
Optimization Meets Reinforcement Learning

Yingbin Liang, The Ohio State University

Shaofeng Zou, University at Buffalo, SUNY

Yi Zhou, University of Utah

ICASSP 2022

May 22, 2022

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 1 / 124

Outline

1 Introduction to Reinforcement Learning and Applications

2 Value-based Algorithms
Policy Evaluation
Optimal Control

3 Policy Gradient Algorithms

4 Advanced Topics on RL and Open Directions
Constrained Reinforcement Learning
Imitation Learning
Multi-Agent Reinforcement Learning
Robust Reinforcement Learning

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 2 / 124

Outline

1 Introduction to Reinforcement Learning and Applications

2 Value-based Algorithms
Policy Evaluation
Optimal Control

3 Policy Gradient Algorithms

4 Advanced Topics on RL and Open Directions
Constrained Reinforcement Learning
Imitation Learning
Multi-Agent Reinforcement Learning
Robust Reinforcement Learning

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 3 / 124

Reinforcement Learning

An agent learns to interact with environment in the best way
I Agent observes state, and takes an action based on a policy
I Agent receives a reward
I Environment changes the state
I Agent finds a policy to maximize reward

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 4 / 124

Markov Decision Process (MDP)

Markov decision process (MDP): (S,A, r ,P)
I S and A: state and action spaces
I r : S ×A× S → R: reward function
I P(s ′|s, a): transition kernel; prob of s → s ′ given action a

Agent’s policy π(a|s): prob of selecting action a in state s

MDP trajectory {st , at , rt , st+1}∞t=0 defined by

s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · ·

Randomness: actions, state transitions

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 5 / 124

Markov Decision Process (MDP)

Markov decision process (MDP): (S,A, r ,P)
I S and A: state and action spaces
I r : S ×A× S → R: reward function
I P(s ′|s, a): transition kernel; prob of s → s ′ given action a

Agent’s policy π(a|s): prob of selecting action a in state s

MDP trajectory {st , at , rt , st+1}∞t=0 defined by

s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · ·

Randomness: actions, state transitions
YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 5 / 124

Application: Autonomous Driving

Collects driving data

AI agent trained to optimize driving control

Specification of MDP
I State: driving environment (distance to nearby cars, weather, etc)
I Action: turn left/right, accelerate, brake
I Reward: stay safe, drive smoothly
I Policy: vehicle control in a state

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 6 / 124

Application: Wireless Communication

Downlink Scheduling [1]

Learn optimal scheduling to minimize average queuing delay

Specification of MDP
I State: buffer status and channel state
I Action: assign resource block, determine number of transmitted bits
I Reward: buffer cost
I Policy: determine action in a given state

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 7 / 124

Application: Robotics

Robotics: Robot Control (left figure)
I Robot learns the landing environment
I Robot follows a policy to adjust the landing direction

Robotics: Arm Manipulation (right figure)
I Robot learns the warehouse environment
I Robot follows a policy to manipulate its arm

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 8 / 124

Formulation of RL

MDP trajectory {st , at , rt , st+1}t with rt := r(st , at , st+1)

Quality of s, a: discount factor γ ∈ (0, 1)

(State value): Vπ(s) = E
[∑∞

t=0 γ
trt |s0 = s, π

]
(State-action value): Qπ(s, a) = E

[∑∞
t=0 γ

trt |s0 = s, a0 = a, π
]

Expected long-term accumulated reward start with s, a

RL Goal: find the best policy π∗

(Criterion I): Vπ∗(s) ≥ Vπ(s), ∀π,∀s
(Criterion II): max

π
J(π) := Es∼ξ[Vπ(s)]

Tutorial will not cover all the RL formulations

Finite-time horizon, Average reward, Regret analysis

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 9 / 124

Formulation of RL

MDP trajectory {st , at , rt , st+1}t with rt := r(st , at , st+1)

Quality of s, a: discount factor γ ∈ (0, 1)

(State value): Vπ(s) = E
[∑∞

t=0 γ
trt |s0 = s, π

]
(State-action value): Qπ(s, a) = E

[∑∞
t=0 γ

trt |s0 = s, a0 = a, π
]

Expected long-term accumulated reward start with s, a

RL Goal: find the best policy π∗

(Criterion I): Vπ∗(s) ≥ Vπ(s), ∀π,∀s
(Criterion II): max

π
J(π) := Es∼ξ[Vπ(s)]

Tutorial will not cover all the RL formulations

Finite-time horizon, Average reward, Regret analysis

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 9 / 124

Outline

1 Introduction to Reinforcement Learning and Applications

2 Value-based Algorithms
Policy Evaluation
Optimal Control

3 Policy Gradient Algorithms

4 Advanced Topics on RL and Open Directions
Constrained Reinforcement Learning
Imitation Learning
Multi-Agent Reinforcement Learning
Robust Reinforcement Learning

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 10 / 124

Outline

1 Introduction to Reinforcement Learning and Applications

2 Value-based Algorithms
Policy Evaluation
Optimal Control

3 Policy Gradient Algorithms

4 Advanced Topics on RL and Open Directions
Constrained Reinforcement Learning
Imitation Learning
Multi-Agent Reinforcement Learning
Robust Reinforcement Learning

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 11 / 124

Policy Evaluation

Recall Markov Decision Process: {st , at , rt , st+1}t

s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · ·

State value function:

Vπ(s) = E
[∑∞

t=0 γ
trt |s0 = s, π

]
I Expected accumulated reward, start with s follow π.

Policy Evaluation Problem:

Given a fixed policy π, how to evaluate its state value function Vπ?

Foundation for policy optimization

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 12 / 124

Policy Evaluation

Recall Markov Decision Process: {st , at , rt , st+1}t

s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · ·

State value function:

Vπ(s) = E
[∑∞

t=0 γ
trt |s0 = s, π

]
I Expected accumulated reward, start with s follow π.

Policy Evaluation Problem:

Given a fixed policy π, how to evaluate its state value function Vπ?

Foundation for policy optimization

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 12 / 124

Summary of Policy Evaluation Algorithms

Known transition kernel P(·|s, a)
I Solving Bellman equation

Unknown transition kernel P(·|s, a) (Model-free)
I On-policy TD learning
I Off-policy TD learning

Our focus is model-free approaches.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 13 / 124

Summary of Policy Evaluation Algorithms

Known transition kernel P(·|s, a)
I Solving Bellman equation

Unknown transition kernel P(·|s, a) (Model-free)
I On-policy TD learning
I Off-policy TD learning

Our focus is model-free approaches.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 13 / 124

Known P: Bellman Equation

Transition kernel P(·|s, a) is known

By definition of Vπ(s):

Vπ(s) = E[r0 + γr1 + γ2r2 + · · · |s0 = s, π]

= E[r0|s0 = s, π] + γE[r1 + γr2 + · · · |s0 = s, π]

Note that

E[r1 + γr2 + · · · |s0 = s, π]

= Es1

[
E[r1 + γr2 + · · · |s0 = s, s1 = s ′, π]

]
= Es1 [Vπ(s1)]

Vπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 14 / 124

Known P: Bellman Equation

Transition kernel P(·|s, a) is known

By definition of Vπ(s):

Vπ(s) = E[r0 + γr1 + γ2r2 + · · · |s0 = s, π]

= E[r0|s0 = s, π] + γE[r1 + γr2 + · · · |s0 = s, π]

Note that

E[r1 + γr2 + · · · |s0 = s, π]

= Es1

[
E[r1 + γr2 + · · · |s0 = s, s1 = s ′, π]

]
= Es1 [Vπ(s1)]

Vπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 14 / 124

Vπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
Define Bellman operator

(Bellman operator):

TπVπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
Bellman Equation for Value Function

Vπ(s) = TπVπ(s)

Linear programming: Directly solve the linear equation
I High computation complexity

Value iteration: fixed point update

Vt+1(s) = TπVt(s)

I Tπ is contraction ⇒ Vt → Vπ.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 15 / 124

Vπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
Define Bellman operator

(Bellman operator):

TπVπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
Bellman Equation for Value Function

Vπ(s) = TπVπ(s)

Linear programming: Directly solve the linear equation
I High computation complexity

Value iteration: fixed point update

Vt+1(s) = TπVt(s)

I Tπ is contraction ⇒ Vt → Vπ.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 15 / 124

Model-Free: On-Policy TD Learning

Model-Free

Transition kernel P(·|s, a) is unknown

On-Policy Data

Collect Markovian data {st , at , rt , st+1}t following target policy π

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 16 / 124

On-Policy TD(0) Algorithm
Recall Bellman equation

Vπ(s) = E[r(s, a, s ′) + γVπ(s ′)]

Idea: update Vπ(s) using r(s, a, s ′) + γVπ(s ′)

Formally: collect {st , at , rt , st+1}t and do

V (st) = rt+1 + γV (st+1)︸ ︷︷ ︸
Target (one-step bootstrap)

, (*)

TD learning is a damped version of (*): 0 < η < 1,

V (st)← (1− η)V (st) + η
(
rt+1 + γV (st+1)

)
, (TD)

TD(0) Algorithm [2]

V (st)← V (st) + η
(
rt+1 + γV (st+1)− V (st)︸ ︷︷ ︸

temporal difference

)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 17 / 124

On-Policy TD(0) Algorithm
Recall Bellman equation

Vπ(s) = E[r(s, a, s ′) + γVπ(s ′)]

Idea: update Vπ(s) using r(s, a, s ′) + γVπ(s ′)

Formally: collect {st , at , rt , st+1}t and do

V (st) = rt+1 + γV (st+1)︸ ︷︷ ︸
Target (one-step bootstrap)

, (*)

TD learning is a damped version of (*): 0 < η < 1,

V (st)← (1− η)V (st) + η
(
rt+1 + γV (st+1)

)
, (TD)

TD(0) Algorithm [2]

V (st)← V (st) + η
(
rt+1 + γV (st+1)− V (st)︸ ︷︷ ︸

temporal difference

)
YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 17 / 124

TD(λ) Algorithm

TD(0) Algorithm

V (st)← V (st) + η
(
rt+1 + γV (st+1)− V (st)

)
In TD(0), target rt+1 + γV (st+1) is one-step bootstrap

Extension: n-step bootstrap

G
(n)
t := rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnV (st+n)

Define λ-return: Gλ
t := (1− λ)

∑∞
n=1 λ

n−1G
(n)
t .

TD(λ) Algorithm [3]

V (st)← V (st) + η
(
Gλ
t − V (st)

)
Reduce the variance of TD target

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 18 / 124

Value Function Approximation

Curse of dimensionality: state space is often large or infinite

Solution: approximate Vπ using parameterized model Vθ
I Linear model: Vθ(s) := φ>s θ, where φs is feature vector of s
I Neural model: Vθ(s) := NNθ(s), where NNθ is neural network

TD(0) learning with function approximation

Initialize model θ0.

Observe sample {st , at , rt , st+1}, define target Gt = rt + γVθt (st+1)

Define loss `t(θ) := 1
2 (Vθ(st)− Gt)

2, compute gt(θt) = −∂`t(θ)
∂θ |θ=θt

TD update:
θt+1 = θt + ηgt(θt),

where gt(θt) = (rt + γVθt (st+1)− Vθt (st))∇Vθt (st)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 19 / 124

Value Function Approximation

Curse of dimensionality: state space is often large or infinite

Solution: approximate Vπ using parameterized model Vθ
I Linear model: Vθ(s) := φ>s θ, where φs is feature vector of s
I Neural model: Vθ(s) := NNθ(s), where NNθ is neural network

TD(0) learning with function approximation

Initialize model θ0.

Observe sample {st , at , rt , st+1}, define target Gt = rt + γVθt (st+1)

Define loss `t(θ) := 1
2 (Vθ(st)− Gt)

2, compute gt(θt) = −∂`t(θ)
∂θ |θ=θt

TD update:
θt+1 = θt + ηgt(θt),

where gt(θt) = (rt + γVθt (st+1)− Vθt (st))∇Vθt (st)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 19 / 124

Analysis of TD(0) with Linear Approximation

TD(0) with linear approximation Vθ(s) := φ>s θ

θt+1 = ProjR
(
θt + ηgt(θt)

)
,

where gt(θt) = (rt + γφ>st+1
θt − φ>st θt)φst

Challenge: gt(θt) is gradient of time-varying function `t

Challenge: Samples {st , at , rt , st+1}t are Markovian and correlated

Non-exhaustive summary of existing work:

Asymptotic convergence: [4, 5, 6, 7]

Non-asymptotic (finite-time) convergence
I I.I.D. samples: [8]
I Markovian samples: [9], [10] (will be presented)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 20 / 124

Finite-Time Convergence of TD(0)

Key Assumption: Geometric Mixing

State stationary distribution µ. There exist κ > 0, ρ ∈ (0, 1) such that

sup
s∈S

dTV
(
P(st |s0 = s), µ

)
≤ κρt , ∀t ∈ N0

Hold for irreducible and aperiodic Markov chains

Given s0 and large t, st is almost like being sampled from µ

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 21 / 124

Finite-Time Convergence of TD(0)

Key Assumption: Geometric Mixing

State stationary distribution µ. There exist κ > 0, ρ ∈ (0, 1) such that

sup
s∈S

dTV
(
P(st |s0 = s), µ

)
≤ κρt , ∀t ∈ N0

Hold for irreducible and aperiodic Markov chains

Given s0 and large t, st is almost like being sampled from µ

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 21 / 124

Feature matrix Φ = [φ>s1
; ...;φ>sn] full column rank, Vθ = Φθ

Solution point θ∗ satisfies [4]

Vθ∗ = ΠLTπVθ∗ , where L = {Φx |x ∈ Rd}

Theorem: finite-time convergence [10]

Set learning rate η ≤ O(1
1−γ). After T iterations,

E
[
‖θT − θ∗‖2

]
≤ O

(
exp(−cηT)‖θ0 − θ∗‖2 + η

τmix(η)

1− γ

)
,

where τmix(η) := min{t | κρt ≤ η} is the mixing time of Markov chain.

A faster mixing implies smaller convergence error

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 22 / 124

Feature matrix Φ = [φ>s1
; ...;φ>sn] full column rank, Vθ = Φθ

Solution point θ∗ satisfies [4]

Vθ∗ = ΠLTπVθ∗ , where L = {Φx |x ∈ Rd}

Theorem: finite-time convergence [10]

Set learning rate η ≤ O(1
1−γ). After T iterations,

E
[
‖θT − θ∗‖2

]
≤ O

(
exp(−cηT)‖θ0 − θ∗‖2 + η

τmix(η)

1− γ

)
,

where τmix(η) := min{t | κρt ≤ η} is the mixing time of Markov chain.

