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Reinforcement Learning

An agent learns to interact with environment in the best way
I Agent observes state, and takes an action based on a policy
I Environment changes the state
I Agent receives a reward
I Agent finds a policy to maximize reward
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Markov Decision Process (MDP)

Markov decision process (MDP): (S,A, r ,P)
I S and A: state and action spaces
I r : S ×A× S → R: reward function
I P(s ′|s, a): transition kernel; prob of s → s ′ given action a

Agent’s policy π(a|s): prob of selecting action a in state s

MDP trajectory {st , at , rt , st+1}∞t=0 defined by

s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · ·

Randomness: actions, state transitions
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Application: Autonomous Driving

Collects driving data

AI agent trained to optimize driving control

Specification of MDP
I State: driving environment (distance to nearby cars, weather, etc)
I Action: turn left/right, accelerate, brake
I Reward: stay safe, drive smoothly
I Policy: vehicle control in a state
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Application: Wireless Communication

Downlink Scheduling [1]

Learn optimal scheduling to minimize average queuing delay

Specification of MDP
I State: buffer status and channel state
I Action: assign resource block, determine number of transmitted bits
I Reward: buffer cost
I Policy: determine action in a given state
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Application: Agricultural Farming

Collect data on crop & soil health

Learn good farming policy to maximize yield

Specification of MDP
I State: crop & soil health
I Action: apply amount of water & fertilizer
I Reward: expected yield, crop & soil health
I Farming policy: guide farming action in a state
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Formulation of RL

MDP trajectory {st , at , rt , st+1}t with rt := r(st , at , st+1)

Quality of s, a: discount factor γ ∈ (0, 1)

(State value): Vπ(s) = E
[∑∞

t=0 γ
trt |s0 = s, π

]
(State-action value): Qπ(s, a) = E

[∑∞
t=0 γ

trt |s0 = s, a0 = a, π
]

Expected long-term accumulated reward start with s, a

RL Goal: find the best policy π∗

(Criterion I): Vπ∗(s) ≥ Vπ(s), ∀π,∀s
(Criterion II): max

π
J(π) := Es∼ξ[Vπ(s)]

Tutorial will not cover all the RL formulations

Finite-time horizon, Average reward, Regret analysis
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Formulation of Policy Evaluation

Recall Markov Decision Process: {st , at , rt , st+1}t

s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · ·

State value function:

Vπ(s) = E
[∑∞

t=0 γ
trt |s0 = s, π

]
I Expected accumulated reward, start with s follow π.

Policy Evaluation Problem:

Given a fixed policy π, how to evaluate its state value function Vπ?

Foundation for policy optimization
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Summary of Policy Evaluation Approaches

Known transition kernel P(·|s, a)
I Solving Bellman equation

Unknown transition kernel P(·|s, a) (Model-free)
I On-policy TD learning
I Off-policy TD learning

Our focus is model-free approaches.
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Known P: Bellman Equation

Transition kernel P(·|s, a) is known

By definition of Vπ(s):

Vπ(s) = E[r0 + γr1 + γ2r2 + · · · |s0 = s, π]

= E[r0|s0 = s, π] + γE[r1 + γr2 + · · · |s0 = s, π]

Note that

E[r1 + γr2 + · · · |s0 = s, π]

= Es1

[
E[r1 + γr2 + · · · |s0 = s, s1 = s ′, π]

]
= Es1 [Vπ(s ′)]

Vπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
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Vπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
Define Bellman operator

(Bellman operator):

TπVπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
Bellman Equation for Value Function

Vπ(s) = TπVπ(s)

Linear programming: Directly solve the linear equation
I High computation complexity

Value iteration: fixed point update

Vt+1(s) = TπVt(s)

I Tπ is contraction ⇒ Vt → Vπ.
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Model-Free: On-Policy TD Learning

Model-Free

Transition kernel P(·|s, a) is unknown

On-Policy Data

Collect Markovian data {st , at , rt , st+1}t following target policy π

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Recent Advances in RL Theory ISIT 2021 Tutorial 15 / 99



On-Policy TD(0) Algorithm
Recall Bellman equation

Vπ(s) = E[r(s, a, s ′) + γVπ(s ′)]

Idea: update Vπ(s) using r(s, a, s ′) + γVπ(s ′)

Formally: collect {st , at , rt , st+1}t and do

V (st) = rt+1 + γV (st+1)︸ ︷︷ ︸
Target (one-step bootstrap)

, (*)

TD learning is a damped version of (*): 0 < η < 1,

V (st)← (1− η)V (st) + η
(
rt+1 + γV (st+1)

)
, (TD)

TD(0) Algorithm [2]

V (st)← V (st) + η
(
rt+1 + γV (st+1)− V (st)︸ ︷︷ ︸

temporal difference

)
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TD(λ) Algorithm

TD(0) Algorithm

V (st)← V (st) + η
(
rt+1 + γV (st+1)− V (st)

)
In TD(0), target rt+1 + γV (st+1) is one-step bootstrap

Extension: n-step bootstrap

G
(n)
t := rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnV (st+n)

Define λ-return: Gλ
t := (1− λ)

∑∞
n=1 λ

n−1G
(n)
t .

TD(λ) Algorithm [3]

V (st)← V (st) + η
(
Gλ
t − V (st)

)
Reduce the variance of TD target
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Value Function Approximation

Curse of dimensionality: state space is often large or infinite

Solution: approximate Vπ using parameterized model Vθ
I Linear model: Vθ(s) := φ>s θ, where φs is feature vector of s
I Neural model: Vθ(s) := NNθ(s), where NNθ is neural network

TD(0) learning with function approximation

Initialize model θ0.

Observe sample {st , at , rt , st+1}, define target Gt = rt + γVθt (st+1)

Define loss `t(θ) := 1
2 (Vθ(st)− Gt)

2, compute gt(θt) = −∂`t(θ)
∂θ |θ=θt

TD update:
θt+1 = θt + ηgt(θt),

where gt(θt) = (rt + γVθt (st+1)− Vθt (st))∇Vθt (st)
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Analysis of TD(0) with Linear Approximation

TD(0) with linear approximation Vθ(s) := φ>s θ

θt+1 = ProjR
(
θt + ηgt(θt)

)
,

where gt(θt) = (rt + γφ>st+1
θt − φ>st θt)φst

Challenge: gt(θt) is gradient of time-varying function `t

Challenge: Samples {st , at , rt , st+1}t are Markovian and correlated

Non-exhaustive summary of existing work:

Asymptotic convergence: [4, 5, 6, 7]

Non-asymptotic (finite-time) convergence
I I.I.D. samples: [8]
I Markovian samples: [9], [10] (will be presented)
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Finite-Time Convergence of TD(0)

Key Assumption: Geometric Mixing

State stationary distribution µ. There exist κ > 0, ρ ∈ (0, 1) such that

sup
s∈S

dTV
(
P(st |s0 = s), µ

)
≤ κρt , ∀t ∈ N0

Hold for irreducible and aperiodic Markov chains

Given s0 and large t, st is almost like being sampled from µ
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Feature matrix Φ = [φ>s1
; ...;φ>sn ] full column rank, Vθ = Φθ

Solution point θ∗ satisfies [4]

Vθ∗ = ΠLTπVθ∗ , where L = {Φx |x ∈ Rd}

Theorem: finite-time convergence [10]

Set learning rate η ≤ O( 1
1−γ ). After T iterations,

E
[
‖θT − θ∗‖2

]
≤ O

(
exp(−cηT )‖θ0 − θ∗‖2 + η

τmix(η)

1− γ

)
,

where τmix(η) := min{t | κρt ≤ η} is the mixing time of Markov chain.

