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Reinforcement Learning

An agent learns to interact with environment in the best way
I Agent observes state, and takes an action based on a policy
I Agent receives a reward
I Environment changes the state
I Agent finds a policy to maximize reward

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 4 / 124



Markov Decision Process (MDP)

Markov decision process (MDP): (S,A, r ,P)
I S and A: state and action spaces
I r : S ×A× S → R: reward function
I P(s ′|s, a): transition kernel; prob of s → s ′ given action a

Agent’s policy π(a|s): prob of selecting action a in state s

MDP trajectory {st , at , rt , st+1}∞t=0 defined by

s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · ·

Randomness: actions, state transitions
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Application: Autonomous Driving

Collects driving data

AI agent trained to optimize driving control

Specification of MDP
I State: driving environment (distance to nearby cars, weather, etc)
I Action: turn left/right, accelerate, brake
I Reward: stay safe, drive smoothly
I Policy: vehicle control in a state
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Application: Wireless Communication

Downlink Scheduling [1]

Learn optimal scheduling to minimize average queuing delay

Specification of MDP
I State: buffer status and channel state
I Action: assign resource block, determine number of transmitted bits
I Reward: buffer cost
I Policy: determine action in a given state
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Application: Robotics

Robotics: Robot Control (left figure)
I Robot learns the landing environment
I Robot follows a policy to adjust the landing direction

Robotics: Arm Manipulation (right figure)
I Robot learns the warehouse environment
I Robot follows a policy to manipulate its arm
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Formulation of RL

MDP trajectory {st , at , rt , st+1}t with rt := r(st , at , st+1)

Quality of s, a: discount factor γ ∈ (0, 1)

(State value): Vπ(s) = E
[∑∞

t=0 γ
trt |s0 = s, π

]
(State-action value): Qπ(s, a) = E

[∑∞
t=0 γ

trt |s0 = s, a0 = a, π
]

Expected long-term accumulated reward start with s, a

RL Goal: find the best policy π∗

(Criterion I): Vπ∗(s) ≥ Vπ(s), ∀π,∀s
(Criterion II): max

π
J(π) := Es∼ξ[Vπ(s)]

Tutorial will not cover all the RL formulations

Finite-time horizon, Average reward, Regret analysis
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Policy Evaluation

Recall Markov Decision Process: {st , at , rt , st+1}t

s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · ·

State value function:

Vπ(s) = E
[∑∞

t=0 γ
trt |s0 = s, π

]
I Expected accumulated reward, start with s follow π.

Policy Evaluation Problem:

Given a fixed policy π, how to evaluate its state value function Vπ?

Foundation for policy optimization
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Summary of Policy Evaluation Algorithms

Known transition kernel P(·|s, a)
I Solving Bellman equation

Unknown transition kernel P(·|s, a) (Model-free)
I On-policy TD learning
I Off-policy TD learning

Our focus is model-free approaches.
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Known P: Bellman Equation

Transition kernel P(·|s, a) is known

By definition of Vπ(s):

Vπ(s) = E[r0 + γr1 + γ2r2 + · · · |s0 = s, π]

= E[r0|s0 = s, π] + γE[r1 + γr2 + · · · |s0 = s, π]

Note that

E[r1 + γr2 + · · · |s0 = s, π]

= Es1

[
E[r1 + γr2 + · · · |s0 = s, s1 = s ′, π]

]
= Es1 [Vπ(s1)]

Vπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
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Vπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
Define Bellman operator

(Bellman operator):

TπVπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
Bellman Equation for Value Function

Vπ(s) = TπVπ(s)

Linear programming: Directly solve the linear equation
I High computation complexity

Value iteration: fixed point update

Vt+1(s) = TπVt(s)

I Tπ is contraction ⇒ Vt → Vπ.
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Model-Free: On-Policy TD Learning

Model-Free

Transition kernel P(·|s, a) is unknown

On-Policy Data

Collect Markovian data {st , at , rt , st+1}t following target policy π
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On-Policy TD(0) Algorithm
Recall Bellman equation

Vπ(s) = E[r(s, a, s ′) + γVπ(s ′)]

Idea: update Vπ(s) using r(s, a, s ′) + γVπ(s ′)

Formally: collect {st , at , rt , st+1}t and do

V (st) = rt+1 + γV (st+1)︸ ︷︷ ︸
Target (one-step bootstrap)

, (*)

TD learning is a damped version of (*): 0 < η < 1,

V (st)← (1− η)V (st) + η
(
rt+1 + γV (st+1)

)
, (TD)

TD(0) Algorithm [2]

V (st)← V (st) + η
(
rt+1 + γV (st+1)− V (st)︸ ︷︷ ︸

temporal difference

)
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TD(λ) Algorithm

TD(0) Algorithm

V (st)← V (st) + η
(
rt+1 + γV (st+1)− V (st)

)
In TD(0), target rt+1 + γV (st+1) is one-step bootstrap

Extension: n-step bootstrap

G
(n)
t := rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnV (st+n)

Define λ-return: Gλ
t := (1− λ)

∑∞
n=1 λ

n−1G
(n)
t .

TD(λ) Algorithm [3]

V (st)← V (st) + η
(
Gλ
t − V (st)

)
Reduce the variance of TD target
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Value Function Approximation

Curse of dimensionality: state space is often large or infinite

Solution: approximate Vπ using parameterized model Vθ
I Linear model: Vθ(s) := φ>s θ, where φs is feature vector of s
I Neural model: Vθ(s) := NNθ(s), where NNθ is neural network

TD(0) learning with function approximation

Initialize model θ0.

Observe sample {st , at , rt , st+1}, define target Gt = rt + γVθt (st+1)

Define loss `t(θ) := 1
2 (Vθ(st)− Gt)

2, compute gt(θt) = −∂`t(θ)
∂θ |θ=θt

TD update:
θt+1 = θt + ηgt(θt),

where gt(θt) = (rt + γVθt (st+1)− Vθt (st))∇Vθt (st)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 19 / 124



Value Function Approximation

Curse of dimensionality: state space is often large or infinite

Solution: approximate Vπ using parameterized model Vθ
I Linear model: Vθ(s) := φ>s θ, where φs is feature vector of s
I Neural model: Vθ(s) := NNθ(s), where NNθ is neural network

TD(0) learning with function approximation

Initialize model θ0.

Observe sample {st , at , rt , st+1}, define target Gt = rt + γVθt (st+1)

Define loss `t(θ) := 1
2 (Vθ(st)− Gt)

2, compute gt(θt) = −∂`t(θ)
∂θ |θ=θt

TD update:
θt+1 = θt + ηgt(θt),

where gt(θt) = (rt + γVθt (st+1)− Vθt (st))∇Vθt (st)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 19 / 124



Analysis of TD(0) with Linear Approximation

TD(0) with linear approximation Vθ(s) := φ>s θ

θt+1 = ProjR
(
θt + ηgt(θt)

)
,

where gt(θt) = (rt + γφ>st+1
θt − φ>st θt)φst

Challenge: gt(θt) is gradient of time-varying function `t

Challenge: Samples {st , at , rt , st+1}t are Markovian and correlated

Non-exhaustive summary of existing work:

Asymptotic convergence: [4, 5, 6, 7]

Non-asymptotic (finite-time) convergence
I I.I.D. samples: [8]
I Markovian samples: [9], [10] (will be presented)
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Finite-Time Convergence of TD(0)

Key Assumption: Geometric Mixing

State stationary distribution µ. There exist κ > 0, ρ ∈ (0, 1) such that

sup
s∈S

dTV
(
P(st |s0 = s), µ

)
≤ κρt , ∀t ∈ N0

Hold for irreducible and aperiodic Markov chains

Given s0 and large t, st is almost like being sampled from µ
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Feature matrix Φ = [φ>s1
; ...;φ>sn ] full column rank, Vθ = Φθ

Solution point θ∗ satisfies [4]

Vθ∗ = ΠLTπVθ∗ , where L = {Φx |x ∈ Rd}

Theorem: finite-time convergence [10]

Set learning rate η ≤ O( 1
1−γ ). After T iterations,

E
[
‖θT − θ∗‖2

]
≤ O

(
exp(−cηT )‖θ0 − θ∗‖2 + η

τmix(η)

1− γ

)
,

where τmix(η) := min{t | κρt ≤ η} is the mixing time of Markov chain.