A faster mixing implies smaller convergence error

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 22 / 124

TD Learning for Off-Policy Evaluation

Previous TD(0) uses on-policy data

On-Policy Data

Collect Markovian data {st , at , rt , st+1}t following target policy π

Limitation: requires executing the target policy

Limitation: in practice may not have sufficient on-policy data

Off-policy data

Collect Markovian data {st , at , rt , st+1}t following behavior policy πb. The
goal is to evaluate Vπ of the target policy π.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 23 / 124

TD Learning for Off-Policy Evaluation

Previous TD(0) uses on-policy data

On-Policy Data

Collect Markovian data {st , at , rt , st+1}t following target policy π

Limitation: requires executing the target policy

Limitation: in practice may not have sufficient on-policy data

Off-policy data

Collect Markovian data {st , at , rt , st+1}t following behavior policy πb. The
goal is to evaluate Vπ of the target policy π.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 23 / 124

Divergence of Off-Policy TD(0)

Key message: TD(0) with linear approximation may diverge in the
off-policy setting [11]

Zero reward, function approximation

V (s) = 2θ(s) + θ0, s = 1, ..., 6

V (7) = θ(7) + 2θ0

Under certain initialization, parameter diverges

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 24 / 124

Gradient TD for Off-Policy Evaluation

Recall Vθ(s) = φ>s θ. Optimal θ∗ satisfies

Vθ∗ = ΠLTπVθ∗

Data sampled by behavior policy πb, stationary distribution µb

Mean-square projected Bellman error (MSPBE) [12]

(MSPBE): J(θ) := Es∼µb
[
Vθ(s)− ΠLTπVθ(s)

]2
Error Vθ(s)− ΠLTπVθ(s) based on target policy

Es∼µb : stationary state distribution induced by behavior policy

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 25 / 124

Gradient TD for Off-Policy Evaluation

Recall Vθ(s) = φ>s θ. Optimal θ∗ satisfies

Vθ∗ = ΠLTπVθ∗

Data sampled by behavior policy πb, stationary distribution µb

Mean-square projected Bellman error (MSPBE) [12]

(MSPBE): J(θ) := Es∼µb
[
Vθ(s)− ΠLTπVθ(s)

]2
Error Vθ(s)− ΠLTπVθ(s) based on target policy

Es∼µb : stationary state distribution induced by behavior policy

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 25 / 124

Idea of Importance Sampling

Denote TD error δt(θ) = rt + γφ>st+1
θ − φ>st θ

MSPBE can be rewritten as

J(θ) = Eµb,π[δt(θ)φst]
>Eµb [φstφ

>
st]
−1Eµb,π[δt(θ)φst]

Importance Sampling Lemma

Eµb,π[δt(θ)φst] = Eµb,πb
[π(at |st)
πb(at |st)

δt(θ)φst

]
,

where ρt = π(at |st)
πb(at |st) is the importance sampling ratio. Then, we have

−1

2
∇J(θ) = E

[
ρt(φst − γφst+1)φ>st

]
E
[
φstφ

>
st

]−1E[ρtδt(θ)φst]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 26 / 124

GTD2 Algorithm

−1

2
∇J(θ) = E

[
ρt(φst − γφst+1)φ>st

]
E
[
φstφ

>
st

]−1E[ρtδt(θ)φst]︸ ︷︷ ︸
ω∗(θ)

ω∗(θ) can be viewed as solution to the LMS

(LMS): ω∗(θ) = argmin
u

E
[
φ>stu − ρtδt(θ)

]2

GTD2 algorithm [12]

θt+1 = θt + αtρt(φst − γφst+1)φ>stωt

ωt+1 = ωt + βt(ρtδt(θt)φst − φstφ>stωt)

Two timescale updates

ω update is one-step SGD applied to LMS

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 27 / 124

GTD2 Algorithm

−1

2
∇J(θ) = E

[
ρt(φst − γφst+1)φ>st

]
E
[
φstφ

>
st

]−1E[ρtδt(θ)φst]︸ ︷︷ ︸
ω∗(θ)

ω∗(θ) can be viewed as solution to the LMS

(LMS): ω∗(θ) = argmin
u

E
[
φ>stu − ρtδt(θ)

]2
GTD2 algorithm [12]

θt+1 = θt + αtρt(φst − γφst+1)φ>stωt

ωt+1 = ωt + βt(ρtδt(θt)φst − φstφ>stωt)

Two timescale updates

ω update is one-step SGD applied to LMS

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 27 / 124

TDC Algorithm

−1

2
∇J(θ) = E

[
ρt(φst − γφst+1)φ>st

]
E
[
φstφ

>
st

]−1E[ρtδt(θ)φst]︸ ︷︷ ︸
ω∗(θ)

= E
[
ρtδt(θ)φst

]
− γE

[
ρtφst+1φ

>
st

]
ω∗(θ)

TDC algorithm [12]

θt+1 = θt + αtρt(δt(θt)φst − γφst+1φ
>
stωt)

ωt+1 = ωt + βt(ρtδt(θt)φst − φstφ>stωt)

θ update is different from GTD2

ω update is the same as GTD2

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 28 / 124

Convergence of TDC with Linear Approximation

TDC with linear approximation

θt+1 = ΠRθ

(
θt + αtρt(δt(θt)φst − γφst+1φ

>
stωt)

)
ωt+1 = ΠRω

(
ωt + βt(ρtδt(θt)φst − φstφ>stωt)

)
Challenge: Correlated Markovian samples

Challenge: Correlated two timescale updates

Non-exhaustive of existing work:

Asymptotic convergence: [12, 13, 14]

Non-asymptotic (finite-time) convergence
I I.I.D. samples: [8]
I Markovian samples: [15], [16] (will be presented)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 29 / 124

Finite-Time Convergence of TDC

Key Assumptions:

(Geometric mixing): There exist κ > 0, ρ ∈ (0, 1) such that

sup
s∈S

dTV
(
P(st |s0 = s), µ

)
≤ κρt , ∀t ∈ N0

(Non-singularity): The following matrices are non-singular

A := Eµb [ρs,a(γφsφ
>
s′ − φsφ>s)], C := −Eµb [φsφ

>
s]

Theorem: finite-time convergence [16]

Set learning rates α < 1
|λmax(2A>C−1A)| , β <

1
|λmax(2C)| . After T iterations,

E
[
‖θT − θ∗‖2

]
≤ O

(
(1− cα)t + α logα−1 +

√
β log β−1 +

α

β

)
Need small αβ : ωt takes faster update than θt , because it needs to
approximate the double expectation in θ update

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 30 / 124

Extension: Mini-batch TDC [17]

Mini-batch TDC with linear approximation

θt+1 = θt +
αt

M

(t+1)M−1∑
i=tM

ρi (δi (θt)φsi − γφsi+1φ
>
si
ωt)

ωt+1 = ωt +
βt
M

(t+1)M−1∑
i=tM

(ρiδi (θt)φsi − φsiφ
>
si
ωt)

No need to use bounded projection

Allow large constant learning rates

Reduce variance of two timescale stochastic updates

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 31 / 124

Outline

1 Introduction to Reinforcement Learning and Applications

2 Value-based Algorithms
Policy Evaluation
Optimal Control

3 Policy Gradient Algorithms

4 Advanced Topics on RL and Open Directions
Constrained Reinforcement Learning
Imitation Learning
Multi-Agent Reinforcement Learning
Robust Reinforcement Learning

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 32 / 124

Optimal Value Functions
Recall definition of value and state-action value functions:

Vπ(s) = E

[∞∑
t=0

γtr(st , at , st+1)

∣∣∣∣s0 = s, π

]

Qπ(s, a) = E

[∞∑
t=0

γtr(st , at , st+1)

∣∣∣∣s0 = s, a0 = a, π

]
Goal: to find an optimal policy that maximizes the value function
from any initial state s0

Optimal value function:

V ∗(s) = sup
π

Vπ(s), ∀s ∈ S

Optimal state-action value function:

Q∗(s, a) = sup
π

Qπ(s, a), ∀(s, a) ∈ S ×A

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 33 / 124

Bellman Operator and Contraction

Optimal policy π∗: take action arg max
a∈A

Q∗(s, a) at state s ∈ S

V ∗(s) = maxa∈AQ∗(s, a),∀s ∈ S
The Bellman operator T is defined as

(TV)(s) = max
a∈A

Es′∼P(·|s,a)

[
r(s, a, s ′) + γV (s ′)

]
T is contraction: for any V1 and V2

‖TV1 − TV2‖∞ ≤ γ‖V1 − V2‖∞

V ∗ is the fixed point of T: V ∗ = TV ∗

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 34 / 124

Value Iteration

Assume known reward r and transition kernel P

Value Iteration

Initialize V (s) arbitrarily for any s ∈ S
Repeat until convergence

I V (s)← max
a∈A

∑
s′∈S

P(s ′|s, a)(r(s, a, s ′) + γV (s ′)), for all s ∈ S

Repeatedly update V (s) using Bellman operator, i.e, V ← TV

Convergence can be proved using contraction of T
I ‖TV − V ∗‖∞ = ‖TV − TV ∗‖∞ ≤ γ‖V − V ∗‖∞
I ‖T · · ·T︸ ︷︷ ︸

t times

V − V ∗‖∞ ≤ γt‖V − V ∗‖∞ → 0, as t →∞

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 35 / 124

Policy Iteration

Assume known reward r and transition kernel P

Policy Iteration

Initialize π arbitrarily

Repeat until convergence
I Evaluate Qπ
I π′(s)← arg max

a∈A
Qπ(s, a) for all s ∈ S

I π ← π′

Policy improvement theorem: Let π and π′ be any pair of
deterministic policies such that for all s ∈ S, Qπ(s, π′(s)) ≥ Vπ(s),
then π′ is no worse than π: Vπ′(s) ≥ Vπ(s),∀s ∈ S
Policy from policy iteration has higher or same value than before

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 36 / 124

SARSA: On-Policy TD Control

Finite S and A, unknown reward r and transition kernel P

SARSA

I Parameter: step size α ∈ (0, 1]

I Initialize Q(s, a) for all s ∈ S and a ∈ A arbitrarily

I Initialize s0 and a0, t = 0

I Repeat until convergence

F Observe state st+1, receive reward r(st , at , st+1)
F Take action at+1 using target policy derived from Q (e.g., ε-greedy)
F Q(st , at)← Q(st , at) + α(r(st , at , st+1) + γQ(st+1, at+1)︸ ︷︷ ︸

target, one-step bootstrap

−Q(st , at))

F t ← t + 1

SARSA converges to Q∗ if
I All state-action pairs are visited infinitely often
I The policy converges to the greedy policy (e.g., ε-greedy with ε = 1/t)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 37 / 124

SARSA with Linear Function Approximation

Large S and A, unknown r and P

SARSA

Initialization: θ0, s0, φi , for i = 1, 2, ...,N

πθ0 ← Γ(φ>θ0) (e.g., ε-greedy, softmax w.r.t. φ>θ0)

Choose a0 according to πθ0

For t = 0, 1, 2, ...
I Observe st+1 and r(st , at , st+1), choose at+1 according to πθt
I θt+1 ← θt + αtgt(θt)
I Policy improvement: πθt+1 ← Γ(φ>θt+1)

gt(θt) = φ(st , at)∆t : gradient of
`(θ) = 1

2 (r(st , at , st+1) + γφ>(st+1, at+1)θt︸ ︷︷ ︸
target, one-step bootstrap

−φ>θ)2

∆t denotes the temporal difference error at time t:
∆t = target− φ>(st , at)θt ,

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 38 / 124

SARSA Sample Path

As θt is updated, πθt changes with time

On-policy algorithm, time-varying policy

Non-i.i.d. data

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 39 / 124

Finite-Sample Analysis [19]

The limit point θ∗ of the projected SARSA [18]: Aθ∗θ
∗ + bθ∗ = 0,

where Aθ∗ = Eθ∗ [φ(s, a)(γφT (s ′, a′)− φ>(s, a)] and
bθ∗ = Eθ∗ [φ(s, a)r(s, a, s ′)]

The limiting point θ∗ is the one such that Eθ∗ [g(θ∗)] = 0, where
s ∼ µπθ∗ , a ∼ πθ∗(·|s)

Theorem

I Finite-sample bound on convergence of SARSA with diminishing step-size:

E‖θT − θ∗‖2
2 ≤ O

(
log T
T

)
I Finite-sample bound on convergence of SARSA with constant step-size:

E‖θT − θ∗‖2
2 ≤ O

(
e−cT

)
+O(α)

With diminishing step-size, SARSA converges exactly to optimal θ∗

With constant step-size, SARSA converges exponentially fast to a
small neighborhood of θ∗

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 40 / 124

Q-Learning: Off-Policy TD Control
Finite S and A, unknown r and P

Q-Learning

I Parameter: step size α ∈ (0, 1]

I Initialize Q(s, a) for all s ∈ S and a ∈ A arbitrarily

I Initialize s0, behavior policy πb, t = 0

I For t = 0, 1, 2, ...

F Take action at following fixed πb, observe next state st+1, receive reward
r(st , at , st+1)

F Q(st , at)← Q(st , at) + α(r(st , at , st+1) + γ max
a′∈A

Q(st+1, a
′)︸ ︷︷ ︸

target, one-step bootstrap

−Q(st , at))

Q-learning converges to Q∗ if all state-action pairs are visited
infinitely often

Q-learning sample complexity studies, e.g., [20], [21] and [22]

Deep Q-learning: use neural network to approximate Q-function [23]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 41 / 124

Gradient TD Method for Optimal Control

Q-learning with function approximation may suffer from divergence
issue

Solution: Greedy-Gradient Q-learning (Greedy-GQ) with linear
function approximation [24]

Consider mean squared projected Bellman error (MSPBE):

J(θ) , ‖ΠTQθ − Qθ‖2
µ

I µ: stationary distribution induced by behavior policy πb
I ‖Q(·, ·)‖µ ,

∫
s∈S,a∈A dµs,aQ(s, a)

I Π: projection operator ΠQ̂ = arg minQ∈Q ‖Q − Q̂‖µ
I Q =

{
Qθ = φ>θ : θ ∈ RN

}
Goal: minθ J(θ)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 42 / 124

Two Time-Scale Update Rule

Define V̄s′(θ) = maxa′∈A θ
>φs′,a′

TD error: δs,a,s′(θ) = r(s, a, s ′) + γV̄s′(θ)− θ>φs,a
Let φ̂s′(θ) = ∇V̄s′(θ). Then gradient of MSPBE is

∇J(θ)

2
= −Eµ[δs,a,s′(θ)φs,a] + γEµ[φ̂s′(θ)φ>s,a]ω∗(θ),

where ω∗(θ) = Eµ[φs,aφ
>
s,a]−1Eµ[δs,a,s′(θ)φs,a].