A faster mixing implies smaller convergence error
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Outline of Proof

Recall TD(0): θt+1 = ProjR
(
θt + ηgt(θt)

)
I gt(·) depends on sample Ot = {st , at , rt , st+1}

Define ḡ(θ) = E[gt(θ)], where E over Ot ∼ P(Ot)

Using the update rule yields

E
[
‖θt+1 − θ∗‖2

]
≤ E

[
‖θt − θ∗‖2

]
− 2η(1− γ)E

[
‖Vθt − Vθ∗‖2

D

]
+ ηE

[
〈gt(θt)− ḡ(θt), θt − θ∗〉︸ ︷︷ ︸

Bias ζ(θt ,Ot)

]
+O(η2)

can show E
[
‖Vθt − Vθ∗‖2

D

]
≥ σ‖θt − θ∗‖2

The key is to bound the bias term ζ(θt ,Ot)
I If all Ot are i.i.d from µ, then P(Ot |θt) = P(Ot) = µ and

E[gt(θt)|θt ] = ḡ(θt) ⇒ E[ζ(θt ,Ot)] = 0

I However, now samples are correlated. P(Ot |θt) 6= P(Ot)
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Bounding the Bias

Idea: P(Ot |θt−τ ) is close to µ due to geometric mixing

ζ(θt ,Ot) = ζ(θt−τ ,Ot) +
t−1∑

i=t−τ
ζ(θi+1,Ot)− ζ(θi ,Ot)

≤ ζ(θt−τ ,Ot) + G 2ητ

ητ can be controlled by using small learning rate η

E[ζ(θt−τ ,Ot)] is small due to geometric mixing

E[ζ(θt−τ ,Ot)] ≤ 2‖ζ‖∞ sup
s

dTV
(
P(st |st−τ = s), µ

)
≤ 4G 2κρτ
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Putting Things Together

E
[
‖θt+1 − θ∗‖2

]
≤ E

[
‖θt − θ∗‖2

]
− 2η(1− γ)E

[
‖Vθt − Vθ∗‖2

]
+ ηE[ζ(θt ,Ot)] + η2G 2

E
[
‖Vθt − Vθ∗‖2

D

]
≥ σ‖θt − θ∗‖2

ζ(θt ,Ot) ≤ ζ(θt−τ ,Ot) + G 2ητ

E[ζ(θt−τ ,Ot)] ≤ 4G 2κρτ
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Connection to Linear SA

Linear stochastic approximation (SA)

θt+1 = θt + η(A(Ot)θt + b(Ot))

{Ot}t forms a Markov chain

A(Ot), b(Ot) are matrix and vector

TD(0) with linear approximation can be rewritten using

Ot = (st , st+1)>

A(Ot) = −φst (φ>st − γφ
>
st+1

)

b(Ot) = rtφst

Convergence established using Lyapunov-type analysis [11]
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TD Learning for Off-Policy Evaluation

Previous TD(0) uses on-policy data

On-Policy Data

Collect Markovian data {st , at , rt , st+1}t following target policy π

Limitation: requires executing the target policy

Limitation: in practice may not have sufficient on-policy data

Off-policy data

Collect Markovian data {st , at , rt , st+1}t following behavior policy πb. The
goal is to evaluate Vπ of the target policy π.
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Divergence of Off-Policy TD(0)

Key message: TD(0) with linear approximation may diverge in the
off-policy setting [12]

Zero reward, function approximation

V (s) = 2θ(s) + θ0, s = 1, ..., 6

V (7) = θ(7) + 2θ0

Under certain initialization, parameter diverges

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Recent Advances in RL Theory ISIT 2021 Tutorial 27 / 99



Gradient TD for Off-Policy Evaluation

Recall Vθ(s) = φ>s θ. Optimal θ∗ satisfies

Vθ∗ = ΠLTπVθ∗

Data sampled by behavior policy πb, stationary distribution µb

Mean-square projected Bellman error (MSPBE) [13]

(MSPBE): J(θ) := Es∼µb
[
Vθ(s)− ΠLTπVθ(s)

]2
Error Vθ(s)− ΠLTπVθ(s) based on target policy

Es∼µb : stationary state distribution induced by behavior policy
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Idea of Importance Sampling

Denote TD error δt(θ) = rt + γφ>st+1
θ − φ>st θ

MSPBE can be rewritten as

J(θ) = Eµb,π[δt(θ)φst ]
>Eµb [φstφ

>
st ]
−1Eµb,π[δt(θ)φst ]

Importance Sampling Lemma

Eµb,π[δt(θ)φst ] = Eµb,πb
[ π(at |st)
πb(at |st)

δt(θ)φst

]
,

where ρt = π(at |st)
πb(at |st) is the importance sampling ratio. Then, we have

−1

2
∇J(θ) = E

[
ρt(φst − γφst+1)φ>st

]
E
[
φstφ

>
st

]−1E[ρtδt(θ)φst ]
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GTD2 Algorithm

−1

2
∇J(θ) = E

[
ρt(φst − γφst+1)φ>st

]
E
[
φstφ

>
st

]−1E[ρtδt(θ)φst ]︸ ︷︷ ︸
ω∗(θ)

ω∗(θ) can be viewed as solution to the LMS

(LMS): ω∗(θ) = argmin
u

E
[
φ>stu − ρtδt(θ)

]2
GTD2 algorithm [13]

θt+1 = θt + αtρt(φst − γφst+1)φ>stωt

ωt+1 = ωt + βt(ρtδt(θt)φst − φstφ>stωt)

Two timescale updates

ω update is one-step SGD applied to LMS
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TDC Algorithm

−1

2
∇J(θ) = E

[
ρt(φst − γφst+1)φ>st

]
E
[
φstφ

>
st

]−1E[ρtδt(θ)φst ]︸ ︷︷ ︸
ω∗(θ)

= E
[
ρtδt(θ)φst

]
− γE

[
ρtφst+1φ

>
st

]
ω∗(θ)

TDC algorithm [13]

θt+1 = θt + αtρt(δt(θt)φst − γφst+1φ
>
stωt)

ωt+1 = ωt + βt(ρtδt(θt)φst − φstφ>stωt)

θ update is different from GTD2

ω update is the same as GTD2
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Analysis of TDC with Linear Approximation

TDC with linear approximation

θt+1 = ΠRθ

(
θt + αtρt(δt(θt)φst − γφst+1φ

>
stωt)

)
ωt+1 = ΠRω

(
ωt + βt(ρtδt(θt)φst − φstφ>stωt)

)
Challenge: Correlated Markovian samples

Challenge: Correlated two timescale updates

Non-exhaustive of existing work:

Asymptotic convergence: [13, 14, 15]

Non-asymptotic (finite-time) convergence
I I.I.D. samples: [8]
I Markovian samples: [16], [17] (will be presented)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Recent Advances in RL Theory ISIT 2021 Tutorial 32 / 99



Finite-Time Convergence of TDC

Key Assumptions:

(Geometric mixing): There exist κ > 0, ρ ∈ (0, 1) such that

sup
s∈S

dTV
(
P(st |s0 = s), µ

)
≤ κρt , ∀t ∈ N0

(Non-singularity): The following matrices are non-singular

A := Eµb [ρs,a(γφsφ
>
s′ − φsφ>s )], C := −Eµb [φsφ

>
s ]
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Finite-Time Convergence of TDC