A faster mixing implies smaller convergence error
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TD Learning for Off-Policy Evaluation

Previous TD(0) uses on-policy data

On-Policy Data

Collect Markovian data {st , at , rt , st+1}t following target policy π

Limitation: requires executing the target policy

Limitation: in practice may not have sufficient on-policy data

Off-policy data

Collect Markovian data {st , at , rt , st+1}t following behavior policy πb. The
goal is to evaluate Vπ of the target policy π.
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Divergence of Off-Policy TD(0)

Key message: TD(0) with linear approximation may diverge in the
off-policy setting [11]

Zero reward, function approximation

V (s) = 2θ(s) + θ0, s = 1, ..., 6

V (7) = θ(7) + 2θ0

Under certain initialization, parameter diverges
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Gradient TD for Off-Policy Evaluation

Recall Vθ(s) = φ>s θ. Optimal θ∗ satisfies

Vθ∗ = ΠLTπVθ∗

Data sampled by behavior policy πb, stationary distribution µb

Mean-square projected Bellman error (MSPBE) [12]

(MSPBE): J(θ) := Es∼µb
[
Vθ(s)− ΠLTπVθ(s)

]2
Error Vθ(s)− ΠLTπVθ(s) based on target policy

Es∼µb : stationary state distribution induced by behavior policy
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Idea of Importance Sampling

Denote TD error δt(θ) = rt + γφ>st+1
θ − φ>st θ

MSPBE can be rewritten as

J(θ) = Eµb,π[δt(θ)φst ]
>Eµb [φstφ

>
st ]
−1Eµb,π[δt(θ)φst ]

Importance Sampling Lemma

Eµb,π[δt(θ)φst ] = Eµb,πb
[ π(at |st)
πb(at |st)

δt(θ)φst

]
,

where ρt = π(at |st)
πb(at |st) is the importance sampling ratio. Then, we have

−1

2
∇J(θ) = E

[
ρt(φst − γφst+1)φ>st

]
E
[
φstφ

>
st

]−1E[ρtδt(θ)φst ]
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GTD2 Algorithm

−1

2
∇J(θ) = E

[
ρt(φst − γφst+1)φ>st

]
E
[
φstφ

>
st

]−1E[ρtδt(θ)φst ]︸ ︷︷ ︸
ω∗(θ)

ω∗(θ) can be viewed as solution to the LMS

(LMS): ω∗(θ) = argmin
u

E
[
φ>stu − ρtδt(θ)

]2

GTD2 algorithm [12]

θt+1 = θt + αtρt(φst − γφst+1)φ>stωt

ωt+1 = ωt + βt(ρtδt(θt)φst − φstφ>stωt)

Two timescale updates

ω update is one-step SGD applied to LMS
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TDC Algorithm

−1

2
∇J(θ) = E

[
ρt(φst − γφst+1)φ>st

]
E
[
φstφ

>
st

]−1E[ρtδt(θ)φst ]︸ ︷︷ ︸
ω∗(θ)

= E
[
ρtδt(θ)φst

]
− γE

[
ρtφst+1φ

>
st

]
ω∗(θ)

TDC algorithm [12]

θt+1 = θt + αtρt(δt(θt)φst − γφst+1φ
>
stωt)

ωt+1 = ωt + βt(ρtδt(θt)φst − φstφ>stωt)

θ update is different from GTD2

ω update is the same as GTD2
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Convergence of TDC with Linear Approximation

TDC with linear approximation

θt+1 = ΠRθ

(
θt + αtρt(δt(θt)φst − γφst+1φ

>
stωt)

)
ωt+1 = ΠRω

(
ωt + βt(ρtδt(θt)φst − φstφ>stωt)

)
Challenge: Correlated Markovian samples

Challenge: Correlated two timescale updates

Non-exhaustive of existing work:

Asymptotic convergence: [12, 13, 14]

Non-asymptotic (finite-time) convergence
I I.I.D. samples: [8]
I Markovian samples: [15], [16] (will be presented)
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Finite-Time Convergence of TDC

Key Assumptions:

(Geometric mixing): There exist κ > 0, ρ ∈ (0, 1) such that

sup
s∈S

dTV
(
P(st |s0 = s), µ

)
≤ κρt , ∀t ∈ N0

(Non-singularity): The following matrices are non-singular

A := Eµb [ρs,a(γφsφ
>
s′ − φsφ>s )], C := −Eµb [φsφ

>
s ]

Theorem: finite-time convergence [16]

Set learning rates α < 1
|λmax(2A>C−1A)| , β <

1
|λmax(2C)| . After T iterations,

E
[
‖θT − θ∗‖2

]
≤ O

(
(1− cα)t + α logα−1 +

√
β log β−1 +

α

β

)
Need small αβ : ωt takes faster update than θt , because it needs to
approximate the double expectation in θ update
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Extension: Mini-batch TDC [17]

Mini-batch TDC with linear approximation

θt+1 = θt +
αt

M

(t+1)M−1∑
i=tM

ρi (δi (θt)φsi − γφsi+1φ
>
si
ωt)

ωt+1 = ωt +
βt
M

(t+1)M−1∑
i=tM

(ρiδi (θt)φsi − φsiφ
>
si
ωt)

No need to use bounded projection

Allow large constant learning rates

Reduce variance of two timescale stochastic updates
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Optimal Value Functions
Recall definition of value and state-action value functions:

Vπ(s) = E

[ ∞∑
t=0

γtr(st , at , st+1)

∣∣∣∣s0 = s, π

]

Qπ(s, a) = E

[ ∞∑
t=0

γtr(st , at , st+1)

∣∣∣∣s0 = s, a0 = a, π

]
Goal: to find an optimal policy that maximizes the value function
from any initial state s0

Optimal value function:

V ∗(s) = sup
π

Vπ(s), ∀s ∈ S

Optimal state-action value function:

Q∗(s, a) = sup
π

Qπ(s, a), ∀(s, a) ∈ S ×A
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Bellman Operator and Contraction

Optimal policy π∗: take action arg max
a∈A

Q∗(s, a) at state s ∈ S

V ∗(s) = maxa∈AQ∗(s, a),∀s ∈ S
The Bellman operator T is defined as

(TV )(s) = max
a∈A

Es′∼P(·|s,a)

[
r(s, a, s ′) + γV (s ′)

]
T is contraction: for any V1 and V2

‖TV1 − TV2‖∞ ≤ γ‖V1 − V2‖∞

V ∗ is the fixed point of T: V ∗ = TV ∗
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Value Iteration

Assume known reward r and transition kernel P

Value Iteration

Initialize V (s) arbitrarily for any s ∈ S
Repeat until convergence

I V (s)← max
a∈A

∑
s′∈S

P(s ′|s, a)(r(s, a, s ′) + γV (s ′)), for all s ∈ S

Repeatedly update V (s) using Bellman operator, i.e, V ← TV

Convergence can be proved using contraction of T
I ‖TV − V ∗‖∞ = ‖TV − TV ∗‖∞ ≤ γ‖V − V ∗‖∞
I ‖T · · ·T︸ ︷︷ ︸

t times

V − V ∗‖∞ ≤ γt‖V − V ∗‖∞ → 0, as t →∞
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Policy Iteration

Assume known reward r and transition kernel P

Policy Iteration

Initialize π arbitrarily

Repeat until convergence
I Evaluate Qπ
I π′(s)← arg max

a∈A
Qπ(s, a) for all s ∈ S

I π ← π′

Policy improvement theorem: Let π and π′ be any pair of
deterministic policies such that for all s ∈ S, Qπ(s, π′(s)) ≥ Vπ(s),
then π′ is no worse than π: Vπ′(s) ≥ Vπ(s),∀s ∈ S
Policy from policy iteration has higher or same value than before
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SARSA: On-Policy TD Control

Finite S and A, unknown reward r and transition kernel P

SARSA

I Parameter: step size α ∈ (0, 1]

I Initialize Q(s, a) for all s ∈ S and a ∈ A arbitrarily

I Initialize s0 and a0, t = 0

I Repeat until convergence

F Observe state st+1, receive reward r(st , at , st+1)
F Take action at+1 using target policy derived from Q (e.g., ε-greedy)
F Q(st , at)← Q(st , at) + α(r(st , at , st+1) + γQ(st+1, at+1)︸ ︷︷ ︸

target, one-step bootstrap

−Q(st , at))

F t ← t + 1

SARSA converges to Q∗ if
I All state-action pairs are visited infinitely often
I The policy converges to the greedy policy (e.g., ε-greedy with ε = 1/t)
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SARSA with Linear Function Approximation

Large S and A, unknown r and P

SARSA

Initialization: θ0, s0, φi , for i = 1, 2, ...,N

πθ0 ← Γ(φ>θ0) (e.g., ε-greedy, softmax w.r.t. φ>θ0)

Choose a0 according to πθ0

For t = 0, 1, 2, ...
I Observe st+1 and r(st , at , st+1), choose at+1 according to πθt
I θt+1 ← θt + αtgt(θt)
I Policy improvement: πθt+1 ← Γ(φ>θt+1)

gt(θt) = φ(st , at)∆t : gradient of
`(θ) = 1

2 (r(st , at , st+1) + γφ>(st+1, at+1)θt︸ ︷︷ ︸
target, one-step bootstrap

−φ>θ)2

∆t denotes the temporal difference error at time t:
∆t = target− φ>(st , at)θt ,
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SARSA Sample Path

As θt is updated, πθt changes with time

On-policy algorithm, time-varying policy

Non-i.i.d. data
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Finite-Sample Analysis [19]

The limit point θ∗ of the projected SARSA [18]: Aθ∗θ
∗ + bθ∗ = 0,

where Aθ∗ = Eθ∗ [φ(s, a)(γφT (s ′, a′)− φ>(s, a)] and
bθ∗ = Eθ∗ [φ(s, a)r(s, a, s ′)]

The limiting point θ∗ is the one such that Eθ∗ [g(θ∗)] = 0, where
s ∼ µπθ∗ , a ∼ πθ∗(·|s)

Theorem

I Finite-sample bound on convergence of SARSA with diminishing step-size:

E‖θT − θ∗‖2
2 ≤ O

(
log T
T

)
I Finite-sample bound on convergence of SARSA with constant step-size:

E‖θT − θ∗‖2
2 ≤ O

(
e−cT

)
+O(α)

With diminishing step-size, SARSA converges exactly to optimal θ∗

With constant step-size, SARSA converges exponentially fast to a
small neighborhood of θ∗
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Q-Learning: Off-Policy TD Control
Finite S and A, unknown r and P

Q-Learning

I Parameter: step size α ∈ (0, 1]

I Initialize Q(s, a) for all s ∈ S and a ∈ A arbitrarily

I Initialize s0, behavior policy πb, t = 0

I For t = 0, 1, 2, ...