Double-sampling issue for estimating Eµ[φ̂s′(θ)φ>s,a]ω∗(θ): it involves
product of two expectations

Weight doubling trick [12]:

Slow time-scale: θt+1 = θt + α(δt+1(θt)φt − γ(ω>t φt)φ̂t+1(θt)),

Fast time-scale: ωt+1 = ωt + β(δt+1(θt)− φ>t ωt)φt ,

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 43 / 124

Finite-Sample Analysis [25, 26]

Challenges:

Non-convex objective J(θ) with two time-scale update rule

Non-smooth due to max in V̄s′(θ) = maxa′∈A θ
>φs′,a′

I Approximate max with a smooth approximation, e.g., softmax

Biased gradient estimate due to two time-scale update and Markovian
noise

Theorem [25]

Finite-sample bound on convergence of Greedy-GQ with linear function

approximation: E[‖∇J(θW)‖2] = O
(

log T√
T

)
Gradient norm converges to 0 implies convergence to stationary points

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 44 / 124

Variance Reduced Greedy-GQ [28]

Greedy-GQ update: denote Ot = (st , at , rt , st+1)

θt+1 = θt − αGOt (θt , ωt), ωt+1 = ωt − βHOt (θt , ωt)

Variance reduction [27]: reference parameters θ̃, ω̃

(Reference updates) G̃ :=
1

M

M∑
i=1

GOi
(θ̃, ω̃), H̃ :=

1

M

M∑
i=1

HOi
(θ̃, ω̃)

(Variance-reduced Greedy-GQ):

θt+1 = θt − α
(
GOt (θt , ωt)− GOt (θ̃, ω̃) + G̃

)
ωt+1 = ωt − β

(
HOt (θt , ωt)− HOt (θ̃, ω̃) + H̃

)
Periodically update θ̃, ω̃, G̃ , H̃

Improved sample complexity

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 45 / 124

Outline

1 Introduction to Reinforcement Learning and Applications

2 Value-based Algorithms
Policy Evaluation
Optimal Control

3 Policy Gradient Algorithms

4 Advanced Topics on RL and Open Directions
Constrained Reinforcement Learning
Imitation Learning
Multi-Agent Reinforcement Learning
Robust Reinforcement Learning

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 46 / 124

Formulation of RL
State value function:

Vπ(s) = E[
∑∞

t=0 γ
tr(st , at , st+1)|s0 = s, π]

State-action value function:

Qπ(s, a) = E[
∑∞

t=0 γ
tr(st , at , st+1)|s0 = s, a0 = a, π]

where at ∼ π(·|st) for all t ≥ 0.

Average value function:

J(π) = (1− γ)E[
∑∞

t=0 γ
tr(st , at , st+1)] = Es∼ξ[Vπ(s)]

where ξ(·) denotes initial distribution.

RL Goal: find the best policy π∗

(Criterion I): Vπ∗(s) ≥ Vπ(s), ∀π,∀s
(Criterion II): max

π
J(π) := Es∼ξ[Vπ(s)]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 47 / 124

Parameterization of Policy
Central idea:

I Parameterize the policy as {πw ,w ∈ W}
I J(π) = J(πw) := J(w)

Goal of Policy-Based RL: maxw∈W J(πw) := J(w)

Example parameterizations of policy
I Direct parameterization: πw (a|s) = ws,a, where w ∈ 4(A)|S|, i.e.,

ws,a ≥ 0, and
∑

a∈A ws,a = 1 for all (s, a)

I Tabular softmax parameterization:

πw (a|s) =
exp(ws,a)∑

a′∈A exp(ws,a′)

I Linear softmax parameterization:

πw (a|s) ∝ exp(φ(s, a)Tw)

I Gaussian policy: πw (a|s) = N (φ(s)Tw , σ2)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 48 / 124

Parameterization of Policy
Central idea:

I Parameterize the policy as {πw ,w ∈ W}
I J(π) = J(πw) := J(w)

Goal of Policy-Based RL: maxw∈W J(πw) := J(w)

Example parameterizations of policy
I Direct parameterization: πw (a|s) = ws,a, where w ∈ 4(A)|S|, i.e.,

ws,a ≥ 0, and
∑

a∈A ws,a = 1 for all (s, a)

I Tabular softmax parameterization:

πw (a|s) =
exp(ws,a)∑

a′∈A exp(ws,a′)

I Linear softmax parameterization:

πw (a|s) ∝ exp(φ(s, a)Tw)

I Gaussian policy: πw (a|s) = N (φ(s)Tw , σ2)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 48 / 124

Policy Gradient Algorithm

Goal of Policy-Based RL: maxw∈W J(πw) := J(w)

Policy gradient ∇J(w) [29]

∇wJ(w) = Eνπw
[
Qπw (s, a)∇w log πw (a|s)

]
I Define score function ψw (s, a) := ∇w log πw (a|s)
I Visitation distribution: νπ(s, a) = (1− γ)

∑∞
t=0 γ

tP(st = s, at = a)
I Define advantage function: Aπ(s, a) = Qπ(s, a)− Vπ(s)

∇wJ(w) = Eνπw
[
Qπw (s, a)ψw (s, a)] = Eνπw

[
Aπw (s, a)ψw (s, a)

]
Policy gradient algorithm [29, 30]

update the parameter w via gradient ascent

wt+1 = wt + αt∇wJ(wt)

where αt > 0 is the stepsize.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 49 / 124

Policy Gradient Algorithm

Goal of Policy-Based RL: maxw∈W J(πw) := J(w)

Policy gradient ∇J(w) [29]

∇wJ(w) = Eνπw
[
Qπw (s, a)∇w log πw (a|s)

]
I Define score function ψw (s, a) := ∇w log πw (a|s)
I Visitation distribution: νπ(s, a) = (1− γ)

∑∞
t=0 γ

tP(st = s, at = a)
I Define advantage function: Aπ(s, a) = Qπ(s, a)− Vπ(s)

∇wJ(w) = Eνπw
[
Qπw (s, a)ψw (s, a)] = Eνπw

[
Aπw (s, a)ψw (s, a)

]

Policy gradient algorithm [29, 30]

update the parameter w via gradient ascent

wt+1 = wt + αt∇wJ(wt)

where αt > 0 is the stepsize.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 49 / 124

Policy Gradient Algorithm

Goal of Policy-Based RL: maxw∈W J(πw) := J(w)

Policy gradient ∇J(w) [29]

∇wJ(w) = Eνπw
[
Qπw (s, a)∇w log πw (a|s)

]
I Define score function ψw (s, a) := ∇w log πw (a|s)
I Visitation distribution: νπ(s, a) = (1− γ)

∑∞
t=0 γ

tP(st = s, at = a)
I Define advantage function: Aπ(s, a) = Qπ(s, a)− Vπ(s)

∇wJ(w) = Eνπw
[
Qπw (s, a)ψw (s, a)] = Eνπw

[
Aπw (s, a)ψw (s, a)

]
Policy gradient algorithm [29, 30]

update the parameter w via gradient ascent

wt+1 = wt + αt∇wJ(wt)

where αt > 0 is the stepsize.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 49 / 124

TRPO/PPO Algorithm

Trusted Region Policy Optimization (TRPO) [31]

Update the parameter w under KL constraint

wt+1 = argmax
w

[J(wt) + (w − wt)
T∇wJ(wt)]

subject to Eν(s)[KL(πwt ||πw)] ≤ c

where c > 0 is a hyperparameter.

Proximal Policy Optimization (PPO) [32]

Update the parameter w via KL-regularized gradient ascent

wt+1 = argmax
w

[J(wt) + (w − wt)
T∇wJ(wt)− αEνw (s)[KL(πwt ||πw)]]

where α > 0 is a hyperparameter.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 50 / 124

TRPO/PPO Algorithm

Trusted Region Policy Optimization (TRPO) [31]

Update the parameter w under KL constraint

wt+1 = argmax
w

[J(wt) + (w − wt)
T∇wJ(wt)]

subject to Eν(s)[KL(πwt ||πw)] ≤ c

where c > 0 is a hyperparameter.

Proximal Policy Optimization (PPO) [32]

Update the parameter w via KL-regularized gradient ascent

wt+1 = argmax
w

[J(wt) + (w − wt)
T∇wJ(wt)− αEνw (s)[KL(πwt ||πw)]]

where α > 0 is a hyperparameter.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 50 / 124

Natural Policy Gradient (NPG) Algorithm
Second-order Taylor approximation to KL distance

KL(πwt ||πw) ≈1

2
(w − wt)

TF (w)(w − wt)

I Fisher information matrix F (w) = Eνπw [∇w log πwt∇w log πT
wt

]

KL-regularized update: at time t

argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)− αEνw (s)[KL(πwt ||πw)]
]

≈ argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)−
α

2
(w − wt)

TF (wt)(w − wt)
]

= wt + αF (wt)
†∇wJ(wt)

where F (wt)
† denotes the pseudo-inverse of F (wt).

Natural Policy Gradient (NPG) [33]

Update parameter w via KL approximator based regularizer

wt+1 = wt + αF (wt)
†∇wJ(wt)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 51 / 124

Natural Policy Gradient (NPG) Algorithm
Second-order Taylor approximation to KL distance

KL(πwt ||πw) ≈1

2
(w − wt)

TF (w)(w − wt)

I Fisher information matrix F (w) = Eνπw [∇w log πwt∇w log πT
wt

]

KL-regularized update: at time t

argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)− αEνw (s)[KL(πwt ||πw)]
]

≈ argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)−
α

2
(w − wt)

TF (wt)(w − wt)
]

= wt + αF (wt)
†∇wJ(wt)

where F (wt)
† denotes the pseudo-inverse of F (wt).

Natural Policy Gradient (NPG) [33]

Update parameter w via KL approximator based regularizer

wt+1 = wt + αF (wt)
†∇wJ(wt)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 51 / 124

Natural Policy Gradient (NPG) Algorithm
Second-order Taylor approximation to KL distance

KL(πwt ||πw) ≈1

2
(w − wt)

TF (w)(w − wt)

I Fisher information matrix F (w) = Eνπw [∇w log πwt∇w log πT
wt

]

KL-regularized update: at time t

argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)− αEνw (s)[KL(πwt ||πw)]
]

≈ argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)−
α

2
(w − wt)

TF (wt)(w − wt)
]

= wt + αF (wt)
†∇wJ(wt)

where F (wt)
† denotes the pseudo-inverse of F (wt).

Natural Policy Gradient (NPG) [33]

Update parameter w via KL approximator based regularizer

wt+1 = wt + αF (wt)
†∇wJ(wt)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 51 / 124

Convergence with Exact Policy Gradient

Policy gradient
I Direct and tabular softmax policy: global sublinear convergence [34]
I Direct policy: global linear convergence via regularized MDP [35]
I Direct policy: global linear convergence via line search [36]

TRPO/PPO
I Direct policy: global sublinear convergence via adaptivity [37]
I Direct policy: global linear convergence via regularized MDP [35]
I Direct policy: global convergence via line search [36]

NPG
I Tabular softmax policy: global sublinear convergence [34]
I Tabular softmax policy: global linear convergence via regularized

MDP [38]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 52 / 124

Policy Gradient Algorithms under Unknown MDP

∇J(w) = Eνπw
[
Qπw (s, a)ψw (s, a)

]
= Eνπw

[
Aπw (s, a)ψw (s, a)

]
Let P̂(·|st , at) = γP(·|st , at) + (1− γ)ξ(·) [39]

I ξ(·): initial distribution
I Samples drawn from P̂(·|st , at) converge to visitation distribution νπw

Model-free Policy Gradient

Sample st ∼ P̂(·|st−1, at−1), at ∼ πwt (·|st)
Unbiased estimation of Aπwt (st , at)

I Sample a length-K trajectory starting at (st , at), K ∼ Geom(1− γ)
I Estimate Q̂(st , at) by adding rewards over the sample path
I Sample a length-K trajectory starting at (st), K ∼ Geom(1− γ)
I Estimate V̂ (st) by adding rewards over the sample path
I Âπwt

(st , at) = Q̂(st , at)− V̂ (st)

Estimate policy gradient gt = Âπwt (st , at)∇wt log(πwt (at |st))

Update wt+1 = wt + αtgt

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 53 / 124

Policy Gradient Algorithms under Unknown MDP

∇J(w) = Eνπw
[
Qπw (s, a)ψw (s, a)

]
= Eνπw

[
Aπw (s, a)ψw (s, a)

]
Let P̂(·|st , at) = γP(·|st , at) + (1− γ)ξ(·) [39]

I ξ(·): initial distribution
I Samples drawn from P̂(·|st , at) converge to visitation distribution νπw

Model-free Policy Gradient

Sample st ∼ P̂(·|st−1, at−1), at ∼ πwt (·|st)
Unbiased estimation of Aπwt (st , at)

I Sample a length-K trajectory starting at (st , at), K ∼ Geom(1− γ)
I Estimate Q̂(st , at) by adding rewards over the sample path
I Sample a length-K trajectory starting at (st), K ∼ Geom(1− γ)
I Estimate V̂ (st) by adding rewards over the sample path
I Âπwt

(st , at) = Q̂(st , at)− V̂ (st)

Estimate policy gradient gt = Âπwt (st , at)∇wt log(πwt (at |st))

Update wt+1 = wt + αtgt

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 53 / 124

Convergence of Model-free PG Algorithms

Theorem ([40])

Consider a general nonlinear policy {πw : w ∈ W}. Under a constant
stepsize αt = α, the output of model-free PG satisfies

min
t∈[T]

E
[
‖∇wtJ(wt)‖2

]
≤ O

(
1
αT

)
+O(α log2 1

α).

PG converges to a neighborhood of a stationary point at a rate of
O
(

1
T

)
.

I α controls a tradeoff between convergence rate and accuracy
I Decreasing α improves accuracy, but slows down convergence

I Let αt = 1√
T

, PG converges with a rate of O
(

log2 T√
T

)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 54 / 124

Actor-Critic Algorithms [41]

Actor-Critic Algorithm

Critic
I Estimates Vθ(s) by linear function approximation φ(s)>θ
I Takes Tc length-M minibatch TD learning updates and outputs θt

Actor
I Approximates Aπw (s, a) by temporal difference error δθ(s, a, s ′)

Âπw (s, a) = δθ(s, a, s ′) = r(s, a, s ′) + γφ(s ′)>θ − φ(s)>θ

I Estimate policy gradient vt(θt) by averaging δθt (st , at , st+1)ψwt (st , at)
over a length-B sample trajectory

I Updates wt+1 = wt + αtvt(θt)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 55 / 124

Convergence Rate of Actor-Critic Algorithm

Theorem ([42])

Consider a general nonlinear policy {πw : w ∈ W}, and T̂ is chosen
uniformly from {1, · · · ,T}.

E[
∥∥∇wJ(wT̂)

∥∥2

2
] ≤ O

(
1
T

)
+O

(
1
B

)
+ (1−O(λAπβ))Tc +O

(
β
M

)
+O(ζcriticapprox).

Actor has sublinear convergence, and critic has linear convergence

Actor’s bias and variance O
(

1
B

)
; Critic’s bias and variance O

(
β
M

)
Critic’s approximation error: ζcritic

approx = maxw∈W Eνw [|Vπw (s)− Vθ∗πw (s)|2]

Actor’s mini-batch yields faster convergence rate of O(1/T) rather
than O(1/

√
T)

This further yields better overall sample complexity

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 56 / 124

Proof of Convergence

Let vt(θ) denote estimator of g(θ,w) = Eνw [Aθ(s, a)ψw (s, a)]

Decompose error terms(1

2
α− LJα

2
)
E[‖∇wJ(wt)‖2

2 |Ft]

≤ E[J(wt+1)|Ft]− J(wt) + 3
(1

2
α + LJα

2
)
E
[∥∥vt(θt)− vt(θ

∗
wt

)
∥∥2

2

+
∥∥vt(θ∗wt

)− g(θ∗wt
,wt)

∥∥2

2
+
∥∥g(θ∗wt

,wt)−∇wJ(wt)
∥∥2

2

∣∣Ft

]
.

Error due to TD learning

E[
∥∥vt(θt)− vt(θ

∗
wt

)
∥∥2

2

∣∣Ft]

≤ 4E[
∥∥θt − θ∗wt

∥∥2

2

∣∣Ft] ≤ (1−O(λAπβ))Tc +O(β/M)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 57 / 124

Proof of Convergence (Cont.)