Theorem: finite-time convergence [17]

Set learning rates α < 1
|λmax(2A>C−1A)| , β <

1
|λmax(2C)| . After T iterations,

E
[
‖θT − θ∗‖2

]
≤ O

(
(1− cα)t + α logα−1 +

√
β log β−1 +

α

β

)
Need small α, β and α

β

Small αβ : ωt takes faster update than θt , because it needs to
approximate the double expectation in θ update
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Outline of Proof: Step 1

Rewrite TDC Update

Recall that ωt is used to approximate

ωt → ω∗(θ) := E
[
φstφ

>
st

]−1E[ρtδt(θ)φst ]︸ ︷︷ ︸
−C−1(b+Aθ)

Define tracking error zt = ωt − ω∗(θ) = ωt + C−1(b + Aθ)

TDC can be rewritten as: Ot = (st , at , rt , st+1)

θt+1 = ΠR

(
θt + α(f1(θt ;Ot) + g1(zt ;Ot))

)
zt+1 = zt + β(f2(θt ;Ot) + g2(zt ;Ot))− ω∗(θt) + ω∗(θt+1)
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Outline of Proof: Step 2

Develop bound of E[‖zt‖2]

zt+1 = ΠR

(
zt + β(f2(θt ;Ot) + g2(zt ;Ot))− ω∗(θt) + ω∗(θt+1)

)
Use zt update to develop a preliminary bound of E[‖zt‖2]

I Linear converging term, variance, bias, slow drift term
I The proof uses constant bound of ‖zt‖

Further use preliminary bound to develop refined bound
I The proof uses preliminary bound of ‖zt‖
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Outline of Proof: Step 3

Develop bound of E[‖θt − θ∗‖2]

θt+1 = ΠR

(
θt + α(f1(θt ;Ot) + g1(zt ;Ot))

)
Use θt update and the refined bound of E[‖zt‖2]

≤ (1− α)E[‖θt − θ∗‖2] + 2αE[ζf1(θt ,Ot)] + α2

+ 2αE
[
‖zt‖2 + ‖θt − θ∗‖2

]
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Extension: Mini-batch TDC [18]

Mini-batch TDC with linear approximation

θt+1 = θt +
αt

M

(t+1)M−1∑
i=tM

ρi (δi (θt)φsi − γφsi+1φ
>
si
ωt)

ωt+1 = ωt +
βt
M

(t+1)M−1∑
i=tM

(ρiδi (θt)φsi − φsiφ
>
si
ωt)

No need to use bounded projection

Allow large constant learning rates

Reduce variance of two timescale stochastic updates
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Optimal Value/State-Action Value Function
Recall definition of value and state-action value functions:

Vπ(s) = E

[ ∞∑
t=0

γtr(st , at , st+1)

∣∣∣∣s0 = s, π

]

Qπ(s, a) = E

[ ∞∑
t=0

γtr(st , at , st+1)

∣∣∣∣s0 = s, a0 = a, π

]
Goal: to find an optimal policy that maximizes the value function
from any initial state s0

Optimal value function:

V ∗(s) = sup
π

Vπ(s), ∀s ∈ S

Optimal state-action value function:

Q∗(s, a) = sup
π

Qπ(s, a), ∀(s, a) ∈ S ×A
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Bellman Operator and Contraction

Optimal policy π∗: take action arg max
a∈A

Q∗(s, a) at state s ∈ S

V ∗(s) = maxa∈AQ∗(s, a),∀s ∈ S
The Bellman operator T is defined as

(TV )(s) = max
a∈A

Es′∼P(·|s,a)

[
r(s, a, s ′) + γV (s ′)

]
T is contraction: for any V1 and V2

‖TV1 − TV2‖∞ ≤ γ‖V1 − V2‖∞

V ∗ is the fixed point of T: V ∗ = TV ∗
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Value Iteration

Assume known reward r and transition kernel P

Value Iteration

Initialize V (s) arbitrarily for any s ∈ S
Repeat until convergence

I V (s)← max
a∈A

∑
s′∈S

P(s ′|s, a)(r(s, a, s ′) + γV (s ′)), for all s ∈ S

Repeatedly update V (s) using Bellman operator, i.e, V ← TV

Convergence can be proved using contraction of T
I ‖TV − V ∗‖∞ = ‖TV − TV ∗‖∞ ≤ γ‖V − V ∗‖∞
I ‖T · · ·T︸ ︷︷ ︸

t times

V − V ∗‖∞ ≤ γt‖V − V ∗‖∞ → 0, as t →∞
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Policy Iteration

Assume known reward r and transition kernel P

Policy Iteration

Initialize π arbitrarily

Repeat until convergence
I Evaluate Qπ
I π′(s)← arg max

a∈A
Qπ(s, a) for all s ∈ S

I π ← π′

Policy improvement theorem: Let π and π′ be any pair of
deterministic policies such that for all s ∈ S, Qπ(s, π′(s)) ≥ Vπ(s),
then π′ is no worse than π: Vπ′(s) ≥ Vπ(s),∀s ∈ S
Policy from policy iteration has higher or same value than before
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SARSA: On-Policy TD Control

Finite S and A, unknown reward r and transition kernel P

SARSA

I Parameter: step size α ∈ (0, 1], small ε > 0

I Initialize Q(s, a) for all s ∈ S and a ∈ A arbitrarily

I Initialize s0 and a0, t = 0

I Repeat until convergence

F Observe state st+1, receive reward r(st , at , st+1)
F Take action at+1 using target policy derived from Q (e.g., ε-greedy)
F Q(st , at)← Q(st , at) + α(r(st , at , st+1) + γQ(st+1, at+1)︸ ︷︷ ︸

target

−Q(st , at))

F t ← t + 1

SARSA converges to Q∗ if
I All state-action pairs are visited infinitely often
I The policy converges to the greedy policy (e.g., ε-greedy with ε = 1/t)
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SARSA with Linear Function Approximation

Large S and A, unknown r and P

SARSA

Initialization: θ0, s0, φi , for i = 1, 2, ...,N

πθ0 ← Γ(φ>θ0) (e.g., ε-greedy, softmax w.r.t. φ>θ0)

Choose a0 according to πθ0

For t = 0, 1, 2, ...
I Observe st+1 and r(st , at , st+1)
I Choose at+1 according to πθt
I θt+1 ← θt + αtgt(θt)
I Policy improvement: πθt+1 ← Γ(φ>θt+1)

gt(θt) = ∇θQθ(st , at)∆t = φ(st , at)∆t : “gradient”

∆t denotes the temporal difference error at time t:
∆t = r(st , at , st+1) + γφ>(st+1, at+1)θt − φ>(st , at)θt ,
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SARSA Sample Path

As θt is updated, πθt changes with time

On-policy algorithm, time-varying policy

Non-i.i.d. data
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Finite-Sample Analysis [20]

The limit point θ∗ of the projected SARSA [19]: Aθ∗θ
∗ + bθ∗ = 0,

where Aθ∗ = Eθ∗ [φ(s, a)(γφT (s ′, a′)− φ>(s, a)] and
bθ∗ = Eθ∗ [φ(s, a)r(s, a, s ′)]

The limiting point θ∗ is the one such that Eθ∗ [g(θ∗)] = 0, where
s ∼ µπθ∗ , a ∼ πθ∗(·|s)

Theorem

I Finite-sample bound on convergence of SARSA with diminishing step-size:

E‖θT − θ∗‖2
2 ≤ O

(
log T
T

)
I Finite-sample bound on convergence of SARSA with constant step-size:

E‖θT − θ∗‖2
2 ≤ O

(
e−cT

)
+O(α)

With diminishing step-size, SARSA converges exactly to optimal θ∗

With constant step-size, SARSA converges exponentially fast to a
small neighborhood of θ∗
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Challenges in Technical Analysis

Non-i.i.d. samples
I Strong coupling between sample path {st , at}t≥0 and {θt}t≥0

I Samples are used to compute gradient gt , and θt+1, which introduce
bias in gt

I θt is further used (as in policy πθt ) to generate subsequent actions

Convergence can be established using O.D.E approach [19]

For finite-time bound, stochastic bias in gt needs to be explicitly
characterized

Dynamically changing learning policy
I Analysis in [10] relies on the fact that the learning policy is fixed so

that the Markov process reaches its stationary distribution quickly
I Episodic SARSA in [21], with each episode, the learning policy is fixed,

and the Markov process reaches its stationary distribution within each
episode

I No such nice properties for SARSA!
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Proof Sketch

Step 1. Error decomposition

Step 2. Gradient descent type analysis

Step 3. Stochastic bias analysis

Step 4. Putting the first three steps together and recursively apply
step 1 completes the proof

Key idea:

Design an auxiliary uniformly ergodic Markov chain to approximate original
Markov chain induced by SARSA
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Step 1. Error Decomposition

Some notations
I ḡ(θ) = Eθ[gt(θ)]: noiseless gradient at θ
I Λt(θ) = 〈θ − θ∗, gt(θ)− ḡ(θ)〉: bias caused by using non-i.i.d. samples

to estimate gradient

Decompose error recursively:

E[‖θt+1 − θ∗‖2
2]

≤ E[‖θt − θ∗‖2
2] + 2αtE[〈θt − θ∗, ḡ(θt)− ḡ(θ∗)〉] + α2

tE[‖gt(θt)‖2
2]︸ ︷︷ ︸

Gradient descent type analysis

+ 2αt E[Λt(θt)]︸ ︷︷ ︸
Stochastic bias
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Step 2. Gradient Descent Type Analysis

E[‖θt − θ∗‖2
2] + 2αt E[〈θt − θ∗, ḡ(θt)− ḡ(θ∗)〉]︸ ︷︷ ︸

term1

+α2
tE[‖gt(θt)‖2

2]︸ ︷︷ ︸
∼O(α2

t )

True gradient ḡ(θt) is used, term 1 can be bounded:

E[〈θt − θ∗, ḡ(θt)− ḡ(θ∗)〉] ≤ (θt − θ∗)T (Aθ∗ + CλI )(θt − θ∗)
≤ −wsE[‖θt − θ∗‖2

2]

where −ws is the largest eigenvalue of Aθ∗ + CλI

Aθ is negative definite for all θ
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Step 2. Some Assumptions

Assumption (smooth policy): πθ is Lipschitz with respect to θ:
∀(s, a) ∈ S ×A |πθ1(a|s)− πθ2(a|s)| ≤ C‖θ1 − θ2‖2

Assumption (non-singularity): C is small enough so that Aθ∗ + CλI is
negative definite

Assumption (geometric mixing): for fixed θ, the Markov chain
induced by πθ and P is uniformly ergodic with invariant measure µθ,
and there are constants κ > 0 and ρ ∈ (0, 1) such that

sup
s∈S

dTV
(
P(st |s0 = s), µθ

)
≤ κρt , ∀t ≥ 0
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Step 3. Stochastic Bias Analysis

E[Λt(θt)]: Bias caused by using a single sample path with non-i.i.d.
data and dynamically changing learning policy πθt

Define Ot = (st , at , st+1, at+1)

Recall stochastic bias: Λt(θt) = 〈θt − θ∗, gt(θt)− ḡ(θt)〉 and
gt(θt) = φ(st , at)

(
r(st , at , st+1) + γφT (st+1, at+1)θt − φT (st , at)θt

)
Complicated dependency between Ot and θt

Rewrite Λt(θt) as Λt(θt ,Ot)
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Step 3. Stochastic Bias Analysis

First, we show that Λt(θ) is Lipschitz in θ

Second, θt changes slowly with t

Then for any τ > 0,
Λt(θt ,Ot) ≤ Λt(θt−τ ,Ot) + (6 + λC )G 2

∑t−1
i=t−τ αi (part a)

Intend to decouple the dependency between θt and Ot by considering
θt−τ and Ot

If the Markov chain induced by SARSA is uniformly ergodic, then
given any θt−τ , Ot would reach its stationary distribution quickly for
large τ

However, this argument is not necessarily true since the policy πθt
changes with time
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Step 3. Stochastic Bias Analysis

Key idea: design an auxiliary Markov chain that is uniformly ergodic
to assist proof

Auxiliary Markov chain design:
I Before time t − τ + 1, everything is the same as SARSA
I After that, fix learning policy as πθt−τ to generate all subsequent

actions
I Denote new observations as Õt = (s̃t , ãt , s̃t+1, ãt+1)

Since πθt−τ is kept fixed, for large τ , Õt reaches stationary distribution
induced by πθt−τ by geometric mixing assumption for large τ

Thus, E[Λt(θt−τ , Õt)] ≤ 4G 2κρτ−1 (part b)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Recent Advances in RL Theory ISIT 2021 Tutorial 55 / 99



Step 3. Stochastic Bias Analysis

Bound different between SARSA Markov chain and auxiliary Markov
chain

θt changes slowly due to small stepsize

Due to Lipschitz property of πθ, the two Markov chains should not
deviate from each other too much

We can show E[Λt(θt−τ ,Ot)]− E[Λt(θt−τ , Õt)] ≤ C |A|G3τ
w log t

t−τ
(part c)

Combining parts a, b and c yields an upper bound on E[Λt(θt)]
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Step 4.

Putting the first three steps together

Recursively applying Step 1 completes the proof
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Q-Learning: Off-Policy TD Control

Finite S and A, unknown r and P

Q-Learning

I Parameter: step size α ∈ (0, 1]

I Initialize Q(s, a) for all s ∈ S and a ∈ A arbitrarily

I Initialize s0, behavior policy πb, t = 0

I Repeat until convergence

F Take action at following fixed πb, observe next state st+1, receive reward
r(st , at , st+1)

F Q(st , at)← Q(st , at) + α(r(st , at , st+1) + γmaxa′∈AQ(st+1, a
′)− Q(st , at))

F t ← t + 1

Q-learning converges to Q∗ if
I All state-action pairs are visited infinitely often

Q-learning sample complexity studies, e.g., [22], [23] and [24]
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Gradient TD Method for Optimal Control

Q-learning with function approximation suffers from divergence issue

Greedy-Gradient Q-learning (Greedy-GQ) with linear function
approximation [25]

Consider mean squared projected Bellman error (MSPBE):

J(θ) , ‖ΠTQθ − Qθ‖2
µ

I µ: stationary distribution induced by behavior policy πb
I ‖Q(·, ·)‖µ ,

∫
s∈S,a∈A dµs,aQ(s, a)

I Π: projection operator ΠQ̂ = arg minQ∈Q ‖Q − Q̂‖µ
I Q =

{
Qθ = φ>θ : θ ∈ RN

}
Goal: minθ J(θ)
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Two Time-Scale Update Rule

Define V̄s′(θ) = maxa′∈A θ
>φs′,a′

TD error: δs,a,s′(θ) = r(s, a, s ′) + γV̄s′(θ)− θ>φs,a
Let φ̂s′(θ) = ∇V̄s′(θ). Then gradient of MSPBE is

∇J(θ)

2
= −Eµ[δs,a,s′(θ)φs,a] + γEµ[φ̂s′(θ)φ>s,a]ω∗(θ),

where ω∗(θ) = Eµ[φs,aφ
>
s,a]−1Eµ[δs,a,s′(θ)φs,a].

