0)

Key Assumption: Geometric Mixing

State stationary distribution μ . There exist $\kappa > 0$, $\rho \in (0, 1)$ such that $\sup d = \varphi(\mathsf{P}(\mathsf{s}, |\mathsf{s}_2 - \mathsf{s}), \mu) \le \kappa \rho^t \quad \forall t \in \mathbb{N}_2$

$$\sup_{s \in \mathcal{S}} d_{TV}(\mathsf{P}(s_t | s_0 = s), \mu) \le \kappa \rho^{\iota}, \quad \forall t \in \mathbb{N}_0$$

- Hold for irreducible and aperiodic Markov chains
- Given s_0 and large t, s_t is almost like being sampled from μ

Feature matrix Φ = [φ^T_{s1}; ...; φ^T_{sn}] full column rank, V_θ = Φθ
Solution point θ^{*} satisfies [4]

$$V_{ heta^*} = \Pi_{\mathcal{L}} \mathsf{T}_{\pi} V_{ heta^*}, \quad ext{where } \mathcal{L} = \{ \Phi x | x \in \mathbb{R}^d \}$$

Theorem: finite-time convergence [10]

Set learning rate $\eta \leq \mathcal{O}(\frac{1}{1-\gamma})$. After T iterations,

$$\mathbb{E}\big[\|\theta_{\mathcal{T}} - \theta^*\|^2\big] \leq \mathcal{O}\Big(\exp(-c\eta T)\|\theta_0 - \theta^*\|^2 + \eta \frac{\tau_{\mathsf{mix}}(\eta)}{1-\gamma}\Big),$$

where $\tau_{\min}(\eta) := \min\{t \mid \kappa \rho^t \leq \eta\}$ is the mixing time of Markov chain.

A faster mixing implies smaller convergence error

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Outline of Proof

• Recall TD(0):
$$\theta_{t+1} = \operatorname{Proj}_R(\theta_t + \eta g_t(\theta_t))$$

• $g_t(\cdot)$ depends on sample $O_t = \{s_t, a_t, r_t, s_{t+1}\}$

- Define $ar{g}(heta) = \mathbb{E}[g_t(heta)]$, where \mathbb{E} over $O_t \sim \mathbb{P}(O_t)$
- Using the update rule yields

$$\mathbb{E}\left[\|\theta_{t+1} - \theta^*\|^2\right] \le \mathbb{E}\left[\|\theta_t - \theta^*\|^2\right] - 2\eta(1 - \gamma)\mathbb{E}\left[\|V_{\theta_t} - V_{\theta^*}\|_D^2\right] \\ + \eta\mathbb{E}\left[\underbrace{\langle g_t(\theta_t) - \bar{g}(\theta_t), \theta_t - \theta^* \rangle}_{\mathsf{Bias } \zeta(\theta_t, O_t)}\right] + \mathcal{O}(\eta^2)$$

- can show $\mathbb{E} \left[\| V_{\theta_t} V_{\theta^*} \|_D^2 \right] \ge \sigma \| \theta_t \theta^* \|^2$
- The key is to bound the bias term $\zeta(\theta_t, O_t)$
 - ▶ If all O_t are i.i.d from μ , then $\mathbb{P}(O_t|\theta_t) = \mathbb{P}(O_t) = \mu$ and

$$\mathbb{E}[g_t(\theta_t)|\theta_t] = \bar{g}(\theta_t) \quad \Rightarrow \quad \mathbb{E}[\zeta(\theta_t, O_t)] = 0$$

▶ However, now samples are correlated. $\mathbb{P}(O_t | \theta_t) \neq \mathbb{P}(O_t)$

Bounding the Bias

• Idea: $\mathbb{P}(O_t| heta_{t- au})$ is close to μ due to geometric mixing

$$\begin{aligned} \zeta(\theta_t, O_t) &= \zeta(\theta_{t-\tau}, O_t) + \sum_{i=t-\tau}^{t-1} \zeta(\theta_{i+1}, O_t) - \zeta(\theta_i, O_t) \\ &\leq \zeta(\theta_{t-\tau}, O_t) + G^2 \eta \tau \end{aligned}$$

- $\eta\tau$ can be controlled by using small learning rate η
- $\mathbb{E}[\zeta(\theta_{t- au}, O_t)]$ is small due to geometric mixing

$$\mathbb{E}[\zeta(\theta_{t-\tau}, O_t)] \leq 2 \|\zeta\|_{\infty} \sup_{s} \mathrm{d}_{\mathcal{T}V} \left(\mathsf{P}(s_t | s_{t-\tau} = s), \mu \right)$$
$$\leq 4 G^2 \kappa \rho^{\tau}$$

▲ 🗇 🕨 🔺

Putting Things Together

$$\begin{split} \mathbb{E}\big[\|\theta_{t+1} - \theta^*\|^2\big] &\leq \mathbb{E}\big[\|\theta_t - \theta^*\|^2\big] - 2\eta(1-\gamma)\mathbb{E}\big[\|V_{\theta_t} - V_{\theta^*}\|^2\big] \\ &+ \eta \mathbb{E}[\zeta(\theta_t, O_t)] + \eta^2 G^2 \end{split}$$

•
$$\mathbb{E}\left[\|V_{\theta_t} - V_{\theta^*}\|_D^2\right] \ge \sigma \|\theta_t - \theta^*\|^2$$

•
$$\zeta(\theta_t, O_t) \leq \zeta(\theta_{t-\tau}, O_t) + G^2 \eta \tau$$

• $\mathbb{E}[\zeta(\theta_{t-\tau}, O_t)] \leq 4G^2 \kappa \rho^{\tau}$

Image: A matrix and a matrix

3

Connection to Linear SA

Linear stochastic approximation (SA)

$$\theta_{t+1} = \theta_t + \eta(A(O_t)\theta_t + b(O_t))$$

- $\{O_t\}_t$ forms a Markov chain
- $A(O_t), b(O_t)$ are matrix and vector
- TD(0) with linear approximation can be rewritten using

$$O_t = (s_t, s_{t+1})^\top$$
$$A(O_t) = -\phi_{s_t}(\phi_{s_t}^\top - \gamma \phi_{s_{t+1}}^\top)$$
$$b(O_t) = r_t \phi_{s_t}$$

• Convergence established using Lyapunov-type analysis [11]

TD Learning for Off-Policy Evaluation

Previous TD(0) uses on-policy data

On-Policy Data

Collect Markovian data $\{s_t, a_t, r_t, s_{t+1}\}_t$ following target policy π

- Limitation: requires executing the target policy
- Limitation: in practice may not have sufficient on-policy data

Off-policy data

Collect Markovian data $\{s_t, a_t, r_t, s_{t+1}\}_t$ following behavior policy π_b . The goal is to evaluate V_{π} of the target policy π .

Divergence of Off-Policy TD(0)

Key message: TD(0) with linear approximation may diverge in the off-policy setting [12]

• Zero reward, function approximation

$$V(s) = 2\theta(s) + \theta_0, \quad s = 1, ..., 6$$

 $V(7) = \theta(7) + 2\theta_0$

• Under certain initialization, parameter diverges

Gradient TD for Off-Policy Evaluation

• Recall
$$V_{ heta}(s) = \phi_s^{ op} heta$$
. Optimal $heta^*$ satisfies

$$V_{\theta^*} = \Pi_{\mathcal{L}} \mathsf{T}^{\pi} V_{\theta^*}$$

• Data sampled by behavior policy π_b , stationary distribution μ_b

Mean-square projected Bellman error (MSPBE) [13] (MSPBE): $J(\theta) := \mathbb{E}_{s \sim \mu_b} [V_{\theta}(s) - \Pi_{\mathcal{L}} \mathsf{T}^{\pi} V_{\theta}(s)]^2$

• Error $V_{\theta}(s) - \prod_{\mathcal{L}} \mathsf{T}^{\pi} V_{\theta}(s)$ based on target policy

• $\mathbb{E}_{s \sim \mu_b}$: stationary state distribution induced by behavior policy

Idea of Importance Sampling

• Denote TD error
$$\delta_t(\theta) = r_t + \gamma \phi_{s_{t+1}}^\top \theta - \phi_{s_t}^\top \theta$$

MSPBE can be rewritten as

$$J(\theta) = \mathbb{E}_{\mu_b,\pi} [\delta_t(\theta)\phi_{s_t}]^\top \mathbb{E}_{\mu_b} [\phi_{s_t}\phi_{s_t}^\top]^{-1} \mathbb{E}_{\mu_b,\pi} [\delta_t(\theta)\phi_{s_t}]$$

Importance Sampling Lemma

$$\mathbb{E}_{\mu_b,\pi}[\delta_t(\theta)\phi_{s_t}] = \mathbb{E}_{\mu_b,\pi_b}\Big[\frac{\pi(a_t|s_t)}{\pi_b(a_t|s_t)}\delta_t(\theta)\phi_{s_t}\Big],$$

where $\rho_t = \frac{\pi(a_t|s_t)}{\pi_b(a_t|s_t)}$ is the importance sampling ratio. Then, we have $-\frac{1}{2}\nabla J(\theta) = \mathbb{E}[\rho_t(\phi_{s_t} - \gamma\phi_{s_{t+1}})\phi_{s_t}^{\top}]\mathbb{E}[\phi_{s_t}\phi_{s_t}^{\top}]^{-1}\mathbb{E}[\rho_t\delta_t(\theta)\phi_{s_t}]$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

GTD2 Algorithm

$$-\frac{1}{2}\nabla J(\theta) = \mathbb{E}\left[\rho_t(\phi_{s_t} - \gamma\phi_{s_{t+1}})\phi_{s_t}^\top\right] \underbrace{\mathbb{E}\left[\phi_{s_t}\phi_{s_t}^\top\right]^{-1}\mathbb{E}\left[\rho_t\delta_t(\theta)\phi_{s_t}\right]}_{\omega^*(\theta)}$$

• $\omega^*(\theta)$ can be viewed as solution to the LMS

(LMS):
$$\omega^*(\theta) = \operatorname*{argmin}_{u} \mathbb{E} [\phi_{s_t}^\top u - \rho_t \delta_t(\theta)]^2$$

GTD2 algorithm [13]

$$\theta_{t+1} = \theta_t + \alpha_t \rho_t (\phi_{s_t} - \gamma \phi_{s_{t+1}}) \phi_{s_t}^\top \omega_t$$
$$\omega_{t+1} = \omega_t + \beta_t (\rho_t \delta_t(\theta_t) \phi_{s_t} - \phi_{s_t} \phi_{s_t}^\top \omega_t)$$

- Two timescale updates
- $\bullet \ \omega$ update is one-step SGD applied to LMS

TDC Algorithm

$$-\frac{1}{2}\nabla J(\theta) = \mathbb{E}\left[\rho_t(\phi_{s_t} - \gamma\phi_{s_{t+1}})\phi_{s_t}^\top\right] \underbrace{\mathbb{E}\left[\phi_{s_t}\phi_{s_t}^\top\right]^{-1}\mathbb{E}\left[\rho_t\delta_t(\theta)\phi_{s_t}\right]}_{\omega^*(\theta)}$$
$$= \mathbb{E}\left[\rho_t\delta_t(\theta)\phi_{s_t}\right] - \gamma\mathbb{E}\left[\rho_t\phi_{s_{t+1}}\phi_{s_t}^\top\right]\omega^*(\theta)$$