F Take action at following fixed πb, observe next state st+1, receive reward
r(st , at , st+1)

F Q(st , at)← Q(st , at) + α(r(st , at , st+1) + γ max
a′∈A

Q(st+1, a
′)︸ ︷︷ ︸

target, one-step bootstrap

−Q(st , at))

Q-learning converges to Q∗ if all state-action pairs are visited
infinitely often

Q-learning sample complexity studies, e.g., [20], [21] and [22]

Deep Q-learning: use neural network to approximate Q-function [23]
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Gradient TD Method for Optimal Control

Q-learning with function approximation may suffer from divergence
issue

Solution: Greedy-Gradient Q-learning (Greedy-GQ) with linear
function approximation [24]

Consider mean squared projected Bellman error (MSPBE):

J(θ) , ‖ΠTQθ − Qθ‖2
µ

I µ: stationary distribution induced by behavior policy πb
I ‖Q(·, ·)‖µ ,

∫
s∈S,a∈A dµs,aQ(s, a)

I Π: projection operator ΠQ̂ = arg minQ∈Q ‖Q − Q̂‖µ
I Q =

{
Qθ = φ>θ : θ ∈ RN

}
Goal: minθ J(θ)
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Two Time-Scale Update Rule

Define V̄s′(θ) = maxa′∈A θ
>φs′,a′

TD error: δs,a,s′(θ) = r(s, a, s ′) + γV̄s′(θ)− θ>φs,a
Let φ̂s′(θ) = ∇V̄s′(θ). Then gradient of MSPBE is

∇J(θ)

2
= −Eµ[δs,a,s′(θ)φs,a] + γEµ[φ̂s′(θ)φ>s,a]ω∗(θ),

where ω∗(θ) = Eµ[φs,aφ
>
s,a]−1Eµ[δs,a,s′(θ)φs,a].

Double-sampling issue for estimating Eµ[φ̂s′(θ)φ>s,a]ω∗(θ): it involves
product of two expectations

Weight doubling trick [12]:

Slow time-scale: θt+1 = θt + α(δt+1(θt)φt − γ(ω>t φt)φ̂t+1(θt)),

Fast time-scale: ωt+1 = ωt + β(δt+1(θt)− φ>t ωt)φt ,
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Finite-Sample Analysis [25, 26]

Challenges:

Non-convex objective J(θ) with two time-scale update rule

Non-smooth due to max in V̄s′(θ) = maxa′∈A θ
>φs′,a′

I Approximate max with a smooth approximation, e.g., softmax

Biased gradient estimate due to two time-scale update and Markovian
noise

Theorem [25]

Finite-sample bound on convergence of Greedy-GQ with linear function

approximation: E[‖∇J(θW )‖2] = O
(

log T√
T

)
Gradient norm converges to 0 implies convergence to stationary points

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 44 / 124



Variance Reduced Greedy-GQ [28]

Greedy-GQ update: denote Ot = (st , at , rt , st+1)

θt+1 = θt − αGOt (θt , ωt), ωt+1 = ωt − βHOt (θt , ωt)

Variance reduction [27]: reference parameters θ̃, ω̃

(Reference updates) G̃ :=
1

M

M∑
i=1

GOi
(θ̃, ω̃), H̃ :=

1

M

M∑
i=1

HOi
(θ̃, ω̃)

(Variance-reduced Greedy-GQ):

θt+1 = θt − α
(
GOt (θt , ωt)− GOt (θ̃, ω̃) + G̃

)
ωt+1 = ωt − β

(
HOt (θt , ωt)− HOt (θ̃, ω̃) + H̃

)
Periodically update θ̃, ω̃, G̃ , H̃

Improved sample complexity
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Formulation of RL
State value function:

Vπ(s) = E[
∑∞

t=0 γ
tr(st , at , st+1)|s0 = s, π]

State-action value function:

Qπ(s, a) = E[
∑∞

t=0 γ
tr(st , at , st+1)|s0 = s, a0 = a, π]

where at ∼ π(·|st) for all t ≥ 0.

Average value function:

J(π) = (1− γ)E[
∑∞

t=0 γ
tr(st , at , st+1)] = Es∼ξ[Vπ(s)]

where ξ(·) denotes initial distribution.

RL Goal: find the best policy π∗

(Criterion I): Vπ∗(s) ≥ Vπ(s), ∀π,∀s
(Criterion II): max

π
J(π) := Es∼ξ[Vπ(s)]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 47 / 124



Parameterization of Policy
Central idea:

I Parameterize the policy as {πw ,w ∈ W}
I J(π) = J(πw ) := J(w)

Goal of Policy-Based RL: maxw∈W J(πw ) := J(w)

Example parameterizations of policy
I Direct parameterization: πw (a|s) = ws,a, where w ∈ 4(A)|S|, i.e.,

ws,a ≥ 0, and
∑

a∈A ws,a = 1 for all (s, a)

I Tabular softmax parameterization:

πw (a|s) =
exp(ws,a)∑

a′∈A exp(ws,a′)

I Linear softmax parameterization:

πw (a|s) ∝ exp(φ(s, a)Tw)

I Gaussian policy: πw (a|s) = N (φ(s)Tw , σ2)
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Policy Gradient Algorithm

Goal of Policy-Based RL: maxw∈W J(πw ) := J(w)

Policy gradient ∇J(w) [29]

∇wJ(w) = Eνπw
[
Qπw (s, a)∇w log πw (a|s)

]
I Define score function ψw (s, a) := ∇w log πw (a|s)
I Visitation distribution: νπ(s, a) = (1− γ)

∑∞
t=0 γ

tP(st = s, at = a)
I Define advantage function: Aπ(s, a) = Qπ(s, a)− Vπ(s)

∇wJ(w) = Eνπw
[
Qπw (s, a)ψw (s, a)] = Eνπw

[
Aπw (s, a)ψw (s, a)

]
Policy gradient algorithm [29, 30]

update the parameter w via gradient ascent

wt+1 = wt + αt∇wJ(wt)

where αt > 0 is the stepsize.
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TRPO/PPO Algorithm

Trusted Region Policy Optimization (TRPO) [31]

Update the parameter w under KL constraint

wt+1 = argmax
w

[J(wt) + (w − wt)
T∇wJ(wt)]

subject to Eν(s)[KL(πwt ||πw )] ≤ c

where c > 0 is a hyperparameter.

Proximal Policy Optimization (PPO) [32]

Update the parameter w via KL-regularized gradient ascent

wt+1 = argmax
w

[J(wt) + (w − wt)
T∇wJ(wt)− αEνw (s)[KL(πwt ||πw )]]

where α > 0 is a hyperparameter.
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Natural Policy Gradient (NPG) Algorithm
Second-order Taylor approximation to KL distance

KL(πwt ||πw ) ≈1

2
(w − wt)

TF (w)(w − wt)

I Fisher information matrix F (w) = Eνπw [∇w log πwt∇w log πT
wt

]

KL-regularized update: at time t

argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)− αEνw (s)[KL(πwt ||πw )]
]

≈ argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)−
α

2
(w − wt)

TF (wt)(w − wt)
]

= wt + αF (wt)
†∇wJ(wt)

where F (wt)
† denotes the pseudo-inverse of F (wt).