Gradient estimation error under Markovian minibatch sampling

E
[∥∥vt(θ∗wt

)− g(θ∗wt
,wt)

∥∥2

2
|Ft

]
≤ O

(
1

B

)
.

Critic’s approximation error∥∥g(θ∗wt
,wt)−∇wJ(wt)

∥∥2

2
≤ O

(
ζcritic

approx

)
Combine error bounds and take summarization over iteration path

E[
∥∥∇wJ(wT̂)

∥∥2

2
] ≤O

(
1
T

)
+ (1−O(λAπβ))Tc +O

(
β
M

)
+O

(
1
B

)
+O(ζcritic

approx).

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 58 / 124

Natural Policy Gradient under Unknown MDP

Natural policy gradient (NPG) [33, 43],

wt+1 = wt + αtF (wt)
†∇J(wt)

Consider minθ∈Rd Lw (θ) = Eνπw [Aπw (s, a)− ψ(s, a)>θ]2

I Minimum norm solution satisfies θw = F (w)†∇J(w)

NPG update [34]: wt+1 = wt + αtθt

Model-free NPG [34]

At step t, solve least square problem via K iterations
I Obtain unbiased estimator Âπwt

(sk , ak) (same as PG)
I Update θk+1 = θk − β∇θLwt (θk)

Update wt+1 = wt + αtθK

NPG with general nonlinear policy converges globally as O
(

1√
T

)
[34]

Can achieve O
(

1
T

)
by self-variance reduction of gradient norm [42]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 59 / 124

Natural Policy Gradient under Unknown MDP

Natural policy gradient (NPG) [33, 43],

wt+1 = wt + αtF (wt)
†∇J(wt)

Consider minθ∈Rd Lw (θ) = Eνπw [Aπw (s, a)− ψ(s, a)>θ]2

I Minimum norm solution satisfies θw = F (w)†∇J(w)

NPG update [34]: wt+1 = wt + αtθt

Model-free NPG [34]

At step t, solve least square problem via K iterations
I Obtain unbiased estimator Âπwt

(sk , ak) (same as PG)
I Update θk+1 = θk − β∇θLwt (θk)

Update wt+1 = wt + αtθK

NPG with general nonlinear policy converges globally as O
(

1√
T

)
[34]

Can achieve O
(

1
T

)
by self-variance reduction of gradient norm [42]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 59 / 124

Natural Policy Gradient under Unknown MDP

Natural policy gradient (NPG) [33, 43],

wt+1 = wt + αtF (wt)
†∇J(wt)

Consider minθ∈Rd Lw (θ) = Eνπw [Aπw (s, a)− ψ(s, a)>θ]2

I Minimum norm solution satisfies θw = F (w)†∇J(w)

NPG update [34]: wt+1 = wt + αtθt

Model-free NPG [34]

At step t, solve least square problem via K iterations
I Obtain unbiased estimator Âπwt

(sk , ak) (same as PG)
I Update θk+1 = θk − β∇θLwt (θk)

Update wt+1 = wt + αtθK

NPG with general nonlinear policy converges globally as O
(

1√
T

)
[34]

Can achieve O
(

1
T

)
by self-variance reduction of gradient norm [42]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 59 / 124

Natural Actor-Critic Algorithm

J(w) = Eνπw
[
Qπw (s, a)ψw (s, a)

]
= Eνπw

[
Aπw (s, a)ψw (s, a)

]
wt+1 = wt + αtF (wt)

†∇J(wt)

Natural Actor-Critic Algorithm

Critic (same as critic in actor-critic algorithm)
I Estimates Vθ(s) by linear function approximation φ(s)>θ
I Takes Tc length-M minibatch TD learning updates and outputs θt

Actor
I Computes policy gradient estimator vt(θt) as in actor-critic algorithm
I Computes Fisher information estimator Ft(wt) by averaging over a

length-B sample trajectory
I Updates wt+1 = wt + αtFt(wt)

†vt(θt)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 60 / 124

Convergence Rate of Natural Actor-Critic Algorithm

Theorem ([42])

Consider a general nonlinear policy {πw : w ∈ W}, and T̂ is chosen
uniformly from {1, · · · ,T}.

J(π∗)− E
[
J(πwT̂

)
]
≤ O

(
1
T

)
+O

(
1√
B

)
+ (1−O(λAπβ))Tc/2 +O

(
1√
M

)
+O(

√
ζcriticapprox) +O

(
1
B

)
+ (1−O(λAπβ))Tc +O

(
β
M

)
+O(ζcriticapprox) +O(

√
ζactorapprox)

Actor has sublinear convergence, and critic has linear convergence

Critic’s approx. error: ζcritic
approx = maxw∈W Eνw [|Vπw (s)− Vθ∗πw (s)|2]

Actor’s approx. error:
ζactor

approx = maxw∈W minp∈Rd2 Eνπw
[
ψw (s, a)>p − Aπw (s, a)

]2
Diminishing variance in actor’s update yields a faster convergence
rate of O(1/T) than O(1/

√
T)

Performance difference lemma [34] of NAC yields global convergence

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 61 / 124

Extension I: Policy Gradient Algorithm with Adam

PG-AMSGrad [40]

Sample st ∼ P̂(·|st−1, at−1), at ∼ πwt (·|st)
Estimate Q-function Q̂πwt (st , at) as in PG

Estimate policy gradient gt = Q̂πwt (st , at)∇wt log(πwt (at |st))

mt = (1− β1)mt−1 + β1gt momentum

vt = (1− β2)v̂t−1 + β2g
2
t stepsize adaptation

v̂t = max(v̂t−1, vt), V̂t = diag(v̂t,1, . . . , v̂t,d)

Update policy parameter wt+1 = wt − αtV̂
− 1

2
t mt

Convergence rate of PG-AMSGrad [40]

In practice, PG with Adam converges much faster

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 62 / 124

Extension II: Off-Policy Policy Gradient Algorithms

Off-policy policy gradient
I On-policy sampling with target policy is not possible
I Off-policy sampling under behavior policy: (si , ai , s

′
i) ∼ D

I Estimate ∇wJ(w) with off-policy samples

Actor-critic with distribution correction (AC-DC)

g(w) = ρ̂(s, a)Q̂πw (s, a)∇w log(πw (s, a))

where ρ̂ and Q̂πw are approximation of ρ = νπw /D and Qπw , respectively.

Bias error of AC-DC suffers substantially from estimation errors

∆g = ED[g(w)]−∇wJ(πw) = Θ(E[ερ(s, a) + εQ(s, a)])

where ερ = ρ− ρ̂ and εQ = Q − Q̂

Doubly robust off-policy PG estimation [44] reduces bias error

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 63 / 124

Outline

1 Introduction to Reinforcement Learning and Applications

2 Value-based Algorithms
Policy Evaluation
Optimal Control

3 Policy Gradient Algorithms

4 Advanced Topics on RL and Open Directions
Constrained Reinforcement Learning
Imitation Learning
Multi-Agent Reinforcement Learning
Robust Reinforcement Learning

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 64 / 124

Outline

1 Introduction to Reinforcement Learning and Applications

2 Value-based Algorithms
Policy Evaluation
Optimal Control

3 Policy Gradient Algorithms

4 Advanced Topics on RL and Open Directions
Constrained Reinforcement Learning
Imitation Learning
Multi-Agent Reinforcement Learning
Robust Reinforcement Learning

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 65 / 124

Topic 1: Constrained Reinforcement Learning

Practical RL applications involve various safety/resource constraints
I Left: Power constraint on battery powered devices
I Right: Safety constraints on autonomous robotics and vehicles
I Bottom: Delay constraint in communication system

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 66 / 124

Constrained Markov Decision Process (CMDP)

Same dynamics as general MDP

Agent receives reward R and cost C

Value function w.r.t. reward R:

JR(π) := (1− γ)E [
∑∞

t=0 γ
tR(st , at , st+1)]

Value function w.r.t. cost C :

JC (π) := (1− γ)E [
∑∞

t=0 γ
tC (st , at , st+1)]

Goal of CMDP

max
π

JR(π) subject to JC (π) ≤ c (P)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 67 / 124

Primal-Dual Approach: e.g. CPO [47], PDO [48]

Let λ > 0 be Lagrangian multiplier. Define Lagrangian:

L(π, λ) = −JR(π) + λ(JC (π)− c).

Dual function: d(λ) := minπ L(π, λ)

Dual problem:

D∗ = max
λ∈R+

d(λ) := max
λ∈R+

min
π
L(π, λ) (D)

Duality gap: ∆ = D∗ − P∗, where P∗ is the negative solution of (P)
I Zero duality gap [45, 46]
I (P) can be equivalently solved by solving (D)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 68 / 124

Primal-Dual Approach

Primal-Dual Algorithm

For t = 0, 1, ...,T
I Compute πt+1 based on L(π, λt) and πt . Example methods:

F Dual descent [46]: πt+1 = arg minπ L(π, λt) using some RL oracle
F Natural policy gradient [49]: πt+1 = πt − ηFρ(πt)

† · ∇πL(πt , λt)

I Compute the dual ascent step λk+1 = (λk + η(JC (πt+1)− c))+.

Performance metric:
I Let π∗ denote the optimal solution to primal problem P
I Optimality gap: JR(π∗)− JR(π).
I Constraint violation: (JC (π)− c)+.

Convergence Rate:
I Duality gap decays at a rate of O(1/

√
T) [46]

I Optimality gap decays O(1/
√
T) and constraint violation decays

O(1/T
1
4) [49]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 69 / 124

Primal-Dual Approach

Primal-Dual Algorithm

For t = 0, 1, ...,T
I Compute πt+1 based on L(π, λt) and πt . Example methods:

F Dual descent [46]: πt+1 = arg minπ L(π, λt) using some RL oracle
F Natural policy gradient [49]: πt+1 = πt − ηFρ(πt)

† · ∇πL(πt , λt)

I Compute the dual ascent step λk+1 = (λk + η(JC (πt+1)− c))+.

Performance metric:
I Let π∗ denote the optimal solution to primal problem P
I Optimality gap: JR(π∗)− JR(π).
I Constraint violation: (JC (π)− c)+.

Convergence Rate:
I Duality gap decays at a rate of O(1/

√
T) [46]

I Optimality gap decays O(1/
√
T) and constraint violation decays

O(1/T
1
4) [49]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 69 / 124

Primal-Dual Approach

Primal-Dual Algorithm

For t = 0, 1, ...,T
I Compute πt+1 based on L(π, λt) and πt . Example methods:

F Dual descent [46]: πt+1 = arg minπ L(π, λt) using some RL oracle
F Natural policy gradient [49]: πt+1 = πt − ηFρ(πt)

† · ∇πL(πt , λt)

I Compute the dual ascent step λk+1 = (λk + η(JC (πt+1)− c))+.

Performance metric:
I Let π∗ denote the optimal solution to primal problem P
I Optimality gap: JR(π∗)− JR(π).
I Constraint violation: (JC (π)− c)+.

Convergence Rate:
I Duality gap decays at a rate of O(1/

√
T) [46]

I Optimality gap decays O(1/
√
T) and constraint violation decays

O(1/T
1
4) [49]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 69 / 124

Accelerated and Regularized Constrained Policy
Optimizer (AR-CPO) [50]

Central idea: solve the minimax problem over the (τ, µ)-regularized
Lagrangian via an accelerated dual descent

max
λ∈Rm

+

min
π∈Π
Lτ,µ(π, λ) := L(π, λ)− τH(π)− µ

2
‖λ‖2

2

I Entropy-regularized policy optimizer
F τH(π): smooth dual function dτ,µ(λ) := minπ∈Π Lτ,µ(π, λ)
F Examples: RegPO-NPG [33, 38], RegPO-SoftQ [50]

I `2 regularization on λ
F µ

2
‖λ‖2

2: dual function dτ,µ(λ) becomes strongly concave

I Nesterov’s accelerated gradient descent dual optimizer for updating λ
F Improve the dependence on the condition number

Optimality gap and constraint violation decay O(1/T) [50]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 70 / 124

Accelerated and Regularized Constrained Policy
Optimizer (AR-CPO) [50]

Central idea: solve the minimax problem over the (τ, µ)-regularized
Lagrangian via an accelerated dual descent

max
λ∈Rm

+

min
π∈Π
Lτ,µ(π, λ) := L(π, λ)− τH(π)− µ

2
‖λ‖2

2

I Entropy-regularized policy optimizer
F τH(π): smooth dual function dτ,µ(λ) := minπ∈Π Lτ,µ(π, λ)
F Examples: RegPO-NPG [33, 38], RegPO-SoftQ [50]

I `2 regularization on λ
F µ

2
‖λ‖2

2: dual function dτ,µ(λ) becomes strongly concave

I Nesterov’s accelerated gradient descent dual optimizer for updating λ
F Improve the dependence on the condition number

Optimality gap and constraint violation decay O(1/T) [50]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 70 / 124

Accelerated and Regularized Constrained Policy
Optimizer (AR-CPO) [50]

Central idea: solve the minimax problem over the (τ, µ)-regularized
Lagrangian via an accelerated dual descent

max
λ∈Rm

+

min
π∈Π
Lτ,µ(π, λ) := L(π, λ)− τH(π)− µ

2
‖λ‖2

2

I Entropy-regularized policy optimizer
F τH(π): smooth dual function dτ,µ(λ) := minπ∈Π Lτ,µ(π, λ)
F Examples: RegPO-NPG [33, 38], RegPO-SoftQ [50]

I `2 regularization on λ
F µ

2
‖λ‖2

2: dual function dτ,µ(λ) becomes strongly concave

I Nesterov’s accelerated gradient descent dual optimizer for updating λ
F Improve the dependence on the condition number

Optimality gap and constraint violation decay O(1/T) [50]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 70 / 124

Accelerated and Regularized Constrained Policy
Optimizer (AR-CPO) [50]

Central idea: solve the minimax problem over the (τ, µ)-regularized
Lagrangian via an accelerated dual descent

max
λ∈Rm

+

min
π∈Π
Lτ,µ(π, λ) := L(π, λ)− τH(π)− µ

2
‖λ‖2

2

I Entropy-regularized policy optimizer
F τH(π): smooth dual function dτ,µ(λ) := minπ∈Π Lτ,µ(π, λ)
F Examples: RegPO-NPG [33, 38], RegPO-SoftQ [50]

I `2 regularization on λ
F µ

2
‖λ‖2

2: dual function dτ,µ(λ) becomes strongly concave

I Nesterov’s accelerated gradient descent dual optimizer for updating λ
F Improve the dependence on the condition number

Optimality gap and constraint violation decay O(1/T) [50]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 70 / 124

Accelerated and Regularized Constrained Policy
Optimizer (AR-CPO) [50]

Central idea: solve the minimax problem over the (τ, µ)-regularized
Lagrangian via an accelerated dual descent

max
λ∈Rm

+

min
π∈Π
Lτ,µ(π, λ) := L(π, λ)− τH(π)− µ

2
‖λ‖2

2

I Entropy-regularized policy optimizer
F τH(π): smooth dual function dτ,µ(λ) := minπ∈Π Lτ,µ(π, λ)
F Examples: RegPO-NPG [33, 38], RegPO-SoftQ [50]

I `2 regularization on λ
F µ

2
‖λ‖2

2: dual function dτ,µ(λ) becomes strongly concave

I Nesterov’s accelerated gradient descent dual optimizer for updating λ
F Improve the dependence on the condition number

Optimality gap and constraint violation decay O(1/T) [50]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 70 / 124

Drawback of Primal-Dual Approach

Solve a minimax problem over an augmented Lagrangian function

max
λ∈Rm

+

min
π∈Π
−JR(π) + λ(JC (π)− c)

Alternating between policy π and dual variable λ updates
I If the constraint is violated, JC (π)− c ≥ 0, λ becomes larger

(positive), and policy update will reduce constraint function
I If the constraint is satisfied, JC (π)− c ≤ 0, λ decreases gradually to

zero so that constraint eventually does not play a role in policy update
I However, λ can only iteratively increase or decrease, which yields

delayed response to enforcing or releasing constraints

What is more desirable?