TDC algorithm [13]

$$\theta_{t+1} = \theta_t + \alpha_t \rho_t (\delta_t(\theta_t) \phi_{s_t} - \gamma \phi_{s_{t+1}} \phi_{s_t}^\top \omega_t)$$
$$\omega_{t+1} = \omega_t + \beta_t (\rho_t \delta_t(\theta_t) \phi_{s_t} - \phi_{s_t} \phi_{s_t}^\top \omega_t)$$

- θ update is different from GTD2
- ω update is the same as GTD2

Analysis of TDC with Linear Approximation

TDC with linear approximation

$$\theta_{t+1} = \Pi_{R_{\theta}} \left(\theta_t + \alpha_t \rho_t (\delta_t(\theta_t) \phi_{s_t} - \gamma \phi_{s_{t+1}} \phi_{s_t}^{\top} \omega_t) \right)$$
$$\omega_{t+1} = \Pi_{R_{\omega}} \left(\omega_t + \beta_t (\rho_t \delta_t(\theta_t) \phi_{s_t} - \phi_{s_t} \phi_{s_t}^{\top} \omega_t) \right)$$

- Challenge: Correlated Markovian samples
- Challenge: Correlated two timescale updates

Non-exhaustive of existing work:

- Asymptotic convergence: [13, 14, 15]
- Non-asymptotic (finite-time) convergence
 - I.I.D. samples: [8]
 - Markovian samples: [16], [17] (will be presented)

Finite-Time Convergence of TDC

Key Assumptions:

• (Geometric mixing): There exist $\kappa > 0$, $\rho \in (0, 1)$ such that $\sup_{s \in S} d_{TV} (\mathsf{P}(s_t | s_0 = s), \mu) \le \kappa \rho^t, \quad \forall t \in \mathbb{N}_0$

• (Non-singularity): The following matrices are non-singular $A := \mathbb{E}_{\mu_b} [\rho_{s,a} (\gamma \phi_s \phi_{s'}^\top - \phi_s \phi_s^\top)], \quad C := -\mathbb{E}_{\mu_b} [\phi_s \phi_s^\top]$

Finite-Time Convergence of TDC

Theorem: finite-time convergence [17] Set learning rates $\alpha < \frac{1}{|\lambda_{\max}(2A^{\top}C^{-1}A)|}, \beta < \frac{1}{|\lambda_{\max}(2C)|}$. After *T* iterations, $\mathbb{E}[\|\theta_{T} - \theta^{*}\|^{2}] \leq \mathcal{O}\Big((1 - c\alpha)^{t} + \alpha \log \alpha^{-1} + \sqrt{\beta \log \beta^{-1} + \frac{\alpha}{\beta}}\Big)$

- Need small α, β and $\frac{\alpha}{\beta}$
- Small $\frac{\alpha}{\beta}$: ω_t takes faster update than θ_t , because it needs to approximate the double expectation in θ update

Outline of Proof: Step 1

Rewrite TDC Update

• Recall that ω_t is used to approximate

$$\omega_t \to \omega^*(\theta) := \underbrace{\mathbb{E}\left[\phi_{s_t}\phi_{s_t}^{\top}\right]^{-1}\mathbb{E}\left[\rho_t\delta_t(\theta)\phi_{s_t}\right]}_{-C^{-1}(b+A\theta)}$$

- Define tracking error $z_t = \omega_t \omega^*(\theta) = \omega_t + C^{-1}(b + A\theta)$
- TDC can be rewritten as: $O_t = (s_t, a_t, r_t, s_{t+1})$

$$\theta_{t+1} = \Pi_R \big(\theta_t + \alpha \big(f_1(\theta_t; O_t) + g_1(z_t; O_t) \big) \big)$$

$$z_{t+1} = z_t + \beta \big(f_2(\theta_t; O_t) + g_2(z_t; O_t) \big) - \omega^*(\theta_t) + \omega^*(\theta_{t+1})$$

Outline of Proof: Step 2

Develop bound of $\mathbb{E}[||z_t||^2]$

 $z_{t+1} = \prod_{R} \left(z_t + \beta (f_2(\theta_t; O_t) + g_2(z_t; O_t)) - \omega^*(\theta_t) + \omega^*(\theta_{t+1}) \right)$

• Use z_t update to develop a preliminary bound of $\mathbb{E}[||z_t||^2]$

- Linear converging term, variance, bias, slow drift term
- The proof uses constant bound of $||z_t||$
- Further use preliminary bound to develop refined bound
 - The proof uses preliminary bound of $||z_t||$
Outline of Proof: Step 3

Develop bound of $\mathbb{E}[\|\theta_t - \theta^*\|^2]$

$$\theta_{t+1} = \prod_{R} \big(\theta_t + \alpha(f_1(\theta_t; O_t) + g_1(z_t; O_t)) \big)$$

• Use θ_t update and the refined bound of $\mathbb{E}[||z_t||^2]$

$$\leq (1-\alpha)\mathbb{E}[\|\theta_t - \theta^*\|^2] + 2\alpha\mathbb{E}[\zeta_{f_1}(\theta_t, O_t)] + \alpha^2 \\ + 2\alpha\mathbb{E}[\|z_t\|^2 + \|\theta_t - \theta^*\|^2]$$

< 47 ▶

э

Extension: Mini-batch TDC [18]

Mini-batch TDC with linear approximation

$$\theta_{t+1} = \theta_t + \frac{\alpha_t}{M} \sum_{i=tM}^{(t+1)M-1} \rho_i(\delta_i(\theta_t)\phi_{s_i} - \gamma\phi_{s_{i+1}}\phi_{s_i}^\top\omega_t)$$
$$\omega_{t+1} = \omega_t + \frac{\beta_t}{M} \sum_{i=tM}^{(t+1)M-1} (\rho_i\delta_i(\theta_t)\phi_{s_i} - \phi_{s_i}\phi_{s_i}^\top\omega_t)$$

- No need to use bounded projection
- Allow large constant learning rates
- Reduce variance of two timescale stochastic updates

Outline

1 Introduction to Reinforcement Learning and Applications

- 2 Policy Evaluation and TD Learning
- **3** Value-based Method for Optimal Control
- Policy Gradient Algorithms
- **5** Advanced Topics on RL and Open Directions

Optimal Value/State-Action Value Function

• Recall definition of value and state-action value functions:

$$V_{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}, s_{t+1}) \middle| s_{0} = s, \pi\right]$$
$$Q_{\pi}(s, a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}, s_{t+1}) \middle| s_{0} = s, a_{0} = a, \pi\right]$$

- Goal: to find an optimal policy that maximizes the value function from any initial state s₀
- Optimal value function:

$$V^*(s) = \sup_{\pi} V_{\pi}(s), \, orall s \in \mathcal{S}$$

Optimal state-action value function:

$$Q^*(s,a) = \sup_{\pi} Q_{\pi}(s,a), \, orall (s,a) \in \mathcal{S} imes \mathcal{A}$$

Bellman Operator and Contraction

- Optimal policy π^* : take action $\underset{a \in \mathcal{A}}{\arg \max Q^*(s, a)}$ at state $s \in \mathcal{S}$
- $V^*(s) = \max_{a \in \mathcal{A}} Q^*(s, a), \forall s \in \mathcal{S}$
- The Bellman operator T is defined as

$$(\mathsf{T}\mathsf{V})(s) = \max_{a \in \mathcal{A}} \mathbb{E}_{s' \sim \mathsf{P}(\cdot|s,a)} \left[r(s,a,s') + \gamma \mathsf{V}(s') \right]$$

• T is contraction: for any
$$V_1$$
 and V_2

$$\|\mathsf{T} V_1 - \mathsf{T} V_2\|_{\infty} \le \gamma \|V_1 - V_2\|_{\infty}$$

• V^* is the fixed point of T: $V^* = TV^*$

Value Iteration

Assume known reward r and transition kernel P

Value Iteration

- Initialize V(s) arbitrarily for any $s \in \mathcal{S}$
- Repeat until convergence

$$V(s) \leftarrow \max_{a \in \mathcal{A}} \sum_{s' \in S} \mathsf{P}(s'|s, a)(r(s, a, s') + \gamma V(s')), \text{ for all } s \in S$$

- Repeatedly update V(s) using Bellman operator, i.e, $V \leftarrow \mathsf{T} V$
- Convergence can be proved using contraction of T

$$\|\mathsf{T}V - \mathbf{V}^*\|_{\infty} = \|\mathsf{T}V - \mathsf{T}\mathbf{V}^*\|_{\infty} \le \gamma \|V - V^*\|_{\infty}$$

$$\|\underbrace{\mathsf{T}} \cdots \underbrace{\mathsf{T}} V - V^*\|_{\infty} \le \gamma^t \|V - V^*\|_{\infty} \to 0, \text{ as } t \to$$

t times

 ∞

Policy Iteration

• Assume known reward r and transition kernel P

Policy Iteration

- Initialize π arbitrarily
- Repeat until convergence

Evaluate
$$Q_{\pi}$$

 $\pi'(s) \leftarrow \underset{a \in \mathcal{A}}{\operatorname{arg max}} Q_{\pi}(s, a)$ for all $s \in \mathcal{S}$
 $\pi \leftarrow \pi'$

- Policy improvement theorem: Let π and π' be any pair of deterministic policies such that for all s ∈ S, Q_π(s, π'(s)) ≥ V_π(s), then π' is no worse than π: V_{π'}(s) ≥ V_π(s), ∀s ∈ S
- Policy from policy iteration has higher or same value than before

SARSA: On-Policy TD Control

• Finite S and A, unknown reward r and transition kernel P

SARSA

- Parameter: step size $\alpha \in (0, 1]$, small $\epsilon > 0$
- ▶ Initialize Q(s, a) for all $s \in S$ and $a \in A$ arbitrarily
- Initialize s_0 and a_0 , t = 0
- Repeat until convergence

• Observe state s_{t+1} , receive reward $r(s_t, a_t, s_{t+1})$

★ Take action a_{t+1} using target policy derived from Q (e.g., ϵ -greedy)

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r(s_t, a_t, s_{t+1}) + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))$$

target

- SARSA converges to Q^* if
 - All state-action pairs are visited infinitely often
 - ▶ The policy converges to the greedy policy (e.g., ϵ -greedy with $\epsilon = 1/t$)

 $\star t \leftarrow t+1$

SARSA with Linear Function Approximation

• Large S and A, unknown r and P

SARSA

- Initialization: θ_0 , s_0 , ϕ_i , for i = 1, 2, ..., N
- $\pi_{\theta_0} \leftarrow \Gamma(\phi^\top \theta_0)$ (e.g., ϵ -greedy, softmax w.r.t. $\phi^\top \theta_0$)
- Choose a_0 according to π_{θ_0}
- For t = 0, 1, 2, ...
 - Observe s_{t+1} and $r(s_t, a_t, s_{t+1})$
 - Choose a_{t+1} according to π_{θ_t}
 - $\theta_{t+1} \leftarrow \theta_t + \alpha_t g_t(\theta_t)$
 - **Policy improvement**: $\pi_{\theta_{t+1}} \leftarrow \Gamma(\phi^{\top} \theta_{t+1})$