Double-sampling issue for estimating Eµ[φ̂s′(θ)φ>s,a]ω∗(θ): it involves
product of two expectations

Weight doubling trick [13]:

Slow time-scale: θt+1 = θt + α(δt+1(θt)φt − γ(ω>t φt)φ̂t+1(θt)),

Fast time-scale: ωt+1 = ωt + β(δt+1(θt)− φ>t ωt)φt ,
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Finite-Sample Analysis [26, 27]

Challenges:

Non-convex objective J(θ) with two time-scale update rule

Non-smooth due to max in V̄s′(θ) = maxa′∈A θ
>φs′,a′

I Approximate max with a smooth approximation, e.g., softmax

Biased gradient estimate due to two time-scale update and Markovian
noise

Theorem

Finite-sample bound on convergence of Greedy-GQ with linear function

approximation: E[‖∇J(θW )‖2] = O
(

log T√
T

)
Gradient norm converges to 0 implies convergence to stationary points
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Finite-Sample Analysis [26, 27]

ω∗(θ): limit of fast time-scale if θt is fixed to be θ

Define tracking error: zt = ωt − ω∗(θt): how fast the fast time-scale
tracks its limit

Denote estimate of ∇J(θ)
2 by

Gt+1(θ, ω) = δt+1(θ)φt − γ(ω>φt)φ̂t+1(θ)

Slow time-scale can be written as θt+1 = θt + αGt+1(θt , ωt)
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Stochastic Bias in Gradient Estimate

Bias in the gradient estimate can be decomposed as follows:

E
[
Gt+1(θt , ωt) +

∇J(θ)

2

]
= E

[
Gt+1(θt , ω

∗(θt)) +
∇J(θ)

2

]
︸ ︷︷ ︸

Bias (a): due to Markovian noise

+E [Gt+1(θt , ωt)− Gt+1(θt , ω
∗(θt))]︸ ︷︷ ︸

Bias (b): due to tracking error

For bias (a), under the i.i.d. setting, it is zero. Under the Markovian
setting, it can be bounded similarly to proof of TDC.

For bias (b), ‖Gt+1(θt , ωt)− Gt+1(θt , ω
∗(θt))‖ ≤ L‖ωt − ω∗(θt)︸ ︷︷ ︸

zt

‖,

for some Lipschitz constant L > 0. Thus, a tight bound on the
tracking error ‖zt‖ is needed.
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Tracking Error Bound

zt can be recursively written as
zt+1 = zt + β((δt+1(θt)−φ>t ω∗(θt))φt −φ>t ztφt +ω∗(θt)− ω∗(θt+1)

Then the recursion of ‖zt‖2 naturally involves a term
〈zt , ω∗(θt)− ω∗(θt+1)〉, to bound which, the Taylor expansion of
ω∗(θ) at θt is used:

ω∗(θi+1)− ω∗(θi )
= ∇ω∗(θi )>(θi+1 − θi ) +O(α2)

= α∇ω∗(θi )> Gi+1(θi , ωi )︸ ︷︷ ︸
should also converge to 0

+O(α2)

Basic idea: bound tracking error zt in terms of ∇J(θt), which shall
also converges to zero, instead of a constant bound
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Variance Reduced Greedy-GQ [29]

Greedy-GQ update: denote Ot = (st , at , rt , st+1)

θt+1 = θt − αGOt (θt , ωt), ωt+1 = ωt − βHOt (θt , ωt)

Variance reduction [28]: reference parameters θ̃, ω̃

(Reference updates) G̃ :=
1

M

M∑
i=1

GOi
(θ̃, ω̃), H̃ :=

1

M

M∑
i=1

HOi
(θ̃, ω̃)

(Variance-reduced Greedy-GQ):

θt+1 = θt − α
(
GOt (θt , ωt)− GOt (θ̃, ω̃) + G̃

)
ωt+1 = ωt − β

(
HOt (θt , ωt)− HOt (θ̃, ω̃) + H̃

)
Periodically update θ̃, ω̃, G̃ , H̃

Improved sample complexity
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Outline

1 Introduction to Reinforcement Learning and Applications

2 Policy Evaluation and TD Learning

3 Value-based Method for Optimal Control

4 Policy Gradient Algorithms

5 Advanced Topics on RL and Open Directions
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Formulation of RL
State value function:

Vπ(s) = E[
∑∞

t=0 γ
tr(st , at , st+1)|s0 = s, π]

State-action value function:

Qπ(s, a) = E[
∑∞

t=0 γ
tr(st , at , st+1)|s0 = s, a0 = a, π]

where at ∼ π(·|st) for all t ≥ 0.

Average value function:

J(π) = (1− γ)E[
∑∞

t=0 γ
tr(st , at , st+1)] = Es∼ξ[Vπ(s)]

where ξ(·) denotes initial distribution.

RL Goal: find the best policy π∗

(Criterion I): Vπ∗(s) ≥ Vπ(s), ∀π,∀s
(Criterion II): max

π
J(π) := Es∼ξ[Vπ(s)]
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Parameterization of Policy
Central idea:

I Parameterize the policy as {πw ,w ∈ W}
I J(π) = J(πw ) := J(w)

Goal of Policy-Based RL: maxw∈W J(πw ) := J(w)

Example parameterizations of policy
I Direct parameterization: πw (a|s) = ws,a, where w ∈ 4(A)|S|, i.e.,

ws,a ≥ 0, and
∑

a∈A ws,a = 1 for all (s, a)

I Tabular softmax parameterization:

πw (a|s) =
exp(ws,a)∑

a′∈A exp(ws,a′)

I Linear softmax parameterization:

πw (a|s) ∝ exp(φ(s, a)Tw)

I Gaussian policy: πw (a|s) = N (φ(s)Tw , σ2)
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Policy Gradient Algorithm

Goal of Policy-Based RL: maxw∈W J(πw ) := J(w)

Policy gradient ∇J(w) [30]

∇wJ(w) = Eνπw
[
Qπw (s, a)∇w log πw (a|s)

]
I Visitation distribution: νπ(s, a) = (1− γ)

∑∞
t=0 γ

tP(st = s, at = a)
I Define score function ψw (s, a) := ∇w log πw (a|s)
I Define advantage function: Aπ(s, a) = Qπ(s, a)− Vπ(s)

∇wJ(w) = Eνπw
[
Qπw (s, a)ψw (s, a)] = Eνπw

[
Aπw (s, a)ψw (s, a)

]
Policy gradient algorithm [30, 31]

update the parameter w via gradient ascent

wt+1 = wt + αt∇wJ(wt)

where αt > 0 is the stepsize.
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TRPO/PPO Algorithm

Trusted Region Policy Optimization (TRPO) [32]

Update the parameter w under KL constraint

wt+1 = argmax
w

[J(wt) + (w − wt)
T∇wJ(wt)]

subject to Eν(s)[KL(πwt ||πw )] ≤ c

where c > 0 is a hyperparameter.