Natural Policy Gradient (NPG) [33]

Update parameter w via KL approximator based regularizer

wt+1 = wt + αF (wt)
†∇wJ(wt)
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Convergence with Exact Policy Gradient

Policy gradient
I Direct and tabular softmax policy: global sublinear convergence [34]
I Direct policy: global linear convergence via regularized MDP [35]
I Direct policy: global linear convergence via line search [36]

TRPO/PPO
I Direct policy: global sublinear convergence via adaptivity [37]
I Direct policy: global linear convergence via regularized MDP [35]
I Direct policy: global convergence via line search [36]

NPG
I Tabular softmax policy: global sublinear convergence [34]
I Tabular softmax policy: global linear convergence via regularized

MDP [38]
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Policy Gradient Algorithms under Unknown MDP

∇J(w) = Eνπw
[
Qπw (s, a)ψw (s, a)

]
= Eνπw

[
Aπw (s, a)ψw (s, a)

]
Let P̂(·|st , at) = γP(·|st , at) + (1− γ)ξ(·) [39]

I ξ(·): initial distribution
I Samples drawn from P̂(·|st , at) converge to visitation distribution νπw

Model-free Policy Gradient

Sample st ∼ P̂(·|st−1, at−1), at ∼ πwt (·|st)
Unbiased estimation of Aπwt (st , at)

I Sample a length-K trajectory starting at (st , at), K ∼ Geom(1− γ)
I Estimate Q̂(st , at) by adding rewards over the sample path
I Sample a length-K trajectory starting at (st), K ∼ Geom(1− γ)
I Estimate V̂ (st) by adding rewards over the sample path
I Âπwt

(st , at) = Q̂(st , at)− V̂ (st)

Estimate policy gradient gt = Âπwt (st , at)∇wt log(πwt (at |st))

Update wt+1 = wt + αtgt

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 53 / 124



Policy Gradient Algorithms under Unknown MDP

∇J(w) = Eνπw
[
Qπw (s, a)ψw (s, a)

]
= Eνπw

[
Aπw (s, a)ψw (s, a)

]
Let P̂(·|st , at) = γP(·|st , at) + (1− γ)ξ(·) [39]

I ξ(·): initial distribution
I Samples drawn from P̂(·|st , at) converge to visitation distribution νπw

Model-free Policy Gradient

Sample st ∼ P̂(·|st−1, at−1), at ∼ πwt (·|st)
Unbiased estimation of Aπwt (st , at)

I Sample a length-K trajectory starting at (st , at), K ∼ Geom(1− γ)
I Estimate Q̂(st , at) by adding rewards over the sample path
I Sample a length-K trajectory starting at (st), K ∼ Geom(1− γ)
I Estimate V̂ (st) by adding rewards over the sample path
I Âπwt
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Convergence of Model-free PG Algorithms

Theorem ( [40])

Consider a general nonlinear policy {πw : w ∈ W}. Under a constant
stepsize αt = α, the output of model-free PG satisfies

min
t∈[T ]

E
[
‖∇wtJ(wt)‖2

]
≤ O

(
1
αT

)
+O(α log2 1

α ).

PG converges to a neighborhood of a stationary point at a rate of
O
(

1
T

)
.

I α controls a tradeoff between convergence rate and accuracy
I Decreasing α improves accuracy, but slows down convergence

I Let αt = 1√
T

, PG converges with a rate of O
(

log2 T√
T

)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 54 / 124



Actor-Critic Algorithms [41]

Actor-Critic Algorithm

Critic
I Estimates Vθ(s) by linear function approximation φ(s)>θ
I Takes Tc length-M minibatch TD learning updates and outputs θt

Actor
I Approximates Aπw (s, a) by temporal difference error δθ(s, a, s ′)

Âπw (s, a) = δθ(s, a, s ′) = r(s, a, s ′) + γφ(s ′)>θ − φ(s)>θ

I Estimate policy gradient vt(θt) by averaging δθt (st , at , st+1)ψwt (st , at)
over a length-B sample trajectory

I Updates wt+1 = wt + αtvt(θt)
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Convergence Rate of Actor-Critic Algorithm

Theorem ( [42])

Consider a general nonlinear policy {πw : w ∈ W}, and T̂ is chosen
uniformly from {1, · · · ,T}.

E[
∥∥∇wJ(wT̂ )

∥∥2

2
] ≤ O

(
1
T

)
+O

(
1
B

)
+ (1−O(λAπβ))Tc +O

(
β
M

)
+O(ζcriticapprox).

Actor has sublinear convergence, and critic has linear convergence

Actor’s bias and variance O
(

1
B

)
; Critic’s bias and variance O

(
β
M

)
Critic’s approximation error: ζcritic

approx = maxw∈W Eνw [|Vπw (s)− Vθ∗πw (s)|2]

Actor’s mini-batch yields faster convergence rate of O(1/T ) rather
than O(1/

√
T )

This further yields better overall sample complexity
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Proof of Convergence

Let vt(θ) denote estimator of g(θ,w) = Eνw [Aθ(s, a)ψw (s, a)]

Decompose error terms(1

2
α− LJα

2
)
E[‖∇wJ(wt)‖2

2 |Ft ]

≤ E[J(wt+1)|Ft ]− J(wt) + 3
(1

2
α + LJα

2
)
E
[ ∥∥vt(θt)− vt(θ

∗
wt

)
∥∥2

2

+
∥∥vt(θ∗wt

)− g(θ∗wt
,wt)

∥∥2

2
+
∥∥g(θ∗wt

,wt)−∇wJ(wt)
∥∥2

2

∣∣Ft

]
.

Error due to TD learning

E[
∥∥vt(θt)− vt(θ

∗
wt

)
∥∥2

2

∣∣Ft ]

≤ 4E[
∥∥θt − θ∗wt

∥∥2

2

∣∣Ft ] ≤ (1−O(λAπβ))Tc +O(β/M)
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Proof of Convergence (Cont.)

Gradient estimation error under Markovian minibatch sampling

E
[∥∥vt(θ∗wt

)− g(θ∗wt
,wt)

∥∥2

2
|Ft

]
≤ O

(
1

B

)
.

Critic’s approximation error∥∥g(θ∗wt
,wt)−∇wJ(wt)

∥∥2

2
≤ O

(
ζcritic

approx

)
Combine error bounds and take summarization over iteration path

E[
∥∥∇wJ(wT̂ )

∥∥2

2
] ≤O

(
1
T

)
+ (1−O(λAπβ))Tc +O

(
β
M

)
+O

(
1
B

)
+O(ζcritic

approx).
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Natural Policy Gradient under Unknown MDP

Natural policy gradient (NPG) [33, 43],

wt+1 = wt + αtF (wt)
†∇J(wt)

Consider minθ∈Rd Lw (θ) = Eνπw [Aπw (s, a)− ψ(s, a)>θ]2

I Minimum norm solution satisfies θw = F (w)†∇J(w)

NPG update [34]: wt+1 = wt + αtθt

Model-free NPG [34]

At step t, solve least square problem via K iterations
I Obtain unbiased estimator Âπwt

(sk , ak) (same as PG)
I Update θk+1 = θk − β∇θLwt (θk)

Update wt+1 = wt + αtθK

NPG with general nonlinear policy converges globally as O
(

1√
T

)
[34]

Can achieve O
(

1
T

)
by self-variance reduction of gradient norm [42]
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Natural Actor-Critic Algorithm

J(w) = Eνπw
[
Qπw (s, a)ψw (s, a)

]
= Eνπw

[
Aπw (s, a)ψw (s, a)

]
wt+1 = wt + αtF (wt)

†∇J(wt)

Natural Actor-Critic Algorithm

Critic (same as critic in actor-critic algorithm)
I Estimates Vθ(s) by linear function approximation φ(s)>θ
I Takes Tc length-M minibatch TD learning updates and outputs θt

Actor
I Computes policy gradient estimator vt(θt) as in actor-critic algorithm
I Computes Fisher information estimator Ft(wt) by averaging over a

length-B sample trajectory
I Updates wt+1 = wt + αtFt(wt)

†vt(θt)
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Convergence Rate of Natural Actor-Critic Algorithm

Theorem ( [42])

Consider a general nonlinear policy {πw : w ∈ W}, and T̂ is chosen
uniformly from {1, · · · ,T}.

J(π∗)− E
[
J(πwT̂

)
]
≤ O

(
1
T

)
+O

(
1√
B

)
+ (1−O(λAπβ))Tc/2 +O

(
1√
M

)
+O(

√
ζcriticapprox) +O

(
1
B

)
+ (1−O(λAπβ))Tc +O

(
β
M

)
+O(ζcriticapprox) +O(

√
ζactorapprox)

Actor has sublinear convergence, and critic has linear convergence

Critic’s approx. error: ζcritic
approx = maxw∈W Eνw [|Vπw (s)− Vθ∗πw (s)|2]

Actor’s approx. error:
ζactor

approx = maxw∈W minp∈Rd2 Eνπw
[
ψw (s, a)>p − Aπw (s, a)

]2
Diminishing variance in actor’s update yields a faster convergence
rate of O(1/T ) than O(1/

√
T )

Performance difference lemma [34] of NAC yields global convergence
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Extension I: Policy Gradient Algorithm with Adam

PG-AMSGrad [40]

Sample st ∼ P̂(·|st−1, at−1), at ∼ πwt (·|st)
Estimate Q-function Q̂πwt (st , at) as in PG

Estimate policy gradient gt = Q̂πwt (st , at)∇wt log(πwt (at |st))

mt = (1− β1)mt−1 + β1gt momentum

vt = (1− β2)v̂t−1 + β2g
2
t stepsize adaptation

v̂t = max(v̂t−1, vt), V̂t = diag(v̂t,1, . . . , v̂t,d)

Update policy parameter wt+1 = wt − αtV̂
− 1

2
t mt

Convergence rate of PG-AMSGrad [40]

In practice, PG with Adam converges much faster
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Extension II: Off-Policy Policy Gradient Algorithms

Off-policy policy gradient
I On-policy sampling with target policy is not possible
I Off-policy sampling under behavior policy: (si , ai , s

′
i ) ∼ D

I Estimate ∇wJ(w) with off-policy samples

Actor-critic with distribution correction (AC-DC)

g(w) = ρ̂(s, a)Q̂πw (s, a)∇w log(πw (s, a))

where ρ̂ and Q̂πw are approximation of ρ = νπw /D and Qπw , respectively.