•
$$g_t(heta_t) =
abla_ heta Q_ heta(s_t, a_t) \Delta_t = \phi(s_t, a_t) \Delta_t$$
: "gradient"

• Δ_t denotes the temporal difference error at time t: $\Delta_t = r(s_t, a_t, s_{t+1}) + \gamma \phi^\top(s_{t+1}, a_{t+1})\theta_t - \phi^\top(s_t, a_t)\theta_t,$

SARSA Sample Path

- As θ_t is updated, π_{θ_t} changes with time
- On-policy algorithm, time-varying policy
- Non-i.i.d. data

Finite-Sample Analysis [20]

- The limit point θ^* of the projected SARSA [19]: $A_{\theta^*}\theta^* + b_{\theta^*} = 0$, where $A_{\theta^*} = \mathbb{E}_{\theta^*}[\phi(s, a)(\gamma \phi^T(s', a') - \phi^\top(s, a)]$ and $b_{\theta^*} = \mathbb{E}_{\theta^*}[\phi(s, a)r(s, a, s')]$
- The limiting point θ^* is the one such that $\mathbb{E}_{\theta^*}[g(\theta^*)] = 0$, where $s \sim \mu_{\pi_{\theta^*}}$, $a \sim \pi_{\theta^*}(\cdot|s)$

Theorem

- Finite-sample bound on convergence of SARSA with diminishing step-size: $\mathbb{E} \|\theta_T - \theta^*\|_2^2 \leq \mathcal{O}\left(\frac{\log T}{T}\right)$
- Finite-sample bound on convergence of SARSA with constant step-size: $\mathbb{E} \| \theta_{T} - \theta^{*} \|_{2}^{2} \leq \mathcal{O} \left(e^{-cT} \right) + \mathcal{O}(\alpha)$
- With diminishing step-size, SARSA converges exactly to optimal θ^*
- With constant step-size, SARSA converges exponentially fast to a small neighborhood of θ^*

イロト 不得 トイヨト イヨト 二日

Challenges in Technical Analysis

- Non-i.i.d. samples
 - Strong coupling between sample path $\{s_t, a_t\}_{t \ge 0}$ and $\{\theta_t\}_{t \ge 0}$
 - Samples are used to compute gradient g_t, and θ_{t+1}, which introduce bias in g_t
 - θ_t is further used (as in policy π_{θ_t}) to generate subsequent actions
- Convergence can be established using O.D.E approach [19]
- For finite-time bound, stochastic bias in g_t needs to be explicitly characterized
- Dynamically changing learning policy
 - Analysis in [10] relies on the fact that the learning policy is fixed so that the Markov process reaches its stationary distribution quickly
 - Episodic SARSA in [21], with each episode, the learning policy is fixed, and the Markov process reaches its stationary distribution within each episode
 - No such nice properties for SARSA!

・ロト ・ 一下 ・ ト ・ ト ・ ト

Proof Sketch

- Step 1. Error decomposition
- Step 2. Gradient descent type analysis
- Step 3. Stochastic bias analysis
- Step 4. Putting the first three steps together and recursively apply step 1 completes the proof

Key idea:

Design an auxiliary uniformly ergodic Markov chain to approximate original Markov chain induced by SARSA

Step 1. Error Decomposition

Some notations

- $\bar{g}(\theta) = \mathbb{E}_{\theta}[g_t(\theta)]$: noiseless gradient at θ
- $\Lambda_t(\theta) = \langle \theta \theta^*, g_t(\theta) \bar{g}(\theta) \rangle$: bias caused by using non-i.i.d. samples to estimate gradient
- Decompose error recursively:

$$\mathbb{E}[\|\theta_{t+1} - \theta^*\|_2^2] \leq \underbrace{\mathbb{E}[\|\theta_t - \theta^*\|_2^2] + 2\alpha_t \mathbb{E}[\langle \theta_t - \theta^*, \bar{g}(\theta_t) - \bar{g}(\theta^*) \rangle] + \alpha_t^2 \mathbb{E}[\|g_t(\theta_t)\|_2^2]}_{\text{Gradient descent type analysis}}$$

+
$$2\alpha_t \underbrace{\mathbb{E}[\Lambda_t(\theta_t)]}_{\text{Stochastic bias}}$$

Step 2. Gradient Descent Type Analysis

•
$$\mathbb{E}[\|\theta_t - \theta^*\|_2^2] + 2\alpha_t \underbrace{\mathbb{E}[\langle \theta_t - \theta^*, \bar{g}(\theta_t) - \bar{g}(\theta^*) \rangle]}_{\text{term1}} + \underbrace{\alpha_t^2 \mathbb{E}[\|g_t(\theta_t)\|_2^2]}_{\sim \mathcal{O}(\alpha_t^2)}$$

• True gradient $\bar{g}(\theta_t)$ is used, term 1 can be bounded:

$$\mathbb{E}[\langle heta_t - heta^*, ar{g}(heta_t) - ar{g}(heta^*)
angle] \leq (heta_t - heta^*)^T (A_{ heta^*} + C\lambda I)(heta_t - heta^*) \ \leq -w_s \mathbb{E}[\| heta_t - heta^*\|_2^2]$$

where $-w_s$ is the largest eigenvalue of $A_{\theta^*} + C\lambda I$

• A_{θ} is negative definite for all θ

Step 2. Some Assumptions

- Assumption (smooth policy): π_{θ} is Lipschitz with respect to θ : $\forall (s, a) \in S \times A |\pi_{\theta_1}(a|s) - \pi_{\theta_2}(a|s)| \leq C \|\theta_1 - \theta_2\|_2$
- Assumption (non-singularity): C is small enough so that A_{θ*} + CλI is negative definite
- Assumption (geometric mixing): for fixed θ, the Markov chain induced by π_θ and P is uniformly ergodic with invariant measure μ_θ, and there are constants κ > 0 and ρ ∈ (0, 1) such that

$$\sup_{s\in\mathcal{S}} \mathrm{d}_{TV} \big(\mathsf{P}(s_t|s_0=s),\mu_{\theta}\big) \le \kappa \rho^t, \quad \forall t \ge 0$$

- E[Λ_t(θ_t)]: Bias caused by using a single sample path with non-i.i.d. data and dynamically changing learning policy π_{θt}
- Define $O_t = (s_t, a_t, s_{t+1}, a_{t+1})$
- Recall stochastic bias: $\Lambda_t(\theta_t) = \langle \theta_t \theta^*, g_t(\theta_t) \bar{g}(\theta_t) \rangle$ and $g_t(\theta_t) = \phi(s_t, a_t) \left(r(s_t, a_t, s_{t+1}) + \gamma \phi^T(s_{t+1}, a_{t+1}) \theta_t \phi^T(s_t, a_t) \theta_t \right)$
- Complicated dependency between O_t and θ_t
- Rewrite $\Lambda_t(\theta_t)$ as $\Lambda_t(\theta_t, O_t)$

- First, we show that $\Lambda_t(\theta)$ is Lipschitz in θ
- Second, θ_t changes slowly with t
- Then for any $\tau > 0$, $\Lambda_t(\theta_t, O_t) \le \Lambda_t(\theta_{t-\tau}, O_t) + (6 + \lambda C)G^2 \sum_{i=t-\tau}^{t-1} \alpha_i$ (part a)
- Intend to decouple the dependency between θ_t and O_t by considering $\theta_{t-\tau}$ and O_t
- If the Markov chain induced by SARSA is uniformly ergodic, then given any $\theta_{t-\tau}$, O_t would reach its stationary distribution quickly for large τ
- However, this argument is not necessarily true since the policy π_{θ_t} changes with time

- Key idea: design an auxiliary Markov chain that is uniformly ergodic to assist proof
- Auxiliary Markov chain design:
 - Before time $t \tau + 1$, everything is the same as SARSA
 - After that, fix learning policy as $\pi_{\theta_{t-\tau}}$ to generate all subsequent actions
 - Denote new observations as $\tilde{O}_t = (\tilde{s}_t, \tilde{a}_t, \tilde{s}_{t+1}, \tilde{a}_{t+1})$
- Since π_{θt-τ} is kept fixed, for large τ, Õ_t reaches stationary distribution induced by π_{θt-τ} by geometric mixing assumption for large τ
- Thus, $\mathbb{E}[\Lambda_t(heta_{t- au}, ilde{O}_t)] \leq 4G^2 \kappa \rho^{ au-1}$ (part b)

- Bound different between SARSA Markov chain and auxiliary Markov chain
- θ_t changes slowly due to small stepsize
- Due to Lipschitz property of π_{θ} , the two Markov chains should not deviate from each other too much
- We can show $\mathbb{E}[\Lambda_t(\theta_{t-\tau}, O_t)] \mathbb{E}[\Lambda_t(\theta_{t-\tau}, \tilde{O}_t)] \leq \frac{C|\mathcal{A}|G^3\tau}{w} \log \frac{t}{t-\tau}$ (part c)
- Combining parts a, b and c yields an upper bound on $\mathbb{E}[\Lambda_t(\theta_t)]$

- Putting the first three steps together
- Recursively applying Step 1 completes the proof

э

Q-Learning: Off-Policy TD Control

• Finite S and A, unknown r and P

Q-Learning

- Parameter: step size $lpha \in (0,1]$
- ▶ Initialize Q(s, a) for all $s \in S$ and $a \in A$ arbitrarily
- Initialize s_0 , behavior policy π_b , t = 0
- Repeat until convergence

Take action a_t following fixed π_b , observe next state s_{t+1} , receive reward $r(s_t, a_t, s_{t+1})$ $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r(s_t, a_t, s_{t+1}) + \gamma \max_{a' \in \mathcal{A}} Q(s_{t+1}, a') - Q(s_t, a_t))$ $t \leftarrow t+1$

- Q-learning converges to Q^* if
 - All state-action pairs are visited infinitely often
- Q-learning sample complexity studies, e.g., [22], [23] and [24]

- 4 同 1 4 三 1 4 三 1

Gradient TD Method for Optimal Control

- Q-learning with function approximation suffers from divergence issue
- Greedy-Gradient Q-learning (Greedy-GQ) with linear function approximation [25]
- Consider mean squared projected Bellman error (MSPBE):

$$J(\theta) \triangleq \|\Pi \mathsf{T} Q_{\theta} - Q_{\theta}\|_{\mu}^{2}$$

• μ : stationary distribution induced by behavior policy π_b

$$||Q(\cdot,\cdot)||_{\mu} \triangleq \int_{s \in \mathcal{S}, a \in \mathcal{A}} d\mu_{s,a} Q(s,a)$$