Respond faster if a constraint is satisfied or violated

Do not introduce a dual variable for easier implementation

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 71 / 124

Drawback of Primal-Dual Approach

Solve a minimax problem over an augmented Lagrangian function

max
λ∈Rm

+

min
π∈Π
−JR(π) + λ(JC (π)− c)

Alternating between policy π and dual variable λ updates
I If the constraint is violated, JC (π)− c ≥ 0, λ becomes larger

(positive), and policy update will reduce constraint function
I If the constraint is satisfied, JC (π)− c ≤ 0, λ decreases gradually to

zero so that constraint eventually does not play a role in policy update
I However, λ can only iteratively increase or decrease, which yields

delayed response to enforcing or releasing constraints

What is more desirable?

Respond faster if a constraint is satisfied or violated

Do not introduce a dual variable for easier implementation

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 71 / 124

Drawback of Primal-Dual Approach

Solve a minimax problem over an augmented Lagrangian function

max
λ∈Rm

+

min
π∈Π
−JR(π) + λ(JC (π)− c)

Alternating between policy π and dual variable λ updates
I If the constraint is violated, JC (π)− c ≥ 0, λ becomes larger

(positive), and policy update will reduce constraint function
I If the constraint is satisfied, JC (π)− c ≤ 0, λ decreases gradually to

zero so that constraint eventually does not play a role in policy update
I However, λ can only iteratively increase or decrease, which yields

delayed response to enforcing or releasing constraints

What is more desirable?

Respond faster if a constraint is satisfied or violated

Do not introduce a dual variable for easier implementation

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 71 / 124

A Primal Approach: CRPO [51]

Constraint-Rectified Policy Optimization (CRPO)

For t = 0, 1, ...,T − 1
I Constraint violation: If JC (πt) ≥ c + δ: πt+1 ← take one step natural

policy gradient update towards minimize JC (πt)
I Objective improvement: Else πt+1 ← take one step natural policy

gradient update towards maximize JR(πt)

CRPO responds to constraint satisfaction/violation immediately
I Primal-dual relies on iteration of dual variables, incurring large delay

CRPO can be implemented as easy as unconstrained optimization
I Primal-dual requires to update dual variables, which is more complex

CRPO does not suffer from hyperparameter tuning of learning rates
and projection threshold of dual variables

I Primal-dual approach can be very sensitive to these hyperparamters

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 72 / 124

A Primal Approach: CRPO [51]

Constraint-Rectified Policy Optimization (CRPO)

For t = 0, 1, ...,T − 1
I Constraint violation: If JC (πt) ≥ c + δ: πt+1 ← take one step natural

policy gradient update towards minimize JC (πt)
I Objective improvement: Else πt+1 ← take one step natural policy

gradient update towards maximize JR(πt)

CRPO responds to constraint satisfaction/violation immediately
I Primal-dual relies on iteration of dual variables, incurring large delay

CRPO can be implemented as easy as unconstrained optimization
I Primal-dual requires to update dual variables, which is more complex

CRPO does not suffer from hyperparameter tuning of learning rates
and projection threshold of dual variables

I Primal-dual approach can be very sensitive to these hyperparamters

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 72 / 124

Neural Network Function Approximation

Use neural network to parameterize both value functions and policy

Define a feature vector ψ(s, a) ∈ Rd with d ≥ 2 for each (s, a)
I ‖ψ(s, a)‖2 ≤ 1 for all (s, a) ∈ S ×A

A two-layer neural network f ((s, a);W , b) with input ψ(s, a) and
width m

f ((s, a);W , b) =
1√
m

m∑
r=1

br · ReLU(W>
r ψ(s, a))

I b = [b1, · · · , bm]> ∈ Rm, and W = [W>1 , · · · ,W>m]> ∈ Rmd

Initialize [W0]r ∼ Unif{Dw}, where Dw = {W : d1 ≤ ‖[W]r‖2 ≤ d2}
and br ∼ Unif[−1, 1] independently

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 73 / 124

Policy Evaluation

TD learning: at time t, sample st+1 ∼ P(·|s, a)

T̂tQt(st , at) = r(st , at , st+1) + γQt(st+1, a
′)

Qt+1 = Qt + αt(T̂tQt − Qt)

Neural TD learning: neural network parametrization θR ∈ Rmd

θ̃R = θRk + β
[
R(s, a, s ′) + γf ((s ′, a′); θRk)− f ((s, a); θRk)

]
∇θf ((s, a); θRk)

θRk+1 = argminθ∈B

∥∥∥θ − θ̃R∥∥∥
2
, where B = {θ ∈ Rmd :

∥∥θ − θi0∥∥2
≤ ΓR}

Let θ̄RK = 1
K

∑K−1
k=0 θ

R
k be the average output

Q̄R
t (s, a) = f ((s, a), θRK) is an estimator of value function QR

πτtWt
(s, a)

Similarly, Q̄C
t (s, a) = f ((s, a), θCK) is an estimator of constraint value

function QC
πτtWt

(s, a)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 74 / 124

High-Probability Guarantee for Neural TD

Consider TD iteration with neural network approximation
I Let stepsize β = min{1/

√
K , (1− γ)/12}

Theorem 1 (High-probability convergence of neural TD)

Under mild regularity conditions and bounded variance, with probability at
least 1− δ, neural TD learning satisfies

∥∥∥Q̄ i
t(s, a)− Q i

πτtWt
(s, a)

∥∥∥2

µπ
≤ Θ

(
1√
K

√
log

(
1

δ

))
+ Θ

(
1

m1/4

√
log

(
K

δ

))
.

where i = R,C .

For K = Θ(
√
m) iterations, ||Q̄ i

t − Q i
πτtWt
||µπ = O(1/m1/8)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 75 / 124

High-Probability Guarantee for Neural TD

Consider TD iteration with neural network approximation
I Let stepsize β = min{1/

√
K , (1− γ)/12}

Theorem 1 (High-probability convergence of neural TD)

Under mild regularity conditions and bounded variance, with probability at
least 1− δ, neural TD learning satisfies

∥∥∥Q̄ i
t(s, a)− Q i

πτtWt
(s, a)

∥∥∥2

µπ
≤ Θ

(
1√
K

√
log

(
1

δ

))
+ Θ

(
1

m1/4

√
log

(
K

δ

))
.

where i = R,C .

For K = Θ(
√
m) iterations, ||Q̄ i

t − Q i
πτtWt
||µπ = O(1/m1/8)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 75 / 124

High-Probability Guarantee for Neural TD

Consider TD iteration with neural network approximation
I Let stepsize β = min{1/

√
K , (1− γ)/12}

Theorem 1 (High-probability convergence of neural TD)

Under mild regularity conditions and bounded variance, with probability at
least 1− δ, neural TD learning satisfies

∥∥∥Q̄ i
t(s, a)− Q i

πτtWt
(s, a)

∥∥∥2

µπ
≤ Θ

(
1√
K

√
log

(
1

δ

))
+ Θ

(
1

m1/4

√
log

(
K

δ

))
.

where i = R,C .

For K = Θ(
√
m) iterations, ||Q̄ i

t − Q i
πτtWt
||µπ = O(1/m1/8)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 75 / 124

Constraint Estimation

Sample a batch of state-action pairs (sj , aj) ∈ Bt from distribution
ξ(·)πWt (·|·)
Estimation error of constraint

∣∣J̄C (θCt)− JC (πwt)
∣∣ is small if policy

evaluation Q̄C
t is accurate and concentration of sampling occurs

Assumption 1 (Concentration of sampling process)

For any parameterized policy πW , there exists a constant Cf > 0 such that

for all k ≥ 0, Eξ·πW
[
exp([Q̄ i

t(s, a)− Eξ·µπτtWt
Q̄ i

t(s, a)]2/C 2
f)
]
≤ 1.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 76 / 124

Constraint Estimation

Sample a batch of state-action pairs (sj , aj) ∈ Bt from distribution
ξ(·)πWt (·|·)
Estimation error of constraint

∣∣J̄C (θCt)− JC (πwt)
∣∣ is small if policy

evaluation Q̄C
t is accurate and concentration of sampling occurs

Assumption 1 (Concentration of sampling process)

For any parameterized policy πW , there exists a constant Cf > 0 such that

for all k ≥ 0, Eξ·πW
[
exp([Q̄ i

t(s, a)− Eξ·µπτtWt
Q̄ i

t(s, a)]2/C 2
f)
]
≤ 1.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 76 / 124

NPG in CRPO
Natural policy gradient

∆̄i
t = argmin

θ∈B
EνπτtWt

[(Q̄ i
t(s, a)− ψWt (s, a)>θ)2]

I τt controls amplitude of wt ; τtwt serves as parameter of policy
I N0: collects all feasible wt over the algorithm path
I η: constraint violation level

Algorithm 1 Policy Update for CRPO
1: τt+1 = τt + α
2: if J̄C ,Bt ≤ c + η then
3: Add wt into set N0

4: τt+1 · wt+1 = τt · wt + α∆̄R
t

5: else
6: τt+1 · wt+1 = τt · wt − α∆̄C

t

7: end if

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 77 / 124

Convergence Guarantee of CRPO

Consider CRPO with neural network approximation
I Neural TD learning with Kin = Θ(

√
m) at each iteration

I Tolerance η = Θ(m/
√
T + m−1/8)

I NPG update learning rate α = Θ(1/
√
T)

Theorem 2 (Convergence Guarantee of CRPO)

With probability at least 1− δ, CRPO output satisfies

JR(π∗)−E[JR(πτoutWout)] ≤ Θ

(
1√
T

)
+ Θ

(
1

m1/8
log

1
4

(
T
√
m

δ

))
,

and for all i = 1, · · · , p,

E[JC (πτoutWout)]− c ≤ Θ

(
1√
T

)
+ Θ

(
1

m1/8
log

1
4

(
T
√
m

δ

))
.

where expectation is on randomness of selecting Wout from N0.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 78 / 124

Convergence Guarantee of CRPO

Consider CRPO with neural network approximation
I Neural TD learning with Kin = Θ(

√
m) at each iteration

I Tolerance η = Θ(m/
√
T + m−1/8)

I NPG update learning rate α = Θ(1/
√
T)

Theorem 2 (Convergence Guarantee of CRPO)

With probability at least 1− δ, CRPO output satisfies

JR(π∗)−E[JR(πτoutWout)] ≤ Θ

(
1√
T

)
+ Θ

(
1

m1/8
log

1
4

(
T
√
m

δ

))
,

and for all i = 1, · · · , p,

E[JC (πτoutWout)]− c ≤ Θ

(
1√
T

)
+ Θ

(
1

m1/8
log

1
4

(
T
√
m

δ

))
.

where expectation is on randomness of selecting Wout from N0.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 78 / 124

Experiment: CartPole

CartPole setup
I A pole is attached by an un-actuated

joint to a cart
I The cart moves along a frictionless

track over [−2.4, 2.4]
I The pole starts upright
I Goal: prevent pole from falling over by

increasing and reducing cart’s velocity.

MDP environment
I State space: cart position and velocity, pole angle and angular velocity
I Action space: push cart to the left, push cart to the right
I Reward: agent receives a reward +1 for every step taken
I Constraints: agent is penalized with cost +1

F Entering [−2.4,−2.2], [−1.3,−1.1], [−0.1, 0.1], [1.1, 1.3], [2.2, 2.4]
F The angle of pole is larger than 6 degree

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 79 / 124

Experiment: Acrobot

Acrobot setup
I System includes two joints and two

links, where second joint is actuated.
I Initially, the links are hanging

downwards
I Goal: swing the end of the lower link

up to a given height.

MDP environment
I State: two rotational joint angles and the joint angular velocities
I Action: applying +1, 0,−1 torque on the second joint
I Reward: agent receives a reward +1 when the second link is at a

height of 0.5
I Constraints: agent is penalized with cost +1

F Apply a torque +1 when the first link swings anticlockwisely
F Apply a torque +1 when the second link swings anticlockwisely with

respect to the first link

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 80 / 124

Comparison of CRPO and Primal-Dual: CartPole

0 200 400 600 800 1000

of Episodes

0

40

80

120

160

200
Return

CRPO

PDO

TRPO

0 200 400 600 800 1000

of Episodes

0

40

80

120

160

200
Constraint Values

CRPO constraint I

PDO constraint I

TRPO constraint I

CRPO constraint II

PDO constraint II

TRPO constraint II

Convergence
I CRPO achieves much higher reward

Constraint violation
I CRPO tracks constraint thresholds almost exactly, which sufficiently

explores boundary of feasible set to optimize reward
I Primal-Dudal tends to over- or under-enforce the constraints, which

results in lower return reward and unstable constraint violation

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 81 / 124

Comparison of CRPO and Primal-Dual: Acrobot

0 200 400 600 800 1000

of Episodes

0

40

80

120

160

200
Return

CRPO

PDO

TRPO

0 200 400 600 800 1000

of Episodes

0

40

80

120

160

200
Constraint Values

CRPO constraint I

PDO constraint I

TRPO constraint I

CRPO constraint II

PDO constraint II

TRPO constraint II

Convergence
I CRPO achieves much higher reward

Constraint violation
I CRPO drop below thresholds (and thus satisfy the constraints) much

faster than that of PDO
I CRPO tracks constraint thresholds almost exactly, which sufficiently

explores boundary of feasible set to optimize reward
I Primal-Dudal under-enforce constraints, and yields lower reward

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 82 / 124

Sensitivity to Tuning Parameters

Primal-dual is very sensitive to stepsize of dual variable’s update
I If stepsize is too small, dual variable updates slowly to enforce

constraints
I If stepsize is too large, algorithm becomes unstable

CRPO is robust with respect to tolerance parameter η

0 200 400 600 800 1000

of Episodes

0

40

80

120

160

200

=10

=5

=2

=1

=0.5

0 200 400 600 800 1000

of Episodes

0

40

80

120

160

200

=10

=5

=2

=1

=0.5

0 200 400 600 800 1000

of Episodes

0

40

80

120

160

200

=10

=5

=2

=1

=0.5

CRPO in Acrobot with η taking different values

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 83 / 124

Sensitivity to Tuning Parameters

Primal-dual is very sensitive to stepsize of dual variable’s update
I If stepsize is too small, dual variable updates slowly to enforce

constraints
I If stepsize is too large, algorithm becomes unstable

CRPO is robust with respect to tolerance parameter η

0 200 400 600 800 1000

of Episodes

0

40

80

120

160

200

=10

=5

=2

=1

=0.5

0 200 400 600 800 1000

of Episodes

0

40

80

120

160

200

=10

=5

=2

=1

=0.5

0 200 400 600 800 1000

of Episodes

0

40

80

120

160

200

=10

=5

=2

=1

=0.5

CRPO in Acrobot with η taking different values

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 83 / 124

Outline

1 Introduction to Reinforcement Learning and Applications

2 Value-based Algorithms
Policy Evaluation
Optimal Control

3 Policy Gradient Algorithms

4 Advanced Topics on RL and Open Directions
Constrained Reinforcement Learning
Imitation Learning
Multi-Agent Reinforcement Learning
Robust Reinforcement Learning