Bias error of AC-DC suffers substantially from estimation errors

∆g = ED[g(w)]−∇wJ(πw ) = Θ(E[ερ(s, a) + εQ(s, a)])

where ερ = ρ− ρ̂ and εQ = Q − Q̂

Doubly robust off-policy PG estimation [44] reduces bias error
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Topic 1: Constrained Reinforcement Learning

Practical RL applications involve various safety/resource constraints
I Left: Power constraint on battery powered devices
I Right: Safety constraints on autonomous robotics and vehicles
I Bottom: Delay constraint in communication system
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Constrained Markov Decision Process (CMDP)

Same dynamics as general MDP

Agent receives reward R and cost C

Value function w.r.t. reward R:

JR(π) := (1− γ)E [
∑∞

t=0 γ
tR(st , at , st+1)]

Value function w.r.t. cost C :

JC (π) := (1− γ)E [
∑∞

t=0 γ
tC (st , at , st+1)]

Goal of CMDP

max
π

JR(π) subject to JC (π) ≤ c (P)
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Primal-Dual Approach: e.g. CPO [47], PDO [48]

Let λ > 0 be Lagrangian multiplier. Define Lagrangian:

L(π, λ) = −JR(π) + λ(JC (π)− c).

Dual function: d(λ) := minπ L(π, λ)

Dual problem:

D∗ = max
λ∈R+

d(λ) := max
λ∈R+

min
π
L(π, λ) (D)

Duality gap: ∆ = D∗ − P∗, where P∗ is the negative solution of (P)
I Zero duality gap [45, 46]
I (P) can be equivalently solved by solving (D)
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Primal-Dual Approach

Primal-Dual Algorithm

For t = 0, 1, ...,T
I Compute πt+1 based on L(π, λt) and πt . Example methods:

F Dual descent [46]: πt+1 = arg minπ L(π, λt) using some RL oracle
F Natural policy gradient [49]: πt+1 = πt − ηFρ(πt)

† · ∇πL(πt , λt)

I Compute the dual ascent step λk+1 = (λk + η(JC (πt+1)− c))+.

Performance metric:
I Let π∗ denote the optimal solution to primal problem P
I Optimality gap: JR(π∗)− JR(π).
I Constraint violation: (JC (π)− c)+.

Convergence Rate:
I Duality gap decays at a rate of O(1/

√
T ) [46]

I Optimality gap decays O(1/
√
T ) and constraint violation decays

O(1/T
1
4 ) [49]
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Accelerated and Regularized Constrained Policy
Optimizer (AR-CPO) [50]

Central idea: solve the minimax problem over the (τ, µ)-regularized
Lagrangian via an accelerated dual descent

max
λ∈Rm

+

min
π∈Π
Lτ,µ(π, λ) := L(π, λ)− τH(π)− µ

2
‖λ‖2

2

I Entropy-regularized policy optimizer
F τH(π): smooth dual function dτ,µ(λ) := minπ∈Π Lτ,µ(π, λ)
F Examples: RegPO-NPG [33, 38], RegPO-SoftQ [50]

I `2 regularization on λ
F µ

2
‖λ‖2

2: dual function dτ,µ(λ) becomes strongly concave

I Nesterov’s accelerated gradient descent dual optimizer for updating λ
F Improve the dependence on the condition number

Optimality gap and constraint violation decay O(1/T ) [50]
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Drawback of Primal-Dual Approach

Solve a minimax problem over an augmented Lagrangian function

max
λ∈Rm

+

min
π∈Π
−JR(π) + λ(JC (π)− c)

Alternating between policy π and dual variable λ updates
I If the constraint is violated, JC (π)− c ≥ 0, λ becomes larger

(positive), and policy update will reduce constraint function
I If the constraint is satisfied, JC (π)− c ≤ 0, λ decreases gradually to

zero so that constraint eventually does not play a role in policy update
I However, λ can only iteratively increase or decrease, which yields

delayed response to enforcing or releasing constraints

What is more desirable?

Respond faster if a constraint is satisfied or violated

Do not introduce a dual variable for easier implementation
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A Primal Approach: CRPO [51]

Constraint-Rectified Policy Optimization (CRPO)

For t = 0, 1, ...,T − 1
I Constraint violation: If JC (πt) ≥ c + δ: πt+1 ← take one step natural

policy gradient update towards minimize JC (πt)
I Objective improvement: Else πt+1 ← take one step natural policy

gradient update towards maximize JR(πt)

CRPO responds to constraint satisfaction/violation immediately
I Primal-dual relies on iteration of dual variables, incurring large delay

CRPO can be implemented as easy as unconstrained optimization
I Primal-dual requires to update dual variables, which is more complex

CRPO does not suffer from hyperparameter tuning of learning rates
and projection threshold of dual variables

I Primal-dual approach can be very sensitive to these hyperparamters
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Neural Network Function Approximation

Use neural network to parameterize both value functions and policy

Define a feature vector ψ(s, a) ∈ Rd with d ≥ 2 for each (s, a)
I ‖ψ(s, a)‖2 ≤ 1 for all (s, a) ∈ S ×A

A two-layer neural network f ((s, a);W , b) with input ψ(s, a) and
width m

f ((s, a);W , b) =
1√
m

m∑
r=1

br · ReLU(W>
r ψ(s, a))

I b = [b1, · · · , bm]> ∈ Rm, and W = [W>1 , · · · ,W>m ]> ∈ Rmd

Initialize [W0]r ∼ Unif{Dw}, where Dw = {W : d1 ≤ ‖[W ]r‖2 ≤ d2}
and br ∼ Unif[−1, 1] independently
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Policy Evaluation

TD learning: at time t, sample st+1 ∼ P(·|s, a)

T̂tQt(st , at) = r(st , at , st+1) + γQt(st+1, a
′)

Qt+1 = Qt + αt(T̂tQt − Qt)

Neural TD learning: neural network parametrization θR ∈ Rmd

θ̃R = θRk + β
[
R(s, a, s ′) + γf ((s ′, a′); θRk )− f ((s, a); θRk )

]
∇θf ((s, a); θRk )

θRk+1 = argminθ∈B

∥∥∥θ − θ̃R∥∥∥
2
, where B = {θ ∈ Rmd :

∥∥θ − θi0∥∥2
≤ ΓR}

Let θ̄RK = 1
K

∑K−1
k=0 θ

R
k be the average output

Q̄R
t (s, a) = f ((s, a), θRK ) is an estimator of value function QR

πτtWt
(s, a)

Similarly, Q̄C
t (s, a) = f ((s, a), θCK ) is an estimator of constraint value

function QC
πτtWt

(s, a)
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High-Probability Guarantee for Neural TD

Consider TD iteration with neural network approximation
I Let stepsize β = min{1/

√
K , (1− γ)/12}

Theorem 1 (High-probability convergence of neural TD)

Under mild regularity conditions and bounded variance, with probability at
least 1− δ, neural TD learning satisfies

∥∥∥Q̄ i
t(s, a)− Q i

πτtWt
(s, a)

∥∥∥2

µπ
≤ Θ

(
1√
K

√
log

(
1

δ

))
+ Θ

(
1

m1/4

√
log

(
K

δ

))
.

where i = R,C .

For K = Θ(
√
m) iterations, ||Q̄ i

t − Q i
πτtWt
||µπ = O(1/m1/8)
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Constraint Estimation

Sample a batch of state-action pairs (sj , aj) ∈ Bt from distribution
ξ(·)πWt (·|·)
Estimation error of constraint

∣∣J̄C (θCt )− JC (πwt )
∣∣ is small if policy

evaluation Q̄C
t is accurate and concentration of sampling occurs

Assumption 1 (Concentration of sampling process)

For any parameterized policy πW , there exists a constant Cf > 0 such that

for all k ≥ 0, Eξ·πW
[
exp([Q̄ i

t(s, a)− Eξ·µπτtWt
Q̄ i

t(s, a)]2/C 2
f )
]
≤ 1.
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NPG in CRPO
Natural policy gradient

∆̄i
t = argmin

θ∈B
EνπτtWt

[(Q̄ i
t(s, a)− ψWt (s, a)>θ)2]

I τt controls amplitude of wt ; τtwt serves as parameter of policy
I N0: collects all feasible wt over the algorithm path
I η: constraint violation level

Algorithm 1 Policy Update for CRPO
1: τt+1 = τt + α
2: if J̄C ,Bt ≤ c + η then
3: Add wt into set N0

4: τt+1 · wt+1 = τt · wt + α∆̄R
t

5: else
6: τt+1 · wt+1 = τt · wt − α∆̄C

t

7: end if
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Convergence Guarantee of CRPO

Consider CRPO with neural network approximation
I Neural TD learning with Kin = Θ(

√
m) at each iteration

I Tolerance η = Θ(m/
√
T + m−1/8)

I NPG update learning rate α = Θ(1/
√
T )

Theorem 2 (Convergence Guarantee of CRPO)

With probability at least 1− δ, CRPO output satisfies

JR(π∗)−E[JR(πτoutWout)] ≤ Θ

(
1√
T

)
+ Θ

(
1

m1/8
log

1
4

(
T
√
m

δ

))
,

and for all i = 1, · · · , p,

E[JC (πτoutWout)]− c ≤ Θ

(
1√
T

)
+ Θ

(
1

m1/8
log

1
4

(
T
√
m

δ

))
.

where expectation is on randomness of selecting Wout from N0.
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Experiment: CartPole

CartPole setup
I A pole is attached by an un-actuated

joint to a cart
I The cart moves along a frictionless

track over [−2.4, 2.4]
I The pole starts upright
I Goal: prevent pole from falling over by

increasing and reducing cart’s velocity.