• Π : projection operator $\Pi \hat{Q} = \arg \min_{Q \in Q} \|Q - \hat{Q}\|_{\mu}$

$$Q = \{ Q_{\theta} = \phi^{\top} \theta : \theta \in \mathbb{R}^{N} \}$$

Goal:

$\min_{\theta} J(\theta)$

Two Time-Scale Update Rule

$$\frac{\nabla J(\theta)}{2} = -\mathbb{E}_{\mu}[\delta_{s,a,s'}(\theta)\phi_{s,a}] + \gamma \mathbb{E}_{\mu}[\hat{\phi}_{s'}(\theta)\phi_{s,a}^{\top}]\omega^{*}(\theta),$$

where $\omega^*(\theta) = \mathbb{E}_{\mu}[\phi_{s,a}\phi_{s,a}^{\top}]^{-1}\mathbb{E}_{\mu}[\delta_{s,a,s'}(\theta)\phi_{s,a}].$

- Double-sampling issue for estimating $\mathbb{E}_{\mu}[\hat{\phi}_{s'}(\theta)\phi_{s,a}^{\top}]\omega^{*}(\theta)$: it involves product of two expectations
- Weight doubling trick [13]:

Slow time-scale: $\theta_{t+1} = \theta_t + \alpha(\delta_{t+1}(\theta_t)\phi_t - \gamma(\omega_t^{\top}\phi_t)\hat{\phi}_{t+1}(\theta_t)),$ Fast time-scale: $\omega_{t+1} = \omega_t + \beta(\delta_{t+1}(\theta_t) - \phi_t^{\top}\omega_t)\phi_t,$

Finite-Sample Analysis [26, 27]

Challenges:

- Non-convex objective $J(\theta)$ with two time-scale update rule
- Non-smooth due to max in $\bar{V}_{s'}(\theta) = \max_{a' \in \mathcal{A}} \theta^{ op} \phi_{s',a'}$
 - Approximate max with a smooth approximation, e.g., softmax
- Biased gradient estimate due to two time-scale update and Markovian noise

Theorem

Finite-sample bound on convergence of Greedy-GQ with linear function approximation: $\mathbb{E}[\|\nabla J(\theta_W)\|^2] = \mathcal{O}\left(\frac{\log T}{\sqrt{T}}\right)$

• Gradient norm converges to 0 implies convergence to stationary points

Finite-Sample Analysis [26, 27]

- $\omega^*(\theta)$: limit of fast time-scale if θ_t is fixed to be θ
- Define tracking error: z_t = ω_t ω^{*}(θ_t): how fast the fast time-scale tracks its limit
- Denote estimate of $\frac{\nabla J(\theta)}{2}$ by $G_{t+1}(\theta, \omega) = \delta_{t+1}(\theta)\phi_t - \gamma(\omega^{\top}\phi_t)\hat{\phi}_{t+1}(\theta)$
- Slow time-scale can be written as $\theta_{t+1} = \theta_t + \alpha G_{t+1}(\theta_t, \omega_t)$

Stochastic Bias in Gradient Estimate

• Bias in the gradient estimate can be decomposed as follows:

$$\mathbb{E}\left[G_{t+1}(\theta_t, \omega_t) + \frac{\nabla J(\theta)}{2}\right]$$

$$= \underbrace{\mathbb{E}\left[G_{t+1}(\theta_t, \omega^*(\theta_t)) + \frac{\nabla J(\theta)}{2}\right]}_{\text{Bias (a): due to Markovian noise}} + \underbrace{\mathbb{E}\left[G_{t+1}(\theta_t, \omega_t) - G_{t+1}(\theta_t, \omega^*(\theta_t))\right]}_{\text{Bias (b): due to tracking error}}$$

- For bias (a), under the i.i.d. setting, it is zero. Under the Markovian setting, it can be bounded similarly to proof of TDC.
- For bias (b), $\|G_{t+1}(\theta_t, \omega_t) G_{t+1}(\theta_t, \omega^*(\theta_t))\| \le L \|\underbrace{\omega_t \omega^*(\theta_t)}_{Z_t}\|$,

for some Lipschitz constant L > 0. Thus, a tight bound on the tracking error $||z_t||$ is needed.

Tracking Error Bound

- z_t can be recursively written as $z_{t+1} = z_t + \beta((\delta_{t+1}(\theta_t) - \phi_t^\top \omega^*(\theta_t))\phi_t - \phi_t^\top z_t \phi_t + \omega^*(\theta_t) - \omega^*(\theta_{t+1}))\phi_t$
- Then the recursion of $||z_t||^2$ naturally involves a term $\langle z_t, \omega^*(\theta_t) \omega^*(\theta_{t+1}) \rangle$, to bound which, the Taylor expansion of $\omega^*(\theta)$ at θ_t is used:

$$\begin{split} & \omega^*(\theta_{i+1}) - \omega^*(\theta_i) \\ &= \nabla \omega^*(\theta_i)^\top (\theta_{i+1} - \theta_i) + \mathcal{O}(\alpha^2) \\ &= \alpha \nabla \omega^*(\theta_i)^\top \underbrace{\mathbf{G}_{i+1}(\theta_i, \omega_i)}_{\text{should also converge to } 0} + \mathcal{O}(\alpha^2) \end{split}$$

• Basic idea: bound tracking error z_t in terms of $\nabla J(\theta_t)$, which shall also converges to zero, instead of a constant bound

Variance Reduced Greedy-GQ [29]

• Greedy-GQ update: denote $O_t = (s_t, a_t, r_t, s_{t+1})$

$$\theta_{t+1} = \theta_t - \alpha G_{O_t}(\theta_t, \omega_t), \quad \omega_{t+1} = \omega_t - \beta H_{O_t}(\theta_t, \omega_t)$$

• Variance reduction [28]: reference parameters $\widetilde{ heta}$, $\widetilde{\omega}$

$$(\text{Reference updates}) \ \widetilde{G} := \frac{1}{M} \sum_{i=1}^M G_{O_i}(\widetilde{\theta}, \widetilde{\omega}), \ \widetilde{H} := \frac{1}{M} \sum_{i=1}^M H_{O_i}(\widetilde{\theta}, \widetilde{\omega})$$

(Variance-reduced Greedy-GQ):

$$\theta_{t+1} = \theta_t - \alpha \big(\mathcal{G}_{\mathcal{O}_t}(\theta_t, \omega_t) - \mathcal{G}_{\mathcal{O}_t}(\widetilde{\theta}, \widetilde{\omega}) + \widetilde{\mathcal{G}} \big) \\ \omega_{t+1} = \omega_t - \beta \big(\mathcal{H}_{\mathcal{O}_t}(\theta_t, \omega_t) - \mathcal{H}_{\mathcal{O}_t}(\widetilde{\theta}, \widetilde{\omega}) + \widetilde{\mathcal{H}} \big)$$

- Periodically update $\widetilde{\theta}, \widetilde{\omega}, \widetilde{G}, \widetilde{H}$
- Improved sample complexity

Outline

1 Introduction to Reinforcement Learning and Applications

- 2 Policy Evaluation and TD Learning
- **3** Value-based Method for Optimal Control
- Policy Gradient Algorithms
- **5** Advanced Topics on RL and Open Directions

Formulation of RL

State value function:

$$V_{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, s_{t+1}) | s_0 = s, \pi\right]$$

• State-action value function:

 $\begin{aligned} Q_{\pi}(s,a) &= \mathbb{E}[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t},a_{t},s_{t+1}) | s_{0} = s, a_{0} = a, \pi] \end{aligned}$ where $a_{t} \sim \pi(\cdot | s_{t})$ for all $t \geq 0$.

• Average value function:

 $J(\pi) = (1 - \gamma) \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, s_{t+1})] = \mathbb{E}_{s \sim \xi}[V_{\pi}(s)]$

where $\xi(\cdot)$ denotes initial distribution.

RL Goal: find the best policy π^* (Criterion I): $V_{\pi^*}(s) \ge V_{\pi}(s), \quad \forall \pi, \forall s$ (Criterion II): $\max_{\pi} J(\pi) := \mathbb{E}_{s \sim \xi}[V_{\pi}(s)]$

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah)

Recent Advances in RL Theory

Parameterization of Policy

- Central idea:
 - Parameterize the policy as $\{\pi_w, w \in \mathcal{W}\}$

•
$$J(\pi) = J(\pi_w) := J(w)$$

Goal of Policy-Based RL: $\max_{w \in \mathcal{W}} J(\pi_w) := J(w)$

• Example parameterizations of policy

- ▶ Direct parameterization: $\pi_w(a|s) = w_{s,a}$, where $w \in \triangle(\mathcal{A})^{|S|}$, i.e., $w_{s,a} \ge 0$, and $\sum_{a \in \mathcal{A}} w_{s,a} = 1$ for all (s, a)
- Tabular softmax parameterization:

$$\pi_w(a|s) = \frac{\exp(w_{s,a})}{\sum_{a' \in \mathcal{A}} \exp(w_{s,a'})}$$

$$\pi_w(a|s) \propto \exp(\phi(s,a)^T w)$$

• Gaussian policy: $\pi_w(a|s) = \mathcal{N}(\phi(s)^T w, \sigma^2)$

Policy Gradient Algorithm

Goal of Policy-Based RL: $\max_{w \in W} J(\pi_w) := J(w)$

• Policy gradient $\nabla J(w)$ [30]

$$abla_w J(w) = \mathbb{E}_{
u_{\pi_w}}ig[\mathcal{Q}_{\pi_w}(s,a)
abla_w \log \pi_w(a|s)ig]$$

- Visitation distribution: $\nu_{\pi}(s, a) = (1 \gamma) \sum_{t=0}^{\infty} \gamma^{t} \mathbb{P}(s_{t} = s, a_{t} = a)$
- Define score function $\psi_w(s, a) := \nabla_w \log \pi_w(a|s)$
- Define advantage function: $A_{\pi}(s, a) = Q_{\pi}(s, a) V_{\pi}(s)$

$$abla_w J(w) = \mathbb{E}_{
u_{\pi_w}} ig[\mathcal{Q}_{\pi_w}(s,a) \psi_w(s,a) ig] = \mathbb{E}_{
u_{\pi_w}} ig[\mathcal{A}_{\pi_w}(s,a) \psi_w(s,a) ig]$$

Policy gradient algorithm [30, 31]

• update the parameter w via gradient ascent

$$w_{t+1} = w_t + \alpha_t \nabla_w J(w_t)$$

where $\alpha_t > 0$ is the stepsize.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah)

TRPO/PPO Algorithm

Trusted Region Policy Optimization (TRPO) [32]

• Update the parameter w under KL constraint

$$w_{t+1} = \operatorname*{argmax}_{w}[J(w_t) + (w - w_t)^T \nabla_w J(w_t)]$$

subject to $\mathbb{E}_{\nu(s)}[KL(\pi_{w_t} || \pi_w)] \le c$

where c > 0 is a hyperparameter.

Proximal Policy Optimization (PPO) [33]

• Update the parameter w via KL-regularized gradient ascent

$$w_{t+1} = \operatorname*{argmax}_{w} [J(w_t) + (w - w_t)^T \nabla_w J(w_t) - \alpha \mathbb{E}_{\nu_w(s)} [KL(\pi_{w_t} || \pi_w)]]$$

where c > 0 is a hyperparameter.