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 84 / 124

Topic 2: Imitation Learning

Practical RL applications often encounter:
I Reward function is unknown
I Some expert demonstrations are available
I Goal: find a learner’s policy that produces behaviors as close as

possible to expert demonstrations

RL Goal: Learn a desired policy by imitation

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 85 / 124

Two Major Approaches on Imitation Learning
Behavioral Cloning [52]

I Directly learns a mapping from state to action based on supervised
learning to match expert demonstrations

Inverse Reinforcement Learning [53, 54]
I First recovers unknown reward function based on expert’s trajectories,

and then find an optimal policy using such a reward function
I Generative adversarial imitation learning (GAIL) framework [55]

Expert Demonstrations

𝒟𝒟 = (𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) 𝑡𝑡=1
|𝒟𝒟| ,

with 𝑎𝑎𝑡𝑡 ∼ 𝜋𝜋𝐸𝐸(𝑠𝑠𝑡𝑡)

Policy Optimization

max
𝜋𝜋∈Π

𝐽𝐽(𝜋𝜋, 𝑟𝑟)

𝜋𝜋
Learned Reward: 𝒓𝒓

Learned Policy: 𝝅𝝅

Reward Learning

max
𝑟𝑟∈ℛ

𝐽𝐽 𝜋𝜋𝐸𝐸 , 𝑟𝑟 − 𝐽𝐽(𝜋𝜋, 𝑟𝑟) − 𝜓𝜓(𝑟𝑟)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 86 / 124

Two Major Approaches on Imitation Learning
Behavioral Cloning [52]

I Directly learns a mapping from state to action based on supervised
learning to match expert demonstrations

Inverse Reinforcement Learning [53, 54]
I First recovers unknown reward function based on expert’s trajectories,

and then find an optimal policy using such a reward function
I Generative adversarial imitation learning (GAIL) framework [55]

Expert Demonstrations

𝒟𝒟 = (𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) 𝑡𝑡=1
|𝒟𝒟| ,

with 𝑎𝑎𝑡𝑡 ∼ 𝜋𝜋𝐸𝐸(𝑠𝑠𝑡𝑡)

Policy Optimization

max
𝜋𝜋∈Π

𝐽𝐽(𝜋𝜋, 𝑟𝑟)

𝜋𝜋
Learned Reward: 𝒓𝒓

Learned Policy: 𝝅𝝅

Reward Learning

max
𝑟𝑟∈ℛ

𝐽𝐽 𝜋𝜋𝐸𝐸 , 𝑟𝑟 − 𝐽𝐽(𝜋𝜋, 𝑟𝑟) − 𝜓𝜓(𝑟𝑟)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 86 / 124

Generative Adversarial Imitation Learning (GAIL)

Parameterize reward function as rα(s, a) where α ∈ Λ ⊂ Rq

πE : expert policy; demonstration samples under πE are available

πw : learner’s policy optimized by w ∈ W
J(πE , rα): average value function under expert policy

J(πw , rα): average value function under learner’s policy

ψ(α): regularizer of reward parameter

GAIL Framework [55]

min
w∈W

max
α∈Λ

F (w , α) := J(πE , rα)− J(πw , rα)− ψ(α)

Maximization: find reward function that best distinguishes between
expert’s and learner’s policies

Minimization: find learner’s policy that matches expert’s policy as
close as possible

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 87 / 124

Global Optimum of GAIL

GAIL Framework [55]

min
w∈W

max
α∈Λ

F (w , α) := J(πE , rα)− J(πw , rα)− ψ(α)

Define marginal-maximum function g(w) := maxα∈Λ F (w , α).

Let global optimum of GAIL as w∗ = argminw∈W g(w).

w̄ is ε-optimal if g(w̄)− g(w∗) ≤ ε holds, where ε ∈ (0, 1).

ε-optimum of GAIL implies [56]

max
α∈Λ

[J(πE , rα)− J(πw̄ , rα)] ≤ max
α∈Λ

ψ(α) + ε.

Properly chosen ψ(α) can guarantee πw̄ to be sufficiently close to
expert policy.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 88 / 124

Global Optimum of GAIL

GAIL Framework [55]

min
w∈W

max
α∈Λ

F (w , α) := J(πE , rα)− J(πw , rα)− ψ(α)

Define marginal-maximum function g(w) := maxα∈Λ F (w , α).

Let global optimum of GAIL as w∗ = argminw∈W g(w).

w̄ is ε-optimal if g(w̄)− g(w∗) ≤ ε holds, where ε ∈ (0, 1).

ε-optimum of GAIL implies [56]

max
α∈Λ

[J(πE , rα)− J(πw̄ , rα)] ≤ max
α∈Λ

ψ(α) + ε.

Properly chosen ψ(α) can guarantee πw̄ to be sufficiently close to
expert policy.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 88 / 124

GAIL Policy Gradient Algorithm

Reward update:
I Query expert sample (sE , aE) ∼ P̂πE and learner’s sample

(sw , aw) ∼ P̂πw

I Estimate stochastic gradient with respect to reward parameter

∇̂αF (w , α) =
[
∇αrα(sE , aE)−∇αrα(sw , aw)

]
−∇αψ(α)

I Update αk+1 = Proj
(
αk + β∇̂αF (w , αk)

)
Policy update (e.g., by NPG)

I Estimate natural gradient θt via solving

min
θ∈Rd

E(s,a)∼νπw
[
Aπw
α (s, a)−∇w log(πw (a|s))>θ

]2
I Updated wt+1 = wt − ηθt

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 89 / 124

Convergence Guarantee of NPG-GAIL

Theorem ([57])

F (w , α) is µ-strongly concave on α. Under other standard assumptions
and properly-chosen stepsize, NPG-GAIL converges as

1
T

∑T−1
t=0 E [g(wt)]− g(w∗) ≤ O

(
1√
T

)
+O

(
e−K

)
+O

(
1
B

)
+O

(
e−Tc

)
+O

(
ζactorapprox

)
+O (λ) +O

(
1√
M

)
ζactor

approx is actor approximation error in NPG; K is number of updates
of α; B is mini-batch size of α update; Tc is number of updates in
value function evaluation in NPG; M is mini-batch size of w update;
λ is regularization coefficient in NPG

NPG-GAIL converges to an (ε+O(ζactor
approx))-accurate globally optimal

value with an overall sample complexity of Õ
(

1
ε4

)
YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 90 / 124

Outline

1 Introduction to Reinforcement Learning and Applications

2 Value-based Algorithms
Policy Evaluation
Optimal Control

3 Policy Gradient Algorithms

4 Advanced Topics on RL and Open Directions
Constrained Reinforcement Learning
Imitation Learning
Multi-Agent Reinforcement Learning
Robust Reinforcement Learning

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 91 / 124

Topic 3: Multi-Agent Reinforcement Learning

RL applications naturally involve multiple agents
I Left: stock market with numerous investors
I Middle: multi-drone control
I Bottom: multi-agent power network

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 92 / 124

Multi-Agent MDP

Distributed agents i = 1, 2, ...,N;

Global shared state s;

Independent policies/actions: π(a|s) =
∏N

i=1 π
i (ai |s);

Local rewards: r i (s, a).

Multi-agent MDP trajectory defined by

s0
{πi (·|s0)}Ni=1−→ {ai0}Ni=1

P(·|s0,a0)−→ (s1, {r i0}Ni=1)−→· · ·

Cooperative v.s. Competitive MARL

Cooperative MARL: Agents cooperate to achieve the same goal;

Competitive MARL: Agents compete to achieve conflict goals.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 93 / 124

Cooperative MARL

Define global state value function (under joint policy π)

Vπ(s) = E
[∑∞

t=0 γ
t 1
M

∑M
m=1 r

(m)
t |s0 = s, π

]
Agents cooperate to maximize average reward

max
π

J(π) = Eξ[Vπ(s)
]

All the agents share the same goal

Need decentralized synchronization (actions, rewards, etc)

Study communication & computation complexities

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 94 / 124

Cooperative MARL: Off-Policy Evaluation

Given joint policy π, cooperate to evaluate Vπ

Decentralized mini-batch TDC [58]

Agent i = 1, ...,N performs

θit+1 =
∑
i ′∈Ni

Vii ′θ
i ′
t +

α

n

(t+1)n−1∑
m=tn

ρm(δm(θt)φsm − γφsm+1φ
>
mt
ωt)

ωi
t+1 =

∑
i ′∈Ni

Vii ′ω
i ′
t +

β

n

(t+1)n−1∑
m=tn

(ρmδm(θt)φsm − φsmφ>smωt)

Mini-batch sampling reduces variance and communication frequency

Local consensus on θ and ω

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 95 / 124

Cooperative MARL: Off-Policy Evaluation

Need to estimate global importance sampling ratio ρ :=
∏N

i=1 ρ
i

I Rewrite as ρ = exp
(
N · 1

N

∑N
i=1 ln ρi

)
I Synchronize 1

N

∑N
i=1 ln ρi via local averaging

Sample and communication complexities [58]

Choose α = O(1√
N

), β = O(1), n = O
(√

N
ε

)
, and run the algorithm for

T = O
(√

N ln ε−1
)

iterations. Then, for all agents i , the output achieves

E(‖θiT − θ∗‖2) ≤ ε.

The overall sample complexity is nT = O(Nε−1 ln ε−1), and the overall
communication complexity is T = O

(√
N ln ε−1

)
.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 96 / 124

Cooperative MARL: Policy Optimization

Decentralized mini-batch actor-critic [59]

Actor: Agent i = 1, ...,N do

ωi
t+1 = ωi

t + α∇ωi J(ωt),

where the partial policy gradient satisfies

∇ωi J(ωt)≈
[
r t + γV (s ′t+1)− V (st)

]
ψi
t(a

i
t |st) (1)

Critic: Agents estimate V (s) via standard decentralized TD

ψi
t(a

i
t |st): local score function computed by agent i

Challenge 1: need r t–average reward over all agents. Sensitive!

Challenge 2: How to achieve low communication & computation
complexities at the same time?

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 97 / 124

Solve Challenge 1: local averaging over noisy rewards
I Corrupt local rewards

r̃ i = r i
(
1 +N (0, σ2)

)
I Estimate r via local averaging

r0 = r̃ i , r t+1 =
∑

i ′∈Ni
Wii ′ r t , t = 0, . . . ,T ′ − 1.

Solve Challenge 2: Use mini-batch sampling

∇̂ωi J(ωt) =
1

n

(t+1)n−1∑
m=tn

[
rm + γV (s ′m+1)− V (sm)

]
ψ

(i)
t (a

(i)
m |sm)

I Suppress reward noise with sufficiently large batch size n
I Reduces communication frequency

Sample and communication complexity [59]

Choose α = O(1), n = O(ε−1) and run the algorithm for T = O(ε−1)
iterations, the output satisfies E(‖∇J(ωT)‖2) ≤ ε. The overall sample
complexity is O(ε−2 ln ε−1), and the overall communication complexity is
O(ε−1 ln ε−1).

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 98 / 124

Competitive MARL

Define individual state value function for agents i = 1, ...,N

Vπi ,π\i (s) = E
[∑∞

t=0 γ
tr it |s0 = s, π

]
Agents compete to maximize their own reward

max
πi

Vπi ,π\i (s), ∀s, ∀i = 1, ...,N

Nash equilibrium (NE)

Joint policy π is a NE if for any other policy π̂, the following holds.

Vπi ,π\i (s) ≥ Vπ̂i ,π\i (s), ∀s,∀i = 1, ...,N

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 99 / 124

Competitive MARL

(NE): Vπi ,π\i (s) ≥ Vπ̂i ,π\i (s), ∀s,∀i = 1, ...,N

In general hard to develop efficient algorithms for finding NE
I Finding NE is PPAD-complete [60]

However, possible for the following special game

Two-player zero-sum game

Only two players N = 2. Moreover, their rewards sum up to zero, i.e.,
r1
t + r2

t = 0 for all t.

Existence of NE is first proved by Shapely in 1953 [61]

Can be reformulated as linear programming

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 100 / 124

Two-Player Zero-Sum Game

Define rt := r1
t = −r2

t and the following value function

Vπ1,π2(s) = E
[∞∑
t=0

γtrt |s0 = s, π
]

Two-player zero-sum game reduces to

Two-player zero-sum game

min
π2

max
π1

Vπ1,π2(s), ∀s

Perfect duality holds, i.e.,

min
π2

max
π1

Vπ1,π2(s) = max
π1

min
π2

Vπ1,π2(s), ∀s

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 101 / 124

Classic Value Iteration for Zero-Sum Game

min
π2

max
π1

Vπ1,π2(s), ∀s

Classic value iteration

Qk(s, a1, a2) = r(s, a1, a2) + γE[Vk(s ′)],

Vk+1(s) = min
π2

max
π1

π1(s)>Qk(s)π2(s)

In one-player case, Vk+1(s) = arg maxa Qk(s, a)

Requires transition kernel to compute E[Vk(s ′)]

Can be shown to converge to the optimal value function

Challenge: Need to solve matrix game efficiently

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 102 / 124

Predictive Update via Entropy Regularization

Smooth the matrix game via entropy regularization

Qk(s, a1, a2) = r(s, a1, a2) + γE[Vk(s ′)],

Vk+1(s) = min
π2

max
π1

π1(s)>Qk(s)π2(s) + τH(π1(s))− τH(π2(s))

Improves bilinear geometry to strongly convex-strongly concave

Predictive Update algorithm [38]

(PU):

π1
k,t+1(a1|s) ∝ π1

k,t(a
1|s)1−ητ exp

(
ηQ1

k,t(s, a
1)
)

π2
k,t+1(a2|s) ∝ π2

k,t(a
2|s)1−ητ exp

(
− ηQ2

k,t(s, a
2)
)

π1
k,t+1(a1|s) ∝ π1

k,t(a
1|s)1−ητ exp

(
ηQ

1
k,t+1(s, a1)

)
π2
k,t+1(a2|s) ∝ π2

k,t(a
2|s)1−ητ exp

(
− ηQ2

k,t+1(s, a2)
) ,

Decentralized, symmetric, private

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 103 / 124

Convergence and Complexity

Iteration Complexity [38]

Set η = O(1−γ
2(1+τ(ln |A|+1−γ))) and τ = O((1−γ)ε

ln |A|), and run the algorithm

for T = O(1
(1−γ)3ε

) iterations. Then, the output achieves ε-NE, i.e.,

max
µ

Vµ,π2(s)−min
ν

Vπ1,ν(s) ≤ ε.