MDP environment
I State space: cart position and velocity, pole angle and angular velocity
I Action space: push cart to the left, push cart to the right
I Reward: agent receives a reward +1 for every step taken
I Constraints: agent is penalized with cost +1

F Entering [−2.4,−2.2], [−1.3,−1.1], [−0.1, 0.1], [1.1, 1.3], [2.2, 2.4]
F The angle of pole is larger than 6 degree
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Experiment: Acrobot

Acrobot setup
I System includes two joints and two

links, where second joint is actuated.
I Initially, the links are hanging

downwards
I Goal: swing the end of the lower link

up to a given height.

MDP environment
I State: two rotational joint angles and the joint angular velocities
I Action: applying +1, 0,−1 torque on the second joint
I Reward: agent receives a reward +1 when the second link is at a

height of 0.5
I Constraints: agent is penalized with cost +1

F Apply a torque +1 when the first link swings anticlockwisely
F Apply a torque +1 when the second link swings anticlockwisely with

respect to the first link
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Comparison of CRPO and Primal-Dual: CartPole
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Convergence
I CRPO achieves much higher reward

Constraint violation
I CRPO tracks constraint thresholds almost exactly, which sufficiently

explores boundary of feasible set to optimize reward
I Primal-Dudal tends to over- or under-enforce the constraints, which

results in lower return reward and unstable constraint violation
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Convergence
I CRPO achieves much higher reward

Constraint violation
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faster than that of PDO
I CRPO tracks constraint thresholds almost exactly, which sufficiently

explores boundary of feasible set to optimize reward
I Primal-Dudal under-enforce constraints, and yields lower reward
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Sensitivity to Tuning Parameters

Primal-dual is very sensitive to stepsize of dual variable’s update
I If stepsize is too small, dual variable updates slowly to enforce

constraints
I If stepsize is too large, algorithm becomes unstable

CRPO is robust with respect to tolerance parameter η

0 200 400 600 800 1000

# of Episodes

0

40

80

120

160

200

=10

=5

=2

=1

=0.5

0 200 400 600 800 1000

# of Episodes

0

40

80

120

160

200

=10

=5

=2

=1

=0.5

0 200 400 600 800 1000

# of Episodes

0

40

80

120

160

200

=10

=5

=2

=1

=0.5

CRPO in Acrobot with η taking different values

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 83 / 124



Sensitivity to Tuning Parameters

Primal-dual is very sensitive to stepsize of dual variable’s update
I If stepsize is too small, dual variable updates slowly to enforce

constraints
I If stepsize is too large, algorithm becomes unstable

CRPO is robust with respect to tolerance parameter η

0 200 400 600 800 1000

# of Episodes

0

40

80

120

160

200

=10

=5

=2

=1

=0.5

0 200 400 600 800 1000

# of Episodes

0

40

80

120

160

200

=10

=5

=2

=1

=0.5

0 200 400 600 800 1000

# of Episodes

0

40

80

120

160

200

=10

=5

=2

=1

=0.5

CRPO in Acrobot with η taking different values

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 83 / 124



Outline

1 Introduction to Reinforcement Learning and Applications

2 Value-based Algorithms
Policy Evaluation
Optimal Control

3 Policy Gradient Algorithms

4 Advanced Topics on RL and Open Directions
Constrained Reinforcement Learning
Imitation Learning
Multi-Agent Reinforcement Learning
Robust Reinforcement Learning

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning ICASSP 2022 84 / 124



Topic 2: Imitation Learning

Practical RL applications often encounter:
I Reward function is unknown
I Some expert demonstrations are available
I Goal: find a learner’s policy that produces behaviors as close as

possible to expert demonstrations

RL Goal: Learn a desired policy by imitation
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Two Major Approaches on Imitation Learning
Behavioral Cloning [52]

I Directly learns a mapping from state to action based on supervised
learning to match expert demonstrations

Inverse Reinforcement Learning [53, 54]
I First recovers unknown reward function based on expert’s trajectories,

and then find an optimal policy using such a reward function
I Generative adversarial imitation learning (GAIL) framework [55]

Expert Demonstrations

𝒟𝒟 = (𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) 𝑡𝑡=1
|𝒟𝒟| ,

with   𝑎𝑎𝑡𝑡 ∼ 𝜋𝜋𝐸𝐸(𝑠𝑠𝑡𝑡)

Policy Optimization

max
𝜋𝜋∈Π

𝐽𝐽(𝜋𝜋, 𝑟𝑟)

𝜋𝜋
Learned Reward: 𝒓𝒓

Learned Policy: 𝝅𝝅

Reward Learning

max
𝑟𝑟∈ℛ

𝐽𝐽 𝜋𝜋𝐸𝐸 , 𝑟𝑟 − 𝐽𝐽(𝜋𝜋, 𝑟𝑟) − 𝜓𝜓(𝑟𝑟)
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Generative Adversarial Imitation Learning (GAIL)

Parameterize reward function as rα(s, a) where α ∈ Λ ⊂ Rq

πE : expert policy; demonstration samples under πE are available

πw : learner’s policy optimized by w ∈ W
J(πE , rα): average value function under expert policy

J(πw , rα): average value function under learner’s policy

ψ(α): regularizer of reward parameter

GAIL Framework [55]

min
w∈W

max
α∈Λ

F (w , α) := J(πE , rα)− J(πw , rα)− ψ(α)

Maximization: find reward function that best distinguishes between
expert’s and learner’s policies

Minimization: find learner’s policy that matches expert’s policy as
close as possible
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Global Optimum of GAIL

GAIL Framework [55]

min
w∈W

max
α∈Λ

F (w , α) := J(πE , rα)− J(πw , rα)− ψ(α)

Define marginal-maximum function g(w) := maxα∈Λ F (w , α).

Let global optimum of GAIL as w∗ = argminw∈W g(w).

w̄ is ε-optimal if g(w̄)− g(w∗) ≤ ε holds, where ε ∈ (0, 1).

ε-optimum of GAIL implies [56]

max
α∈Λ

[J(πE , rα)− J(πw̄ , rα)] ≤ max
α∈Λ

ψ(α) + ε.

Properly chosen ψ(α) can guarantee πw̄ to be sufficiently close to
expert policy.
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GAIL Policy Gradient Algorithm

Reward update:
I Query expert sample (sE , aE ) ∼ P̂πE and learner’s sample

(sw , aw ) ∼ P̂πw

I Estimate stochastic gradient with respect to reward parameter

∇̂αF (w , α) =
[
∇αrα(sE , aE )−∇αrα(sw , aw )

]
−∇αψ(α)

I Update αk+1 = Proj
(
αk + β∇̂αF (w , αk)

)
Policy update (e.g., by NPG)

I Estimate natural gradient θt via solving

min
θ∈Rd

E(s,a)∼νπw
[
Aπw
α (s, a)−∇w log(πw (a|s))>θ

]2
I Updated wt+1 = wt − ηθt
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Convergence Guarantee of NPG-GAIL

Theorem ( [57])

F (w , α) is µ-strongly concave on α. Under other standard assumptions
and properly-chosen stepsize, NPG-GAIL converges as

1
T

∑T−1
t=0 E [g(wt)]− g(w∗) ≤ O

(
1√
T

)
+O

(
e−K

)
+O

(
1
B

)
+O

(
e−Tc

)
+O

(
ζactorapprox

)
+O (λ) +O

(
1√
M

)
ζactor

approx is actor approximation error in NPG; K is number of updates
of α; B is mini-batch size of α update; Tc is number of updates in
value function evaluation in NPG; M is mini-batch size of w update;
λ is regularization coefficient in NPG

NPG-GAIL converges to an (ε+O(ζactor
approx))-accurate globally optimal

value with an overall sample complexity of Õ
(

1
ε4

)
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Topic 3: Multi-Agent Reinforcement Learning

RL applications naturally involve multiple agents
I Left: stock market with numerous investors
I Middle: multi-drone control
I Bottom: multi-agent power network
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Multi-Agent MDP

Distributed agents i = 1, 2, ...,N;

Global shared state s;

Independent policies/actions: π(a|s) =
∏N

i=1 π
i (ai |s);

Local rewards: r i (s, a).