< ロ > < 同 > < 回 > < 回 >

Natural Policy Gradient (NPG) Algorithm

• Second-order Taylor approximation to KL distance

$$\mathcal{KL}(\pi_{w_t}||\pi_w) \approx \frac{1}{2} (w - w_t)^T \mathcal{F}(w)(w - w_t)$$

Fisher information matrix F(w) = E_{νπw}[∇_w log π_{wt}∇_w log π^T_{wt}]
 KL-regularized update: at time t

$$\begin{aligned} \underset{w}{\operatorname{argmax}} \left[J(w_t) + (w - w_t)^T \nabla_w J(w_t) - \alpha \mathbb{E}_{\nu_w(s)} [KL(\pi_{w_t} || \pi_w)] \right] \\ &\approx \underset{w}{\operatorname{argmax}} \left[J(w_t) + (w - w_t)^T \nabla_w J(w_t) - \frac{\alpha}{2} (w - w_t)^T F(w_t) (w - w_t) \right] \\ &= w_t + \alpha F(w_t)^{\dagger} \nabla_w J(w_t) \end{aligned}$$

where $F(w_t)^{\dagger}$ denotes the pseudo-inverse of $F(w_t)$.

Natural Policy Gradient (NPG) [34]

Update parameter w via KL approximator based regularizer

$$w_{t+1} = w_t + \alpha F(w_t)^{\dagger} \nabla_w J(w_t)$$

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah)

Convergence with Exact Policy Gradient

- Policy gradient
 - Direct and tabular softmax policy: global sublinear convergence [35]
 - Direct policy: global linear convergence via regularized MDP [36]
 - Direct policy: global linear convergence via line search [37]
- TRPO/PPO
 - Direct policy: global sublinear convergence via adaptivity [38]
 - Direct policy: global linear convergence via regularized MDP [36]
 - Direct policy: global convergence via line search [37]
- NPG
 - Tabular softmax policy: global sublinear convergence [35]
 - Tabular softmax policy: global linear convergence via regularized MDP [39]
Policy Gradient Algorithms under Unknown MDP

$$abla J(w) = \mathbb{E}_{
u_{\pi_w}} ig[\mathcal{Q}_{\pi_w}(s, a) \psi_w(s, a) ig] = \mathbb{E}_{
u_{\pi_w}} ig[\mathcal{A}_{\pi_w}(s, a) \psi_w(s, a) ig]$$

• Let
$$\hat{P}(\cdot|s_t, a_t) = \gamma \mathbb{P}(\cdot|s_t, a_t) + (1 - \gamma)\xi(\cdot)$$
 [40]

- $\xi(\cdot)$: initial distribution
- Samples drawn from $\hat{P}(\cdot|s_t, a_t)$ converge to visitation distribution ν_{π_w}

Model-free Policy Gradient

• Sample
$$s_t \sim \hat{P}(\cdot|s_{t-1},a_{t-1}), a_t \sim \pi_{w_t}(\cdot|s_t)$$

- Unbiased estimation of $A_{\pi_{w_t}}(s_t, a_t)$
 - Sample a length-K trajectory starting at (s_t, a_t) , $K \sim \text{Geom}(1 \gamma)$ Estimate $\hat{Q}(s_t, a_t)$ by adding rewards over the sample path Sample a length-K trajectory starting at (s_t) , $K \sim \text{Geom}(1 - \gamma)$ Estimate $\hat{V}(s_t)$ by adding rewards over the sample path $\hat{A}_{\pi_{w_t}}(s_t, a_t) = \hat{Q}(s_t, a_t) - \hat{V}(s_t)$

• Estimate policy gradient $g_t = \hat{A}_{\pi_{w_t}}(s_t, a_t) \nabla_{w_t} \log(\pi_{w_t}(a_t|s_t))$

• Update
$$w_{t+1} = w_t + \alpha_t g_t$$

Analysis of Model-free PG Algorithms

- Parameterization: general *nonlinear* policy $\{\pi_w : w \in W\}$
- Sampling is over a single trajectory path

Assumption 1 (Smoothness of policy)

For any (w, w') and (s, a), there exist positive L_{ψ} , C_{ψ} , and C_{π} such that:

- $\|\psi_{w}(s,a) \psi_{w'}(s,a)\|_{2} \leq L_{\psi} \|w w'\|_{2}$
- $\left\|\psi_w(s,a)\right\|_2 \leq C_\psi$
- $d_{TV}(\pi_w(\cdot|s), \pi_{w'}(\cdot|s)) \le C_{\pi} ||w w'||_2$

Assumption 2 (Geometric Mixing)

For any policy π_w and transition kernel $P(\cdot|s, a)$ or $\hat{P}(\cdot|s, a)$, let μ_{π_w} be stationary distribution. There exist $\kappa > 0$, $\rho \in (0, 1)$ such that

$$\sup_{s\in\mathcal{S}} \mathrm{d}_{TV}\big(\mathbb{P}(s_t|s_0=s),\mu_{\pi_w}\big) \leq \kappa \rho^t, \quad \forall t\geq 0$$

ト ・ ロ・ ・ ・ ・ ・ ・ ・ ・

Convergence of Model-free PG Algorithms

Theorem ([41])

Suppose Assumptions 1 and 2 hold. Under a diminishing stepsize $\alpha_t = \frac{1}{\sqrt{t}}$ for t = 1, ..., T, the output of model-free PG satisfies

$$\min_{t\in[T]} \mathbb{E}\left[\|\nabla_{w_t} J(w_t)\|^2 \right] \leq \mathcal{O}\left(\frac{\log T}{T}\right) + \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right).$$

Furthermore, under constant stepsize $\alpha_t = \alpha$:

$$\min_{t\in[T]} \mathbb{E}\left[\left\|\nabla_{w_t} J(w_t)\right\|^2\right] \leq \mathcal{O}\left(\frac{1}{\alpha T}\right) + \mathcal{O}(\alpha \log^2 \frac{1}{\alpha}).$$

- Under constant stepsize, PG converges to a neighborhood of a stationary point at a rate of O (¹/_T).
 - $\blacktriangleright \alpha$ controls a tradeoff between convergence rate and accuracy
 - \blacktriangleright Decreasing α improves accuracy, but slows down convergence

• Let
$$\alpha_t = \frac{1}{\sqrt{T}}$$
, PG converges with a rate of $\mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right)$

Actor-Critic Algorithms [42]

Actor-Critic Algorithm

• Critic

- Estimates $V_{ heta}(s)$ by linear function approximation $\phi(s)^ op heta$
- Takes T_c length-M minibatch TD learning updates and outputs $heta_t$

Actor

Approximates $A_{\pi_w}(s,a)$ by temporal difference error $\delta_{ heta}(s,a,s')$

$$\hat{A}_{\pi_w}(s, a) = \delta_{\theta}(s, a, s') = r(s, a, s') + \gamma \phi(s')^\top \theta - \phi(s)^\top \theta$$

Estimate policy gradient v_t(θ_t) by averaging δ_{θt}(s_t, a_t, s_{t+1})ψ_{wt}(s_t, a_t) over a length-B sample trajectory
 Updates w_{t+1} = w_t + α_tv_t(θ_t)

- Parameterization: general *nonlinear* policy $\{\pi_w : w \in W\}$
- Sampling is over a single trajectory path

イロト イポト イヨト イヨト 三日

Convergence Rate of Actor-Critic Algorithm

Theorem ([43])

Suppose Assum. 1 and 2 hold, and \hat{T} is chosen uniformly from $\{1, \dots, T\}$.

 $\mathbb{E}[\left\|\nabla_{w}J(w_{\hat{T}})\right\|_{2}^{2}] \leq \mathcal{O}\left(\frac{1}{T}\right) + \mathcal{O}\left(\frac{1}{B}\right) + (1 - \mathcal{O}(\lambda_{A_{\pi}}\beta))^{T_{c}} + \mathcal{O}\left(\frac{\beta}{M}\right) + \mathcal{O}(\zeta_{approx}^{critic}).$

With total sample complexity $\mathcal{O}(\epsilon^{-2}\log(1/\epsilon))$

$$\mathbb{E}[\left\|\nabla_{w}J(w_{\hat{T}})\right\|_{2}^{2}] \leq \epsilon + \mathcal{O}(\zeta_{approx}^{critic}).$$

- Actor has sublinear convergence, and critic has linear convergence
- Actor's bias and variance $\mathcal{O}\left(\frac{1}{B}\right)$; Critic's bias and variance $\mathcal{O}\left(\frac{\beta}{M}\right)$
- Critic's approximation error: $\zeta_{\text{approx}}^{\text{critic}} = \max_{w \in \mathcal{W}} \mathbb{E}_{\nu_w}[|V_{\pi_w}(s) V_{\theta_{\pi_w}^*}(s)|^2]$

(日)

Convergence Rate of Actor-Critic Algorithm

Theorem ([43])

Suppose Assum. 1 and 2 hold, and \hat{T} is chosen uniformly from $\{1, \dots, T\}$.

 $\mathbb{E}[\left\|\nabla_{w}J(w_{\hat{T}})\right\|_{2}^{2}] \leq \mathcal{O}\left(\frac{1}{T}\right) + \mathcal{O}\left(\frac{1}{B}\right) + (1 - \mathcal{O}(\lambda_{A_{\pi}}\beta))^{T_{c}} + \mathcal{O}\left(\frac{\beta}{M}\right) + \mathcal{O}(\zeta_{approx}^{critic}).$

With total sample complexity $\mathcal{O}(\epsilon^{-2}\log(1/\epsilon))$

$$\mathbb{E}[\left\|\nabla_{w}J(w_{\hat{T}})\right\|_{2}^{2}] \leq \epsilon + \mathcal{O}(\zeta_{approx}^{critic}).$$

- Actor's mini-batch yields faster convergence rate of $\mathcal{O}(1/T)$ rather than $\mathcal{O}(1/\sqrt{T})$
- This further yields better overall sample complexity

Proof of Convergence

- Let $v_t(heta)$ denote estimator of $g(heta, w) = \mathbb{E}_{\nu_w}[A_{ heta}(s, a)\psi_w(s, a)]$
- Decompose error terms

$$\begin{split} &\left(\frac{1}{2}\alpha - L_J\alpha^2\right)\mathbb{E}[\|\nabla_w J(w_t)\|_2^2 |\mathcal{F}_t] \\ &\leq \mathbb{E}[J(w_{t+1})|\mathcal{F}_t] - J(w_t) + 3\left(\frac{1}{2}\alpha + L_J\alpha^2\right)\mathbb{E}\Big[\left\|v_t(\theta_t) - v_t(\theta_{w_t}^*)\right\|_2^2 \\ &+ \left\|v_t(\theta_{w_t}^*) - g(\theta_{w_t}^*, w_t)\right\|_2^2 + \left\|g(\theta_{w_t}^*, w_t) - \nabla_w J(w_t)\right\|_2^2 |\mathcal{F}_t\Big]. \end{split}$$

• Error due to TD learning

$$\begin{split} \mathbb{E}[\left\|\boldsymbol{v}_t(\theta_t) - \boldsymbol{v}_t(\theta_{w_t}^*)\right\|_2^2 |\mathcal{F}_t] \\ &\leq 4\mathbb{E}[\left\|\theta_t - \theta_{w_t}^*\right\|_2^2 |\mathcal{F}_t] \leq (1 - \mathcal{O}(\lambda_{A_{\pi}}\beta))^{T_c} + \mathcal{O}(\beta/M) \end{split}$$

Proof of Convergence (Cont.)