Our recent work proposes a sample-based stochastic version [62]

Developed Monte Carlo estimators with Markovian samples to
estimate E[Vk(s ′)],Qk,t(s, a),Qk,t(s, a)

Achieve sample complexity O(|A|
ε5.5(1−γ)13.5), improves the SOTA

O(|A|
3|S|10.5

ε8(1−γ)29.5) [63]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 104 / 124

Outline

1 Introduction to Reinforcement Learning and Applications

2 Value-based Algorithms
Policy Evaluation
Optimal Control

3 Policy Gradient Algorithms

4 Advanced Topics on RL and Open Directions
Constrained Reinforcement Learning
Imitation Learning
Multi-Agent Reinforcement Learning
Robust Reinforcement Learning

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 105 / 124

Topic 4: Robust Reinforcement Learning

Motivations:
I Possible model deviation between training and test environments, e.g.,

training is on simulator, model is from empirical estimate
I Adversarial attacks to MDPs
I These could lead to severe performance degradation

Robust Markov decision process: (S,A, r ,P), where P ∈P, and P is
an uncertainty set of transition kernels

I Reward function r could also be uncertain

Examples of uncertainty set: let p̂as denote centroid transition kernel,
e.g., empirical estimate and simulator

I Relative entropy: Pa
s = {p : D(p‖p̂as) ≤ ε}

I Total variation: Pa
s = {p : TV (p‖p̂as) ≤ ε}

I P =
⊗

s∈S,a∈A Pa
s

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 106 / 124

Topic 4: Robust Reinforcement Learning

Motivations:
I Possible model deviation between training and test environments, e.g.,

training is on simulator, model is from empirical estimate
I Adversarial attacks to MDPs
I These could lead to severe performance degradation

Robust Markov decision process: (S,A, r ,P), where P ∈P, and P is
an uncertainty set of transition kernels

I Reward function r could also be uncertain

Examples of uncertainty set: let p̂as denote centroid transition kernel,
e.g., empirical estimate and simulator

I Relative entropy: Pa
s = {p : D(p‖p̂as) ≤ ε}

I Total variation: Pa
s = {p : TV (p‖p̂as) ≤ ε}

I P =
⊗

s∈S,a∈A Pa
s

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 106 / 124

Topic 4: Robust Reinforcement Learning

Motivations:
I Possible model deviation between training and test environments, e.g.,

training is on simulator, model is from empirical estimate
I Adversarial attacks to MDPs
I These could lead to severe performance degradation

Robust Markov decision process: (S,A, r ,P), where P ∈P, and P is
an uncertainty set of transition kernels

I Reward function r could also be uncertain

Examples of uncertainty set: let p̂as denote centroid transition kernel,
e.g., empirical estimate and simulator

I Relative entropy: Pa
s = {p : D(p‖p̂as) ≤ ε}

I Total variation: Pa
s = {p : TV (p‖p̂as) ≤ ε}

I P =
⊗

s∈S,a∈A Pa
s

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 106 / 124

Robust Reinforcement Learning
Pt : transition kernel at time t, and Pt ∈ P
Dynamic model: Pt for different t are allowed to be different

Static model: Pt1 = Pt2 , for any t1, t2 ≥ 0

Equivalence

Solutions to dynamic model and static model are equivalent under
rectangular uncertainty set [64]

Robust value function:
Ṽ π(s) = infPt∈P,t≥0 EPt ,t≥0 [

∑∞
t=0 γ

trt |S0 = s, π]

Robust action value function:
Q̃π(s, a) = infPt∈P,t≥0 EPt ,t≥0 [

∑∞
t=0 γ

trt |S0 = s,A0 = a, π]
I A pessimistic approach that optimizes the worst-case performance

Goal: Learn policy robust to model uncertainty

Ṽ ∗(s) = max
π

Ṽ π(s),∀s ∈ S

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 107 / 124

Robust Reinforcement Learning
Pt : transition kernel at time t, and Pt ∈ P
Dynamic model: Pt for different t are allowed to be different

Static model: Pt1 = Pt2 , for any t1, t2 ≥ 0

Equivalence

Solutions to dynamic model and static model are equivalent under
rectangular uncertainty set [64]

Robust value function:
Ṽ π(s) = infPt∈P,t≥0 EPt ,t≥0 [

∑∞
t=0 γ

trt |S0 = s, π]

Robust action value function:
Q̃π(s, a) = infPt∈P,t≥0 EPt ,t≥0 [

∑∞
t=0 γ

trt |S0 = s,A0 = a, π]
I A pessimistic approach that optimizes the worst-case performance

Goal: Learn policy robust to model uncertainty

Ṽ ∗(s) = max
π

Ṽ π(s),∀s ∈ S

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 107 / 124

Model-Based Approach

Assume that uncertainty set P is known

Robust Bellman operator:

T̃Ṽ (s) = max
a∈A

r(s, a) + γσPs,a(Ṽ),

where σPs,a(Ṽ) is the support function: σPs,a(Ṽ) = supp∈Ps,a
p>Ṽ

Theorem (Contraction [65, 64])

T̃ is a contraction in `∞ norm, and its unique fixed point is Ṽ ∗

Ṽ ∗ can be solved by robust value/policy iteration

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 108 / 124

Adversarial Training Approach

Approach 1:
I Reformulate robust RL as a game between agent and nature, where

nature chooses transition kernel Pt ∈ P, t ≥ 0
maxπ infPt∈P,t≥0EPt ,t≥0 [

∑∞
t=0 γ

trt |S0 = s, π]
I Alternatively optimize agent’s policy towards maximizing reward and

nature’s policy towards minimizing reward

Approach 2:
I Adversarially perturb the state observation

Empirical success, but lack of theoretical convergence and robustness
guarantee

References: [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 109 / 124

Adversarial Training Approach

Approach 1:
I Reformulate robust RL as a game between agent and nature, where

nature chooses transition kernel Pt ∈ P, t ≥ 0
maxπ infPt∈P,t≥0EPt ,t≥0 [

∑∞
t=0 γ

trt |S0 = s, π]
I Alternatively optimize agent’s policy towards maximizing reward and

nature’s policy towards minimizing reward

Approach 2:
I Adversarially perturb the state observation

Empirical success, but lack of theoretical convergence and robustness
guarantee

References: [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 109 / 124

Model-free Approach

Uncertainty set is centered at an unknown MDP from which samples
can be taken

Goal: design principled online robust RL algorithm

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 110 / 124

Additive Uncertainty Set [80, 81]

Uncertainty set: Pa
s = {pas + x |x ∈ Ua

s }
I pas is simulator transition kernel, from which samples are taken
I Ua

s is the confidence region
e.g., ellipsoid
Ua
s = {x : x>Aa

sx ≤ 1,
∑

i xi = 0,−pas (i) ≤ xi ≤ 1− pas (i)}

Robust TD, Q-learning, SARSA [80]

Robust least squares policy evaluation and robust least squares policy
iteration [81]

Basic idea:
I a stochastic implementation of robust Bellman operator
I when calculate support function σPs,a(Ṽ), relax Ua

s to Ûa
s

Ûa
s = {x : x>Aa

sx ≤ 1,
∑

i xi = 0}
I issue: pas + x , x ∈ Ûa

s may not be a probability distribution anymore

Converge if discount factor γ is much less than 1 (to offset error
caused by relaxation)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 111 / 124

Additive Uncertainty Set [80, 81]

Uncertainty set: Pa
s = {pas + x |x ∈ Ua

s }
I pas is simulator transition kernel, from which samples are taken
I Ua

s is the confidence region
e.g., ellipsoid
Ua
s = {x : x>Aa

sx ≤ 1,
∑

i xi = 0,−pas (i) ≤ xi ≤ 1− pas (i)}
Robust TD, Q-learning, SARSA [80]

Robust least squares policy evaluation and robust least squares policy
iteration [81]

Basic idea:
I a stochastic implementation of robust Bellman operator
I when calculate support function σPs,a(Ṽ), relax Ua

s to Ûa
s

Ûa
s = {x : x>Aa

sx ≤ 1,
∑

i xi = 0}
I issue: pas + x , x ∈ Ûa

s may not be a probability distribution anymore

Converge if discount factor γ is much less than 1 (to offset error
caused by relaxation)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 111 / 124

ε-Contamination Uncertainty Set

ε-contamination uncertainty set:

Pa
s = {(1− ε)pas + εq|q ∈ ∆(S)} , for some 0 ≤ ε ≤ 1

where ∆(S) is the probability simplex on S
Interpretation: with probability 1− ε, state transition is perturbed to
any arbitrary distribution q ∈ ∆(S)

Algorithm and results can be similarly obtained for case with ∆(S)
replaced by a set that depends on s, a

ε-Contamination model (Huber in [82]) has been widely used to
model distributional uncertainty in the literature

ε-contamination can be related to total-variation/KL divergence
defined uncertainty set via Pinsker’s inequality

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 112 / 124

ε-Contamination Uncertainty Set

ε-contamination uncertainty set:

Pa
s = {(1− ε)pas + εq|q ∈ ∆(S)} , for some 0 ≤ ε ≤ 1

where ∆(S) is the probability simplex on S
Interpretation: with probability 1− ε, state transition is perturbed to
any arbitrary distribution q ∈ ∆(S)

Algorithm and results can be similarly obtained for case with ∆(S)
replaced by a set that depends on s, a

ε-Contamination model (Huber in [82]) has been widely used to
model distributional uncertainty in the literature

ε-contamination can be related to total-variation/KL divergence
defined uncertainty set via Pinsker’s inequality

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 112 / 124

Robust Q-learning [83]

Initialization: T , Q̃0(s, a) for all (s, a), behavior policy πb, s0, step size αt

For t = 0, 1, 2, ...,T − 1
Choose at according to πb(·|st)
Observe st+1 and rt
Update Q̃t+1:

Ṽt(s)← max
a∈A

Q̃t(s, a), ∀s ∈ S

Q̃t+1(st , at)← (1− αt)Q̃t(st , at) + αt(rt + γ((1− ε)Ṽt(st+1) + εmin
s∈S

Ṽt(s)︸ ︷︷ ︸
target, one-step bootstrap

)

Output: Q̃T

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 113 / 124

Convergence and Sample Complexity [83]

Theorem (Asymptotic Convergence)

If step sizes αt satisfy that
∑∞

t=0 αt =∞ and
∑∞

t=0 α
2
t <∞, then

Q̃t → Q̃∗ as t →∞ almost surely.

Theorem (Finite-Time Error Bound)

For any ε, when T = Õ(1
µmin(1−γ)5ε2 + tmix

µmin(1−γ)), ‖Q̃T − Q̃∗‖ ≤ ε.

tmix = min
{
t : maxs∈S dTV(µπ,P(st = ·|s0 = s)) ≤ 1

4

}
measures the

mixing time under behavior policy πb

µmin = min(s,a)∈S×A µπb(s, a): how many samples are needed to visit
every state-action pair sufficiently often

Robust Q-learning converges to Q̃∗

Same sample and computational complexity (within a constant
factor) as vanilla Q-learning algorithm

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 114 / 124

Experiments on Robust Q-Learning

Train Q-learning and robust Q-learning under a perturbed MDP

Test on real unperturbed environment

Robust Q-learning achieves higher reward than vanilla Q-learning

(a) FrozenLake (b) Cartpole

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 115 / 124

Robust TDC with Linear Function Approximation

Large state/action space

Policy evaluation: for any policy π, evaluate its performance under
worst-case transition kernel:

Ṽ π(s) = min
Pt∈P,t≥0

EPt∈P,t≥0

[∞∑
t=0

γtrt |S0 = s, π

]

Linear function approximation: find Vθ(s) = θ>φ(s) for a family of
base functions φ(s) ∈ RN , such that Vθ ≈ V π

Why no robust TD with function approximation? It may divergence
since it is essentially ”off-transition-kernel” (similar to off-policy)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 116 / 124

Robust TDC with Linear Function Approximation

Robust Bellman operator (for policy evaluation):

T̃πV (s) , EA∼π(·|s)[r(s,A) + γσPA
s

(V)]

Ṽ π is the fixed point of T̃π

Minimize the mean squared projected robust Bellman error
(MSPRBE)

min
θ

MSPRBE(θ) =
∥∥∥∏ T̃πVθ − Vθ

∥∥∥2

µπ

mins′∈S V (s ′) is non-differentiable and brings difficulties in algorithm
design and analysis

Use a smoothed robust Bellman operator to approximate robust
Bellman operator

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 117 / 124

Robust TDC with Linear Function Approximation

Use LogSumExp to approximate min: LSE(V) = − log(
∑

s e
−ρV (s))
ρ

Smoothed Robust Bellman operator: T̂πV (s) =

EA∼π(·|s)

[
r(s,A) + γ(1− R)

∑
s′∈S p

A
s,s′V (s ′) + γR · LSE(V)

]
Theorem (Contraction [83])

T̂π is a contraction and has a unique fixed point (denoted by V̂ π).
Moreover, V̂ π → Ṽ π as ρ→∞.

Goal: minimize smoothed mean squared projected robust Bellman
error (SMSPRBE):

min
θ

J(θ) := min
θ

∥∥∥∏ T̂πVθ − Vθ

∥∥∥2

µπ

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 118 / 124

Robust TDC with Linear Function Approximation

Input: T ,α, β, ρ, φi for i = 1, ...,N, projection radius K
Initialization: θ0,w0, s0

Choose W ∼ Uniform(0, 1, ...,T − 1)
For t = 0, 1, 2, ...,W − 1

Take action according to π(·|st) and observe st+1 and ct
φt ← φst

δt(θt)← rt + γ(1− R)Vθt (st+1)− γR log(
∑

s e
−ρθ>φs)
ρ − Vθt (st)

θt+1 ←∏
K

(
θt + α

(
δt(θt)φt − γ

(
(1− R)φt+1 + R

∑
s∈S

(
e−ρVθ(s)φs∑
j∈S e−ρVθ(j)

))
φ>t ωt

))
ωt+1 ←

∏
K (ωt + β(δt(θt)− φ>t ωt)φt)

Output: θW

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 119 / 124

Results on Robust TDC

Theorem 3 (Robust TDC [83])

Define step-sizes: β = O
(

1
T b

)
, α = O

(
1
T a

)
, where 1

2 < a ≤ 1 and
0 < b ≤ a. Then

E[‖∇J(θW)‖2] = O
(

1

Tα
+ α log(1/α) +

1

Tβ
+ β log(1/β)

)
.

If a = b = 0.5, then

E[‖∇J(θW)‖2] = O
(

logT√
T

)
.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 120 / 124

Experiments on Robust TDC

Train TDC and robust TDC under a perturbed MDP

Test on real unperturbed environment

Robust TDC converges to stationary points faster than TDC

TDC may even diverge

(a) (b)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 121 / 124

Open Problems in Reinforcement Learning

Multi-task reinforcement learning
I Tasks can share similar but different transition kernels
I Meta-learning can be applied to achieve sampling efficiency
I Open issues in theory: characterization of sample complexity

improvement due to meta-learning

Off-policy/Offline reinforcement learning
I No access to online interaction with environment, but access only to a

given set of data samples
I Dataset has limited coverage over state-action space, and is sampled

under behavior policy, not target policy
I Open issues in design: how to design desirable algorithms to address

overestimation and distribution shift
I Open issues in theory: what is the minimum requirement to achieve

polynomial sample complexity efficiency

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 122 / 124

Open Problems (Cont.)