Multi-agent MDP trajectory defined by

s0
{πi (·|s0)}Ni=1−→ {ai0}Ni=1

P(·|s0,a0)−→ (s1, {r i0}Ni=1)−→· · ·

Cooperative v.s. Competitive MARL

Cooperative MARL: Agents cooperate to achieve the same goal;

Competitive MARL: Agents compete to achieve conflict goals.
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Cooperative MARL

Define global state value function (under joint policy π)

Vπ(s) = E
[∑∞

t=0 γ
t 1
M

∑M
m=1 r

(m)
t |s0 = s, π

]
Agents cooperate to maximize average reward

max
π

J(π) = Eξ[Vπ(s)
]

All the agents share the same goal

Need decentralized synchronization (actions, rewards, etc)

Study communication & computation complexities
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Cooperative MARL: Off-Policy Evaluation

Given joint policy π, cooperate to evaluate Vπ

Decentralized mini-batch TDC [58]

Agent i = 1, ...,N performs

θit+1 =
∑
i ′∈Ni

Vii ′θ
i ′
t +

α

n

(t+1)n−1∑
m=tn

ρm(δm(θt)φsm − γφsm+1φ
>
mt
ωt)

ωi
t+1 =

∑
i ′∈Ni

Vii ′ω
i ′
t +

β

n

(t+1)n−1∑
m=tn

(ρmδm(θt)φsm − φsmφ>smωt)

Mini-batch sampling reduces variance and communication frequency

Local consensus on θ and ω
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Cooperative MARL: Off-Policy Evaluation

Need to estimate global importance sampling ratio ρ :=
∏N

i=1 ρ
i

I Rewrite as ρ = exp
(
N · 1

N

∑N
i=1 ln ρi

)
I Synchronize 1

N

∑N
i=1 ln ρi via local averaging

Sample and communication complexities [58]

Choose α = O( 1√
N

), β = O(1), n = O
(√

N
ε

)
, and run the algorithm for

T = O
(√

N ln ε−1
)

iterations. Then, for all agents i , the output achieves

E(‖θiT − θ∗‖2) ≤ ε.

The overall sample complexity is nT = O(Nε−1 ln ε−1), and the overall
communication complexity is T = O

(√
N ln ε−1

)
.
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Cooperative MARL: Policy Optimization

Decentralized mini-batch actor-critic [59]

Actor: Agent i = 1, ...,N do

ωi
t+1 = ωi

t + α∇ωi J(ωt),

where the partial policy gradient satisfies

∇ωi J(ωt)≈
[
r t + γV (s ′t+1)− V (st)

]
ψi
t(a

i
t |st) (1)

Critic: Agents estimate V (s) via standard decentralized TD

ψi
t(a

i
t |st): local score function computed by agent i

Challenge 1: need r t–average reward over all agents. Sensitive!

Challenge 2: How to achieve low communication & computation
complexities at the same time?
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Solve Challenge 1: local averaging over noisy rewards
I Corrupt local rewards

r̃ i = r i
(
1 +N (0, σ2)

)
I Estimate r via local averaging

r0 = r̃ i , r t+1 =
∑

i ′∈Ni
Wii ′ r t , t = 0, . . . ,T ′ − 1.

Solve Challenge 2: Use mini-batch sampling

∇̂ωi J(ωt) =
1

n

(t+1)n−1∑
m=tn

[
rm + γV (s ′m+1)− V (sm)

]
ψ

(i)
t (a

(i)
m |sm)

I Suppress reward noise with sufficiently large batch size n
I Reduces communication frequency

Sample and communication complexity [59]

Choose α = O(1), n = O(ε−1) and run the algorithm for T = O(ε−1)
iterations, the output satisfies E(‖∇J(ωT )‖2) ≤ ε. The overall sample
complexity is O(ε−2 ln ε−1), and the overall communication complexity is
O(ε−1 ln ε−1).
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Competitive MARL

Define individual state value function for agents i = 1, ...,N

Vπi ,π\i (s) = E
[∑∞

t=0 γ
tr it |s0 = s, π

]
Agents compete to maximize their own reward

max
πi

Vπi ,π\i (s), ∀s, ∀i = 1, ...,N

Nash equilibrium (NE)

Joint policy π is a NE if for any other policy π̂, the following holds.

Vπi ,π\i (s) ≥ Vπ̂i ,π\i (s), ∀s,∀i = 1, ...,N
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Competitive MARL

(NE): Vπi ,π\i (s) ≥ Vπ̂i ,π\i (s), ∀s,∀i = 1, ...,N

In general hard to develop efficient algorithms for finding NE
I Finding NE is PPAD-complete [60]

However, possible for the following special game

Two-player zero-sum game

Only two players N = 2. Moreover, their rewards sum up to zero, i.e.,
r1
t + r2

t = 0 for all t.

Existence of NE is first proved by Shapely in 1953 [61]

Can be reformulated as linear programming
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Two-Player Zero-Sum Game

Define rt := r1
t = −r2

t and the following value function

Vπ1,π2(s) = E
[ ∞∑
t=0

γtrt |s0 = s, π
]

Two-player zero-sum game reduces to

Two-player zero-sum game

min
π2

max
π1

Vπ1,π2(s), ∀s

Perfect duality holds, i.e.,

min
π2

max
π1

Vπ1,π2(s) = max
π1

min
π2

Vπ1,π2(s), ∀s
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Classic Value Iteration for Zero-Sum Game

min
π2

max
π1

Vπ1,π2(s), ∀s

Classic value iteration

Qk(s, a1, a2) = r(s, a1, a2) + γE[Vk(s ′)],

Vk+1(s) = min
π2

max
π1

π1(s)>Qk(s)π2(s)

In one-player case, Vk+1(s) = arg maxa Qk(s, a)

Requires transition kernel to compute E[Vk(s ′)]

Can be shown to converge to the optimal value function

Challenge: Need to solve matrix game efficiently
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Predictive Update via Entropy Regularization

Smooth the matrix game via entropy regularization

Qk(s, a1, a2) = r(s, a1, a2) + γE[Vk(s ′)],

Vk+1(s) = min
π2

max
π1

π1(s)>Qk(s)π2(s) + τH(π1(s))− τH(π2(s))

Improves bilinear geometry to strongly convex-strongly concave

Predictive Update algorithm [38]

(PU):



π1
k,t+1(a1|s) ∝ π1

k,t(a
1|s)1−ητ exp

(
ηQ1

k,t(s, a
1)
)

π2
k,t+1(a2|s) ∝ π2

k,t(a
2|s)1−ητ exp

(
− ηQ2

k,t(s, a
2)
)

π1
k,t+1(a1|s) ∝ π1

k,t(a
1|s)1−ητ exp

(
ηQ

1
k,t+1(s, a1)

)
π2
k,t+1(a2|s) ∝ π2

k,t(a
2|s)1−ητ exp

(
− ηQ2

k,t+1(s, a2)
) ,

Decentralized, symmetric, private
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Convergence and Complexity

Iteration Complexity [38]

Set η = O( 1−γ
2(1+τ(ln |A|+1−γ)) ) and τ = O( (1−γ)ε

ln |A| ), and run the algorithm

for T = O( 1
(1−γ)3ε

) iterations. Then, the output achieves ε-NE, i.e.,

max
µ

Vµ,π2(s)−min
ν

Vπ1,ν(s) ≤ ε.

Our recent work proposes a sample-based stochastic version [62]

Developed Monte Carlo estimators with Markovian samples to
estimate E[Vk(s ′)],Qk,t(s, a),Qk,t(s, a)

Achieve sample complexity O( |A|
ε5.5(1−γ)13.5 ), improves the SOTA

O( |A|
3|S|10.5

ε8(1−γ)29.5 ) [63]
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Outline

1 Introduction to Reinforcement Learning and Applications

2 Value-based Algorithms
Policy Evaluation
Optimal Control

3 Policy Gradient Algorithms

4 Advanced Topics on RL and Open Directions
Constrained Reinforcement Learning
Imitation Learning
Multi-Agent Reinforcement Learning
Robust Reinforcement Learning
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Topic 4: Robust Reinforcement Learning

Motivations:
I Possible model deviation between training and test environments, e.g.,

training is on simulator, model is from empirical estimate
I Adversarial attacks to MDPs
I These could lead to severe performance degradation

Robust Markov decision process: (S,A, r ,P), where P ∈P, and P is
an uncertainty set of transition kernels

I Reward function r could also be uncertain

Examples of uncertainty set: let p̂as denote centroid transition kernel,
e.g., empirical estimate and simulator

I Relative entropy: Pa
s = {p : D(p‖p̂as ) ≤ ε}

I Total variation: Pa
s = {p : TV (p‖p̂as ) ≤ ε}

I P =
⊗

s∈S,a∈A Pa
s
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Robust Reinforcement Learning
Pt : transition kernel at time t, and Pt ∈ P
Dynamic model: Pt for different t are allowed to be different

Static model: Pt1 = Pt2 , for any t1, t2 ≥ 0

Equivalence

Solutions to dynamic model and static model are equivalent under
rectangular uncertainty set [64]

Robust value function:
Ṽ π(s) = infPt∈P,t≥0 EPt ,t≥0 [

∑∞
t=0 γ

trt |S0 = s, π]

Robust action value function:
Q̃π(s, a) = infPt∈P,t≥0 EPt ,t≥0 [

∑∞
t=0 γ

trt |S0 = s,A0 = a, π]
I A pessimistic approach that optimizes the worst-case performance