Proximal Policy Optimization (PPO) [33]

Update the parameter w via KL-regularized gradient ascent

wt+1 = argmax
w

[J(wt) + (w − wt)
T∇wJ(wt)− αEνw (s)[KL(πwt ||πw )]]

where c > 0 is a hyperparameter.
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Natural Policy Gradient (NPG) Algorithm
Second-order Taylor approximation to KL distance

KL(πwt ||πw ) ≈1

2
(w − wt)

TF (w)(w − wt)

I Fisher information matrix F (w) = Eνπw
[∇w log πwt∇w log πT

wt
]

KL-regularized update: at time t

argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)− αEνw (s)[KL(πwt ||πw )]
]

≈ argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)−
α

2
(w − wt)

TF (wt)(w − wt)
]

= wt + αF (wt)
†∇wJ(wt)

where F (wt)
† denotes the pseudo-inverse of F (wt).

Natural Policy Gradient (NPG) [34]

Update parameter w via KL approximator based regularizer

wt+1 = wt + αF (wt)
†∇wJ(wt)
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Convergence with Exact Policy Gradient

Policy gradient
I Direct and tabular softmax policy: global sublinear convergence [35]
I Direct policy: global linear convergence via regularized MDP [36]
I Direct policy: global linear convergence via line search [37]

TRPO/PPO
I Direct policy: global sublinear convergence via adaptivity [38]
I Direct policy: global linear convergence via regularized MDP [36]
I Direct policy: global convergence via line search [37]

NPG
I Tabular softmax policy: global sublinear convergence [35]
I Tabular softmax policy: global linear convergence via regularized MDP

[39]
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Policy Gradient Algorithms under Unknown MDP

∇J(w) = Eνπw
[
Qπw (s, a)ψw (s, a)

]
= Eνπw

[
Aπw (s, a)ψw (s, a)

]
Let P̂(·|st , at) = γP(·|st , at) + (1− γ)ξ(·) [40]

I ξ(·): initial distribution
I Samples drawn from P̂(·|st , at) converge to visitation distribution νπw

Model-free Policy Gradient

Sample st ∼ P̂(·|st−1, at−1), at ∼ πwt (·|st)
Unbiased estimation of Aπwt (st , at)

I Sample a length-K trajectory starting at (st , at), K ∼ Geom(1− γ)
I Estimate Q̂(st , at) by adding rewards over the sample path
I Sample a length-K trajectory starting at (st), K ∼ Geom(1− γ)
I Estimate V̂ (st) by adding rewards over the sample path
I Âπwt

(st , at) = Q̂(st , at)− V̂ (st)

Estimate policy gradient gt = Âπwt (st , at)∇wt log(πwt (at |st))

Update wt+1 = wt + αtgt
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Analysis of Model-free PG Algorithms

Parameterization: general nonlinear policy {πw : w ∈ W}
Sampling is over a single trajectory path

Assumption 1 (Smoothness of policy)

For any (w ,w ′) and (s, a), there exist positive Lψ, Cψ, and Cπ such that:

‖ψw (s, a)− ψw ′(s, a)‖2 ≤ Lψ ‖w − w ′‖2

‖ψw (s, a)‖2 ≤ Cψ

dTV
(
πw (·|s), πw ′(·|s)

)
≤ Cπ ‖w − w ′‖2

Assumption 2 (Geometric Mixing)

For any policy πw and transition kernel P(·|s, a) or P̂(·|s, a), let µπw be
stationary distribution. There exist κ > 0, ρ ∈ (0, 1) such that

sup
s∈S

dTV
(
P(st |s0 = s), µπw

)
≤ κρt , ∀t ≥ 0
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Convergence of Model-free PG Algorithms

Theorem ([41])

Suppose Assumptions 1 and 2 hold. Under a diminishing stepsize αt = 1√
t

for t = 1, . . . ,T , the output of model-free PG satisfies

min
t∈[T ]

E
[
‖∇wtJ(wt)‖2

]
≤ O

(
log T
T

)
+O

(
log2 T√

T

)
.

Furthermore, under constant stepsize αt = α:

min
t∈[T ]

E
[
‖∇wtJ(wt)‖2

]
≤ O

(
1
αT

)
+O(α log2 1

α ).

Under constant stepsize, PG converges to a neighborhood of a
stationary point at a rate of O

(
1
T

)
.

I α controls a tradeoff between convergence rate and accuracy
I Decreasing α improves accuracy, but slows down convergence

I Let αt = 1√
T

, PG converges with a rate of O
(

log2 T√
T

)
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Actor-Critic Algorithms [42]

Actor-Critic Algorithm

Critic
I Estimates Vθ(s) by linear function approximation φ(s)>θ
I Takes Tc length-M minibatch TD learning updates and outputs θt

Actor
I Approximates Aπw (s, a) by temporal difference error δθ(s, a, s ′)

Âπw (s, a) = δθ(s, a, s ′) = r(s, a, s ′) + γφ(s ′)>θ − φ(s)>θ

I Estimate policy gradient vt(θt) by averaging δθt (st , at , st+1)ψwt (st , at)
over a length-B sample trajectory

I Updates wt+1 = wt + αtvt(θt)

Parameterization: general nonlinear policy {πw : w ∈ W}
Sampling is over a single trajectory path
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Convergence Rate of Actor-Critic Algorithm

Theorem ([43])

Suppose Assum. 1 and 2 hold, and T̂ is chosen uniformly from {1, · · · ,T}.

E[
∥∥∇wJ(wT̂ )

∥∥2

2
] ≤ O

(
1
T

)
+O

(
1
B

)
+ (1−O(λAπ

β))Tc +O
(
β
M

)
+O(ζcriticapprox).

With total sample complexity O(ε−2 log(1/ε))

E[
∥∥∇wJ(wT̂ )

∥∥2

2
] ≤ ε+O(ζcriticapprox).

Actor has sublinear convergence, and critic has linear convergence

Actor’s bias and variance O
(

1
B

)
; Critic’s bias and variance O

(
β
M

)
Critic’s approximation error: ζcritic

approx = maxw∈W Eνw [|Vπw (s)− Vθ∗πw
(s)|2]
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Convergence Rate of Actor-Critic Algorithm

Theorem ([43])

Suppose Assum. 1 and 2 hold, and T̂ is chosen uniformly from {1, · · · ,T}.

E[
∥∥∇wJ(wT̂ )

∥∥2

2
] ≤ O

(
1
T

)
+O

(
1
B

)
+ (1−O(λAπ

β))Tc +O
(
β
M

)
+O(ζcriticapprox).

With total sample complexity O(ε−2 log(1/ε))

E[
∥∥∇wJ(wT̂ )

∥∥2

2
] ≤ ε+O(ζcriticapprox).

Actor’s mini-batch yields faster convergence rate of O(1/T ) rather
than O(1/

√
T )

This further yields better overall sample complexity
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Proof of Convergence

Let vt(θ) denote estimator of g(θ,w) = Eνw [Aθ(s, a)ψw (s, a)]

Decompose error terms(1

2
α− LJα

2
)
E[‖∇wJ(wt)‖2

2 |Ft ]

≤ E[J(wt+1)|Ft ]− J(wt) + 3
(1

2
α + LJα

2
)
E
[ ∥∥vt(θt)− vt(θ

∗
wt

)
∥∥2

2

+
∥∥vt(θ∗wt

)− g(θ∗wt
,wt)

∥∥2

2
+
∥∥g(θ∗wt

,wt)−∇wJ(wt)
∥∥2

2

∣∣Ft

]
.