Gradient estimation error under Markovian minibatch sampling

$$\mathbb{E}\left[\left\|m{v}_t(heta^*_{w_t}) - m{g}(heta^*_{w_t},w_t)
ight\|_2^2 |\mathcal{F}_t
ight] \leq \mathcal{O}\left(rac{1}{B}
ight).$$

• Critic's approximation error

$$\left\|g(\theta_{w_t}^*, w_t) - \nabla_w J(w_t)\right\|_2^2 \leq \mathcal{O}\left(\zeta_{\mathsf{approx}}^{\mathsf{critic}}\right)$$

• Combine error bounds and take summarization over iteration path

$$\mathbb{E}[\left\|\nabla_{w}J(w_{\widehat{T}})\right\|_{2}^{2}] \leq \mathcal{O}\left(\frac{1}{\overline{T}}\right) + (1 - \mathcal{O}(\lambda_{A_{\pi}}\beta))^{T_{c}} + \mathcal{O}\left(\frac{\beta}{\overline{M}}\right) \\ + \mathcal{O}\left(\frac{1}{\overline{B}}\right) + \mathcal{O}(\zeta_{\mathsf{approx}}^{\mathsf{critic}}).$$

Natural Policy Gradient under Unknown MDP

• Natural policy gradient (NPG) [34, 44],

$$w_{t+1} = w_t + \alpha_t F(w_t)^{\dagger} \nabla J(w_t)$$

- Consider $\min_{\theta \in \mathbb{R}^d} L_w(\theta) = \mathbb{E}_{\nu_{\pi_w}}[A_{\pi_w}(s, a) \psi(s, a)^\top \theta]^2$
 - Minimum norm solution satisfies $\theta_w = F(w)^{\dagger} \nabla J(w)$
- NPG update [35]: $w_{t+1} = w_t + \alpha_t \theta_t$

Model-free NPG [35]

At step t, solve least square problem via K iterations
 Obtain unbiased estimator Â_{πwt}(s_k, a_k) (same as PG)
 Update θ_{k+1} = θ_k − β∇_θL_{wt}(θ_k)

• Update
$$w_{t+1} = w_t + \alpha_t \theta_K$$

• NPG with general nonlinear policy converges globally as $\mathcal{O}\left(\frac{1}{\sqrt{\tau}}\right)$ [35]

• Can achieve $\mathcal{O}\left(\frac{1}{T}\right)$ by self-variance reduction of gradient norm [43]

Natural Actor-Critic Algorithm

$$J(w) = \mathbb{E}_{\nu_{\pi_w}} \left[Q_{\pi_w}(s, a) \psi_w(s, a) \right] = \mathbb{E}_{\nu_{\pi_w}} \left[A_{\pi_w}(s, a) \psi_w(s, a) \right]$$
$$w_{t+1} = w_t + \alpha_t F(w_t)^{\dagger} \nabla J(w_t)$$

Natural Actor-Critic Algorithm

• Critic (same as critic in actor-critic algorithm)

- Estimates $V_ heta(s)$ by linear function approximation $\phi(s)^ op heta$
- Takes T_c length-M minibatch TD learning updates and outputs θ_t

Actor

- Computes policy gradient estimator $v_t(\theta_t)$ as in actor-critic algorithm
- Computes Fisher information estimator $F_t(w_t)$ by averaging over a length-*B* sample trajectory
- Updates $w_{t+1} = w_t + \alpha_t F_t(w_t)^{\dagger} v_t(\theta_t)$
- Parameterization: general *nonlinear* policy $\{\pi_w : w \in W\}$
- Sampling is over a single trajectory path

Convergence Rate of Natural Actor-Critic Algorithm

Theorem ([43])

Let Assum. 1 and 2 hold and \hat{T} is chosen uniformly from $\{1, \cdots, T\}$.

$$\begin{split} J(\pi^*) &- \mathbb{E} \Big[J(\pi_{w_{\hat{T}}}) \Big] \leq \mathcal{O} \left(\frac{1}{T} \right) + \mathcal{O} \left(\frac{1}{\sqrt{B}} \right) + (1 - \mathcal{O}(\lambda_{A_{\pi}}\beta))^{T_c/2} + \mathcal{O} \left(\frac{1}{\sqrt{M}} \right) \\ &+ \mathcal{O} (\sqrt{\zeta_{approx}^{critic}}) + \mathcal{O} \left(\frac{1}{B} \right) + (1 - \mathcal{O}(\lambda_{A_{\pi}}\beta))^{T_c} + \mathcal{O} \left(\frac{\beta}{M} \right) + \mathcal{O}(\zeta_{approx}^{critic}) + \mathcal{O}(\sqrt{\zeta_{approx}^{actor}}) \Big] \end{split}$$

With total sample complexity $\mathcal{O}(\epsilon^{-3}\log(1/\epsilon)),$ we achieve

$$J(\pi^*) - \mathbb{E}\big[J(\pi_{w_{\hat{\tau}}})\big] \le \epsilon + \mathcal{O}\left(\sqrt{\zeta_{approx}^{actor}}\right) + \mathcal{O}\left(\sqrt{\zeta_{approx}^{critic}}\right) + \mathcal{O}\left(\zeta_{approx}^{critic}\right)$$

- Actor has sublinear convergence, and critic has linear convergence
- Critic's approx. error: $\zeta_{\text{approx}}^{\text{critic}} = \max_{w \in \mathcal{W}} \mathbb{E}_{\nu_w}[|V_{\pi_w}(s) V_{\theta_{\pi_w}^*}(s)|^2]$
- Actor's approx. error: $\zeta_{\text{approx}}^{\text{actor}} = \max_{w \in \mathcal{W}} \min_{p \in \mathbb{R}^{d_2}} \mathbb{E}_{\nu_{\pi_w}} \left[\psi_w(s, a)^\top p - A_{\pi_w}(s, a) \right]^2$

82 / 99

Convergence Rate of Natural Actor-Critic Algorithm

Theorem ([43])

Let Assum. 1 and 2 hold and \hat{T} is chosen uniformly from $\{1, \dots, T\}$.

$$\begin{split} J(\pi^*) &- \mathbb{E} \big[J(\pi_{\mathsf{w}_{\hat{T}}}) \big] \leq \mathcal{O} \left(\frac{1}{T} \right) + \mathcal{O} \left(\frac{1}{\sqrt{B}} \right) + (1 - \mathcal{O}(\lambda_{A_{\pi}}\beta))^{T_c/2} + \mathcal{O} \left(\frac{1}{\sqrt{M}} \right) \\ &+ \mathcal{O} (\sqrt{\zeta_{\mathsf{approx}}^{\mathsf{critic}}}) + \mathcal{O} \left(\frac{1}{B} \right) + (1 - \mathcal{O}(\lambda_{A_{\pi}}\beta))^{T_c} + \mathcal{O} \left(\frac{\beta}{M} \right) + \mathcal{O} (\zeta_{\mathsf{approx}}^{\mathsf{critic}}) + \mathcal{O} (\sqrt{\zeta_{\mathsf{approx}}^{\mathsf{actor}}}) \Big] \end{split}$$

With total sample complexity $\mathcal{O}(\epsilon^{-3}\log(1/\epsilon))$, we achieve

$$J(\pi^*) - \mathbb{E}\big[J(\pi_{w_{\hat{\tau}}})\big] \le \epsilon + \mathcal{O}\left(\sqrt{\zeta_{approx}^{actor}}\right) + \mathcal{O}\left(\sqrt{\zeta_{approx}^{critic}}\right) + \mathcal{O}\left(\zeta_{approx}^{critic}\right).$$

- Diminishing variance in actor's update yields a faster convergence rate of $\mathcal{O}(1/T)$ than $\mathcal{O}(1/\sqrt{T})$
- Performance difference lemma [35] of NAC yields global convergence

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Proof of Convergence (Part I)

- Define $u_{w_t} = F(w_t)^{-1} \nabla_w J(w_t)$ and $u_t(\theta) = F_t(w_t)^{-1} v_t(\theta)$, where $F_t(w_t)$ is assumed to be nonsingular.
- Bound the norm of policy gradient

$$\begin{split} & \mathbb{E}[\|\nabla_{w}J(w_{t})\|_{2}^{2}|\mathcal{F}_{t}] \\ & \leq \mathcal{O}\left(\mathbb{E}[J(w_{t+1})|\mathcal{F}_{t}] - J(w_{t})\right) + \mathcal{O}\left(\mathbb{E}[\left\|u_{t}(\theta_{t}) - \mathcal{F}(w_{t})^{-1}\nabla_{w}J(w_{t})\right\|_{2}^{2}|\mathcal{F}_{t}]\right) \end{split}$$

Bound estimation error of natural policy gradient

$$\begin{split} & \mathbb{E}[\left\|u_{t}(\theta_{t})-F(w_{t})^{-1}\nabla_{w}J(w_{t})\right\|_{2}^{2}|\mathcal{F}_{t}] \\ & \leq \mathcal{O}\left(\mathbb{E}[\left\|v_{t}(\theta_{t})-\nabla_{w}J(w_{t})\right\|_{2}^{2}|\mathcal{F}_{t}]\right)+\mathcal{O}\left(\mathbb{E}[\left\|F(w_{t})-F_{t}(w_{t})\right\|_{2}^{2}|\mathcal{F}_{t}]\right) \\ & \leq (1-\mathcal{O}(\lambda_{A_{\pi}}\beta))^{T_{c}}+\mathcal{O}\left(\frac{\beta}{M}\right)+\mathcal{O}\left(\frac{1}{B}\right)+\mathcal{O}(\zeta_{\mathsf{approx}}^{\mathsf{critic}}) \end{split}$$

Proof of Convergence (Part I Cont.)