Goal: Learn policy robust to model uncertainty

Ṽ ∗(s) = max
π

Ṽ π(s),∀s ∈ S
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Model-Based Approach

Assume that uncertainty set P is known

Robust Bellman operator:

T̃Ṽ (s) = max
a∈A

r(s, a) + γσPs,a(Ṽ ),

where σPs,a(Ṽ ) is the support function: σPs,a(Ṽ ) = supp∈Ps,a
p>Ṽ

Theorem (Contraction [65, 64])

T̃ is a contraction in `∞ norm, and its unique fixed point is Ṽ ∗

Ṽ ∗ can be solved by robust value/policy iteration
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Adversarial Training Approach

Approach 1:
I Reformulate robust RL as a game between agent and nature, where

nature chooses transition kernel Pt ∈ P, t ≥ 0
maxπ infPt∈P,t≥0EPt ,t≥0 [

∑∞
t=0 γ

trt |S0 = s, π]
I Alternatively optimize agent’s policy towards maximizing reward and

nature’s policy towards minimizing reward

Approach 2:
I Adversarially perturb the state observation

Empirical success, but lack of theoretical convergence and robustness
guarantee

References: [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]
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Model-free Approach

Uncertainty set is centered at an unknown MDP from which samples
can be taken

Goal: design principled online robust RL algorithm
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Additive Uncertainty Set [80, 81]

Uncertainty set: Pa
s = {pas + x |x ∈ Ua

s }
I pas is simulator transition kernel, from which samples are taken
I Ua

s is the confidence region
e.g., ellipsoid
Ua
s = {x : x>Aa

sx ≤ 1,
∑

i xi = 0,−pas (i) ≤ xi ≤ 1− pas (i)}

Robust TD, Q-learning, SARSA [80]

Robust least squares policy evaluation and robust least squares policy
iteration [81]

Basic idea:
I a stochastic implementation of robust Bellman operator
I when calculate support function σPs,a(Ṽ ), relax Ua

s to Ûa
s

Ûa
s = {x : x>Aa

sx ≤ 1,
∑

i xi = 0}
I issue: pas + x , x ∈ Ûa

s may not be a probability distribution anymore

Converge if discount factor γ is much less than 1 (to offset error
caused by relaxation)
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ε-Contamination Uncertainty Set

ε-contamination uncertainty set:

Pa
s = {(1− ε)pas + εq|q ∈ ∆(S)} , for some 0 ≤ ε ≤ 1

where ∆(S) is the probability simplex on S
Interpretation: with probability 1− ε, state transition is perturbed to
any arbitrary distribution q ∈ ∆(S)

Algorithm and results can be similarly obtained for case with ∆(S)
replaced by a set that depends on s, a

ε-Contamination model (Huber in [82]) has been widely used to
model distributional uncertainty in the literature

ε-contamination can be related to total-variation/KL divergence
defined uncertainty set via Pinsker’s inequality
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Robust Q-learning [83]

Initialization: T , Q̃0(s, a) for all (s, a), behavior policy πb, s0, step size αt

For t = 0, 1, 2, ...,T − 1
Choose at according to πb(·|st)
Observe st+1 and rt
Update Q̃t+1:

Ṽt(s)← max
a∈A

Q̃t(s, a), ∀s ∈ S

Q̃t+1(st , at)← (1− αt)Q̃t(st , at) + αt(rt + γ((1− ε)Ṽt(st+1) + εmin
s∈S

Ṽt(s)︸ ︷︷ ︸
target, one-step bootstrap

)

Output: Q̃T
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Convergence and Sample Complexity [83]

Theorem (Asymptotic Convergence)

If step sizes αt satisfy that
∑∞

t=0 αt =∞ and
∑∞

t=0 α
2
t <∞, then

Q̃t → Q̃∗ as t →∞ almost surely.

Theorem (Finite-Time Error Bound )

For any ε, when T = Õ( 1
µmin(1−γ)5ε2 + tmix

µmin(1−γ) ), ‖Q̃T − Q̃∗‖ ≤ ε.

tmix = min
{
t : maxs∈S dTV(µπ,P(st = ·|s0 = s)) ≤ 1

4

}
measures the

mixing time under behavior policy πb

µmin = min(s,a)∈S×A µπb(s, a): how many samples are needed to visit
every state-action pair sufficiently often

Robust Q-learning converges to Q̃∗

Same sample and computational complexity (within a constant
factor) as vanilla Q-learning algorithm
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Experiments on Robust Q-Learning

Train Q-learning and robust Q-learning under a perturbed MDP

Test on real unperturbed environment

Robust Q-learning achieves higher reward than vanilla Q-learning

(a) FrozenLake (b) Cartpole
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Robust TDC with Linear Function Approximation

Large state/action space

Policy evaluation: for any policy π, evaluate its performance under
worst-case transition kernel:

Ṽ π(s) = min
Pt∈P,t≥0

EPt∈P,t≥0

[ ∞∑
t=0

γtrt |S0 = s, π

]

Linear function approximation: find Vθ(s) = θ>φ(s) for a family of
base functions φ(s) ∈ RN , such that Vθ ≈ V π

Why no robust TD with function approximation? It may divergence
since it is essentially ”off-transition-kernel” (similar to off-policy)
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Robust TDC with Linear Function Approximation

Robust Bellman operator (for policy evaluation):

T̃πV (s) , EA∼π(·|s)[r(s,A) + γσPA
s

(V )]

Ṽ π is the fixed point of T̃π

Minimize the mean squared projected robust Bellman error
(MSPRBE)

min
θ

MSPRBE(θ) =
∥∥∥∏ T̃πVθ − Vθ

∥∥∥2

µπ

mins′∈S V (s ′) is non-differentiable and brings difficulties in algorithm
design and analysis

Use a smoothed robust Bellman operator to approximate robust
Bellman operator
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Robust TDC with Linear Function Approximation

Use LogSumExp to approximate min: LSE(V ) = − log(
∑

s e
−ρV (s))
ρ

Smoothed Robust Bellman operator: T̂πV (s) =

EA∼π(·|s)

[
r(s,A) + γ(1− R)

∑
s′∈S p

A
s,s′V (s ′) + γR · LSE(V )

]
Theorem (Contraction [83])

T̂π is a contraction and has a unique fixed point (denoted by V̂ π).
Moreover, V̂ π → Ṽ π as ρ→∞.

Goal: minimize smoothed mean squared projected robust Bellman
error (SMSPRBE):

min
θ

J(θ) := min
θ

∥∥∥∏ T̂πVθ − Vθ

∥∥∥2

µπ
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Robust TDC with Linear Function Approximation

Input: T ,α, β, ρ, φi for i = 1, ...,N, projection radius K
Initialization: θ0,w0, s0

Choose W ∼ Uniform(0, 1, ...,T − 1)
For t = 0, 1, 2, ...,W − 1

Take action according to π(·|st) and observe st+1 and ct
φt ← φst

δt(θt)← rt + γ(1− R)Vθt (st+1)− γR log(
∑

s e
−ρθ>φs )
ρ − Vθt (st)

θt+1 ←∏
K

(
θt + α

(
δt(θt)φt − γ

(
(1− R)φt+1 + R

∑
s∈S

(
e−ρVθ(s)φs∑
j∈S e−ρVθ(j)

))
φ>t ωt

))
ωt+1 ←

∏
K (ωt + β(δt(θt)− φ>t ωt)φt)

Output: θW
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Results on Robust TDC

Theorem 3 (Robust TDC [83])

Define step-sizes: β = O
(

1
T b

)
, α = O

(
1
T a

)
, where 1

2 < a ≤ 1 and
0 < b ≤ a. Then

E[‖∇J(θW )‖2] = O
(

1

Tα
+ α log(1/α) +

1

Tβ
+ β log(1/β)

)
.

If a = b = 0.5, then

E[‖∇J(θW )‖2] = O
(

logT√
T

)
.
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Experiments on Robust TDC

Train TDC and robust TDC under a perturbed MDP

Test on real unperturbed environment

Robust TDC converges to stationary points faster than TDC

TDC may even diverge

(a) (b)
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Open Problems in Reinforcement Learning

Multi-task reinforcement learning
I Tasks can share similar but different transition kernels
I Meta-learning can be applied to achieve sampling efficiency
I Open issues in theory: characterization of sample complexity

improvement due to meta-learning

Off-policy/Offline reinforcement learning
I No access to online interaction with environment, but access only to a

given set of data samples
I Dataset has limited coverage over state-action space, and is sampled

under behavior policy, not target policy
I Open issues in design: how to design desirable algorithms to address

overestimation and distribution shift
I Open issues in theory: what is the minimum requirement to achieve

polynomial sample complexity efficiency
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Open Problems (Cont.)

Partially observable MDP
I No access to full state information
I Optimal policy is not stationary
I Markovian structure does not hold anymore
I Open issues in design: how to design efficient model-free and

model-based methods
I Open issues in theory: how to characterize sample complexity

Multi-agent RL
I Multiple agents interact collaboratively or competitively
I Decentralized algorithms under partial observations of environments
I Challenges in design: delayed communication; communication depends

on network topology; curse of dimensionality
I Open issues in theory: tradeoff among communications, computations,

privacy; equilibrium; sample complexity
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Questions?
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