Error due to TD learning

E[
∥∥vt(θt)− vt(θ

∗
wt

)
∥∥2

2

∣∣Ft ]

≤ 4E[
∥∥θt − θ∗wt

∥∥2

2

∣∣Ft ] ≤ (1−O(λAπβ))Tc +O(β/M)
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Proof of Convergence (Cont.)

Gradient estimation error under Markovian minibatch sampling

E
[∥∥vt(θ∗wt

)− g(θ∗wt
,wt)

∥∥2

2
|Ft

]
≤ O

(
1

B

)
.

Critic’s approximation error∥∥g(θ∗wt
,wt)−∇wJ(wt)

∥∥2

2
≤ O

(
ζcritic

approx

)
Combine error bounds and take summarization over iteration path

E[
∥∥∇wJ(wT̂ )

∥∥2

2
] ≤O

(
1
T

)
+ (1−O(λAπβ))Tc +O

(
β
M

)
+O

(
1
B

)
+O(ζcritic

approx).
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Natural Policy Gradient under Unknown MDP

Natural policy gradient (NPG) [34, 44],

wt+1 = wt + αtF (wt)
†∇J(wt)

Consider minθ∈Rd Lw (θ) = Eνπw [Aπw (s, a)− ψ(s, a)>θ]2

I Minimum norm solution satisfies θw = F (w)†∇J(w)

NPG update [35]: wt+1 = wt + αtθt

Model-free NPG [35]

At step t, solve least square problem via K iterations
I Obtain unbiased estimator Âπwt

(sk , ak) (same as PG)
I Update θk+1 = θk − β∇θLwt (θk)

Update wt+1 = wt + αtθK

NPG with general nonlinear policy converges globally as O
(

1√
T

)
[35]

Can achieve O
(

1
T

)
by self-variance reduction of gradient norm [43]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Recent Advances in RL Theory ISIT 2021 Tutorial 80 / 99



Natural Actor-Critic Algorithm

J(w) = Eνπw
[
Qπw (s, a)ψw (s, a)

]
= Eνπw

[
Aπw (s, a)ψw (s, a)

]
wt+1 = wt + αtF (wt)

†∇J(wt)

Natural Actor-Critic Algorithm

Critic (same as critic in actor-critic algorithm)
I Estimates Vθ(s) by linear function approximation φ(s)>θ
I Takes Tc length-M minibatch TD learning updates and outputs θt

Actor
I Computes policy gradient estimator vt(θt) as in actor-critic algorithm
I Computes Fisher information estimator Ft(wt) by averaging over a

length-B sample trajectory
I Updates wt+1 = wt + αtFt(wt)

†vt(θt)

Parameterization: general nonlinear policy {πw : w ∈ W}
Sampling is over a single trajectory path
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Convergence Rate of Natural Actor-Critic Algorithm

Theorem ([43])

Let Assum. 1 and 2 hold and T̂ is chosen uniformly from {1, · · · ,T}.

J(π∗)− E
[
J(πwT̂

)
]
≤ O

(
1
T

)
+O

(
1√
B

)
+ (1−O(λAπ

β))Tc/2 +O
(

1√
M

)
+O(

√
ζcriticapprox) +O

(
1
B

)
+ (1−O(λAπ

β))Tc +O
(
β
M

)
+O(ζcriticapprox) +O(

√
ζactorapprox)

With total sample complexity O(ε−3 log(1/ε)), we achieve

J(π∗)− E
[
J(πwT̂

)
]
≤ ε+O

(√
ζactorapprox

)
+O

(√
ζcriticapprox

)
+O

(
ζcriticapprox

)
.

Actor has sublinear convergence, and critic has linear convergence

Critic’s approx. error: ζcritic
approx = maxw∈W Eνw [|Vπw (s)− Vθ∗πw

(s)|2]

Actor’s approx. error:
ζactor

approx = maxw∈W minp∈Rd2 Eνπw
[
ψw (s, a)>p − Aπw (s, a)

]2
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Convergence Rate of Natural Actor-Critic Algorithm

Theorem ([43])

Let Assum. 1 and 2 hold and T̂ is chosen uniformly from {1, · · · ,T}.

J(π∗)− E
[
J(πwT̂

)
]
≤ O

(
1
T

)
+O

(
1√
B

)
+ (1−O(λAπ

β))Tc/2 +O
(

1√
M

)
+O(

√
ζcriticapprox) +O

(
1
B

)
+ (1−O(λAπ

β))Tc +O
(
β
M

)
+O(ζcriticapprox) +O(

√
ζactorapprox)

With total sample complexity O(ε−3 log(1/ε)), we achieve

J(π∗)− E
[
J(πwT̂

)
]
≤ ε+O

(√
ζactorapprox

)
+O

(√
ζcriticapprox

)
+O

(
ζcriticapprox

)
.

Diminishing variance in actor’s update yields a faster convergence
rate of O(1/T ) than O(1/

√
T )

Performance difference lemma [35] of NAC yields global convergence
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Proof of Convergence (Part I)

Define uwt = F (wt)
−1∇wJ(wt) and ut(θ) = Ft(wt)

−1vt(θ), where Ft(wt)
is assumed to be nonsingular.

Bound the norm of policy gradient

E[‖∇wJ(wt)‖2
2 |Ft ]

≤ O (E[J(wt+1)|Ft ]− J(wt)) +O
(
E[
∥∥ut(θt)− F (wt)

−1∇wJ(wt)
∥∥2

2
|Ft ]

)
Bound estimation error of natural policy gradient

E[
∥∥ut(θt)− F (wt)

−1∇wJ(wt)
∥∥2

2
|Ft ]

≤ O
(
E[‖vt(θt)−∇wJ(wt)‖2

2 |Ft ]
)

+O
(
E[‖F (wt)− Ft(wt)‖2

2 |Ft ]
)

≤ (1−O(λAπ
β))Tc +O

(
β
M

)
+O

(
1
B

)
+O(ζcritic

approx)
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Proof of Convergence (Part I Cont.)

I Policy gradient estimation error due to TD learning (same as AC)

E[‖vt(θt)−∇wJ(wt)‖2
2 |Ft ]

≤ (1−O(λAπ
β))Tc +O

(
β
M

)
+O

(
1
B

)
+O(ζcritic

approx)

I Fisher information estimation error

E[‖F (wt)− Ft(wt)‖2
2 |Ft ] ≤ O

(
1

B

)
Overall convergence of gradient norm

1
T

∑T−1
t=0 E[‖∇wJ(wt)‖2

2]

≤ O
(

E[J(wT )]−J(w0)
T

)
+ (1−O(λAπ

β))Tc +O
(
β
M

)
+O

(
1
B

)
+O(ζcritic

approx)
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Proof of Convergence (Part II)

Define D(w) = KL
(
π∗(·|s)‖πw (·|s)

)
= Eνπ∗

[
log π∗(a|s)

πw (a|s)

]
Bound function value gap (global convergence)

D(wt)− D(wt+1)

≥ αEνπ∗
[
Aπwt

(s, a)
]
− α

∥∥ut(θt)− F (wt)
−1∇wJ(wt)

∥∥
2

+ αEνπ∗
[
ψwt (s, a)>F (wt)

−1∇wJ(wt)− Aπwt
(s, a)

]
− Lψ

2
α2 ‖ut(θt)‖2

2

Performance difference lemma (central for global convergence) [35]

Eνπ∗ [Aπwt
(s, a)] = (1− γ)[J(π∗)− J(πwt )]

Natural policy gradient estimation error

E[
∥∥ut(θt)− F (wt)

−1∇wJ(wt)
∥∥

2
] ≤

√
E[‖ut(θt)− F (wt)−1∇wJ(wt)‖2

2]

which is bounded in Part I.
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Proof of Convergence (Part II Cont.)