Policy gradient estimation error due to TD learning (same as AC)

$$\begin{split} \mathbb{E}[\|\boldsymbol{v}_t(\theta_t) - \nabla_{\boldsymbol{w}} J(\boldsymbol{w}_t)\|_2^2 |\mathcal{F}_t] \\ &\leq (1 - \mathcal{O}(\lambda_{A_{\pi}}\beta))^{T_c} + \mathcal{O}\left(\frac{\beta}{M}\right) + \mathcal{O}\left(\frac{1}{B}\right) + \mathcal{O}(\zeta_{\mathsf{approx}}^{\mathsf{critic}}) \end{split}$$

Fisher information estimation error

$$\mathbb{E}[\|F(w_t) - F_t(w_t)\|_2^2 |\mathcal{F}_t] \le \mathcal{O}\left(\frac{1}{B}\right)$$

• Overall convergence of gradient norm

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla_{w} J(w_{t})\|_{2}^{2}] \\ \leq \mathcal{O}\left(\frac{\mathbb{E}[J(w_{T})] - J(w_{0})}{T}\right) + (1 - \mathcal{O}(\lambda_{A_{\pi}}\beta))^{T_{c}} + \mathcal{O}\left(\frac{\beta}{M}\right) + \mathcal{O}\left(\frac{1}{B}\right) + \mathcal{O}(\zeta_{\mathsf{approx}}^{\mathsf{critic}})$$

Proof of Convergence (Part II)

• Define
$$D(w) = \mathit{KL}ig(\pi^*(\cdot|s) \| \pi_w(\cdot|s)ig) = \mathbb{E}_{
u_{\pi^*}}\Big[\lograc{\pi^*(a|s)}{\pi_w(a|s)}\Big]$$

• Bound function value gap (global convergence)

$$D(w_t) - D(w_{t+1})$$

$$\geq \alpha \mathbb{E}_{\nu_{\pi^*}} \left[A_{\pi_{w_t}}(s, a) \right] - \alpha \left\| u_t(\theta_t) - F(w_t)^{-1} \nabla_w J(w_t) \right\|_2$$

$$+ \alpha \mathbb{E}_{\nu_{\pi^*}} \left[\psi_{w_t}(s, a)^\top F(w_t)^{-1} \nabla_w J(w_t) - A_{\pi_{w_t}}(s, a) \right] - \frac{L_{\psi}}{2} \alpha^2 \left\| u_t(\theta_t) \right\|_2^2$$

• Performance difference lemma (central for global convergence) [35]

$$\mathbb{E}_{\nu_{\pi^*}}[A_{\pi_{w_t}}(s,a)] = (1-\gamma)[J(\pi^*) - J(\pi_{w_t})]$$

Natural policy gradient estimation error

$$\mathbb{E}[\left\|u_t(\theta_t) - F(w_t)^{-1} \nabla_w J(w_t)\right\|_2] \leq \sqrt{\mathbb{E}[\left\|u_t(\theta_t) - F(w_t)^{-1} \nabla_w J(w_t)\right\|_2^2]}$$

which is bounded in Part I.

Proof of Convergence (Part II Cont.)

• Actor's approximation error

$$\mathbb{E}_{\nu_{\pi^*}} \Big[\psi_{\mathsf{w}_t}(s, \mathsf{a})^\top \mathsf{F}(\mathsf{w}_t)^{-1} \nabla_{\mathsf{w}} J(\mathsf{w}_t) - \mathsf{A}_{\pi_{\mathsf{w}_t}}(s, \mathsf{a}) \Big] \geq -\sqrt{\frac{1}{1-\gamma} \left\| \frac{\nu_{\pi^*}}{\nu_{\pi_{\mathsf{w}_0}}} \right\|_\infty} \sqrt{\zeta_{\mathsf{approx}}^{\mathsf{actor}}}$$

Second moment of policy gradient

$$\begin{split} & \mathbb{E}[\|u_t(\theta_t)\|_2^2] \\ & \leq \mathcal{O}(\mathbb{E}[\|u_t(\theta_t) - F(w_t)^{-1}\nabla_w J(w_t)\|_2^2]) + \mathcal{O}(\mathbb{E}[\|\nabla_w J(w_t)\|_2^2]) \end{aligned}$$

where both terms are bounded in Part I.

• Substitute all bounds into the first step of Part II, rearrange terms, and take summation over t = 0 to T - 1.

Extension I: Policy Gradient Algorithm with Adam

PG-AMSGrad [41]

- Sample $s_t \sim \hat{P}(\cdot|s_{t-1}, a_{t-1}), a_t \sim \pi_{w_t}(\cdot|s_t)$
- Estimate Q-function $\hat{Q}_{\pi_{w_t}}(s_t, a_t)$ as in PG
- Estimate policy gradient $g_t = \hat{Q}_{\pi_{w_t}}(s_t, a_t)
 abla_{w_t} \log(\pi_{w_t}(a_t|s_t))$
- $m_t = (1 \beta_1)m_{t-1} + \beta_1 g_t$ momentum
- $v_t = (1 \beta_2)\hat{v}_{t-1} + \beta_2 g_t^2$ stepsize adaptation
- $\hat{v}_t = \max(\hat{v}_{t-1}, v_t), \ \hat{V}_t = diag(\hat{v}_{t,1}, \dots, \hat{v}_{t,d})$
- Update policy parameter $w_{t+1} = w_t \alpha_t \hat{V}_t^{-\frac{1}{2}} m_t$
- Convergence rate of PG-AMSGrad [41]
- In practice, PG with Adam converges much faster

Extension II: Off-Policy Policy Gradient Algorithms

- Off-policy policy gradient
 - On-policy sampling with target policy is not possible
 - Off-policy sampling under behavior policy: $(s_i, a_i, s_i') \sim D$
 - Estimate $\nabla_w J(w)$ with off-policy samples

Actor-critic with distribution correction (AC-DC)

$$g(w) = \hat{
ho}(s,a)\hat{Q}_{\pi_w}(s,a)
abla_w \log(\pi_w(s,a))$$

where $\hat{\rho}$ and \hat{Q}_{π_w} are approximation of $\rho = \nu_{\pi_w}/\mathcal{D}$ and Q_{π_w} , respectively.

Bias error of AC-DC suffers substantially from estimation errors

$$\Delta_{g} = \mathbb{E}_{\mathcal{D}}[g(w)] - \nabla_{w}J(\pi_{w}) = \Theta(\mathbb{E}[\varepsilon_{\rho}(s, a) + \varepsilon_{Q}(s, a)])$$

where $\varepsilon_{
ho} =
ho - \hat{
ho}$ and $\varepsilon_{Q} = Q - \hat{Q}$

• Doubly robust off-policy PG estimation [45] reduces bias error

Outline

1 Introduction to Reinforcement Learning and Applications

- 2 Policy Evaluation and TD Learning
- **3** Value-based Method for Optimal Control
- Policy Gradient Algorithms
- **5** Advanced Topics on RL and Open Directions

Safe Reinforcement Learning

- Practical RL applications involve various safety/resource constraints
 - Left: Power constraint on battery powered devices
 - Right: Safety constraints on autonomous robotics and vehicles
 - Bottom: Delay constraint in communication system

Constrained Markov Decision Process (CMDP)

- Same dynamics as general MDP
- Agent receives reward R and cost C
- Value function w.r.t. reward R:

$$V_R^{\pi}(
ho) \coloneqq \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t, s_{t+1}) \middle| S_0 \sim
ho
ight]$$

• Value function w.r.t. cost C:

$$V_{C}^{\pi}(\rho) \coloneqq \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} C(s_{t}, a_{t}, s_{t+1}) \middle| S_{0} \sim \rho\right]$$

Goal of CMDP

$$\max_{\pi} \quad V^{\pi}_R(
ho) \quad ext{subject to} \quad V^{\pi}_{\mathcal{C}}(
ho) \leq c$$

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah)

Two Popular Approaches for CMDP

• Primal-Dual Approach: e.g. CPO [46], PDO [47]

• Define Lagrangian: let $\lambda > 0$ be Lagrangian multiplier

$$\mathcal{L}(\pi,\lambda) = -V_R^{\pi}(\rho) + \lambda(V_C^{\pi}(\rho) - c).$$

Solve a minimax problem over augmented Lagrangian function

$$\max_{\lambda \in \mathbb{R}_+} \min_{\pi} \mathcal{L}(\pi, \lambda)$$

- Zero duality gap [48, 49]; Convergence rate [49, 50]
- Primal Approach: CRPO [51]
 - If constraint is violated, take one step NPG update to reduce $V_C^{\pi_t}(\rho)$
 - If constraint is satisfied, take one step NPG update to enlarge $V_R^{\pi_t}(\rho)$
 - Convergence rate [51]

Imitation Learning

Imitation Learning

- Reward function is unknown
- Some expert demonstrations are available
- Goal: find a learner's policy that produces behaviors as close as possible to expert demonstrations
- Two major approaches
 - Behavioral cloning [52]
 - Directly provides a mapping from state to action based on supervised learning to match expert demonstrations
 - Inverse Reinforcement Learning [53, 54]
 - First recovers unknown reward function based on expert's trajectories, and then find an optimal policy using such a reward function
 - * Generative adversarial imitation learning (GAIL) framework [55]

Generative Adversarial Imitation Learning (GAIL)

- Parameterize reward function as $r_{\alpha}(s, a)$ where $\alpha \in \Lambda \subset \mathbb{R}^{q}$
- π_E : expert policy; demonstration samples under π_E are available
- π_L : learner's policy to be optimized
- $J(\pi_E, r_\alpha)$: average value function under expert policy
- $J(\pi_L, r_\alpha)$: average value function under learner's policy
- $\psi(\alpha)$: regularizer of reward parameter

GAIL Framework [55]

$$\min_{\pi_L} \max_{\alpha \in \Lambda} F(\pi_L, \alpha) := J(\pi_E, r_\alpha) - J(\pi_L, r_\alpha) - \psi(\alpha)$$

- Maximization: find reward function that best distinguishes between expert's and learner's policies
- Minimization: find learner's policy that matches expert's policy as close as possible

3

<ロト < 同ト < ヨト < ヨト

Multi-Agent Reinforcement Learning (MARL)

- Many RL applications involve multiple agents
 - Left: stock market with numerous investors
 - Middle: multi-drone control
 - Bottom: multi-agent power network

Formulation of MARL

• State value function (of joint policy π):

$$V_{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \frac{1}{M} \sum_{m=1}^{M} r_{t}^{(m)} | s_{0} = s, \pi\right]$$

• Average value function:

$$J(\pi) = (1 - \gamma) \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t \frac{1}{M} \sum_{m=1}^{M} r_t^{(m)} \right] = \mathbb{E}_{\xi} [V_{\pi}(s)]$$

MARL Problem:

$$\max_{\{\pi^{(m)}\}_m} J(\pi)$$

- MARL algorithms are similar to single-agent RL algorithms
- Agents need synchronize information (local state observations, actions, rewards, etc)
- Tradeoff between communication & computation complexities

Open Problems in Reinforcement Learning

- Multi-task reinforcement learning
 - Tasks can share similar but different transition kernels
 - Meta-learning can be applied to achieve sampling efficiency
 - Open issues in theory: characterization of sample complexity improvement due to meta-learning
- Off-policy/Offline reinforcement learning
 - No access to online interaction with environment, but access only to a given set of data samples
 - Dataset has limited coverage over state-action space, and is sampled under behavior policy, not target policy
 - Open issues in design: how to design desirable algorithms to address overestimation and distribution shift
 - Open issues in theory: what is the minimum requirement to achieve polynomial sample complexity efficiency

Open Problems (Cont.)