Partially observable MDP
I No access to full state information
I Optimal policy is not stationary
I Markovian structure does not hold anymore
I Open issues in design: how to design efficient model-free and

model-based methods
I Open issues in theory: how to characterize sample complexity

Multi-agent RL
I Multiple agents interact collaboratively or competitively
I Decentralized algorithms under partial observations of environments
I Challenges in design: delayed communication; communication depends

on network topology; curse of dimensionality
I Open issues in theory: tradeoff among communications, computations,

privacy; equilibrium; sample complexity

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 123 / 124

Questions?

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

References
[1] N. Sharma, S. Zhang, S. R. S. Venkata, F. Malandra,

N. Mastronarde, and J. Chakareski, “Deep reinforcement learning for
delay-sensitive lte downlink scheduling,” in IEEE Annual International
Symposium on Personal, Indoor and Mobile Radio Communications,
pp. 1–6, IEEE, 2020.

[2] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine learning, vol. 3, no. 1, pp. 9–44, 1988.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An
introduction.
2018.

[4] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE transactions on
automatic control, vol. 42, no. 5, pp. 674–690, 1997.

[5] V. S. Borkar, Stochastic approximation: a dynamical systems
viewpoint, vol. 48.
2009.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[6] A. Benveniste, P. Priouret, and M. Métivier, Adaptive Algorithms and
Stochastic Approximations.
Springer-Verlag, 1990.

[7] V. Tadić, “On the convergence of temporal-difference learning with
linear function approximation,” Machine learning, vol. 42, no. 3,
pp. 241–267, 2001.

[8] G. Dalal, B. Szörényi, G. Thoppe, and S. Mannor, “Finite sample
analyses for td (0) with function approximation,” in Proc. Association
for the Advancement of Artificial Intelligence (AAAI), vol. 32, 2018.

[9] R. Srikant and L. Ying, “Finite-time error bounds for linear stochastic
approximation andtd learning,” in Proc. Conference on Learning
Theory (COLT), pp. 2803–2830, 2019.

[10] J. Bhandari, D. Russo, and R. Singal, “A finite time analysis of
temporal difference learning with linear function approximation,” in
Proc. Conference on Learning Theory (COLT), vol. 75,
pp. 1691–1692, 2018.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[11] L. Baird, “Residual algorithms: Reinforcement learning with function
approximation,” in Proc. International Conference on Machine
Learning (ICML), pp. 30–37, 1995.

[12] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver,
C. Szepesvári, and E. Wiewiora, “Fast gradient-descent methods for
temporal-difference learning with linear function approximation,” in
Proc. International Conference on Machine Learning (ICML),
pp. 993–1000, 2009.

[13] H. R. Maei, Gradient temporal-difference learning algorithms.
PhD thesis, University of Alberta, 2011.

[14] H. Yu, “On convergence of some gradient-based temporal-differences
algorithms for off-policy learning,” arXiv1712.09652, 2018.

[15] M. Kaledin, E. Moulines, A. Naumov, V. Tadic, and H.-T. Wai,
“Finite time analysis of linear two-timescale stochastic approximation
with markovian noise,” in Proc. Conference on Learning Theory
(COLT), pp. 2144–2203, 2020.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[16] T. Xu, S. Zou, and Y. Liang, “Two time-scale off-policy td learning:
Non-asymptotic analysis over markovian samples,” in Proc. Advances
in Neural Information Processing Systems (NeurIPS),
pp. 10634–10644, 2019.

[17] T. Xu and Y. Liang, “Sample complexity bounds for two timescale
value-based reinforcement learning algorithms,” in Proc. International
Conference on Artificial Intelligence and Statistics, vol. 130,
pp. 811–819, 13–15 Apr 2021.

[18] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An analysis of
reinforcement learning with function approximation,” in Proc.
International Conference on Machine Learning (ICML), pp. 664–671,
ACM, 2008.

[19] S. Zou, T. Xu, and Y. Liang, “Finite-sample analysis for sarsa with
linear function approximation,” in Proc. Advances in Neural
Information Processing Systems, pp. 8665–8675, 2019.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[20] G. Li, C. Cai, Y. Chen, Y. Gu, Y. Wei, and Y. Chi, “Is q-learning
minimax optimal? a tight sample complexity analysis,” arXiv preprint
arXiv:2102.06548, 2021.

[21] M. J. Wainwright, “Variance-reduced q-learning is minimax optimal,”
arXiv preprint arXiv:1906.04697, 2019.

[22] G. Li, Y. Wei, Y. Chi, Y. Gu, and Y. Chen, “Sample complexity of
asynchronous q-learning: Sharper analysis and variance reduction,”
arXiv preprint arXiv:2006.03041, 2020.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and
G. Ostrovski, “Human-level control through deep reinforcement
learning,” Nature, vol. 518, pp. 529–533, 2015.

[24] H. R. Maei, C. Szepesvári, S. Bhatnagar, and R. S. Sutton, “Toward
off-policy learning control with function approximation,” in Proc.
International Conference on Machine Learning (ICML), 2010.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[25] Y. Wang and S. Zou, “Finite-sample analysis of Greedy-GQ with
linear function approximation under Markovian noise,” in Proc.
International Conference on Uncertainty in Artificial Intelligence
(UAI), vol. 124, pp. 11–20, 2020.

[26] T. Xu and Y. Liang, “Sample complexity bounds for two timescale
value-based reinforcement learning algorithms,” ArXiv:2011.05053,
2020.

[27] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Proc. Advances in Neural
Information Processing Systems, vol. 26, 2013.

[28] S. Ma, Z. Chen, Y. Zhou, and S. Zou, “Greedy-GQ with variance
reduction: Finite-time analysis and improved complexity,” in Proc.
International Conference on Learning Representations (ICLR), 2021.

[29] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function
approximation,” in Proc. Advances in Neural Information Processing
Systems (NIPS), pp. 1057–1063, 2000.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[30] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8,
no. 3-4, pp. 229–256, 1992.

[31] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in The 32nd International Conference on
Machine Learning (ICML), pp. 1889–1897, 2015.

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[33] S. M. Kakade, “A natural policy gradient,” in Advances in Neural
Information Processing Systems (NeurIPS), pp. 1531–1538, 2002.

[34] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, “Optimality
and approximation with policy gradient methods in Markov decision
processes,” arXiv preprint arXiv:1908.00261, 2019.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[35] G. Lan, “Policy mirror descent for reinforcement learning: Linear
convergence, new sampling complexity, and generalized problem
classes,” ArXiv:2102.00135, 2021.

[36] J. Bhandari and D. Russo, “Global optimality guarantees for policy
gradient methods,” arXiv preprint arXiv:1906.01786, 2019.

[37] L. Shani, Y. Efroni, and S. Mannor, “Adaptive trust region policy
optimization: Global convergence and faster rates for regularized
MDPs,” arXiv preprint arXiv:1909.02769, 2019.

[38] S. Cen, C. Cheng, Y. Chen, Y. Wei, and Y. Chi, “Fast global
convergence of natural policy gradient methods with entropy
regularization,” arXiv:2007.06558, 2020.

[39] V. Konda, “Actor-critic algorithms (ph.d. thesis),” Department of
Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, 2002.

[40] H. Xiong, T. Xu, YingbinLiang, and W. Zhang, “Non-asymptotic
convergence of Adam-type reinforcement learning algorithms under

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

Markovian sampling,” in Proc. AAAI Conference on Artificial
Intelligence (AAAI), 2021.

[41] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Proc.
Advances in Neural Information Processing Systems (NeurIPS),
pp. 1008–1014, 2000.

[42] T. Xu, Z. Wang, and Y. Liang, “Improving sample complexity bounds
for (natural) actor-critic algorithms,” in Proc. Advances in Neural
Information Processing Systems (NeurIPS), also available as arXiv
preprint arXiv:2004.12956, 2020.

[43] S.-I. Amari, “Natural gradient works efficiently in learning,” Neural
Computation, vol. 10, no. 2, pp. 251–276, 1998.

[44] T. Xu, Z. Yang, Z. Wang, and Y. Liang, “Doubly robust off-policy
actor-critic: Convergence and optimality,” in Proc. International
Conference on Machine Learning (ICML), 2021.

[45] E. Altman, Constrained Markov Decision Processes, vol. 7.
CRC Press, 1999.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[46] S. Paternain, L. F. Chamon, M. Calvo-Fullana, and A. Ribeiro,
“Constrained reinforcement learning has zero duality gap,” in Proc.
Advances in Neural Information Processing Systems (NIPS), 2019.

[47] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Proc. International Conference on Machine Learning
(ICML), pp. 22–31, 2017.

[48] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone,
“Risk-constrained reinforcement learning with percentile risk criteria,”
The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6070–6120, 2017.

[49] D. Ding, K. Zhang, T. Basar, and M. Jovanovic, “Natural policy
gradient primal-dual method for constrained markov decision
processes,” in Proc. Advances in Neural Information Processing
Systems (NeurIPS), vol. 33, 2020.

[50] T. Li, Z. Guan, S. Zou, T. Xu, Y. Liang, and G. Lan, “Faster
algorithm and sharper analysis for constrained Markov decision
process,” arXiv preprint arXiv:2110.10351, 2021.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[51] T. Xu, Y. Liang, and G. Lan, “CRPO: A new approach for safe
reinforcement learning with convergence guarantee,” in Proc.
International Conference on Machine Learning (ICML), 2021.

[52] D. A. Pomerleau, “Efficient training of artificial neural networks for
autonomous navigation.,” Neural Computation, vol. 3, no. 1,
pp. 88–97, 1991.

[53] S. Russell, “Learning agents for uncertain environments,” in Proc.
Eleventh Annual Conference on Computational Learning Theory,
1998.

[54] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement
learning,” in Proc. International Conference on Machine Learning
(ICML), 2000.

[55] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Proc. Advances in Neural Information Processing Systems (NIPS),
2016.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[56] Y. Zhang, Q. Cai, Z. Yang, and Z. Wang, “Generative adversarial
imitation learning with neural networks: Global optimality and
convergence rate,” arXiv preprint arXiv:2003.03709, 2020.

[57] Z. Guan, T. Xu, and Y. Liang, “When will generative adversarial
imitation learning algorithms attain global convergence,” in Proc.
International Conference on Artificial Intelligence and Statistics
(AISTATS), 2021.

[58] Z. Chen, Y. Zhou, and R. Chen, “Multi-agent off-policy td learning:
Finite-time analysis with near-optimal sample complexity and
communication complexity,” ArXiv:2103.13147, 2021.

[59] Z. Chen, Y. Zhou, R. Chen, and S. Zou, “Sample and
communication-efficient decentralized actor-critic algorithms with
finite-time analysis,” arXiv:2109.03699, 2021.

[60] X. Deng, Y. Li, D. Mguni, J. Wang, and Y. Yang, “On the
complexity of computing markov perfect equilibrium in general-sum
stochastic games,” Electronic Colloquium on Computational
Complexity (ECCC), vol. 28, p. 128, 2021.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[61] L. S. Shapley, “Stochastic games*,” Proceedings of the National
Academy of Sciences, vol. 39, no. 10, pp. 1095–1100, 1953.

[62] Z. Chen, S. Ma, and Y. Zhou, “Sample efficient stochastic policy
extragradient algorithm for zero-sum markov game,” in International
Conference on Learning Representations, 2022.

[63] C.-Y. Wei, C.-W. Lee, M. Zhang, and H. Luo, “Last-iterate
convergence of decentralized optimistic gradient descent/ascent in
infinite-horizon competitive markov games,” in Proc. Conference on
Learning Theory (COLT), 2021.

[64] G. N. Iyengar, “Robust dynamic programming,” Mathematics of
Operations Research, vol. 30, no. 2, pp. 257–280, 2005.

[65] A. Nilim and L. El Ghaoui, “Robustness in Markov decision problems
with uncertain transition matrices.,” in NIPS, pp. 839–846, Citeseer,
2003.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[66] E. Vinitsky, Y. Du, K. Parvate, K. Jang, P. Abbeel, and A. Bayen,
“Robust reinforcement learning using adversarial populations,” arXiv
preprint arXiv:2008.01825, 2020.

[67] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust
adversarial reinforcement learning,” in International Conference on
Machine Learning, pp. 2817–2826, PMLR, 2017.

[68] M. A. Abdullah, H. Ren, H. B. Ammar, V. Milenkovic, R. Luo,
M. Zhang, and J. Wang, “Wasserstein robust reinforcement
learning,” arXiv preprint arXiv:1907.13196, 2019.

[69] L. Hou, L. Pang, X. Hong, Y. Lan, Z. Ma, and D. Yin, “Robust
reinforcement learning with wasserstein constraint,” arXiv preprint
arXiv:2006.00945, 2020.

[70] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine, “Epopt:
Learning robust neural network policies using model ensembles,”
arXiv preprint arXiv:1610.01283, 2016.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[71] C. G. Atkeson and J. Morimoto, “Nonparametric representation of
policies and value functions: A trajectory-based approach,” in Proc.
Advances in Neural Information Processing Systems (NIPS),
pp. 1643–1650, 2003.

[72] J. Morimoto and K. Doya, “Robust reinforcement learning,” Neural
computation, vol. 17, no. 2, pp. 335–359, 2005.

[73] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel,
“Adversarial attacks on neural network policies,” arXiv preprint
arXiv:1702.02284, 2017.

[74] J. Kos and D. Song, “Delving into adversarial attacks on deep
policies,” arXiv preprint arXiv:1705.06452, 2017.

[75] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and
M. Sun, “Tactics of adversarial attack on deep reinforcement learning
agents,” arXiv preprint arXiv:1703.06748, 2017.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[76] A. Pattanaik, Z. Tang, S. Liu, G. Bommannan, and G. Chowdhary,
“Robust deep reinforcement learning with adversarial attacks,” arXiv
preprint arXiv:1712.03632, 2017.

[77] A. Mandlekar, Y. Zhu, A. Garg, L. Fei-Fei, and S. Savarese,
“Adversarially robust policy learning: Active construction of
physically-plausible perturbations,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pp. 3932–3939, IEEE, 2017.

[78] S. H. Lim, H. Xu, and S. Mannor, “Reinforcement learning in robust
Markov decision processes,” Proc. Advances in Neural Information
Processing Systems (NIPS), vol. 26, pp. 701–709, 2013.

[79] K. Zhang, B. Hu, and T. Basar, “On the stability and convergence of
robust adversarial reinforcement learning: A case study on linear
quadratic systems,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

[80] A. Roy, H. Xu, and S. Pokutta, “Reinforcement learning under model
mismatch,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, pp. 3046–3055, 2017.

[81] K. P. Badrinath and D. Kalathil, “Robust reinforcement learning
using least squares policy iteration with provable performance
guarantees,” in International Conference on Machine Learning,
pp. 511–520, PMLR, 2021.

[82] P. J. Huber, “A robust version of the probability ratio test,” Ann.
Math. Statist., vol. 36, pp. 1753–1758, 1965.

[83] Y. Wang and S. Zou, “Online robust reinforcement learning with
model uncertainty,” in Proc. Advances in Neural Information
Processing Systems (NeurIPS), 2021.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 124 / 124

	Introduction to Reinforcement Learning and Applications
	Value-based Algorithms
	Policy Evaluation
	Optimal Control

	Policy Gradient Algorithms
	Advanced Topics on RL and Open Directions
	Constrained Reinforcement Learning
	Imitation Learning
	Multi-Agent Reinforcement Learning
	Robust Reinforcement Learning