Actor’s approximation error

Eνπ∗
[
ψwt (s, a)>F (wt)

−1∇wJ(wt)− Aπwt
(s, a)

]
≥ −

√
1

1−γ

∥∥∥ νπ∗νπw0

∥∥∥
∞

√
ζactor

approx

Second moment of policy gradient

E[ ‖ut(θt)‖2
2]

≤ O(E[
∥∥ut(θt)− F (wt)

−1∇wJ(wt)
∥∥2

2
]) +O(E[‖∇wJ(wt)‖2

2])

where both terms are bounded in Part I.

Substitute all bounds into the first step of Part II, rearrange terms,
and take summation over t = 0 to T − 1.
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Extension I: Policy Gradient Algorithm with Adam

PG-AMSGrad [41]

Sample st ∼ P̂(·|st−1, at−1), at ∼ πwt (·|st)
Estimate Q-function Q̂πwt (st , at) as in PG

Estimate policy gradient gt = Q̂πwt (st , at)∇wt log(πwt (at |st))

mt = (1− β1)mt−1 + β1gt momentum

vt = (1− β2)v̂t−1 + β2g
2
t stepsize adaptation

v̂t = max(v̂t−1, vt), V̂t = diag(v̂t,1, . . . , v̂t,d)

Update policy parameter wt+1 = wt − αtV̂
− 1

2
t mt

Convergence rate of PG-AMSGrad [41]

In practice, PG with Adam converges much faster
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Extension II: Off-Policy Policy Gradient Algorithms

Off-policy policy gradient
I On-policy sampling with target policy is not possible
I Off-policy sampling under behavior policy: (si , ai , s

′
i ) ∼ D

I Estimate ∇wJ(w) with off-policy samples

Actor-critic with distribution correction (AC-DC)

g(w) = ρ̂(s, a)Q̂πw (s, a)∇w log(πw (s, a))

where ρ̂ and Q̂πw are approximation of ρ = νπw /D and Qπw , respectively.

Bias error of AC-DC suffers substantially from estimation errors

∆g = ED[g(w)]−∇wJ(πw ) = Θ(E[ερ(s, a) + εQ(s, a)])

where ερ = ρ− ρ̂ and εQ = Q − Q̂

Doubly robust off-policy PG estimation [45] reduces bias error
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Outline

1 Introduction to Reinforcement Learning and Applications

2 Policy Evaluation and TD Learning

3 Value-based Method for Optimal Control

4 Policy Gradient Algorithms

5 Advanced Topics on RL and Open Directions
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Safe Reinforcement Learning

Practical RL applications involve various safety/resource constraints
I Left: Power constraint on battery powered devices
I Right: Safety constraints on autonomous robotics and vehicles
I Bottom: Delay constraint in communication system

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Recent Advances in RL Theory ISIT 2021 Tutorial 90 / 99



Constrained Markov Decision Process (CMDP)

Same dynamics as general MDP

Agent receives reward R and cost C

Value function w.r.t. reward R:

V π
R (ρ) := E

[∑∞
t=0 γ

tR(st , at , st+1)
∣∣S0 ∼ ρ

]
Value function w.r.t. cost C :

V π
C (ρ) := E

[∑∞
t=0 γ

tC (st , at , st+1)
∣∣S0 ∼ ρ

]
Goal of CMDP

max
π

V π
R (ρ) subject to V π

C (ρ) ≤ c
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Two Popular Approaches for CMDP

Primal-Dual Approach: e.g. CPO [46], PDO [47]
I Define Lagrangian: let λ > 0 be Lagrangian multiplier

L(π, λ) = −V π
R (ρ) + λ(V π

C (ρ)− c).

I Solve a minimax problem over augmented Lagrangian function

max
λ∈R+

min
π
L(π, λ)

I Zero duality gap [48, 49]; Convergence rate [49, 50]

Primal Approach: CRPO [51]
I If constraint is violated, take one step NPG update to reduce VC

πt (ρ)
I If constraint is satisfied, take one step NPG update to enlarge VR

πt (ρ)
I Convergence rate [51]
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Imitation Learning

Imitation Learning
I Reward function is unknown
I Some expert demonstrations are available
I Goal: find a learner’s policy that produces behaviors as close as

possible to expert demonstrations

Two major approaches
I Behavioral cloning [52]

F Directly provides a mapping from state to action based on supervised
learning to match expert demonstrations

I Inverse Reinforcement Learning [53, 54]
F First recovers unknown reward function based on expert’s trajectories,

and then find an optimal policy using such a reward function
F Generative adversarial imitation learning (GAIL) framework [55]
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Generative Adversarial Imitation Learning (GAIL)

Parameterize reward function as rα(s, a) where α ∈ Λ ⊂ Rq

πE : expert policy; demonstration samples under πE are available

πL: learner’s policy to be optimized

J(πE , rα): average value function under expert policy

J(πL, rα): average value function under learner’s policy

ψ(α): regularizer of reward parameter

GAIL Framework [55]

min
πL

max
α∈Λ

F (πL, α) := J(πE , rα)− J(πL, rα)− ψ(α)

Maximization: find reward function that best distinguishes between
expert’s and learner’s policies

Minimization: find learner’s policy that matches expert’s policy as
close as possible
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Multi-Agent Reinforcement Learning (MARL)

Many RL applications involve multiple agents
I Left: stock market with numerous investors
I Middle: multi-drone control
I Bottom: multi-agent power network
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Formulation of MARL
State value function (of joint policy π):

Vπ(s) = E
[∑∞

t=0 γ
t 1
M

∑M
m=1 r

(m)
t |s0 = s, π

]
Average value function:

J(π) = (1− γ)E
[∑∞

t=0 γ
t 1
M

∑M
m=1 r

(m)
t ] = Eξ[Vπ(s)

]
MARL Problem:

max
{π(m)}m

J(π)

MARL algorithms are similar to single-agent RL algorithms

Agents need synchronize information (local state observations,
actions, rewards, etc)

Tradeoff between communication & computation complexities
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Open Problems in Reinforcement Learning

Multi-task reinforcement learning
I Tasks can share similar but different transition kernels
I Meta-learning can be applied to achieve sampling efficiency
I Open issues in theory: characterization of sample complexity

improvement due to meta-learning

Off-policy/Offline reinforcement learning
I No access to online interaction with environment, but access only to a

given set of data samples
I Dataset has limited coverage over state-action space, and is sampled

under behavior policy, not target policy
I Open issues in design: how to design desirable algorithms to address

overestimation and distribution shift
I Open issues in theory: what is the minimum requirement to achieve

polynomial sample complexity efficiency
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Open Problems (Cont.)

Partially observable MDP
I No access to full state information
I Optimal policy is not stationary
I Markovian structure does not hold anymore
I Open issues in design: how to design efficient model-free and

model-based methods
I Open issues in theory: how to characterize sample complexity

Multi-agent RL
I Agents need to jointly achieve a design goal
I Decentralized algorithms under partial observations of environments
I Challenges in design: delayed communication; communication depends

on network topology
I Open issues in theory: tradeoff among communications, computations,

privacy
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Questions?
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