- Partially observable MDP
 - No access to full state information
 - Optimal policy is not stationary
 - Markovian structure does not hold anymore
 - Open issues in design: how to design efficient model-free and model-based methods
 - Open issues in theory: how to characterize sample complexity
- Multi-agent RL
 - Agents need to jointly achieve a design goal
 - Decentralized algorithms under partial observations of environments
 - Challenges in design: delayed communication; communication depends on network topology
 - Open issues in theory: tradeoff among communications, computations, privacy

Questions?

э

프 () (프)

References

- N. Sharma, S. Zhang, S. R. S. Venkata, F. Malandra, N. Mastronarde, and J. Chakareski, "Deep reinforcement learning for delay-sensitive Ite downlink scheduling," in *IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications*, pp. 1–6, IEEE, 2020.
- [2] R. S. Sutton, "Learning to predict by the methods of temporal differences," *Machine learning*, vol. 3, no. 1, pp. 9–44, 1988.
- [3] R. S. Sutton and A. G. Barto, *Reinforcement learning: An introduction*. 2018.
- [4] J. N. Tsitsiklis and B. Van Roy, "An analysis of temporal-difference learning with function approximation," *IEEE transactions on automatic control*, vol. 42, no. 5, pp. 674–690, 1997.
- [5] V. S. Borkar, Stochastic approximation: a dynamical systems viewpoint, vol. 48.
 2009.

- [6] A. Benveniste, P. Priouret, and M. Métivier, Adaptive Algorithms and Stochastic Approximations.
 Springer-Verlag, 1990.
- [7] V. Tadić, "On the convergence of temporal-difference learning with linear function approximation," *Machine learning*, vol. 42, no. 3, pp. 241–267, 2001.
- [8] G. Dalal, B. Szörényi, G. Thoppe, and S. Mannor, "Finite sample analyses for td (0) with function approximation," in *Proc. Association for the Advancement of Artificial Intelligence (AAAI)*, vol. 32, 2018.
- [9] R. Srikant and L. Ying, "Finite-time error bounds for linear stochastic approximation andtd learning," in *Proc. Conference on Learning Theory (COLT)*, pp. 2803–2830, 2019.
- [10] J. Bhandari, D. Russo, and R. Singal, "A finite time analysis of temporal difference learning with linear function approximation," in *Proc. Conference on Learning Theory (COLT)*, vol. 75, pp. 1691–1692, 2018.

イロト 不得 トイヨト イヨト 二日

- [11] R. Srikant and L. Ying, "Finite-time error bounds for linear stochastic approximation andtd learning," in *Proc. Conference on Learning Theory*, vol. 99, pp. 2803–2830, 25–28 Jun 2019.
- [12] L. Baird, "Residual algorithms: Reinforcement learning with function approximation," in *Proc. International Conference on Machine Learning (ICML)*, pp. 30–37, 1995.
- [13] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver,
 C. Szepesvári, and E. Wiewiora, "Fast gradient-descent methods for temporal-difference learning with linear function approximation," in *Proc. International Conference on Machine Learning (ICML)*, pp. 993–1000, 2009.
- [14] H. R. Maei, *Gradient temporal-difference learning algorithms*. PhD thesis, University of Alberta, 2011.
- [15] H. Yu, "On convergence of some gradient-based temporal-differences algorithms for off-policy learning," *arXiv1712.09652*, 2018.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- [16] M. Kaledin, E. Moulines, A. Naumov, V. Tadic, and H.-T. Wai, "Finite time analysis of linear two-timescale stochastic approximation with markovian noise," in *Proc. Conference on Learning Theory* (COLT), pp. 2144–2203, 2020.
- [17] T. Xu, S. Zou, and Y. Liang, "Two time-scale off-policy td learning: Non-asymptotic analysis over markovian samples," in *Proc. Advances in Neural Information Processing Systems (NeurIPS)*, pp. 10634–10644, 2019.
- [18] T. Xu and Y. Liang, "Sample complexity bounds for two timescale value-based reinforcement learning algorithms," in *Proc. International Conference on Artificial Intelligence and Statistics*, vol. 130, pp. 811–819, 13–15 Apr 2021.
- [19] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, "An analysis of reinforcement learning with function approximation," in *Proc. International Conference on Machine Learning (ICML)*, pp. 664–671, ACM, 2008.

イロト 不得 トイヨト イヨト 二日

- [20] S. Zou, T. Xu, and Y. Liang, "Finite-sample analysis for sarsa with linear function approximation," in *Proc. Advances in Neural Information Processing Systems*, pp. 8665–8675, 2019.
- [21] T. J. Perkins and D. Precup, "A convergent form of approximate policy iteration," in *Proc. Advances in Neural Information Processing Systems (NIPS)*, pp. 1627–1634, 2003.
- [22] G. Li, C. Cai, Y. Chen, Y. Gu, Y. Wei, and Y. Chi, "Is q-learning minimax optimal? a tight sample complexity analysis," arXiv preprint arXiv:2102.06548, 2021.
- [23] M. J. Wainwright, "Variance-reduced q-learning is minimax optimal," arXiv preprint arXiv:1906.04697, 2019.
- [24] G. Li, Y. Wei, Y. Chi, Y. Gu, and Y. Chen, "Sample complexity of asynchronous q-learning: Sharper analysis and variance reduction," *arXiv preprint arXiv:2006.03041*, 2020.

イロト イポト イヨト イヨト 三日

- [25] H. R. Maei, C. Szepesvári, S. Bhatnagar, and R. S. Sutton, "Toward off-policy learning control with function approximation," in *Proc. International Conference on Machine Learning (ICML)*, 2010.
- [26] Y. Wang and S. Zou, "Finite-sample analysis of Greedy-GQ with linear function approximation under Markovian noise," in *Proc. International Conference on Uncertainty in Artificial Intelligence* (UAI), vol. 124, pp. 11–20, 2020.
- [27] T. Xu and Y. Liang, "Sample complexity bounds for two timescale value-based reinforcement learning algorithms," *ArXiv:2011.05053*, 2020.
- [28] R. Johnson and T. Zhang, "Accelerating stochastic gradient descent using predictive variance reduction," in *Proc. Advances in Neural Information Processing Systems*, vol. 26, 2013.
- [29] S. Ma, Z. Chen, Y. Zhou, and S. Zou, "Greedy-GQ with variance reduction: Finite-time analysis and improved complexity," in *Proc. International Conference on Learning Representations (ICLR)*, 2021.

э

< ロ > < 同 > < 回 > < 回 >

- [30] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, "Policy gradient methods for reinforcement learning with function approximation," in *Proc. Advances in Neural Information Processing Systems (NIPS)*, pp. 1057–1063, 2000.
- [31] R. J. Williams, "Simple statistical gradient-following algorithms for connectionist reinforcement learning," *Machine Learning*, vol. 8, no. 3-4, pp. 229–256, 1992.
- [32] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, "Trust region policy optimization," in *The 32nd International Conference on Machine Learning (ICML)*, pp. 1889–1897, 2015.
- [33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, "Proximal policy optimization algorithms," arXiv preprint arXiv:1707.06347, 2017.
- [34] S. M. Kakade, "A natural policy gradient," in *Advances in Neural* Information Processing Systems (NeurIPS), pp. 1531–1538, 2002.

イロト 不得 トイヨト イヨト 二日
- [35] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, "Optimality and approximation with policy gradient methods in Markov decision processes," arXiv preprint arXiv:1908.00261, 2019.
- [36] G. Lan, "Policy mirror descent for reinforcement learning: Linear convergence, new sampling complexity, and generalized problem classes," *ArXiv:2102.00135*, 2021.
- [37] J. Bhandari and D. Russo, "Global optimality guarantees for policy gradient methods," *arXiv preprint arXiv:1906.01786*, 2019.
- [38] L. Shani, Y. Efroni, and S. Mannor, "Adaptive trust region policy optimization: Global convergence and faster rates for regularized MDPs," arXiv preprint arXiv:1909.02769, 2019.
- [39] S. Cen, C. Cheng, Y. Chen, Y. Wei, and Y. Chi, "Fast global convergence of natural policy gradient methods with entropy regularization," *arXiv:2007.06558*, 2020.

イロト 不得 トイヨト イヨト 三日

- [40] V. Konda, "Actor-critic algorithms (ph.d. thesis)," Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 2002.
- [41] H. Xiong, T. Xu, YingbinLiang, and W. Zhang, "Non-asymptotic convergence of Adam-type reinforcement learning algorithms under Markovian sampling," in *Proc. AAAI Conference on Artificial Intelligence (AAAI)*, 2021.
- [42] V. R. Konda and J. N. Tsitsiklis, "Actor-critic algorithms," in Proc. Advances in Neural Information Processing Systems (NeurIPS), pp. 1008–1014, 2000.
- [43] T. Xu, Z. Wang, and Y. Liang, "Improving sample complexity bounds for (natural) actor-critic algorithms," in *Proc. Advances in Neural Information Processing Systems (NeurIPS)*, also available as *arXiv preprint arXiv:2004.12956*, 2020.
- [44] S.-I. Amari, "Natural gradient works efficiently in learning," Neural Computation, vol. 10, no. 2, pp. 251–276, 1998.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- [45] T. Xu, Z. Yang, Z. Wang, and Y. Liang, "Doubly robust off-policy actor-critic: Convergence and optimality," in *Proc. International Conference on Machine Learning (ICML)*, 2021.
- [46] J. Achiam, D. Held, A. Tamar, and P. Abbeel, "Constrained policy optimization," in *Proc. International Conference on Machine Learning* (*ICML*), pp. 22–31, 2017.
- [47] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone,
 "Risk-constrained reinforcement learning with percentile risk criteria," *The Journal of Machine Learning Research*, vol. 18, no. 1, pp. 6070–6120, 2017.
- [48] E. Altman, Constrained Markov Decision Processes, vol. 7. CRC Press, 1999.
- [49] S. Paternain, L. F. Chamon, M. Calvo-Fullana, and A. Ribeiro,
 "Constrained reinforcement learning has zero duality gap," in *Proc. Advances in Neural Information Processing Systems (NIPS)*, 2019.

3

- [50] D. Ding, K. Zhang, T. Basar, and M. Jovanovic, "Natural policy gradient primal-dual method for constrained markov decision processes," in *Proc. Advances in Neural Information Processing Systems (NeurIPS)*, vol. 33, 2020.
- [51] T. Xu, Y. Liang, and G. Lan, "CRPO: A new approach for safe reinforcement learning with convergence guarantee," in *Proc. International Conference on Machine Learning (ICML)*, 2021.
- [52] D. A. Pomerleau, "Efficient training of artificial neural networks for autonomous navigation.," *Neural Computation*, vol. 3, no. 1, pp. 88–97, 1991.
- [53] S. Russell, "Learning agents for uncertain environments," in Proc. Eleventh Annual Conference on Computational Learning Theory, 1998.
- [54] A. Y. Ng and S. Russell, "Algorithms for inverse reinforcement learning," in *Proc. International Conference on Machine Learning* (*ICML*), 2000.

- 4 同 ト 4 三 ト - 4 三 ト

[55] J. Ho and S. Ermon, "Generative adversarial imitation learning," in Proc. Advances in Neural Information Processing Systems (NIPS), 2016.